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Quote

“What information consumes is rather obvi-
ous: it consumes the attention of its recip-
ients. Hence a wealth of information cre-
ates a poverty of attention,and a need to al-
locate that attention efficiently among the
overabundance of information sources that
might consume it.”

Herbert A. Simon



Recommender Systems Research MAICS’05 3

Recommender Systems
• Select a subset of items based on user preferences

• Underlying algorithms range from simple keyword matching to so-
phisticated mining of user profiles

• Examples: top-N lists, book and movie recommenders: Amazon.com

• Reduce information overload

• Retain customers

• Increase revenue

• Now believed to be critical to sustaining the Internet economy
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Four Main Dimensions
How is the recommender system

1. modeled and designed

• are recommendations content-based or collaborative?

2. targeted

• to an individual, group, or topic?

3. built

4. maintained

• online vs. offline



Recommender Systems Research MAICS’05 5

Content-based Filtering

‘Since you liked The Little Lisper,
you may be interested in The Little Schemer.’

‘Since you liked Pride and Prejudice,
you also might like Sense and Sensibility.’
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Collaborative-filtering

Linus and Lucy like Sleepless in Seattle.
Linus likes You’ve Got Mail.

Lucy also might like You’ve Got Mail.
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Four Main Dimensions
How is the recommender system

1. modeled and designed

• are recommendations content-based or collaborative?

2. targeted

• to an individual, group, or topic?

3. built

4. maintained

• online vs. offline

What about the inherently social aspect of recommendation?
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‘Brick and Mortar’ Setting
[Linus and Lucy are at Bombay Café, an Indian Restaurant.]

1 Linus: The menu looks enticing.
2 Linus: Since you are a returning patron, what do you recommend?
3 Lucy: Well, since you like spicy dishes, and

you’re not a vegetarian,
you’ll enjoy the Chicken Vindaloo.

4 Linus: Alright, I’ll try that.

A mutually-reinforcing dynamic ensues:

• Lucy leverages her knowledge of Linus’ interests into the process of
recommendation.

• Linus harnesses his knowledge of Lucy’s reputation to evaluate the
recommendation.
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Inherent Social Aspect
• Recommender systems attempt to emulate and automate this nat-

ural social process.

• Predictive utility relies on its representation of the recipient.

• Recommender systems involve user modeling.

• User models can be constructed by

– explicitly soliciting feedback

∗ e.g., asking users to rate products or services

– gleaning implicit declarations of interest

∗ e.g., through monitoring usage



Recommender Systems Research MAICS’05 10

A Connection-centric View
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Shifts in IS Research

Concept Modeling Matrix

Information retrieval (terms × documents)
↓ ↓ ↓

Information filtering (features × documents)
↓ ↓ ↓

Content-based filtering (features × artifacts)
↓ ↓ ↓

Collaborative filtering (people × documents)
↓ ↓ ↓

Recommender systems (people × artifacts)
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User Modeling Methodology for CF RSs
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representation of user (ratings, profiles) as basis for connection
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←− deliver recommendations & create connections (exploitation)
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Explicit User Modeling
• What kind?

– quantitative (e.g., ratings)

– qualitative (e.g., reviews)

• What makes it tough?

– voluminous (and ephemeral) domains (e.g., news)

– reluctance to evaluate artifacts

– free-riders

– cold-start: new user or new item

– ‘banana’ problem (and converse)

– users with unusual or highly specific tastes

– users with similar interests who have rated different artifacts

– effusivity of ratings
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Explicit User Modeling (contd)
• Possible solutions?

– pay-per-use model, subscription services

– minimum rating constraints

– incentives

– default votes

– agents to rate every artifact

– user interface approaches

– rate clusters of items

– hybrid approaches (collaborative and content-based)

– use indirection

• Representative projects

– GroupLens (Pearson’s r)

– Fab (hybrid)
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Implicit User Modeling
• Traditional approaches

– PHOAKS (USENET News)

– Siteseer (bookmarks)

• Link analysis and cyber-communities

– Social networks

∗ Discovering shared interests
∗ Referral Web

• Mining and exploiting structure

– Jumping connections

– HITS: Hubs and authorities

• Small-world networks
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What are implicit declarations of interest?
• Clickstream data, (web) access logs, ‘footprints’

• Time spent on a product page

• UI events: scrolling, highlighting

• Transaction data, shopping carts

• Hyperlinks

• Bookmarks
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PHOAKS
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Link Analysis and Cyber-communities
• Discovering shared interests

– Used e-mail logs to mine connections

– Closeness

InterestDistance (n1, n2) =
|(C(n1) ∪ C(n2))− (C(n1) ∩ C(n2))|

|(C(n1) ∪ C(n2))|

• Referral Web

– Used close proximity of names in webpages

– Queries:

∗ Referral chains: ‘What is my relationship to Marvin Minsky?’
∗ Search for experts: ‘What colleagues of mine, or colleagues of

colleagues of mine know about simulated annealing?’
∗ Proximity search: ‘List documents on the topic annealing by

people close to Scott Kirkpatrick.’
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Mining and Exploiting Structure: Theme
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Mining and Exploiting Structure (contd)
• Affiliation networks vs. social networks

– actor-movie collaboration graph

– author-paper collaboration graph

• What structure can be mined?

– degree distribution

– connectivity

• Examples:

– Jumping Connections

– HITS: Hubs and authorities
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Jumping Connections
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HITS: Hubs and Authorities
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Small-world Networks

p = 1p= 0

Increasing randomness

Random NetworkSmall-World NetworkRegular Network
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Discovering Social Networks

Concept Implicit declaration of interest Algorithm or System

Traditional Approaches to Implicit User Modeling URLs in Usenet news PHOAKS
bookmarks Siteseer

Link Analysis and Cyber-Communities e-mail logs Discovering Shared Interests
web documents Referral Web

Mining and Exploiting Structure movie ratings datasets Jumping Connections
hits-buffs, half bow-tie
web link topology PageRank (Google)
hubs and authorities HITS (CLEVER)
bow-tie

Small-world Networks actor collaborations Oracle of Bacon
author collaborations DBLP
infectious disease
the web
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Take away
• Purely structural information can be very instructive.

• These properties are found in nature (self-generating and self-organizing
systems) and not merely an artifact of an idealized world.

• In what ways can we exploit these properties for recommendation?
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Broadening Issues
• Evaluation

– Functional vs. human-oriented evaluations

– Is there something in between?

• Targeting

– Answers the question ‘for whom are we building this system?’

• Privacy and trust

– Broader than one user and one system

– Concept of a weak-tie

• Shilling

– Involves inundating the system with data intended to coerce it
to artificially recommend the perpetrator’s products more often
than those of a competitor.

– Algorithms to detect when a system is being shilled
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Targeting

(e.g., IndexFinder)
targeting by user targeting by topic

targeting all users

targeting per user per topic

(e.g., Syskill & Webert)

(e.g., MyYahoo!)

(e.g., Top N lists, FAQs, handpicked web sites)
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Broadening Issues
• Evaluation

– Functional vs. human-oriented evaluations

– Is there something in between?

• Targeting

– Answers the question ‘for whom are we building this system?’

• Privacy and trust

– Broader than one user and one system

– Concept of a weak-tie

• Shilling

– Involves inundating the system with data intended to coerce it
to artificially recommend the perpetrator’s products more often
than those of a competitor.

– Algorithms to detect when a system is being shilled
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Conclusions
• Recommenders are systems that connect people.

• The question is ‘do they bring people together by explicitly or im-
plicitly modeling them?’

• Approaches for discovering self-organizing social networks constitute
the primary thrust in current RS research.

• Evaluation is challenging with the human in the loop.

• We are trying to make a science out of recommendation.
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