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Abstract

We present a new patch-based image restoration algorithm using an adaptive Wiener filter (AWF) with a novel
spatial-domain multi-patch correlation model. The new filter structure is referred to as a collaborative adaptive Wiener
filter (CAWF). The CAWF employs a finite size moving window. At each position, the current observation window
represents the reference patch. We identify the most similar patches in the image within a given search window
about the reference patch. A single-stage weighted sum of all of the pixels in the similar patches is used to estimate
the center pixel in the reference patch. The weights are based on a new multi-patch correlation model that takes into
account each pixel’s spatial distance to the center of its corresponding patch, as well as the intensity vector distances
among the similar patches. One key advantage of the CAWF approach, compared with many other patch-based
algorithms, is that it can jointly handle blur and noise. Furthermore, it can also readily treat spatially varying signal and
noise statistics. To the best of our knowledge, this is the first multi-patch algorithm to use a single spatial-domain
weighted sum of all pixels within multiple similar patches to form its estimate and the first to use a spatial-domain
multi-patch correlation model to determine the weights. The experimental results presented show that the proposed
method delivers high performance in image restoration in a variety of scenarios.

Keywords: Image restoration; Wiener filter; Correlation model; Patch-based processing

1 Introduction
1.1 Image restoration
During image acquisition, images are subject to a variety
of degradations. These invariably include blurring from
diffraction and noise from a variety of sources. Restoring
such degraded images is a fundamental problem in image
processing that has been researched since the earliest days
of digital images [1,2]. A wide variety of linear and non-
linear methods have been proposed. Many methods have
focused exclusively on noise reduction, and others seek
to address multiple degradations jointly, such as blur and
noise.
A widely used method for image restoration, relevant

to the current paper, is the classic Wiener filter [3].
The standard Wiener filter is a linear space-invariant
filter designed to minimize mean squared error (MSE)
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between the desired signal and estimate, assuming sta-
tionary random signals and noise. It is important to note
that there are many disparate variations of Wiener filters.
These include finite impulse response, infinite impulse
response, transform-domain, and spatially adaptive meth-
ods. Within each of these categories, a wide variety of sta-
tistical models may be employed. Some statistical models
are very simple, such as the popular constant noise-to-
signal power spectral density model, and others are far
more complex. In the case of the empirical Wiener filter
[4], no explicit statistical model is used at all. Rather, a
pilot or prototype estimate is used in lieu of a parametric
statistical model.While all of thesemethodsmay go by the
name of ‘Wiener filter’, they can be quite different in their
character.
Recently, a form of adaptive Wiener filter (AWF)

has been developed and successfully applied to super-
resolution (SR) and other restoration applications by one
of the current authors [5]. This AWF approach employs
a spatially varying weighted sum to form an estimate of
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each pixel. The Wiener weights are determined based
on a spatially varying spatial-domain parametric correla-
tion model. This particular brand of AWF SR emerged
from earlier work, including that in [6-8]. This kind of
AWF is capable of jointly addressing blur, noise, and
undersampling and is well suited to dealing with a non-
stationary signal and noise. The approach is also very well
suited to dealing with non-uniformly sampled imagery
and missing or bad pixels. This AWF SR method has been
shown to provide best-in-class performance for nonuni-
form interpolation-based SR [5,9-11] and has also been
used successfully for demosaicing [12,13] and Nyquist
sampled video restoration [14]. Under certain conditions,
the method can also be very computationally efficient [5].
The key to this method lies in the particular correlation
model used and how it is employed for spatially adaptive
filtering.
A different approach to image restoration, also relevant

to the current paper, is based on fusing multiple simi-
lar patches within the observed image. This patch-based
approach is used primarily for noise reduction applica-
tions and exploits spatial redundancy that may express
itself within an image, locally and/or non-locally. The
method of non-local means (NLM), introduced in [15],
may be the first method to directly fuse non-local patches
from within the observed image based on vector distances
for the purpose of image denoising. A notable early pre-
cursor to the NLM is the vector detection method [16,17].
In the vector detection approach, a codebook of repre-
sentative patches from training data is used, rather than
patches from the observed image itself [16,17]. A number
of NLM variations have been proposed, including [18-26].
The basic NLM method forms an estimate of a reference
pixel as a weighted sum of non-local pixels. The weights
are based on the vector distances of the patch intensi-
ties between various non-local patches and the reference
patch. In particular, the center samples of a non-local
patches are weighted in proportion to the negative expo-
nential of the corresponding patch distance. The NLM
algorithm can be viewed as an extension of the bilateral
filter [27-31], which forms an estimate by weighting neigh-
boring pixels based on both spatial proximity and intensity
similarity of individual pixels (rather than patches).
Improved performance for noise reduction is obtained

with the block matching and 3D filtering (BM3D)
approach proposed in [32-34]. The BM3D method also
uses vector distances between patches, but the filter-
ing is performed using a transform-domain shrinkage
operation. By utilizing all of the samples within selected
patches and aggregating the results, excellent noise reduc-
tion performance can be achieved with BM3D. Another
related patch-based image denoising algorithm is the total
least squares method presented in [35]. In this method,
each ideal patch is modeled as a linear combination of

similar patches from the observed image. Another type
of patch-based Wiener denoising filter is proposed in
[36], and a globalized approach to patch-based denois-
ing is proposed in [37]. While such patch-based methods
perform well in noise reduction, most are not capa-
ble of addressing blur and noise jointly. However, there
are a few recent methods that do treat both blur and
noise and incorporate multi-patch fusion. These include
BM3D deblurring (BM3DDEB) [38] and iterative decou-
pled deblurring-BM3D (IDD-BM3D) [39]. The deblurring
in these algorithms is not achieved by patch fusion alone.
Rather, the patch fusion component of these algorithms
serves as a type of signal model used for regularization.
Note that multi-patch methods have also been developed
and applied to SR [40-45]. However, the focus of this paper
is on image restoration without undersampling/aliasing.

1.2 Proposedmethod and novel contribution
In this paper, we propose a novel multi-patch AWF algo-
rithm for image restoration. In the spirit of [32], we refer
to this new filter structure as a collaborative adaptive
Wiener filter (CAWF). It can be viewed as an exten-
sion of the AWF in [5], with the powerful new feature
of incorporating multiple patches for each pixel estimate.
As with other patch-based algorithms, we employ a mov-
ing window. At each position, the current observation
window represents the reference patch. Within a given
search window about the reference, we identify the most
similar patches to the reference patch. However, instead
of simply weighting just the center pixels of these sim-
ilar patches, as with NLM, or using transform-domain
shrinkage like BM3D, we use a spatial-domain weighted
sum of all of the pixels within all of the selected patches
to estimate the one center pixel in the reference patch.
The weights used are based on a novel spatially vary-
ing spatial-domain multi-patch correlation model. The
correlation model takes into account each pixel’s spatial
distance to the center of its corresponding patch, as well as
the intensity vector distances among the similar patches.
The ‘collaborative’ nature of the CAWF springs from the
fusion of multiple, potentially non-local, patches. One key
advantage of the CAWF approach is that it can jointly
handle blur and noise. Furthermore, the CAWF method
is able to accommodate spatially varying signal and noise
statistics.
Our approach is novel in that we use a single-pass

spatial-domain weighted sum of all pixels within all of the
similar patches to form the estimate each desired pixel.
In the case of NLM, only the center pixel of each simi-
lar patch is given a weight [15].This is simple and effective
for denoising, but deconvolution is not possible within the
basic NLM framework, and all of the available informa-
tion in the patches may not be exploited. While BM3D
does fuse all of the pixels in the similar patches, the fusion
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in BM3D is based on a wavelet shrinkage operation and
not a spatial-domain correlation model [32]. Because of
the nature of wavelet shrinkage, the standard BM3D is also
unable to perform deblurring [32]. On the other hand, the
CAWF structure can jointly address blur and noise and
does not employ separate transform-domain inverse fil-
tering as in [38] or iterative processing like that in [39].
To the best of our knowledge, this is the first multi-
patch algorithm to use a single-pass weighted sum of all
pixels within multiple similar patches to jointly address
blur and noise. It is also the first to use a spatial-domain
multi-patch correlation model.
The remainder of this paper is organized as follows. The

observation model is described in Section 2. The CAWF
algorithm is presented in Section 3. This includes the basic
algorithm description as well as the new spatial-domain
multi-patch correlation model. Computational complex-
ity and implementation are also discussed in Section 3.
Experimental results for simulated and real data are pre-
sented and discussed in Section 4. Finally, conclusions are
offered in Section 5.

2 Observationmodel
The proposed CAWF algorithm is based on the observa-
tionmodel shown in Figure 1. Themodel input is a desired
2D discrete grayscale image, denoted d(n1, n2), where
n1, n2 are the spatial pixel indices. Using lexicographical
notation, we shall represent all of the pixels in this desired
image with a single column vector d = [ d1, d2, . . . , dN ]T ,
where N is the total number of pixels in the image. Next
in the observation model, we assume the desired image
is convolved with a specified point spread function (PSF),
yielding

f (n1, n2) = d(n1, n2) ∗ h(n1, n2), (1)

where h(n1, n2) is the PSF, and ∗ is 2D spatial convolution.
In matrix form, this can be expressed as

f = Hd = [ f1, f2, . . . , fN ]T , (2)

where H is an N × N matrix containing values of PSF,
and the vector f is the image f (n1, n2) in lexicographical
form. The PSF can be designed to model different types of
blurring, such as diffraction from optics, spatial detection

Figure 1 Observation model block diagram.

integration, atmospheric effects, and motion blurring. In
the experimental results presented in this paper, we use a
simple Gaussian PSF.
With regard to noise, our model assumes zero-mean

additive Gaussian noise, with noise standard deviation of
ση. Thus, the observed image is given by

g(n1, n2) = f (n1, n2) + η(n1, n2), (3)

where η(n1, n2) is a Gaussian noise array. In lexicographic
form, this is given by

g = f + η, (4)

where g =[ g1, g2, . . . , gN ]T and η = [η1, η2, . . . , ηN ]T
are the observed image and noise vectors, respectively.
The random noise vector is Gaussian such that η ∼
N
(
0, σ 2

η I
)
.

3 Collaborative adaptiveWiener filter
3.1 CAWF overview
The CAWF employs a moving window approach with a
moving reference patch and correspondingmoving search
window, each centered about pixel i, where i = 1, 2, . . . ,N .
The reference patch spans K1 × K2 = K pixels sym-
metrically about pixel i. All of the pixels that lie within
the span of this reference patch are placed into the ref-
erence patch vector defined as gi =[ gi,1, gi,2, . . . , gi,K ]T .
The search window is of size L1 × L2 = L pixels. Let the
set Si =[ Si(1), Si(2), . . . Si(L)]T contain the indices of the
pixels within the search window.
The next step in the CAWF algorithm is identifying the

M patches from the search window that are most simi-
lar to the reference. This is done using a simple squared
Euclidean distance. That is, we compute

∥∥gi − gj
∥∥2
2, for

j ∈ Si. We select the M patches corresponding to the M
smallest distances and designate these as ‘similar patches’.
All of the pixels from the similar patches shall be con-
catenated into a single KM × 1 column vector, g̃i =[
gTsi,1 , g

T
si,2 , . . . , g

T
si,M

]T
, where si = [

si,1, si,2, . . . si,M
]T con-

tains the indices of the similar patches in order from
smallest corresponding distance to largest. The minimum
distance will always be zero and will correspond to the ref-
erence patch itself, such that si,1 = i. This selection of sim-
ilar patches is common to many patch-based algorithms,
such as those in [32-34]. Examples of the similar patch
selection is illustrated in Figure 2. The red square repre-
sents the reference patch, and the green squares represent
selected similar patches. Note that there will generally be
variability with regard to how similar the selected patches
are to the reference and to each other. Some reference
patches will have numerous low distance similar patches,
and others will not. It is this variability that we wish to
capture and account for with our multi-patch correlation
model in Section 3.2.



Mohamed and Hardie EURASIP Journal on Advances in Signal Processing  (2015) 2015:6 Page 4 of 23

Figure 2 Selection of similar patches (green) from a given reference patch (red) within a search window.

With the collection of similar patches defined, we can
now express the CAWF output as a weighted sum of the
values in g̃i. In particular, the CAWF estimate for desired
pixel i is given by

d̂i = wT
i g̃i, (5)

wherewi =[w1,w2, . . . wKM]T is a vector of weights. Note
that this approach is a one-pass weighted-sum operation
that incorporates all of the pixels in g̃i for the estimate
of di. To minimize the MSE, the Wiener filter weights [5]
may be used such that

wi = R̃−1
i p̃i, (6)

where R̃i = E
{
g̃ig̃Ti

}
is a KM × KM autocorrelation

matrix for the multi-patch observation vector g̃i, and p̃i =
E
{
g̃idi
}
is a KM × 1 cross-correlation vector between the

desired pixel di and g̃i. The statistics used to fill R̃i and
p̃i are found using the new multi-patch correlation model
described in Section 3.2.

3.2 Spatial-domain multi-patch correlation model
The multi-patch correlation model provides the values
for R̃i and p̃i, so that we may generate the weights in
Equation 6. The model attempts to capture the spatial
relationship among the pixels within a given patch, which
is essential for deconvolution. Furthermore, it also seeks
to incorporate knowledge of redundancy among the sim-
ilar patches. Finally, the model captures the local desired
signal variance, as well as the noise variance of each
observed pixel.
To begin, first let f̃i be the noise-free version of g̃i. In

other words, we have g̃i = f̃i + η̃i, where η̃i is the random
noise vector associated with the samples within multi-
patch observation vector i. We shall assume the noise is
zero mean and uncorrelated with the signal. Furthermore,
we will assume the noise samples in η̃i are independent

and identically distributed (i.i.d.) with a noise variance of
σ 2

η . In this case, it is straightforward to show that

R̃i = E
{
g̃ ig̃Ti

}
= E

{
f̃i f̃Ti

}
+ σ 2

η I (7)

and

p̃i = E
{
g̃i di

} = E
{
f̃i di
}
. (8)

Now, the problem reduces to modeling E
{
f̃i di
}

and

E
{
f̃i f̃Ti

}
.

In our new correlation model, the multi-patch statistics
will be expressed in terms of statistics for a single patch
and a distance matrix for all of the similar patches. In
particular, we use the model

E
{
f̃i f̃Ti

}
= σ̂ 2

die
−Di/(αση) ⊗ R, (9)

where⊗ is a Kronecker product, andR is a K×K autocor-
relation matrix of a single noise-free patch obtained from
a variance-normalized desired image. We will say more
about this shortly. The matrix

Di =

⎡
⎢⎢⎢⎣

Dsi,1,si,1 Dsi,1,si,2 · · · Dsi,1,si,M
Dsi,2,si,1 Dsi,2,si,2 · · · Dsi,2,si,M

...
...

. . .
...

Dsi,M ,si,1 Dsi,M ,si,2 · · · Dsi,M ,si,M

⎤
⎥⎥⎥⎦ . (10)

is anM×M distance matrix among theM similar patches.
In our notation, the exponential term in Equation 9 is a
matrix whose elements are made of the exponential val-
ues of the corresponding distance matrix elements. The
variable α is a tuning parameter that controls the correla-
tion decay as a function of the distances between similar
patches, and ση is noise standard deviation. The parame-
ter σ̂ 2

di is the estimated desired signal variance associated
with the reference patch. By substituting Equation 9 into
Equation 7, we get the autocorrelation matrix for g̃i as

R̃i = σ̂ 2
die

−Di/(αση) ⊗ R + σ 2
η I. (11)
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In a similar manner, wemodel the cross-correlation vector
as

p̃i = E
{
f̃i di
}

= σ̂ 2
die

−[Di]1/(αση) ⊗ p, (12)

where p is the K × 1 cross-correlation vector for a single
normalized patch, and [Di]1 is the first column of the dis-
tance matrix Di. The correlation models in Equations 11
and 12 capture the spatial correlations among pixels
within each patch using R and p. The patch similarities,
captured in the distance matrix, are used to ‘modulate’
these correlations with the Kronecker product to provide
the full multi-patch correlation model. In this manner,
pixels belonging to patches with smaller inter-patch dis-
tances will be modeled with higher correlations among
them. Potential changes in the underlying desired image
variance are captured in the model with the term σ̂ 2

di . In
addition, a spatially varying noise variance can easily be
incorporated if appropriate.
The specific distance metric used to populate the dis-

tance matrix Di here is a scaled and shifted l2-norm.
This type of metric has been used successfully to quantify
similarity between image patches corrupted with additive
Gaussian noise [15]. In particular, the distance between
patches centered about pixels i and j is given by

Di,j =
{ ‖gi−gj‖2

ση

√
2K

− D0
‖gi−gj‖2
ση

√
2K

> D0

0 otherwise
(13)

where
∥∥gi − gj

∥∥
2 is the l

2-norm distance, K is total num-
ber of pixels in each patch, and ση is noise standard
deviation. The scaling by ση

√
2K normalizes the distance

with respect to K and ση, and D0 can be used as a tuning
parameter in the correlation model to adjust for distance
due to noise. To see how the scaling works, and under-
stand the potential role of D0, consider the distance with
D0 = 0 defined as

D̄i,j =
∥∥gi − gj

∥∥
2

ση

√
2K

. (14)

It can be shown that for identical patches with distance
due only to i.i.d. Gaussian noise, the probability density
function (pdf) for D̄i,j is that of a scaled Chi random
variable and is given by

fD̄i,j(x) = √
KχK

(
x
√
K
)
. (15)

This pdf is plotted in Figure 3 for four values of K. Note
that with our scaling, the pdf is not a function of ση and
the mean is close to 1 for all K. Also, note that D0 can be
used to shift the pdf.
Let us now turn our attention to R, p, and σ̂ 2

di . Note
that R and p correspond to a single patch derived
from a desired image with zero mean and variance of
one, denoted d̄(n1, n2). After PSF blurring, the resulting
image is denoted f̄ (n1, n2), following the model shown in
Figure 1. Since these statistics are for only a single patch,
they can be modeled in a fashion similar to that in [5].
To begin, consider the 2D wide sense stationary (WSS)
autocorrelation function model for d̄(n1, n2) given by

rd̄d̄(n1, n2) = ρ

√
n21+n22 , (16)

Figure 3 Probability density function for D̄i,j for identical patches with Gaussian noise. The distance here is due exclusively to noise.



Mohamed and Hardie EURASIP Journal on Advances in Signal Processing  (2015) 2015:6 Page 6 of 23

where ρ is the one pixel step correlation value. The cross
correlation function between d̄(n1, n2) and f̄ (n1, n2) can
then be expressed as

rd̄f̄ (n1, n2) = rd̄d̄(n1, n2) ∗ h(n1, n2). (17)

The auto-correlation function for f̄ (n1, n2) can also be
expressed in terms of the desired autocorrelation function
as

rf̄ f̄ (n1, n2) = rd̄d̄(n1, n2)∗h(n1, n2)∗h(−n1,−n2). (18)

Figure 4 shows an example of rd̄f̄ (n1, n2) and rf̄ f̄ (n1, n2)
for Gaussian blur PSF with standard deviation of 1.5 pix-
els, and ρ = 0.7. As expected, the correlation drops with
distance, as controlled by ρ.
Now consider a K1 × K2 = K patch from f̄ (n1, n2),

denoted f̄ =[ f̄1, f̄2, . . . , f̄K ]T , and the corresponding
desired pixel value, d̄. The K × K autocorrelation matrix
for f̄ is R = E

{
f̄f̄T
}
, and the K × 1 cross-correlation

vector is p = E
{
f̄ d̄
}
. Expressing all of the terms in the

autocorrelation matrix, we obtain

R = E
{
f̄f̄T
}

=

⎡
⎢⎢⎢⎢⎢⎢⎣

E
{
f̄1 f̄1
}

E
{
f̄1 f̄2
}

· · · E
{
f̄1 f̄K
}

E
{
f̄2 f̄1
}

E
{
f̄2 f̄2
}

· · · E
{
f̄2 f̄K
}

...
...

. . .
...

E
{
f̄K f̄1
}
E
{
f̄K f̄2
}

· · · E
{
f̄K f̄K

}

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(19)

Assuming a 2D WSS model, as in [5], this matrix can be
populated from Equation 18 as follows

R =

⎡
⎢⎢⎢⎢⎣

rf̄ f̄ (0, 0) rf̄ f̄ (�(1, 2)) · · · rf̄ f̄ (�(1,K))

rf̄ f̄ (�(2, 1)) rf̄ f̄ (0, 0) · · · rf̄ f̄ (�(2,K))

...
...

. . .
...

rf̄ f̄ (�(K , 1)) rf̄ f̄ (�(K , 2)) · · · rf̄ f̄ (0, 0)

⎤
⎥⎥⎥⎥⎦ ,

(20)

where �(m, n) =[�x(m, n),�y(m, n)], and �x(m, n) and
�y(m, n) are the x and y distances between f̄m and f̄n in
f̄ (n1, n2) in units of pixels. In a similar fashion, we can
populate p using Equation 17 as follows

p = E{f̄d̄} =

⎡
⎢⎢⎢⎣

E{f̄1d̄}
E{f̄2d̄}

...
E{f̄K d̄}

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

rd̄f̄
(
�
(
1, K+1

2

))
rd̄f̄
(
�
(
2, K+1

2

))
...

rd̄f̄
(
�
(
K , K+1

2

))

⎤
⎥⎥⎥⎥⎥⎥⎦
,

(21)

where f̄ K+1
2

corresponds to the spatial position of d̄.
The final term needed for the correlation model is σ̂ 2

di ,
which corresponds to the underlying desired signal vari-
ance associated with the reference patch. Since R and p
are based on a desired signal with unit variance, we scale
these by an estimate of the desired signal variance for each
reference patch in the observed image to obtain the appro-
priate values. To obtain this estimate, we first compute
the sample variance estimate of the pixels in g̃i and we
denoted this as σ̂gi . We then subtract the noise variance to
give an estimate of the noise-free observed signal variance
as

σ̂ 2
fi = σ̂ 2

gi − σ 2
η . (22)

Figure 4 Single-patch spatial correlation for Gaussian blur with a standard deviation of 1.5 pixels. (a) Cross-correlation rd̄f̄ (n1, n2) used to
populate p. (b) Autocorrelation rf̄ f̄ (n1, n2) used to populate R.
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Note that in practice, we do not allow the value in
Equation 22 to go below a specifiedminimum value. Using
Equation 17, it can be shown that the relationship between
σ 2
di and σ 2

fi is given by [5]

σ 2
di = 1

C(ρ)
σ 2
fi , (23)

where

C(ρ) =
∞∑

−∞

∞∑
−∞

ρ

√
n21+n22 h̃(n1, n2), (24)

and h̃(n1, n2) = h(n1, n2)∗h(−n1,−n2). Thus, our desired
signal variance estimate is σ̂ 2

di = σ̂ 2
fi /C(ρ).

By substituting Equations11 and 12 into Equation 6, and
dividing through by σ̂ 2

di , the CAWF weight vector can be
computed as

wi = R̃−1
i p̃i =

[
e−Di/(αση) ⊗ R + σ 2

η

σ̂ 2
di
I
]−1

e−[Di]1/(αση)⊗p.

(25)

Note that the DC response of the CAWF filter is not guar-
anteed to be one (i.e., the weights may not sum to 1).
To prevent artifacts when processing an image that is not
zero mean, we normalize the weights to sum to one by
dividing the weight vector by the sum of the weights for

each i before computing the weighted sum in Equation 5.
From Equation 25, it is clear that CAWF weights adapt
spatially based on the local signal variance, the variance
of the noise, and the distance matrix among the similar
patches. There are two tuning parameters in the corre-
lation model, ρ, which controls the correlation between
samples within a given patch expressed in R and p, and
α which controls the correlation between patches. We
have found that the algorithm is not highly sensitive to
these tuning parameters, and good performance can be
obtained for a wide range of images using a specified fixed
value for these. Note that in addition to providing an esti-
mate of the desired image, an estimate of the MSE itself
can be readily generated based on the correlation model.
This estimated MSE is given by [9]

Ĵi = E
{(

di − d̂i
)2} = σ̂ 2

di − 2wT
i p̃i + wT

i R̃iwi. (26)

A block diagram showing all of the key steps in the CAWF
filter is shown in Figure 5.
To better understand the workings of the collabora-

tive correlation model in determining the filter weights,
consider Examples 1 and 2 shown in Figures 6 and 7,
respectively. These examples are for the case of blur with
a Gaussian PSF with a 1 pixel standard deviation and
Gaussian noise of standard deviation 20. The patch size

Figure 5 Block diagram illustrating the proposed CAWF algorithm. The algorithm employs a weighted sum of the samples from similar
patches. The Wiener weights are computed based on the new multi-patch correlation model as shown.
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Patch 1 (Reference) Patch 2 Patch 3 Patch 4

(a)

Weights 1 Weights 2 Weights 3 Weights 4

(b)

Figure 6 Example 1 showing a group of similar patches with small inter-patch distances. (a) Spatial domain similar patches; (b) CAWF
weights corresponding to the four patches.

is K = 9 × 9 = 81, and there are M = 4 patches.
Example 1 in Figure 6 shows patches for an edge region
where the multiple patches have a very similar underlying
structure, and hence small inter-patch distances. In con-
trast, Example 2 in Figure 7 shows the case of dissimilar
patches with large inter-patch distances. In Figures 6 and
7, (a) shows the spatial domain patches, and (b) shows

the CAWF weights corresponding to these patches. Note
that in Example 1, pixels in all of the patches get sig-
nificant weight as shown in Figure 6b. In contrast, for
the dissimilar patches in Example 2, only the reference
patch pixels get significant weight, as shown in Figure 7b.
Figure 8 provides additional insight by comparing the fil-
ter weights, summed over patches, for Examples 1 and

Patch 1 (Reference) Patch 2 Patch 3 Patch 4

(a)

Weights 1 Weights 2 Weights 3 Weights 4

(b)

Figure 7 Example 2 showing a group of dissimilar patches. (a) Spatial domain patches; (b) CAWF weights corresponding to the four patches.
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Figure 8Mesh plots of the CAWF weights summed over patches. (a) Example 1 with similar patches and (b) Example 2 with dissimilar patches.
Because of the high patch similarity, the weights for Example 1 represent a more aggressive deconvolution than in Example 2.

2 side by side. When many similar patches are avail-
able, more noise reduction is possible. In turn, this allows
the deconvolution to be more aggressive. This can be
seen in the more aggressive deconvolution weights in
Figure 8a, compared with those in Figure 8b. On the other
hand, if no low-distance patches can be found for the
reference, the CAWF algorithm essentially reverts to a
single-patch AWF filter, giving non-zero weights only to
the reference patch. Because less noise reduction can be
achieved this way, the filter automatically becomes less
aggressive in its deconvolution, so as to not exaggerate
noise.
These examples show how the distance matrix plays an

interesting role in the joint deblurring/denoising aspect of
the CAWF. This type of spatially adaptive deconvolution
is unlike anything we have seen before in other multi-
patch restoration algorithms. A similar process occurs
with noise only. In that case, the CAWF balances the

amount of spatial low-pass filtering employed. When
good patch matches are found, the CAWF relies more on
patch fusion for noise reduction. When no good matches
are found, it resorts to more spatial smoothing. All of this
is also balanced by the estimate of the local desired sig-
nal variance, σ̂ 2

di . Generally, more smoothing is done in
low signal variance areas. One last point of interest with
regard to these examples relates to the structure of the
multi-patch autocorrelation matrix R̃i. These matrices are
shown in Figure 9 for Examples 1 and 2. Note that based
on Equation 11, these are both block matrices made up
of a 4 × 4 grid of scaled 81 × 81 R submatrices. The
R matrix itself has an apparent 9 × 9 substructure, due
to the column-ordered lexicographical representation of
each patch. Note that the off diagonal blocks of R̃i for
Example 2 in Figure 9b are essentially zero. In most cases,
the inter-block correlations will lie between Examples 1
and 2.

(a)
50 100 150 200 250 300

50

100

150

200

250

300

(b)
50 100 150 200 250 300

50

100

150

200

250

300

Figure 9Multi-patch autocorrelation matrix R̃i . (a) Example 1 with similar patches and (b) Example 2 with dissimilar patches.
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3.3 Multi-pixel estimation and aggregation
In the CAWF algorithm described in Section 3.1, one pixel
is estimated for each reference patch. However, in a man-
ner similar to that in [5], it is possible to estimate multiple
desired pixels from each multi-patch observation vector
g̃i. In fact, all of the desired pixels corresponding to g̃i can
be estimated. Let this full KM × 1 vector of desired pix-
els be denoted d̃i. If all multi-patch observation vectors
are used in this fashion, many estimates of each desired
pixel are obtained. These can be aggregated by a sim-
ple average. In the case of noise only, we have observed
that aggregation yields improved results. For joint deblur-
ring and denoising with any significant amount of blur,
the aggregation does not appear to provide any advan-
tage. However, this multi-pixel estimation approach can
be used to reduce the computational complexity, since not
every multi-patch observation vector must be processed
in order to form a complete image estimate.
To perform the multi-pixel estimation, the CAWF filter

output is expressed as

ˆ̃di = WT
i g̃i, (27)

where ˆ̃di is the estimate of d̃i, andWi is aKM×KMmatrix
of weights. The weight matrix is given by

Wi = R̃−1
i P̃i, (28)

where

P̃i = E
{
f̃id̃Ti

}
= σ̂ 2

die
−Di/(αση) ⊗ P, (29)

P = E
{
f̄d̄T
}
is a K × K normalized cross-correlation

matrix, and d̄ is the K ×1 desired vector corresponding to
f̄.

3.4 Computational complexity and implementation
Here, we briefly address the computational complexity of
the CAWF filter by tracking the number of floating point
operations (flops), where a flop is defined as one mul-
tiply plus add operation. The first action of the CAWF
filter is finding similar patches. This requires comput-
ing L distances of K dimensional vectors (note that L
is the search window size, and K is the patch size in
pixels). The next step is computing the distance matrix
based on Equation 13 for the M selected patches. This
requires computingM2/2 scaled and shifted distances for
K dimensional vectors. The Kronecker products for R̃i
and p̃i require (KM)2 and KM multiplies, respectively.
However, the main computational burden of the CAWF
filter comes next with the computation of the weights
in Equation 6. This can be done using Cholesky fac-
torization, which requires (KM)3/3 flops to perform LU
decomposition for the KM × KM autocorrelation matrix
R̃i. Computing the weights from the LU decomposition

requires 2(KM)2 flops using forward and backward sub-
stitution. The final weighted sum operation is accom-
plished with KM flops. Since the dominant term in the
computational complexity is the Cholesky factorization,
we might conclude that the complexity of the CAWF filter
is O((KM)3). Thus, the complexity of the CAWF algo-
rithm goes up significantly with larger windows sizes,
K, and more similar patches, M. However, an important
thing to note is that the CAWF algorithm is completely
parallel at the output pixel level. Unlike most variational
image restoration methods, each output pixel can be com-
puted independently and in parallel. Also, the CAWF
approach requires only one pass over the data.
To put the CAWF computational complexity into con-

text, consider that the AWFmethod employed here, with a
spatially varying signal-to-noise ratio (SNR) estimate, may
be viewed as a special case of the CAWF with M = 1.
Thus, increasing M for CAWF causes a corresponding
increase in complexity according to O((KM)3). The NLM
method shares the same distance computations and com-
parisons and CAWF. However, in contrast to CAWF, NLM
only requires L flops per output in the weighted sum, since
it only weights the center sample of each patch in the
search window. Although significantly simpler computa-
tionally, NLM does not fully exploit all of the information
in the patches and it cannot perform deconvolution. Also,
AWF is not able to exploit multi-patch information.
For pure denoising application, we have found that good

results can be obtained with CAWF for M = 10, and
K = 3 × 3 = 9 for light noise and K = 5 × 5 = 25 for
moderate to heavy noise. In the case of joint deblurring
and denoising, a larger window size is needed for adequate
deconvolution. We have found that K = 9 × 9 = 81 is
a reasonable choice for light to moderate blurring. Our
implementation uses MATLAB with no parallel acceler-
ation or mex files, and processing is done on a PC with
Intel�Xeon�Processor 3.7 GHz. CAWF processing time
for a pure denoising application with a 512 × 512 image
using K = 9 and M = 10 is 155 s. For context, the AWF
processing takes 33 s, and NLM takes 3.2 s.

4 Experimental results
In this section, we demonstrate the efficacy of the pro-
posed CAWF algorithm using images with a variety of
simulated degradations and using real video frames. We
also present a parameter sensitivity analysis. The filter
parameters used for all of the experimental results are
listed in Table 1. Note that for a given scenario, the same
parameters are used for processing all of the test images.

4.1 Simulated data
In this section, we present quantitative results using simu-
lated data.We consider two cases: noise only and blur with
noise. For each case, we consider four specific scenarios
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Table 1 CAWF parameters used in experimental results

Case 1: noise only Case 2: blur and noise

Parameter name Variable Selected value Selected value Selected value

ση < 20 ση ≥ 20

Patch size K 3 × 3 = 9 5 × 5 = 25 9 × 9 = 81

Search window size L 17 × 17 = 289 11 × 11 = 121 9 × 9 = 81

Number of patches M 10 10 8

Autocorrelation decay ρ 0.65 0.70 0.65

Patch similarity decay α 2.00 1.40 1.20

Distance offset D0 0.25 0.50 0.00

Aggregation N/A Averaging Averaging None

and use six test images. Also, for each case, we com-
pare against state-of-the art methods for which MATLAB
implementations are publicly available.
The test images are shown in Figure 10. These are 8-

bit uncompressed images with a high level of detail. We
use two quantitative performance metrics to evaluate the
restorations. The first is the commonly used peak signal-
to-noise ratio (PSNR), defined as

PSNR
(
d, d̂
)

= 10 log10

⎛
⎜⎜⎜⎝ 2552

1
N

N∑
i=1

(
di − d̂i

)2
⎞
⎟⎟⎟⎠ . (30)

We also use the structural similarity (SSIM) index [46],
which many argue is more consistent with subjective
perception than PSNR. When reporting PSNR, we also

include the improvement in PSNR (ISNR) for the reader’s
convenience. This is given by

ISNR = PSNR
(
d, d̂
)

− PSNR (d, g) . (31)

4.1.1 Additive Gaussian noise
In our first case, we consider additive Gaussian noise with
no PSF blur (i.e., h(n1, n2) = δ(n1, n2)). We consider four
different noise standard deviations. The denoising bench-
mark methods are NLM [15], Globalized NLM (GLIDE-
NLM) [37], PLOW [36], BM3D [32], and the single patch
AWF [5]. Note that the NLM implementation is from [37],
and AWF used is the same as CAWF with no aggregation
andM = 1.
The PSNR comparison is provided in Table 2, and the

SSIM comparison is in Table 3. Note that CAWF provides
the highest PSNR results in Table 2 in all but one instance,

(a)
(b)

(c)

(d) (e) (f)

Figure 10 All truth images used in simulated data experimental results. (a) Aerial (491 × 434); (b) bridge (512 × 512); (c) river (Kodak 11)
(768 × 512); (d) bones (512 × 768 rotated); (e) building (768 × 512); and (f) gazebo (768 × 512).
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Table 2 PSNR comparison for additive Gaussian noise

Image Method PSNR (ISNR)

ση = 10 ση = 20 ση = 30 ση = 40

Aerial Corrupted 28.13 22.11 18.59 16.09

491 × 434 NLM 30.14 (2.01) 25.56 (3.45) 23.62 (5.03) 22.35 (6.26)

GLIDE-NLM 30.25 (2.12) 25.82 (3.71) 23.79 (5.19) 22.58 (6.49)

PLOW 28.76 (0.63) 25.30 (3.19) 23.68 (5.09) 22.64 (6.55)

BM3D 30.61 (2.48) 26.48 (4.37) 24.38 (5.79) 22.92 (6.82)

AWF 30.19 (2.06) 26.09 (3.98) 24.05 (5.46) 22.73 (6.63)

CAWF 30.67 (2.54) 26.55 (4.44) 24.50 (5.90) 23.13 (7.04)

Bridge Corrupted 28.14 22.11 18.59 16.09

5122 NLM 30.56 (2.42) 26.36 (4.24) 24.69 (6.09) 23.62 (7.52)

GLIDE-NLM 30.64 (2.51) 26.55 (4.43) 24.82 (6.22) 23.73 (7.64)

PLOW 30.00 (1.87) 26.70 (4.58) 25.23 (6.63) 24.25 (8.16)

BM3D 31.17 (3.04) 27.27 (5.16) 25.46 (6.87) 24.31 (8.21)

AWF 30.58 (2.45) 26.87 (4.76) 25.09 (6.50) 23.90 (7.80)

CAWF 31.11 (2.97) 27.31 (5.19) 25.50 (6.91) 24.33 (8.23)

River Corrupted 28.13 22.11 18.59 16.09

(Kodak 11) NLM 29.95 (1.82) 25.46 (3.35) 23.63 (5.04) 22.47 (6.37)

768 × 512 GLIDE-NLM 29.84 (1.71) 25.71 (3.60) 23.78 (5.19) 22.62 (6.53)

PLOW 28.53 (0.40) 24.70 (2.58) 22.94 (4.35) 22.10 (6.01)

BM3D 30.37 (2.24) 26.16 (4.05) 24.16 (5.57) 22.86 (6.77)

AWF 29.96 (1.82) 25.90 (3.78) 23.90 (5.31) 22.61 (6.52)

CAWF 30.48 (2.35) 26.32 (4.20) 24.35 (5.76) 23.11 (7.02)

Bones Corrupted 28.13 22.11 18.59 16.09

512 × 768 NLM 30.36 (2.23) 26.65 (4.54) 25.50 (6.91) 24.72 (8.63)

GLIDE-NLM 30.48 (2.35) 26.86 (4.75) 25.50 (6.91) 24.78 (8.68)

PLOW 29.33 (1.20) 26.54 (4.43) 25.60 (7.01) 24.94 (8.85)

BM3D 30.85 (2.72) 27.18 (5.07) 25.81 (7.22) 25.05 (8.96)

AWF 30.46 (2.33) 27.13 (5.02) 25.60 (7.01) 24.51 (8.41)

CAWF 30.93 (2.79) 27.46 (5.35) 26.03 (7.44) 25.11 (9.02)

Building Corrupted 28.13 22.11 18.59 16.09

768 × 512 NLM 30.61 (2.48) 26.35 (4.24) 24.50 (5.91) 23.30 (7.21)

GLIDE-NLM 30.32 (2.19) 26.43 (4.32) 24.64 (6.05) 23.45 (7.36)

PLOW 29.25 (1.12) 25.04 (2.93) 23.32 (4.73) 22.51 (6.42)

BM3D 30.97 (2.84) 26.91 (4.79) 24.88 (6.29) 23.62 (7.53)

AWF 30.46 (2.33) 26.51 (4.40) 24.51 (5.92) 23.17 (7.08)

CAWF 31.12 (2.98) 27.05 (4.94) 25.09 (6.50) 23.84 (7.74)

Gazebo Corrupted 28.13 22.11 18.59 16.09

768 × 512 NLM 31.11 (2.98) 26.71 (4.59) 24.93 (6.34) 23.77 (7.68)

GLIDE-NLM 31.11 (2.98) 26.97 (4.86) 25.05 (6.46) 23.95 (7.86)

PLOW 29.82 (1.68) 25.69 (3.58) 24.20 (5.61) 23.46 (7.36)

BM3D 31.57 (3.44) 27.40 (5.29) 25.48 (6.89) 24.29 (8.19)

AWF 30.78 (2.64) 26.88 (4.77) 24.91 (6.32) 23.59 (7.50)

CAWF 31.60 (3.47) 27.49 (5.37) 25.55 (6.96) 24.30 (8.21)
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Table 3 SSIM for additive Gaussian noise

Image Method SSIM

ση = 10 ση = 20 ση = 30 ση = 40

Aerial Corrupted 0.9719 0.9046 0.8224 0.7388

491 × 434 NLM 0.9753 0.9058 0.8412 0.7872

GLIDE-NLM 0.9747 0.9058 0.8427 0.7916

PLOW 0.9734 0.9252 0.8760 0.8282

BM3D 0.9783 0.9340 0.8835 0.8287

AWF 0.9762 0.9304 0.8804 0.8322

CAWF 0.9787 0.9351 0.8859 0.8365

Bridge Corrupted 0.9542 0.8512 0.7365 0.6305

5122 NLM 0.9611 0.8651 0.7925 0.7379

GLIDE-NLM 0.9621 0.8757 0.8010 0.7363

PLOW 0.9587 0.9051 0.8485 0.7943

BM3D 0.9692 0.9126 0.8539 0.7963

AWF 0.9652 0.9061 0.8477 0.7927

CAWF 0.9676 0.9109 0.8523 0.7985

River Corrupted 0.9512 0.8429 0.7252 0.6196

(Kodak 11) NLM 0.9525 0.8343 0.7588 0.7042

768 × 512 GLIDE-NLM 0.9548 0.8461 0.7617 0.7007

PLOW 0.9505 0.8732 0.7921 0.7299

BM3D 0.9597 0.8792 0.8066 0.7437

AWF 0.9574 0.8823 0.8142 0.7512

CAWF 0.9609 0.8873 0.8207 0.7634

Bones Corrupted 0.9259 0.7735 0.6224 0.4979

512 × 768 NLM 0.9329 0.7946 0.7269 0.6821

GLIDE-NLM 0.9379 0.8163 0.7351 0.6725

PLOW 0.9240 0.8295 0.7587 0.7047

BM3D 0.9417 0.8404 0.7641 0.7091

AWF 0.9389 0.8459 0.7669 0.6970

CAWF 0.9439 0.8551 0.7839 0.7277

Building Corrupted 0.9153 0.7660 0.6349 0.5318

768 × 512 NLM 0.9395 0.8370 0.7808 0.7386

GLIDE-NLM 0.9426 0.8416 0.7835 0.7385

PLOW 0.9379 0.8577 0.7823 0.7262

BM3D 0.9482 0.8748 0.8141 0.7637

AWF 0.9398 0.8583 0.7797 0.7072

CAWF 0.9502 0.8788 0.8190 0.7665

Gazebo Corrupted 0.9130 0.7678 0.6428 0.5435

768 × 512 NLM 0.9561 0.8653 0.8090 0.7649

GLIDE-NLM 0.9578 0.8712 0.8117 0.7686

PLOW 0.9525 0.8698 0.8046 0.7559

BM3D 0.9620 0.8963 0.8397 0.7940

AWF 0.9452 0.8740 0.7950 0.7230

CAWF 0.9611 0.8988 0.8387 0.7837
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with BM3D generally providing the next highest PSNR
values. Looking at Table 3, we see that CAWF still per-
forms well, but BM3D does provide a higher SSIM in 5
of 24 scenarios. These results also show that CAWF con-
sistently outperforms AWF. This demonstrates the advan-
tage of using multiple patches within this framework. It
is also interesting to note that AWF itself does quite well
compared with some of the benchmark methods on these
data, especially in the SSIM metric.
Selected regions of interest (ROIs) from images bridge

and river for the noise-only case with ση = 30 are shown

in Figures 11 and 12, respectively. We find that BM3D
tends to do a better job in smooth areas, and CAWF gen-
erally appears better in high-detail texture areas. Note
that more branches on the small trees are visible in the
CAWF estimate in Figure 11f, compared with that for
BM3D in Figure 11e. Also, the texture in the tree foliage
appears to be better preserved with CAWF processing in
Figure 12f, compared with that for BM3D in Figure 12e.
The results in Figure 13 show how the CAWF method

can produce an estimate of the MSE on a pixel-by-
pixel basis. Figure 13a shows an ROI from the image

(a) (b)

(c) (d)

(e) (f)

Figure 11 Region of interest from the image bridge with ση = 30 Gaussian noise. (a) Truth image, (b) noisy image, (c) AWF, (d) GLIDE-NLM,
(e) BM3D, and (f) CAWF.
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aerial with noise of standard deviation 10. The CAWF
estimate image is shown in Figure 13b. The estimated
MSE, computed according to Equation 26, is shown in
Figure 13c. The average squared error over 100 noise real-
izations is shown in Figure 13d. Aside from some of the
small high frequency structures, the estimated MSE is
appears similar to the average squared error. The ability
to provide an estimate of the MSE is another distinctive
feature of the CAWF method among other multi-patch
methods.

4.1.2 Gaussian blur plus Gaussian noise
We consider four scenarios of Gaussian blur plus Gaus-
sian noise, and these are listed in Table 4. The benchmark
methods in this case must be able to address both blur and
noise. We use L0-Abs [47], TVMM [48], BM3DDEB [38],
IDD-BM3D [39], and AWF [5]. Note that for IDD-BM3D,
the tuning parameters are selected from those used in
[39]. In particular, we use the tuning parameters from Sce-
nario 4 in [39], as these produce the highest PSNR values
in the current experiments.

(a) (b)

(c) (d)

(e) (f)

Figure 12 Region of interest from the image river with ση = 30 Gaussian noise. (a) Truth image, (b) noisy image, (c) AWF, (d) GLIDE-NLM,
(e) BM3D, and (f) CAWF.
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(a) (b)

(c) (d)

Figure 13 Predicted MSE for the image aerial with ση = 10 Gaussian noise. (a) Noisy image, (b) non-aggregated CAWF image estimate,

(c) CAWF estimate of MSE, Ĵi , and (d) average squared error over 100 noise realizations.

The PSNR comparison is provided in Table 5, and the
SSIM comparison is in Table 6. Here, IDD-BM3Dprovides
the highest PSNR in 15 of 24 instances, and CAWF pro-
vides the highest in 9 of 24. In terms of SSIM, IDD-BM3D
provides the highest values in 5 of 24 instances and CAWF
in 19 of 24. We see a similar situation with AWF as we
did in the noise-only experiments. The AWFmethod does
well compared to many of the benchmark methods, but
CAWF consistently outperforms it. Selected ROIs from
the images aerial and bones for Scenario III in Table 4 are
shown in Figures 14 and 15, respectively. Again, CAWF
appears to do a good job restoring image detail, based
on subjective evaluation and SSIM. Note that a larger
blur kernel generally demands a larger restoration filter

Table 4 Scenarios of Gaussian blur and Gaussian noise

Scenario PSF ση

I Gaussian std. = 1.0 10

II Gaussian std. = 1.5 10

III Gaussian std. = 1.0 20

IV Gaussian std. = 1.5 20

window. The variational benchmark methods, like IDD-
BM3D, are not restricted to local processing like CAWF
and AWF. Thus, they may have an advantage in high lev-
els of blur. However, the iterative nature of these methods
also means that a full parallel implementation may not be
possible.

4.2 Real data
Real video frames have been acquired of an outdoor nat-
ural scene on the campus of the University of Dayton
using an Imaging Source 8 bit grayscale camera (DMK
23U618) with Sony ICX618ALA sensor. A short expo-
sure time is used, proving a low SNR. A sequence of 500
frames is acquired for the static scene. This allows us
to form a temporal average as a type of reference with
which to compare the noise reduction estimates. Since
this real noise will have both a signal-dependent and
signal-independent component, we apply an Anscombe
transform to stabilize the local noise variance prior to
applying all denoising methods [49]. After the trans-
form and scaling, an effective constant noise standard
deviation of ση = 9.11 is estimated and used for all
methods.
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Table 5 PSNR comparison for Gaussian blur plus Gaussian noise

Image Method PSNR (ISNR)

Scenario Scenario Scenario Scenario

I II III IV

Aerial Corrupted 22.64 20.79 19.98 18.88

491 × 434 L0-Abs 24.02 (1.38) 21.88 (1.10) 21.80 (1.82) 20.36 (1.48)

TVMM 24.18 (1.54) 22.18 (1.40) 21.94 (1.95) 20.49 (1.60)

BM3DDEB 24.41 (1.76) 22.56 (1.78) 22.54 (2.56) 21.32 (2.44)

IDD-BM3D 24.71 (2.06) 22.69 (1.90) 22.71 (2.73) 21.32 (2.44)

AWF 24.25 (1.61) 22.33 (1.55) 22.64 (2.66) 21.29 (2.41)

CAWF 24.47 (1.83) 22.56 (1.78) 22.83 (2.85) 21.43 (2.55)

Bridge Corrupted 24.19 22.80 20.76 20.07

5122 L0-Abs 25.63 (1.44) 24.08 (1.28) 23.52 (2.77) 22.53 (2.47)

TVMM 25.73 (1.53) 24.27 (1.47) 23.57 (2.82) 22.84 (2.77)

BM3DDEB 26.02 (1.82) 24.71 (1.91) 24.47 (3.72) 23.62 (3.55)

IDD-BM3D 26.23 (2.03) 24.79 (2.00) 24.52 (3.76) 23.63 (3.56)

AWF 25.78 (1.59) 24.43 (1.63) 24.39 (3.63) 23.45 (3.38)

CAWF 25.94 (1.74) 24.56 (1.77) 24.48 (3.72) 23.48 (3.41)

River Corrupted 22.14 20.66 19.69 18.79

(Kodak 11) L0-Abs 23.22 (1.08) 21.43 (0.77) 21.45 (1.76) 20.33 (1.54)

768 × 512 TVMM 23.13 (1.00) 21.52 (0.86) 21.14 (1.45) 20.33 (1.53)

BM3DDEB 23.24 (1.11) 21.78 (1.12) 21.72 (2.03) 20.90 (2.11)

IDD-BM3D 23.63 (1.49) 21.90 (1.24) 21.95 (2.26) 20.96 (2.17)

AWF 23.29 (1.15) 21.78 (1.12) 22.06 (2.36) 21.06 (2.27)

CAWF 23.48 (1.34) 21.93 (1.28) 22.21 (2.52) 21.15 (2.36)

Bones Corrupted 24.80 23.78 21.01 20.56

512 × 768 L0-Abs 26.07 (1.27) 25.14 (1.36) 24.65 (3.64) 24.17 (3.62)

TVMM 25.94 (1.15) 25.11 (1.33) 24.52 (3.51) 24.24 (3.68)

BM3DDEB 26.33 (1.54) 25.48 (1.71) 25.23 (4.22) 24.79 (4.23)

IDD-BM3D 26.46 (1.66) 25.51 (1.74) 25.26 (4.24) 24.80 (4.24)

AWF 26.31 (1.51) 25.37 (1.59) 25.25 (4.24) 24.69 (4.14)

CAWF 26.44 (1.64) 25.43 (1.66) 25.28 (4.27) 24.67 (4.12)

Building Corrupted 22.60 21.27 19.96 19.18

768 × 512 L0-Abs 23.88 (1.28) 22.24 (0.97) 22.25 (2.29) 21.22 (2.04)

TVMM 23.82 (1.22) 22.42 (1.16) 22.11 (2.15) 21.57 (2.39)

BM3DDEB 23.86 (1.26) 22.53 (1.27) 22.49 (2.53) 21.73 (2.55)

IDD-BM3D 24.25 (1.65) 22.69 (1.43) 22.75 (2.79) 21.85 (2.66)

AWF 23.89 (1.28) 22.52 (1.26) 22.76 (2.80) 21.85 (2.66)

CAWF 24.05 (1.45) 22.65 (1.38) 22.89 (2.93) 21.92 (2.74)

Gazebo Corrupted 23.29 21.90 20.31 19.55

768 × 512 L0-Abs 24.82 (1.53) 23.11 (1.21) 23.02 (2.71) 21.93 (2.38)

TVMM 24.80 (1.50) 23.41 (1.50) 23.34 (3.03) 22.17 (2.61)

BM3DDEB 24.91 (1.61) 23.45 (1.55) 23.39 (3.08) 22.52 (2.97)

IDD-BM3D 25.29 (2.00) 23.65 (1.75) 23.68 (3.37) 22.66 (3.11)

AWF 24.83 (1.53) 23.37 (1.47) 23.58 (3.26) 22.58 (3.03)

CAWF 24.99 (1.69) 23.51 (1.61) 23.70 (3.39) 22.66 (3.10)
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Table 6 SSIM comparison for Gaussian blur plus Gaussian noise

Image Method SSIM

Scenario Scenario Scenario Scenario

I II III IV

Aerial Corrupted 0.8891 0.7794 0.8176 0.7117

491 × 434 L0-Abs 0.9087 0.8050 0.7821 0.6448

TVMM 0.9215 0.8325 0.7885 0.6604

BM3DDEB 0.9198 0.8571 0.8400 0.7710

IDD-BM3D 0.9292 0.8591 0.8406 0.7577

AWF 0.9199 0.8519 0.8517 0.7733

CAWF 0.9273 0.8662 0.8649 0.7957

Bridge Corrupted 0.8836 0.7975 0.7745 0.6929

5122 L0-Abs 0.8902 0.8044 0.7425 0.6524

TVMM 0.8995 0.8156 0.7323 0.6689

BM3DDEB 0.9099 0.8579 0.8294 0.7796

IDD-BM3D 0.9173 0.8573 0.8252 0.7657

AWF 0.9080 0.8503 0.8344 0.7712

CAWF 0.9155 0.8637 0.8462 0.7892

River Corrupted 0.8373 0.7198 0.7246 0.6161

(Kodak 11) L0-Abs 0.8328 0.7159 0.6670 0.5560

768 × 512 TVMM 0.8452 0.7219 0.6344 0.5421

BM3DDEB 0.8487 0.7713 0.7377 0.6745

IDD-BM3D 0.8672 0.7767 0.7463 0.6666

AWF 0.8573 0.7736 0.7676 0.6878

CAWF 0.8707 0.7949 0.7837 0.7105

Bones Corrupted 0.8231 0.7323 0.6681 0.5884

512 × 768 L0-Abs 0.8051 0.7287 0.6652 0.6181

TVMM 0.7954 0.7192 0.6427 0.6172

BM3DDEB 0.8320 0.7768 0.7420 0.7064

IDD-BM3D 0.8421 0.7753 0.7389 0.6969

AWF 0.8358 0.7699 0.7526 0.7000

CAWF 0.8476 0.7866 0.7615 0.7108

Building Corrupted 0.8119 0.7162 0.6609 0.5753

768 × 512 L0-Abs 0.8356 0.7491 0.7142 0.6397

TVMM 0.8454 0.7592 0.6936 0.6615

BM3DDEB 0.8520 0.7913 0.7633 0.7138

IDD-BM3D 0.8662 0.7953 0.7715 0.7130

AWF 0.8509 0.7848 0.7721 0.7147

CAWF 0.8607 0.7974 0.7816 0.7268

Gazebo Corrupted 0.8279 0.7413 0.6819 0.6030

768 × 512 L0-Abs 0.8651 0.7867 0.7527 0.6788

TVMM 0.8741 0.8057 0.7785 0.6826

BM3DDEB 0.8805 0.8249 0.8001 0.7500

IDD-BM3D 0.8898 0.8282 0.8064 0.7504

AWF 0.8796 0.8190 0.8035 0.7481

CAWF 0.8801 0.8238 0.8072 0.7561
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Figure 16a shows a 500 frame temporal average image.
This image represents a near noise-free image of the scene
that can be used as a reference. A single noisy frame is
shown in Figure 16b. The processed single frame outputs
for GLIDE-NLM, AWF, BM3D, and CAWF are shown in
Figure 16c-f, respectively. The PSNR values, relative to
the temporal average, for observed GLIDE-NLM, AWF,
BM3D, and CAWF outputs are 31.78, 36.04, 36.33, 36.47,
and 36.65, respectively. The corresponding SSIM values
are 0.7525, 0.8929, 0.8975, 0.8973, and 0.9059. These

results appear to be consistent with the results obtained
with the simulated data.

4.3 Parameter and distance metric sensitivity
In this section, we investigate the sensitivity of the CAWF
algorithm to some of the key tuning parameters listed in
Table 1 and the distance metric used in the correlation
model. We begin with the number of patches M. A plot
of PSNR versus the number of similar patches is shown
in Figure 17 for CAWF using the image bones with noise

(a) (b)

(c) (d)

(e) (f)

Figure 14 Region of interest from the image aerial for blur and noise Scenario III. (a) Truth image, (b) degraded image, (c) AWF, (d) TVMM,
(e) IDD-BM3D, and (f) CAWF.
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only and ση = 40. This plot is representative of many
of the restoration scenarios. One can see a ‘knee’ in the
curve near M = 10. Since increasing M has a signifi-
cant impact on computational complexity, we have elected
to use M = 10 for our denoising applications. Note
that deconvolution requires a larger window size than
denoising. Thus, to manage computational complexity, we
compensate with a somewhat lower M = 8, as shown in
Table 1.
Next, we examine the autocorrelation decay constant, ρ,

and the patch similarity decay, α, for the image aerial with

additive Gaussian noise. We have evaluated CAWF PSNR
for ρ ranging from 0.6 to 0.75, with all other parameter
values as listed in Table 1. The maximum change in PSNR
as a function of ρ, for noise levels ranging from ση = 10 to
ση = 40, is only 0.13%. Similarly, we have evaluated PSNR
values for α ranging from 1.0 to 2.0. Themaximum change
in PSNR as a function of α is observed to be 0.23%. Thus,
we conclude that the CAWFmethod is not highly sensitive
to these tuning parameters within these operating ranges.
Finally, we explore CAWF performance using different

distance metrics in the correlation model. Our standard

(a) (b)

(c) (d)

(e) (f)

Figure 15 Region of interest from the image bones for blur and noise Scenario III. (a) Truth image, (b) degraded image, (c) AWF, (d) TVMM,
(e) IDD-BM3D, and (f) CAWF.
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metric uses the l2-norm as defined in Equation 13. To test
distance metric sensitivity, we compare distances with the
l1-, l2-, and l10-norms. For aerial with ση = 10, the PSNRs
are 30.67, 30.67, and 30.60, respectively (with tuned scal-
ing parameters). For aerial with ση = 40, the PSNRs
are 23.01, 23.13, and 23.05, respectively (also with tuned
scaling parameters). As with the other parameters, we
do not see a strong sensitivity to the choice of distance
metric. However, the l2-norm generally provides the best
results.

5 Conclusions
We have proposed a novel CAWF method for image
restoration, which can be thought of an extension of
the AWF [5] using multiple patches. For each reference
window, M similar patches are identified. The output is
formed as a single-pass weighted sum of all of the pix-
els from the multiple selected patches. Wiener weights
are used to provide a minimum MSE estimate for this
filter structure. A key aspect of the method is the new
spatial-domain multi-patch correlation model, presented

(a) (b)

(c) (d)

(e) (f)

Figure 16 Region of interest from the real image data. (a) 500 frame temporal average image (reference image), (b) single observed frame,
(c) GLIDE-NLM, (d) AWF, (e) BM3D, and (f) CAWF.
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Figure 17 PSNSR versus the number of similar patchesM for CAWF. Degradation is noise only with Bones image and ση = 40.

in Section 3.2. This model attempts to capture the spatial
correlation among the samples within a given patch and
also the correlations among the patches.
The CAWF is able to jointly perform denoising and

deblurring. We believe this type of joint restoration is
advantageous, compared with decoupling these opera-
tions. The CAWF algorithm is also capable of adapting to
local signal and noise variance. Bad or missing pixels can
easily be accommodated by leaving them out of the multi-
patch observation vector and corresponding correlation
statistics. The weights will adapt in a non-trivial way to
the missing pixels [5,9,10].
In simulated and real data for Gaussian noise, the

CAWF outperforms the benchmark methods in our
experiments in Sections 4.1.1 and 4.2, both in PSNR
and in SSIM. With blur and noise, CAWF produces the
highest SSIM in more cases than the benchmark meth-
ods. However, IDD-BM3D does provide a higher PSNR
in more instances. Our results show that the CAWF
method consistently outperforms the AWF. This clearly
demonstrates that incorporating multiple patches within
this filter structure is advantageous. From the results in
Section 4.3, we also conclude that CAWF performance is
not highly sensitive to the tuning parameter values within
a given operating range.
We believe the single-pass weighted-sum structure of

the CAWF method is conceptually simple and versatile. It

is also highly parallel. In principle, each output pixel can
be computed in parallel. We have demonstrated that the
method provides excellent performance in image restora-
tion with noise and blur and noise. This method may be
beneficial in numerous other applications as well, includ-
ing those where its predecessor, the AWF, is successful
[5,9-14]. We think there may also be an opportunity
for further improvements in the parametric correlation
model that could boost filter performance. Thus, we hope
this approach will be of interest to the signal and image
processing community.
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