
University of Dayton
eCommons

Computer Science Faculty Publications Department of Computer Science

10-2018

ChAmElEoN: A Customizable Language for
Teaching Programming Languages
Saverio Perugini
University of Dayton, sperugini1@udayton.edu

Jack L. Watkin
University of Dayton

Follow this and additional works at: https://ecommons.udayton.edu/cps_fac_pub

Part of the Graphics and Human Computer Interfaces Commons, and the Other Computer
Sciences Commons

This Article is brought to you for free and open access by the Department of Computer Science at eCommons. It has been accepted for inclusion in
Computer Science Faculty Publications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu,
mschlangen1@udayton.edu.

eCommons Citation
Perugini, S. & Watkin, J.L. (2018). "ChAmElEoN: A Customizable Language for Teaching Programming Languages." Journal of
Computing Sciences in Colleges, 34(1), 44-51. USA: Consortium for Computing Sciences in Colleges. ACM Digital Library. (Available
at https://dl.acm.org/citation.cfm?id=3280498.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dayton

https://core.ac.uk/display/232843572?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/cps_fac_pub?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/152?utm_source=ecommons.udayton.edu%2Fcps_fac_pub%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu

CčAĒEđEĔN: A CUSTOMIZABLE LANGUAGE
FOR TEACHING PROGRAMMING LANGUAGES

Saverio Perugini and Jack L. Watkin
Department of Computer Science

University of Dayton
300 College Park

Dayton, Ohio 45469–2160
(937) 229–4079

saverio@udayton.edu

ABSTRACT

CčAĒEđEĔN is a programming language for teaching stu-
dents the concepts and implementation of computer lan-
guages. We describe its syntax and semantics, the educa-
tional aspects involved in the implementation of a variety of
interpreters for it, its malleability, and student feedback to
inspire its use for teaching languages.

INTRODUCTION

The CčAĒEđEĔN programming language, inspired by [3], is a lan-

guage for teaching students the concepts and implementation of

computer languages. In particular, in the course of their study of

programming languages, students have implemented a variety of an

environment-passing interpreters for CčAĒEđEĔN, in the tradition

of [3], initially in Racket (Scheme) and, more recently, in Python.

The scanner and parser for CčAĒEđEĔN were developed us-

ing Python Lex-Yacc (PLY v3.9)—a scanner/parser generator for

Python—and have been tested in Python 3.4.6. For the details

of ĕđĞ, see http://www.dabeaz.com/ply/. The front end of our

CčAĒEđEĔN interpreter in Racket is built using ĘđđČĊē—a scan-

ner/parser generator for Scheme.

http://www.dabeaz.com/ply/

<program> ::= <expression>

<program> ::= <statement>

<expression> ::= <number> | <string>

<expression> ::= <identifier>

<expression> ::= if<expression> <expression> else<expression>

<expression> ::= let {<identifier> =<expression>}+ in<expression>

<expression> ::= <primitive> ({<expression>}+(,))

<primitive> ::= + | - | * | inc1 | dec1 | zero? | eqv? | read
array | arrayreference | arrayassign

<expression> ::= <function>

<expression> ::= let? {<identifier> =<expression>}+ in<expression>

<function> ::= fun ({<identifier>}?(,))<expression>

<expression> ::= (<expression> {<expression>}?(,))

<expression> ::= letrec {<identifier> =<function> }+ in<expression>

<expression> ::= assign!<identifier> =<expression>

<statement> ::= <identifier> =<expression>

<statement> ::= writeln (<expression>)

<statement> ::= {{<statement>}+(;)}

<statement> ::= if<expression> <statement> else<statement>

<statement> ::= while<expression> do<statement>

<statement> ::= variable {<identifier>}+(,) ;<statement>

Figure 1: The grammar in Ċćēċ for the CčAĒEđEĔN programming
language.

2

The grammar in Ċćēċ for CčAĒEđEĔN (v4) is given in Figure 1.

CčAĒEđEĔN can be used as a functional, expression-oriented lan-

guage [7] or as a statement-oriented language or both. To use

it as an expression-oriented language, use the < program > ::=
<expression> grammar rule; to use it as an imperative, statement-

oriented language, use the<program> ::=<statement> rule.

User-deϐined functions are ϐirst-class entities in CčAĒEđEĔN.

This means that a function can be the return value of an expres-

sion (i.e., an expressed value), bound to an identiϐier and, thus,

stored in the environment of the interpreter (i.e., a denoted value),

and passed as an argument to a function. Notice from the rules

in Figure 1, CčAĒEđEĔN supports side effect (through variable as-

signment) and arrays. The primitives array, arrayreference, and
arrayassign create an array, dereference an array, and update an

array, respectively. Whilewehavemultiple versions of CčAĒEđEĔN,

each supporting varying concepts, in version 4

Expressed Value = Integer ∪ String ∪ Closure

Denoted Value = Reference to an Expressed Value.

Thus, akin to Java or Scheme, all denoted values are references, but

are implicitly dereferenced.

LEARNING LANGUAGES THROUGH INTERPRETERS

There are multiple beneϐits from incrementally implementing lan-

guage interpreters. First, students are confronted with one of the

most fundamental truths of computing: “the interpreter for a com-

puter language is just another program” [3]. Second, once a lan-

guage interpreter is established as just another program, students

realize quickly that implementing a new concept, construct, or fea-

ture in a computer language amounts to little more than a few lines

of code in the interpreter. Third, students learn the causal relation-

ship between a language and its interpreter. In otherwords, they re-

alize that an interpreter for a language explicitly deϐines the seman-

3

tics of the language it interprets. The consequences of this realiza-

tion are compelling: students are mystiϐied by the drastic changes

they can affect in the semantics of implemented language by chang-

ing only a few lines of code in the interpreter—sometimes as little

as one line (e.g., using dynamic scoping rather than static scoping,

or using lazy evaluation as opposed to eager evaluation).

Students start by implementing only primitive operations (see

Figure 1; save for array manipulations). Then, students develop an

evaluate-expression function which accepts an expression and

an environment as arguments and evaluates the passed expression

in the passed environment and returns the result. This function,

which is at the heart of any interpreter, constitutes a large con-

ditional structure based on the type of expression passed (e.g., a

variable reference or function deϐinition). Then students add sup-

port for conditional evaluation and local binding. Support for local

binding requires a lookup environment which leads to the possibil-

ity of testing a variety of representations for that environment, as

long as it adheres to the well-deϐined interface used by evaluate-
expression. From there, students add support for non-recursive

functions, which raises the issue of how to represent a function

of which there are a host of options from which to choose. At

this point, students can also explore implementing dynamic scop-

ing as an alternative to the default static scoping. This amounts

to little more than storing the calling environment, rather than the

lexically enclosing environment, in the representation of the func-

tion. Next, students implement recursive functions, which require

a modiϐied environment. At this point, students have implemented

CčAĒEđEĔN v2—a purely functional language—and explored the

use of multiple conϐiguration options for both aspects of the design

of the interpreter as well as the semantics of implemented concepts

(see Table 1).

Next, students start slowly to morph CčAĒEđEĔN, through its

interpreter, into an imperative language by adding provision for

side effect (e.g., through variable assignment). Variable assignment

4

Table 1: Conϐiguration options in CčAĒEđEĔN.
Interpreter Design Options Language Semantic Options

Type Representation Representation Scoping Environment Parameter Passing
of Environment of Environment of Functions Method Binding Mechanism

Named Abstract Syntax Abstract Syntax Static Deep By-value
Nameless1 List of Vectors λ-expression Dynamic Shallow By-reference

λ-expression Ad-hoc By-value-result
By-name (lazy eval.)
By-need (lazy eval.)

requires a modiϐication to the representation of the environment.

Now, the environment must store references to expressed values,

rather than the expressed values themselves. This raises the issue

of implicit versus explicit dereferencing, and naturally leads to ex-

ploring a variety of parameter-passing mechanisms (e.g., pass-by-

reference or pass-by-name/lazy evaluation). Finally, students close

the loop on the imperative approach by eliminating the need to

use recursion for repetition by instrumenting the language, through

its interpreter, to be a statement-oriented, rather than expression-

oriented, language. This involves adding support for statement

blocks, while loops, and Ď/Ĕ operations.

The use of a scanner/parser generator facilitates this incre-

mental development approach which leads to a malleable inter-

preter/language. Adding a new feature typically involves adding

a new grammar rule and/or primitive, adding a new ϐield to the

abstract syntax representation of an expression, and adding a new

case to the evaluate-expression function. This is theme of [3].

Conϐiguring the Language

Table 1 enumerates the conϐiguration options available in

CčAĒEđEĔN for aspects of the design of the interpreter (e.g., choice

of representation of referencing environment), as well as for the

semantics of implemented concepts (e.g., choice of parameter-

passing mechanism). As we vary the latter, we get a different

version of the language (see Table 2).

1Not all implementation options are available for use with the nameless envi-
ronment.

5

Table 2: Design choices and implemented concepts in progressive
versions of CčAĒEđEĔN. The symbol ↓ indicates that the concept
is supported through its implementation in the deϐining language.
The symbol ↑ indicates that the concept is implemented from ϐirst
principles.

D
e
s
ig
n
C
h
o
ic
e
s

Version of CčAĒEđEĔN 1 2 3 4

Expressed Values ints ints ∪ cls ints ∪ cls ints ∪ cls
Denoted Values ints ints ∪ cls refs. to expr’d vals. refs. to expr’d vals.
Rep. of Env. ē/Ć 3 possible 3 possible 3 possible

Rep. of Functions ē/Ć 2 possible 2 possible 2 possible
Rep. of References ē/Ć ē/Ć ĆĘė ĆĘė

L
a
n
g
u
a
g
e
S
e
m
a
n
ti
c
O
p
ti
o
n
s

Local Binding ↑ let ↑ ↑ let ↑ ↑ let ↑ ↑ let ↑
Conditionals ↓ cond ↓ ↓ cond ↓ ↓ cond ↓ ↓ cond ↓

Non-recursive Functions × ↑ fun ↑ ↑ fun ↑ ↑ fun ↑
Recursive Functions × ↑ fun ↑ ↑ fun ↑ ↑ fun ↑

Scoping ē/Ć lexical lexical lexical
Env. Bound to Closure ē/Ć deep deep deep

References × ×
√ √

Parameter Passing ē/Ć ↑ by value ↑ ↑ by reference ↑ ↑ by value ↑
Side Effects × × ↑ assign! ↑ ↓multiple ↓

Statement Blocks ē/Ć ē/Ć ē/Ć
√

Repetition ē/Ć ē/Ć ē/Ć ↓ while ↓

Once students have some experience implementing language in-

terpreters, they can begin to discern how to use the language itself

to support features currently unsupported in the interpreter. For in-

stance, prior to supporting recursive functions in CčAĒEđEĔN, stu-

dents can simulate support for recursion by passing a function to

itself:

ChAmElEoN> l e t
sum = fun (x) if zero ? (x) 0 else +(x , (sum dec1 (x)))

in
(sum 5)

Runtime Error : Line 2 : Unbound Identifier ' sum '

ChAmElEoN> l e t
sum = fun (s , x)

if zero ? (x) 0
else +(x , (s s , dec1 (x)))

in
(sum sum , 5)

15

6

Example CčAĒEđEĔN Program: A Simple Stack Object

Through an extension of the prior idea, even though CčAĒEđEĔN

does not have support for object-oriented programming, students

can use CčAĒEđEĔN to build object-oriented abstractions. For

instance, the following CčAĒEđEĔN program, simpliϐied for pur-

poses for exposition, simulates the implementation of a simple

stack class with two constructors (new_stack and push) and three

observers/messages (emptystack?, top, pop). The output of this

program is 3. The stack object is represented as a CčAĒEđEĔN clo-

sure.

l e t
−−− constructor
new_stack = fun ()

fun (msg)
if eqv ? (msg , 1)

−1 −−− error : cannot top an empty stack
else

if eqv ? (msg , 2)
−2 −−− error : cannot pop an empty stack

else
1 −−− represents true : stack is empty

−−− constructor
push = fun (elem , stack)

fun (msg)
if eqv ? (msg , 1) elem
else if eqv ? (msg , 2) stack

else 0

−−− observers
emptystack ? = fun (stack) (stack 0)
top = fun (stack) (stack 1)
pop = fun (stack) (stack 2)

in
l e t

simplestack = (new_stack)
in

(top (push 3 , (push 2 , (push 1 , simplestack))))

Other example programs, including an example more faithful to the

tenants of object-orientation, especially encapsulation, are avail-

able in our Git repositories (see Table 3). These programs demon-

strate that we can create object-oriented abstractions from within

the CčAĒEđEĔN language.

7

Table3: Links to versionsof CčAĒEđEĔN interpreters inPythonand
Racket.
Language BitBucket Link to Git Repository
Python https://bitbucket.org/chameleoninterpreter/chameleon-interpreter-in-python-release/src/master/
Racket https://bitbucket.org/chameleoninterpreter/chameleon-interpreter-in-racket-release/src/master/

STUDENT FEEDBACK

Students have found CčAĒEđEĔN interpreter-building helpful and

fun, and to have educational merit.

Building the interpreter was helpful.

Implementing these concepts ϔirst hand is what makes

this class so worthwhile.

I really liked taking a look at the interpreter, which is at

the heart of programming languages. In fact, the inter-

preter is what deϔines the programming language.

I feel implementing concepts in a language is the bestway

to learn some of these tough concepts.

I would not ditch the interpreter, it is what ties many of

the course themes together and it is where some of the

more abstract concepts were concretely demonstrated.

My favoritemodulewas deϔinitelymodule threewherewe

got to see how an interpreter comes together.

CONCLUSION

The interpreter-based approach toward learning programming lan-

guages is neither unique nor a panacea. Pedagogically, the in-

terpreter and language survey approaches are essentially comple-

ments of each other in advantages and disadvantages. For a discus-

sion of the differences and trade-offs, we refer the reader to [4]. A

myriad of other approaches for teaching programming languages

8

https://bitbucket.org/chameleoninterpreter/chameleon-interpreter-in-python-release/src/master/
https://bitbucket.org/chameleoninterpreter/chameleon-interpreter-in-racket-release/src/master/

have been tried and tested [1, 2, 5, 6, 8]. What sets the interpreter-

based approach in CčAĒEđEĔN apart from the others, and in par-

ticular [3], is the use of Python—an approachable, practical, and

widely-used programming language—as the implementation lan-

guage. The use of CčAĒEđEĔN is integrated into a programming

languages textbook—titled Programming Languages: Concepts and

Implementation—which is available free and by request on a trial

basis for educators interested in adopting this approach. A sam-

ple course outline of topics, including course notes, through the

textbook is available online at http://academic.udayton.edu/
SaverioPerugini/pl. See Table 3 for links to our release versions

of CčAĒEđEĔN interpreters in both Python and Racket.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Sci-

ence Foundation underGrantNumbers 1712406 and1712404. Any

opinions, ϐindings, and conclusions or recommendations expressed

in this material are those of the author(s) and do not necessarily re-

ϐlect the views of the National Science Foundation. We thank Nor-

man Bashias in the Department of Computer Science at the Univer-

sity of Dayton for providing comments on a draft of this paper.

REFERENCES

[1] Adams, E., Baldwin, D., Bishop, J., English, J., Lawhead, P., and

Stevenson, D. Approaches to teaching the programming lan-

guages course: A potpourri. In Proceedings of the 11th Annual

SIGCSE Conference on Innovation and Technology in Computer

Science Education, pages 299–300, New York, NY, 2006. ACM

Press.

[2] Fossum, T. PLCC: A programming language compiler compiler.

In Proceedings of the 45th ACM Technical Symposium on Com-

9

http://academic.udayton.edu/SaverioPerugini/pl
http://academic.udayton.edu/SaverioPerugini/pl

puter ScienceEducation (SIGCSE), pages 561–566, NewYork, NY,

2014. ACM Press.

[3] Friedman, D., Wand, M., and Haynes, C. Essentials of Program-

ming Languages. MIT Press, Cambridge, MA, Second edition,

2001.

[4] Krishnamurthi, S. Teaching programming languages in a post-

Linnaean age. ACM SIGPLAN Notices, 43(11):81–83, 2008.

[5] Lee, K. A framework for teaching programming languages.

In Proceedings of the 46th ACM Technical Symposium on Com-

puter ScienceEducation (SIGCSE), pages 162–167, NewYork, NY,

2015. ACM Press.

[6] Pombrio, J., Krishnamurthi, S., and Fisler, K. Teaching program-

ming languages by experimental and adversarial thinking. In

Lerner, B., Bodík, R., and Krishnamurthi, S., editors, Proceed-

ings of the 2nd Summit on Advances in Programming Languages

(SNAPL), pages 13:1–13:9, 2017.

[7] Savage, N. Using functions for easier programming. Communi-

cations of the ACM, 61(5):29–30, 2018.

[8] Sheldon, M. and Turbak, F. An aspect-oriented approach to the

undergraduate programming language curriculum. ACM SIG-

PLAN Notices, 43(11):124–129, 2008.

10

	University of Dayton
	eCommons
	10-2018

	ChAmElEoN: A Customizable Language for Teaching Programming Languages
	Saverio Perugini
	Jack L. Watkin
	eCommons Citation

	tmp.1539717897.pdf.UwGdh

