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Abstract  The rapid advancement of technology has led to an exponential increase of both 

nanomaterial and magnetic field utilization in applications spanning a variety of sectors.    

While extensive work has focused on the impact of these two variables on biological systems 

independently, the existence of any synergistic effects following concurrent exposure has yet 

to be investigated.  This study sought to ascertain the induced alterations to the stress and 

proliferation responses of the human adult low calcium high temperature keratinocyte 

(HaCaT) cell line by the application of a static magnetic field (approximately 0.5 or 30 mT) 

in conjunction with either gold or iron oxide nanoparticles for a duration of 24 h.  By 

evaluating targets at a cellular, protein, and genetic level a complete assessment of the HaCaT 

response was generated.  A magnetic field dependent proliferative effect was found (~15%) 

which correlated with a decrease in reactive oxygen species and a simultaneous increase in 

ki67 expression; all occurring independently of nanoparticle presence.  Furthermore 

application of a static magnetic field was able to counteract the cellular stress response 

induced by nanoparticle exposure through a combination of decreased reactive oxygen 

species production and modification of gene regulation.  Therefore we conclude that while 

these variables each introduce the potential to uniquely influence physiological events, no 

negative synergistic reactions were identified. 

Keywords:  Static Magnetic Field, Superparamagnetic iron oxide nanoparticle, Gold 

nanoparticle, Cellular Stress, Gene Regulation 

 



 

Introduction 

The explosive development of nanotechnology has resulted in the incorporation of numerous 

nanomaterials into everyday products and applications.  Their unique physico-chemical 

properties make nanomaterials attractive for applications in a diverse number of specialties, 

including electronics, energy, personal care, and medicine.  For example, gold, silver, and 

copper nanoparticles (NPs) are all employed as high conductivity elements in circuits and 

electronic devices [Wang et al., 2004; Li et al., 2005].  Furthermore, numerous NPs, 

including aluminum, boron, iron, and titanium, are highly combustive and are being 

integrated into fuels and propellants to increase their efficiency [Yetter et al., 2009].  Silver 

NPs are being robustly utilized as an antimicrobial agent in both the consumer and medical 

sectors, with specific applications including medical bandages and devices, clothing, food 

packaging, and cosmetics [Zhang et al., 2008; Wijnhoven et al., 2009]. It logically follows 

that as the prevalence of nanomaterials in consumer goods increases, the risk of nanomaterial 

exposure escalates proportionately.  To ascertain the potential hazards of nanomaterial 

introduction on a physiological system, numerous studies have assessed the impact of various 

types, sizes, and shapes of nanomaterials on biological effects (bioeffects) [Hussain et al., 

2005; Braydich-Stolle et al., 2009; Braydich-Stolle et al., 2010; Schaeublin et al., 2011].  The 

results of these investigations have found that nanomaterials are able to severely influence an 

in vitro environment with noted outcomes involving cytotoxicity, augmentation of cellular 

stress, and activation of the inflammatory and immune responses.  However, as these cellular 

implications are dependent on numerous factors including nanomaterial composition, shape, 

size, and surface coating, the true impact of nanomaterials has yet to be satisfactorily 

elucidated. 

In a similar fashion, the rate of human exposure to magnetic fields (MFs) has 

substantially increased in recent years, with production arising from a wide variety of 

sources, including personal electronics, appliances, and power lines.  This rapid technological 

advancement has sparked public inquiry into the potential health risks associated with 

extensive MF exposure [Kheifets, 2001; Karasek and Lerchl, 2002].  Considerable 

investigation has sought to answer that question by evaluating the ability of a MF, of various 

strengths and types, to influence cellular events and targeted bioeffects [Dini and Abbro, 

2005; Miyakoshi, 2005].  While the potential for serious ramifications from MF exposure has 

been identified, the mechanism and degree of interference is not yet completely understood.  

However, to date, no study has systematically investigated the consequences of concurrent 



 

exposure to nanomaterials and a static MF at low, incidental levels on a biological 

environment.  

 As both MFs and NPs possess unique properties that can target and alter cellular 

functions, it is highly probable that their simultaneous application could produce a 

combinatorial bioeffect; a cellular outcome that does not occur under the influence of either 

NPs or a MF alone.  Numerous studies have reported that NPs induce a cytotoxic response 

through the induction of oxidative stress and DNA damage [Carlson et al., 2008; Lewinski et 

al., 2008].  Even in the absence of cellular death, NPs have been shown to augment 

intracellular stress levels and modify genetic regulation [Singh et al., 2009; Comfort et al., 

2011].  Analogous to NPs, MFs have been proven to modulate in vitro viability, redox 

systems, and gene regulation [Dini and Abbro, 2005; Frahm et al., 2010].  Consequently, as 

people continuously encounter scenarios that involve MF and NP co-exposure, the need for 

the determination of synergistic bioeffects is of the utmost importance to ascertain the 

potential impact on human health.     

The goal of this study was not to investigate the effects of one stimulus or the other, as 

that has previously been explored, but to establish if any cooperative bioeffects arose in the 

human adult low calcium high temperature keratinocyte (HaCaT) cell line following cellular 

introduction of both NPs and a static MF.  The HaCaT line was selected due to the 

considerations that contact is a primary mechanism of nanomaterial exposure and a MF 

would have the greatest impact on the skin surface; owing to the fact that the flux of a MF 

dramatically reduces as a function of distance from its source.  To identify the role of field 

strength, cells were exposed to either a 0.53 mT or 31.3 mT static MF (hereafter referred to as 

0.5 and 30 mT for brevity); both of which are flux intensities one would encounter on a daily 

basis.  Due to their general biocompatibility, use in numerous applications, and magnetic 

properties, super paramagnetic iron oxide nanoparticles (SPIONs) and gold nanoparticles 

(Au-NPs) were the nanomaterials of choice for this investigation [Lewinski et al., 2008].  

Furthermore, a comprehensive survey of bioeffects was evaluated, at a cellular, protein, and 

genetic level, to generate a complete picture of the HaCaT stress and proliferative responses.  

Our results establish that exposure to Au-NPs or SPIONs in conjunction with a static MF, 

both at incidental levels, did not result in an overtly negative synergistic cellular response. 



 

Materials and Methods 

NP Synthesis and Characterization 

The SPIONs were purchased from Nanocs (New York, NY, USA) in concentrated, solution 

form.  The citrate stabilized gold nanospheres were synthesized in-house using a previously 

described wet chemistry method [Grabar et al., 1995] and functionalized with polyethylene 

glycol [Liu et al., 2007].  Concentrations of the NP stocks were determined through 

inductively coupled plasma mass spectrometry on a Perkin Elmer NexION 300D (Waltham, 

MA, USA). Primary NP size and spherical morphology were verified using transmission 

electron microscopy (TEM) on a Hitachi H-7600 microscope (Tokyo, Japan). Dynamic light 

scattering (DLS) and zeta potential analyses were used to assess NP agglomeration and 

surface charge, respectively, on a Malvern Zetasizer Nano ZS (Worcestershire, UK) 

[Murdock et al., 2008].  NP solutions used for dosing were made up fresh prior to each 

experiment to avoid extensive agglomeration. 

Cell Culture and MF Exposure 

The human keratinocyte HaCaT cell line was a kind gift from the Army Research Laboratory 

(Adelphi, MD, USA), and was maintained in Roswell Park Memorial Institute (RPMI) 1640 

medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin 

(American Type Cell Culture, Manassas, VA, USA). HaCaTs are a spontaneously derived 

immortalized cell line, and therefore display no tumorigenesis characteristics. During 

experimentation, cells were seeded in either 6- or 96-well tissue culture plates or a 2-well 

chambered slide (Fisher Scientific, Pittsburgh, PA, USA) and returned to the incubator for the 

indicated duration and exposure conditions.   

The static MFs were generated by high-temperature ferrite permanent bar magnets 

(McMaster-Carr, Cleveland, OH, USA).  The HaCaT cells were exposed to these MFs by the 

placement of culture dishes on top of the magnets within an incubator maintained at 37°C and 

5% CO2. A schematic of the SMF cellular exposure scenario is shown in Figure 1. The 

magnetic poles were located on the longitudinal ends of the magnets, thus generating a 

traditional inhomogeneous magnetic field running from north to south.  The rectangular 

magnets utilized had physical dimensions of 127 x 76 x 1.3 mm and 152 x 10.2 x 13 mm for 

the low and high MF conditions, respectively. Based on the number of experimental wells the 

cellular surface area was calculated to be 1540 mm2 (36 mm length x 42.7 width), which 

correlates to 16% and 9.9% of the surface area of these permanent magnets.  A centralized 

location for placement of experimental wells was denoted on the magnets, and within that 



 

area the maximum field strength was measured on a LakeShore 410 Gaussmeter with a 

transverse Hall probe (Westerville, OH, USA).  To accurately reflect the MF exposure 

encountered by the HaCaTs, the determination of the maximum flux density was carried out 

at a distance of 4 mm above the magnet surface, which is equal to that of the cell culture 

height.  The average maximum flux values were based on the measurement of 20 spatial 

locations within the designated cellular placement area and found to be 0.53 ± 0.03 and 31.3 

± 0.23 mT, for the low and high MF conditions, respectively.  Therefore, even though the 

generated field was inhomogeneous, the cellular exposure area was small enough that the MF 

strength encountered by the HaCaT cells was relatively constant; within approximately 5% 

for the 0.5 mT and 1% for the 30 mT conditions.  While the actual MF field strengths are 

slightly higher, for the sake of brevity and simplicity, the 0.53 mT and 31.3 mT fields will be 

referred to as 0.5 mT and 30 mT for the remainder of this study.   

In the control conditions, cells were prepared in the same manner but were not 

exposed to the static MF.  Control dishes were placed in a separate, but identical, incubator to 

remove them from the influence of additional magnetic flux.  The cells exposed to the 0.5 and 

30 mT MF were placed in the upper left and lower right corner of the incubator, respectively.  

At this distance it was verified, using the same probe as previously mentioned, that the 

magnetic fluxes did not interfere with one another.  

NP Uptake and Cellular Interactions 

For cellular association, 2 x 105 cells were plated per chamber on a 2-well chambered slide 

and grown for 24 h, after which they were exposed to 15 µg/mL of NPs and the stated MF 

condition for an additional 24 h.  The cells were then fixed with 4% paraformaldehyde and 

incubated with Alexa Fluor 555-phalloidin (Invitrogen, Carlsbad,CA, USA) for actin staining 

and 4',6-Diamidino-2- phenylindole (DAPI) for nuclear staining (Invitrogen).  The slides 

were then sealed and imaged using a CytoViva 150 ultraresolution attachment on an 

Olympus BX41 microscope (Aetos Technologies, Auburn, AL, USA). 

For uptake studies 8 x 105 cells were plated per well in a 6-well plate, equilibrated for 

24 h, then dosed with 15 µg/mL of NPs and either a 0 or a 30 mT static MF for a duration of 

24 h.  Thereafter, the cells were fixed in 2% paraformaldehyde/2% glutaraldehyde (Electron 

Microscope Sciences (EMS), Hartfield, PA, USA) for 2 h, stained with a 1% osmium 

tetroxide (EMS), and dehydrated using increasing ethanol concentrations.  Cell pellets were 

then cured for 16 h at 60 °C in LR White Resin (EMS).  Finally, the cell samples were thin-

sectioned on an EM UC7 Leica ultramicrotome (Wetzlar, Germany) and visualized via TEM. 



 

Cell Proliferation 

Cell proliferation was assessed using the CellTiter 96 Aqueous One Solution (Promega, 

Madison, WI, USA) which monitors mitochondrial function.  Cells were seeded into a 96-

well plate at a concentration of 5000 per well and the following day treated with the stated 

NP and MF conditions.  After 24 h the cells were washed and viability was determined in 

accordance with the manufacturer’s protocol, including an initial absorbance reading to 

account for NP presence.  Control samples were cells without either NP or MF treatment. 

Reactive Oxygen Species Production 

The generated reactive oxygen species (ROS) was monitored via the fluorescent probe 

dichlorofluorescein diacetate (DCFH-DA, Invitrogen).  Cells were seeded at 7500 cells per 

well in a 96-well plate and adhered overnight.  On the day of experimentation, the cells were 

washed and treated with 100 µM DCFH-DA for 30 m, washed again, and dosed with the 

specified combination of NPs and MFs.  After 24 h incubation the fluorescence was 

measured on a SpectraMAX Gemini Plus microplate reader (Molecular Devices, Sunnyvale, 

CA, USA).  Wells without NPs or MF exposure served as the negative control.  To verify the 

DCFH-DA probe was properly functioning, cells treated with hydrogen peroxide were used 

as a positive control.     

Ki67 Evaluation 

The expression of ki67 was monitored with through the ki67 Cell Proliferation Kit by 

Thermo Scientific (Waltham, MA, USA).  Cells were seeded onto a 96-well plate at a density 

of 7500 cells per well in growth media, adhered overnight, and then exposed to the stated 

combination of NPs and MF.  After 24 h, the cells were washed, fixed with 4% 

formaldehyde, permealized, and stained with antibodies specific to ki67, all in accordance 

with the manufacturer’s protocol.  The fluorescence intensity was measured on a 

SpectraMAX Gemini Plus microplate reader. 

Gene Expression Analysis 

For real time polymerase chain reaction (RT-PCR) analyses, cells were plated at a density of 

8 x 105 cells per well in a 6-well plate and cultured in growth media overnight.  The cells 

were then washed and dosed with 5 µg/mL of Au-NPs or SPIONs and exposed to the 

specified MF for 24 h.  The RNA was then isolated from each culture using the RNAeasy 

Mini Kit from Qiagen (Valencia, CA, USA) and quantified with the NanoDrop ND-1000 

spectrophotometer (Thermo Scientific).  The RNA samples were processed and converted to 

cDNA using the RT2 First Strand kit from SA Biosciences (Frederick, MD, USA), and the 



 

human Stress and Toxicity PCR Array (SA Biosciences) was run in accordance with the 

manufacturer’s protocol.   

Statistical Analysis 

Data is expressed as the mean ± the standard error of the mean (SEM).  A one-way ANOVA 

analysis was run using Graph Pad Prism (La Jolla, CA, USA) followed by a Bonferroni 

adjustment to determine statistical significance with an asterisk denoting a p-value ≤ 0.05.  

The data collected from the PCR arrays was analyzed with the aid of the SABioscience 

software.  The data reported for gene expression analysis passed two quality assurance 

criteria, with respect to data analysis.  Firstly, the fold regulation of an experimental 

condition was statistically significant, a p-value ≤ 0.05, when directly compared against the 

control, which was no NP and no SMF stimulation (n=3 for both experimental sets).  

Secondly, of these statistically significant sets, only the genes that displayed a fold regulation 

greater than 2.0 were included. 

 

Results  

Nanoparticle Selection and Characterization 

When designing this study the main consideration for NP selection was the potential for 

influence by a MF.  Owing to their superparamagnetic properties, SPIONs will indisputably 

be manipulated by the presence of a static MF.  As many metallic NPs demonstrate magnetic 

properties considerably different from their bulk counterparts, the sensitivity of nano-gold 

was of great interest, as gold has been shown to magnetize when situated directly with a MF.  

An additional factor involved in NP selection was their general prevalence in consumer, 

medical, and industrial applications; as commonly utilized particles incur the highest 

exposure levels.  Both SPIONs and Au-NPs are frequently employed in the medical field and 

incorporated into consumer products, with applications including enhanced imaging 

techniques, sensor development, and drug delivery systems [Gupta and Gupta, 2005; Ghosh 

et al., 2008].  Lastly, as the impact of SPIONs and Au-NPs on a cellular system has been 

extensively investigated; [Mahmoudi et al., 2009; Khlebtsov and Dykman, 2011], it created a 

baseline of expected HaCaT responses to these NPs. 

As previous investigations have demonstrated that a slight alteration in nanomaterial 

properties can dramatically impact the dependent bioeffects, it is essential that a proper and 

extensive characterization of nanomaterials be performed prior to introduction into a 

physiological system [Hussain et al., 2009; Rivera Gil et al., 2010].  Therefore, the SPIONs 



 

and Au-NPs underwent the standard battery of characterization tests including; verification of 

primary size and spherical morphology, determination of agglomeration patterns, and an 

assessment of surface charge (Table 1).  Both the Au-NPs and SPIONs demonstrated a 

uniform, spherical morphology (Fig. 2) and a primary size of approximately 10 nm as 

determined from TEM imaging.  Previous studies have determined that all nanomaterials will 

agglomerate to some extent when dispersed in various fluids, due to their unique surface 

chemistries; therefore dynamic light scattering (DLS) was performed to assess an effective 

agglomerate size in both water and media.  As anticipated, some NP agglomeration did occur, 

however not to an extreme degree, approximately 3-5 times of the primary size, and similar 

patterns were observed for both Au-NPs and SPIONs.  The uniformity of agglomerate size 

and particle quality can be further assessed through the polydispersity index (PdI) value that 

is generated during DLS analysis.  The PdI, which is valued from 0 to 1, is a measure of the 

“broadness” of agglomerate size distribution, a general indication of NP quality.  To have a 

good measure of confidence in a NP sample, a PdI of less than 0.5 is traditionally required.  

As seen in Table 1, the PdI values for both Au-NPs and SPIONs are significantly less than 

0.5, indicating that the agglomerates are uniform in addition to being of minimal size. Lastly, 

the zeta potential indicated that both the NPs exhibited a negative surface charge following 

dispersion in water as well as in media.  The alteration of zeta potential in media is known to 

be caused the formation of a protein corona around the particles in the presence of serum, 

which then dictates the external charge of the agglomerates [Lynch et al., 2009].  As surface 

charge of the particles is critical to how they interact with the cells it is important to note of 

any substantial differences, of which none were identified. 

Evaluation of NP-HaCaT Interactions Under MF Influence 

As the mechanism of cellular interaction frequently dictates the resultant bioeffects, the initial 

objective was to establish whether a static MF impacted how Au-NPs or SPIONs associated 

with HaCaT cells.  Firstly, qualitative NP-cellular coupling was assessed via ultrahigh 

resolution microscopy coupled with fluorescence staining.  MFs have been shown to 

influence cell morphologies [Chionna et al., 2005], but HaCaT control cells appear unaltered 

following stimulation with a MF (Fig. 3a).  As depicted in Figure 3b, Au-NPs readily 

associated with HaCaT cells whether under the influence of a MF or not.  Furthermore, 

particle clustering was identified in both circumstances suggesting that Au-NP-HaCaT 

behavior was independent of MF presence.  Additionally, as anticipated, SPIONs cluster 

together following MF exposure as indicated with grey arrows (Fig. 3c).  On their own, 

SPIONs have strong membrane coupling without demonstrating extensive particle 



 

agglomeration, this is in agreement with previous studies [Comfort et al., 2011]. This 

membrane coupling results in what appears to be a “haze” of nanoparticles over the surface 

of the cell culture.  However, once under the influence of a magnetic flux, bright clusters 

appear that are indicative of particle grouping.   

As MF-dependent NP clustering could alter the way that cells perceive them, the 

investigation into cellular–nano interactions was taken one step further and NP uptake 

patterns were evaluated.  Representative TEM images of control HaCaT cells demonstrated 

no obvious alterations following MF introduction (Fig 4a).  As shown in Figure 3b, Au-NPs 

were readily internalized by HaCaT cells without the presence of a static MF, through what 

appears to be an endocytosis mechanism, though the exact form of endocytosis is unknown.  

Following exposure to the 30 mT MF, Au-NPs were still clearly taken up by the cells, 

indicating that MF application did not block particle internalization.  The lack of SPION 

internalization without a MF (Fig. 4c) is in agreement with the previous microscopy results, 

in which SPIONs appeared distributed on the cell surface (Fig. 3c) as well as previously 

published experimentation [Comfort et al., 2011]. However, even following MF dependent 

SPION clustering, no perceivable uptake occurred.  Therefore, while these results 

demonstrated significant SPION grouping, no considerable variations of cellular–nano 

interactions transpired during exposure to a 30 mT static MF. 

Bioeffects at the Cellular Level: Viability and Reactive Oxygen Species Assessments 

As previously mentioned, Au-NPs and SPIONs are renowned for their general 

biocompatibility, with minimal cytotoxic effects.  The impact of a MF on an in vitro system 

is more debatable with both proliferative and apoptotic effects reported, depending on the cell 

line [Tenuzzo et al., 2006].  Following 24 h of concurrent stimulation by a MF and 5 µg/mL 

of either Au-NPs or SPIONs, HaCaT cells exhibited a proliferative effect (~10-15%) that was 

dependent solely on the presence of a static MF (Fig. 5). Interestingly, this proliferation was 

independent of the field strength with the same cell growth observed in the presence of both 

0.5 and 30 mT magnets, a 60-fold difference.  Most notably, identical proliferative patterns 

were observed in the presence of no NPs, Au-NPs and SPIONs, indicating no negative 

synergy relative to HaCaT viability.  Through previously completed investigations, it has 

been identified that a large percentage of the observed nano-based cellular responses are 

directly tied to the concentration of particles used.  Therefore, to identify if NP dosage had a 

role in joint NP-MF bioeffects, this trial was repeated with a higher NP concentration (Fig. S-

1). However, even at significantly increased NP concentrations comparable results were 



 

observed, re-emphasizing the conclusion that the identified proliferative effect is a sole 

product of MF application to HaCaT cells. 

One factor that has been shown to strongly correlate with a culture’s growth rate is the 

amount of stress that the cells are incurring; which was assessed through the production of 

reactive oxygen species (ROS), a recognized marker of cellular distress [Fiers et al., 1999].  

SPIONs and MFs on their own have been shown to impact the intracellular redox balance 

[De Nicola et al., 2006; Singh et al., 2012], and this was reproduced in the HaCaT cell line 

with a marked increase and decrease, respectively, in ROS levels (Fig. 6).  Furthermore, 

results demonstrated that a static MF was able to counteract the ROS production by SPIONs, 

returning quantities to an approximate basal level.  To a similar extent, approximately 15-

20%, MFs attenuated ROS levels in conjunction with control cells and Au-NPs.  Analogous 

to the viability results, this bioeffect was independent of MF strength and similar patterns in 

ROS levels were seen following exposure to a higher nanoparticle dose (Fig. S-2).  Together, 

these results demonstrate that even in conjunction with NPs, a static MF is capable of 

inducing a proliferative HaCaT response through the decrease of intracellular ROS 

production. 

Bioeffects at the Protein Level:  Augmented ki67 Production 

On the protein level, the quantity of ki67, a recognized protein marker for cell proliferation 

[Gerdes et al., 1983], was assessed following concurrent NP and MF exposure to validate the 

previous proliferative results.  For all NP variations, a substantial increase in ki67 expression, 

15-20%, was detected following the introduction of a MF (Fig. 7), directly correlating with 

the observed HaCaT MF-dependent growth.  As seen with earlier experimentation, this ki67 

increase appeared to be independent of MF strength and NP presence, and solely reliant on 

the presence of a MF.   

Bioeffects at the Genetic Level:  Alterations in Gene Regulation 

Lastly, alterations to HaCaT gene regulation were investigated following simultaneous NP 

and MF exposure.  To determine if a correlation existed between genetic modifications and 

the observed stress and proliferative responses, a gene array was selected that specifically 

focused on stress and toxicity related genes.  This RT-PCR array, which examines 84 genes 

known to be involved in the cellular stress and toxicity responses, was executed following NP 

exposure and repeated for a culture under the influence of NPs and a 30 mT MF.  The data 

sets were then compared directly against one another to elucidate the influence of a MF on 

gene transcription; these findings are summarized in Table 2.  The samples that underwent 

NP exposure demonstrated a MF dependent upregulation in proliferative genes with a 



 

simultaneous downregulation in apoptotic genes.  Furthermore, the observed alterations are 

predominantly comparable for Au-NP and SPION, however SPION samples were more 

prone to downregulate apoptotic genes.  This finding was not surprising, however, as Au-NPs 

generally do not induce an apoptotic response.  Control samples were run without NP 

exposure, and while similar trends of were seen following the application of a MF, none of 

the genes in the array met the criteria of a minimum fold regulation of 2.0 or greater; 

demonstrating that these results are a combinatorial bioeffect and not resultant solely on the 

presence of a MF. 

 

Discussion and Conclusion 

NP-MF Impact on HaCaT Viability and Stress 

The goal of this study was to identify potential hazards following low level exposure to both 

NPs and a static MF.  Although not overtly negative, this study identified a variation of 

bioeffects in the HaCaT cell line as a result of SPION or Au-NP dosing in conjunction with 

the application of a MF.  No significant changes in the cellular morphology or uptake patterns 

(Fig. 3 and Fig. 4) indicated that the observed alterations can be directly attributed to the MF-

NP interactions and not the cellular-nano association.  Firstly a significant increase in 

proliferation was observed following the application of a MF (Fig. 5).  Subsequent 

experimentation indicated that this proliferation was stimulated by a considerable reduction 

in ROS levels (Fig. 6), increased ki67 expression (Fig. 7), and alteration to gene regulation 

(Table 2).  It was recently reported that a static MF upregulated gene expression directly 

responsible for DNA repair and cell proliferation in human umbilical vein endothelial cells 

(HUVEC) [Polidori et al., 2012] thereby indicating that this phenomenon is not unique to 

HaCaTs.  Our study further revealed that MF exposure increased the expression of C-X-C 

motif chemokine 10 (CXCL10), interleukin-6 (IL-6), lymphotoxin alpha (LTA), and tumor 

necrosis factor (TNF) in NP treated HaCaT cells, all of which are key players in the 

inflammatory response.  However, CXCL10, IL-6 and LTA have also been linked to 

enhancing cellular proliferation [Krueger et al., 1991; Calmon-Hamaty et al., 2011] and, we 

presume, aid in the enhancement of the observed MF-dependent proliferative effect.  This is 

noteworthy as NPs have previously been shown to increase the inflammatory response 

[Braydich-Stolle et al., 2010;  Nishanth et al., 2011] and these results suggest a further 

augmentation of pro-inflammatory cytokine secretion by the application of a MF.  Taken 



 

together, these facts suggest that the immune and inflammatory systems may be sensitive to 

concurrent MF and NP exposure and require further exploration. 

The results presented in this study pose very intriguing questions as to a potential role 

for MFs used in combination with NPs and the resultant effect on the cellular stress response.  

It is established that many NPs, including SPIONs, increase intracellular stress following 

their introduction.  Most interestingly, we revealed the ability of a static MF to counteract this 

SPION-induced, augmented stress and return ROS levels to a near basal quantity.  We 

hypothesize that the MF presence is somehow supplementing the cell’s natural antioxidant 

abilities, as this MF ability has previously been shown [Wang et al., 2008].  However, 

SPIONs alone demonstrated no alteration to HaCaT viability, indicating that the cells were 

able to manage the increased stress load on their own.  As such, it would be worthwhile to 

evaluate the degree of MF induced stress reduction and potential recovery of cell viability in 

conjunction with a NP that is a recognized inducer of ROS dependent cytotoxicity, such as 

nano-silver [Carlson et al., 2008].   

 

Variable Response to NPs and MFs 

A recent study completed by Bae et al. [2011] discovered a cytotoxic, synergistic effect when 

ferucarbotran nanoparticles were used with a 0.4 T MF on hepatocyte cells; specifically 

replicating an MRI scenario.  The authors found that the strong MF increased NP 

agglomeration and cellular uptake, resulting in dramatically higher ROS levels and leading to 

cell death.  However, a hallmark of MF-induced bioeffects has been that results are 

dependent on factors such as cell line, MF strength, and class of MF [Dini et al., 2005; 

Tenuzzo et al., 2006].  This variability has evidently been retained when assessing 

combinatorial bioeffects with nanomaterials.  While the authors of Bae et al. encountered a 

negative response, our study indicates no considerable NP-MF toxicity, but rather the 

potential for a cooperative effect between MFs and NPs; as demonstrated by the ability of the 

MF to counteract SPION dependent ROS production.  While several distinct differences exist 

between these two novel studies, including field strength (0.4 T vs. 0.5 and 30 mT), cell 

model (murine hepatocytes vs. human keratinocytes), and NP biocompatibility (toxic vs. non-

toxic) both reports examined the effects of simultaneous MF and NP exposure on a biological 

system.  Therefore, we believe that these two investigations together illuminate the potential, 

both positive and negative, of combining the stimulus effects of NPs and static MFs for 

biological purposes.  Furthermore, these results warrant further extensive investigation into 

this rapidly growing area of public concern and scientific inquiry. 



 

 In conclusion, this study evaluated the combinatorial bioeffects at cellular, protein, 

and genetic levels in HaCaT cells following the introduction of Au-NPs or SPIONs in the 

presence of a static MF.  Under the conditions examined in this study, we identified 

modifications in the proliferative response, ROS production, and gene regulation, but none 

indicate an explicitly negative cellular response.  On the contrary, this work demonstrated 

that a static MF is capable of counteracting the augmented stress levels often associated with 

nanomaterial introduction.  While we identified no overtly damaging synergistic cellular 

responses during a co-exposure scenario of incidental levels of NPs and a MF, this report has 

barely scratched the surface on the investigation into combinatorial effects on a physiological 

system, and we believe merits further exploration in this area to fully elucidate any potential 

interactions that may arise. 
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Fig. 1 Schematic of static MF exposure system on HaCaT cells.  Cells were positioned at a 

vertical height of 4 mm above the magnet, indicated by the dashed line.  In the longitudinal 

direction, cell coverage was 36 mm and located in the center of the utilized magnets. Due to 

their placement and small percentage of occupied magnet surface area, the field strength 

encountered by the HaCaT cultures is nearly uniform (< 5%).   

 

 

Fig. 2 TEM imaging of original NP stocks of (a) 10 nm gold NPs and (b) 10 nm SPIONs was 

performed to verify primary nanoparticle size and spherical morphology.   

 



 

 

Fig. 3  CytoViva Fluorescent imaging of HaCaT-NP interaction.  The influence of a 30 mT 

static MF on the NP-cellular interface was qualitatively examined with high resolution 

fluorescent microscopy.  Following 24 h of exposure to (a) no NPs, (b) Au-NPs, and (c) 

SPIONs, the cells were fixed and underwent actin (red) and nuclear (blue) staining with 

metallic NPs reflecting white. The included arrows indicate the presence of large SPION 

clusters formed following SMF application. 

 



 

 

 

Fig. 4    TEM imaging to evaluate cellular internalization of NPs with and without MF 

exposure.  To visualize if NPs were internalized after 24 h, representative TEM images are 

shown of HaCaT cells following exposure to (a) no NPs, (b) Au-NPs, and (c) SPIONs before 

and after application of a 30 mT MF.  Images demonstrate significant uptake of Au-NPs, 

independent of MF status, and no indication of SPION internalization.  

 



 

* * *

 

Fig. 5  Impact of simultaneous NP and static MF exposure on HaCaT viability.  HaCaT cells 

were exposed to the stated combination of MF strengths and NPs for 24 h prior to viability 

evaluation assessed through mitochondrial functionality.  Results demonstrated a proliferative 

response to the MF, independent of field strength and nanoparticle presence.  (Represents 3 

independent trials, with an asterisk (*) denoting p ≤ 0.05) 

 

*

**

 

Fig. 6  Reduction in ROS levels by the application of a static MF.  ROS production, a marker 

of cellular stress, was measured 24 h after introduction of the stated combination of NPs and 

MF strengths.  For all NP conditions the presence of a MF significantly reduced ROS levels 

within the HaCaT cell line.  (Represents 3 independent trials, with an asterisk (*) denoting p 

≤ 0.05)  



 

 

***

 

Fig. 7  Enhanced expression of ki67 through static MF exposure.  The expression of ki67 

protein was evaluated following a 24 h exposure to a combination of a static MF and either 

gold or SPION nanoparticles. Results demonstrated a significant increase in the intracellular 

ki67 levels of HaCaT cells after MF application, independent of the presence of NPs.  

(Represents 3 independent trials, with an asterisk (*) denoting p ≤ 0.05) 

 

 

 

 Table 1  Summary of Nanoparticle Characterization 

 Primary Size 

(nm) ± SD 

Agglomerate Size (nm) 

± SD 

Polydispersity 

Index (PdI) 

Zeta Potential (mV) 

± SD 

NP  Water Media Water Media Water Media 

Au-NP 12.19 ± 1.12 37.59 ± 1.82 52.48 ± 1.80 0.241 0.251 -44.33 ± 0.15 -6.22 ± 0.27 

SPION 10.17 ± 0.86 30.58 ± 0.10 39.32 ± 0.43 0.141 0.274 -21.07 ± 1.63 -9.91 ± 0.41 

 

 

 

 

 

 

 

 



 

Table 2  Alterations to HaCaT gene regulation following concurrent NP and MF exposure 

Fold regulation with application of 30 mT MF (vs. 0 mT) 

Gene Symbol Functional Group No NP Au-NP SPION 

CASP10 Apoptosis - - -2.02 

CXCL10 Inflammatory Response - 2.77 2.66 

DDIT3 Growth Arrest - -1.24 -2.01 

HSPA6 Protein Repair - 2.59 3.61 

IL6 Inflammatory Response - 2.16 2.16 

LTA Inflammatory Response - 2.25 2.70 

TNF Inflammatory Response - 2.59 1.95 

TNFSF10 Apoptosis - - -3.33 
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