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Control of plasma flux composition incident on TiN films during reactive
magnetron sputtering and the effect on film microstructure

C. Muratore,a� S. G. Walton, D. Leonhardt, and R. F. Fernsler
Naval Research Laboratory, Plasma Physics Division, 4555 Overlook Ave SW, Washington, DC 20375

�Received 27 May 2005; accepted 10 October 2005; published 9 December 2005�

A hybrid plasma enhanced physical vapor deposition �PEPVD� system consisting of an unbalanced
dc magnetron and a pulsed electron beam-produced plasma was used to deposit reactively sputtered
titanium nitride thin films. The system allowed for control of the magnitudes of the ion and neutral
flux, in addition to the type of nitrogen ions �atomic or molecular� that comprised the flux. For all
deposition experiments, the magnitude of the ion flux incident on the substrate was held constant,
but the composition of the total flux was varied. X-ray diffraction and atomic force microscopy
showed that crystallographic texture and surface morphology of the films were affected by the
plasma flux composition during growth. �DOI: 10.1116/1.2134706�

I. INTRODUCTION

Substantial research efforts over at least three decades
have led to the broad industrial acceptance and commercial
success of reactively sputtered transition metal nitrides in
diverse applications. The literature contains many studies on
process-structure relationships, including early works that
identified ion energy1 and flux2 as critical parameters for TiN
deposition processes. Later reports examined the effect of the
energy deposited per atom.3–5 The remarkable control of film
structure and properties with ion bombardment has moti-
vated the development of processes such as ionized PVD,6 or
inductively coupled plasma enhanced magnetron
sputtering,7–10 and high power pulsed magnetron
sputtering.11,12 All of these processes are designed to gener-
ate an increased fraction of ionized and dissociated species
that are ultimately incorporated into the growing film. While
increasing the total flux of reactive species to the substrate is
beneficial for texture development or reduction of film
porosity,7–9 it might be more effective to increase the flux of
only those species that are most effective in producing the
desired microstructural response in the deposited material.
For example, Chun et al.13 Gall et al.,14 and Petrov et al.15

have observed that the steady-state coverage of N on TiN
crystals with the polar �111� orientation is independent of the
atomic nitrogen flux, whereas coverage increases for the
�001� orientation, resulting in the development of �002� tex-
ture for TiN. The presence of texture due to the increased
availability of reactive nitrogen is also likely to be accompa-
nied by a reduction in film porosity, as reported by Hultman
et al.16 and Petrov et al.15 for growth of NaCl structured
transition metal nitrides under different nitrogen flux
conditions.

The current work demonstrates a relationship between the
composition of the incident nitrogen ion and neutral flux and
the microstructure of reactively sputtered TiN films grown in
a hybrid deposition system. The system combined a pulsed,

electron beam-generated plasma17,18 with a dc unbalanced
magnetron in pure nitrogen gas.19 The electron beam has
been shown to produce large relative fluxes of atomic nitro-
gen ions �N+�20 compared to the glow discharge produced by
an unbalanced magnetron.21 Changing the duty factor of the
electron beam thus provides a means to vary the nature and
magnitude of the ion and radical fluxes at the film surface.
An adjustable auxiliary magnetic field was used to confine
the electron beam and also to reduce the ion flux from the
magnetron discharge, so that the time-averaged total ion flux
could be maintained for any electron beam duty factor. The
hybrid PEPVD system used in this way allowed for a study
in which the composition of the plasma-generated nitrogen
flux was the primary variable, and other deposition param-
eters, such as gas flow rate, pressure and neutral titanium flux
were essentially constant. Glancing angle x-ray diffraction
and atomic force microscopy were used to demonstrate the
relationship between TiN film microstructure and nitrogen
flux composition.

II. EXPERIMENTAL PROCEDURE

Experiments were conducted in a stainless steel vacuum
chamber pumped by a 1000 l s−1 diffusion pump to a base
pressure of 5�10−7 Torr. The apparatus was configured as
shown in Fig. 1, with the substrates 1.5 cm from the electron
beam axis and 6.0 cm from the magnetron target, which was
a 1.3 cm diameter disk of 99.99% pure titanium metal. A
chamber pressure of 30 mTorr, measured with a capacitance
manometer, was achieved with 110 sccm of 99.999% pure
nitrogen during deposition. The sputtering target was pow-
ered by an Advanced Energy MDX power supply in dc cur-
rent regulation mode at 0.10 A and a nominal voltage of
180–200 V. The electron beam originated from a 15�1
�1 cm3 hollow cathode inside the chamber as shown in Fig.
1. The cathode was pulsed to −2 kV at 20%–50% duty with
a maximum current of 50 mA. The pulse length was always
1 ms, and the frequency of the pulses was adjusted to pro-
duce the desired duty factor. The electron beam passed
through a slot in a grounded anode before terminating at a

a�Current address: US Air Force Research Laboratory, Tribology
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second grounded anode. A magnetic field between 125 and
165 Gauss �depending on electron beam duty factor� directed
along the electron beam axis was generated with a pair of
Helmholtz coils. The magnetic field was spatially uniform in
the processing volume such that no variation was detected
when measured over 0.5 cm steps along and across the beam
axis; the field confined the electron beam to a uniform 60
�15�1 cm3 sheet between the anodes.

Films were grown on �001� Si substrates clamped to an
11.5 cm diameter stainless steel disk. The substrates were
heated to 250 °C and dc biased to −100 V. The total ion
current to the substrate holder was calculated by measuring
the voltage across a 100 ohm sense resistor on the substrate
bias power supply with a digitizing oscilloscope during
deposition. The substrate holder was imbedded in a 5 mm
thick boron nitride insulator, allowing the current measure-
ment to reflect only the incident positive ion flux from the
plasma; the secondary electron yield from the stainless steel
plate is assumed to be negligible when bombarded by ions
with a kinetic energy of 100 eV or less.22 The magnetic field
produced by the Helmholtz coils was adjusted to maintain
the time-averaged ion flux to the substrates for all experi-
ments. All films were grown to a thickness of 500±25 nm as
measured with a contact profilometer. Materials were char-
acterized with a Rigaku ATX 18 kW x-ray diffractometer
with � fixed at 8° for all scans. A Digital Instruments atomic
force microscope was also used to examine the surface mor-
phology of the films.

III. RESULTS

The ion flux from the magnetron alone to the substrate
decreased monotonically with increasing magnetic field
strength over the 125–165 G range investigated. By increas-
ing the magnetic field �to reduce the ion flux from the mag-
netron� and simultaneously increasing the electron beam
duty factor, a constant time-averaged ion flux could be main-
tained. Figure 2 shows the ion flux collected at the biased
substrate holder during the deposition experiments. When the
magnetron was operated alone with an auxiliary magnetic
field of 125 G, the positive ion flux was constant at
0.031 mA cm−2. When the electron beam source was intro-
duced at various duty factors, the time-averaged positive ion
flux was controlled by adjusting the auxiliary magnetic field
from the Hemholtz coils to be within 3% of 0.031 mA cm−2.

Titanium nitride films were grown with the electron beam
operated at 0, 20, 33, and 50 percent duty for 180 min. Fig-
ure 3�a� shows x-ray diffraction patterns for selected film
samples, and Fig. 3�b� shows the normalized �002� / �111�
X-ray diffraction peak ratios for the crystalline TiN detected
in the films. The ratio increased from 0.68 to 0.91 with in-
creasing electron beam duty factor. Atomic force micro-
graphs in Fig. 4 show the surface morphology of the TiN
films grown with the electron beam off �Fig. 4�a�� and oper-
ating at 50% duty �Fig. 4�b��. The films grown with the mag-
netron only exhibited an average grain size of approximately
25 nm, compared to �60 nm for TiN grown with both
plasma sources. The root-mean-square �rms� roughness also
decreased from 4.0 to 2.5 nm with exposure to the electron
beam generated plasma during growth.

IV. DISCUSSION

The auxiliary magnetic field from the Helmholtz coils was
directed parallel to the magnetron target surface and was
sufficient to perturb the trajectories of electrons produced by
the magnetron, especially those that followed the diverging
field lines of the unbalanced magnetron. Varying the auxil-
iary field strength thus provided control over plasma genera-

FIG. 1. Schematic of the processing chamber.

FIG. 2. Time-resolved ion flux at the substrate during operation of the mag-
netron and electron beam at different electron beam duty factors.
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tion near the substrate, while having little influence on the
discharge at the target surface. Indeed, the ion flux to the
magnetron target was constant, as it was maintained by its
power supply, and the target voltage was only weakly depen-
dent on the magnetic field. This provided a nearly constant
Ti flux, and thus TiN deposition rate for all experiments.
While increasing the auxiliary magnetic field reduced the ion
flux from the magnetron discharge to the substrate, the time-
averaged total ion flux was maintained by increasing the flux
of species from the electron beam source. Thus, at least two
critical deposition parameters were altered with increasing
electron beam duty factor: The time-dependent ion-to-atom
flux ratio, and the composition of the nitrogen ion flux.

The ion-to-atom ratio has been shown by other authors to
affect the texture evolution and other microstructural features
of titanium nitride and similar thin films. Specifically, Petrov
et al.15 have shown, that increasing the ion-to-atom ratio re-

sults in growth of the �002� orientation over the closely
packed �111� orientation for NaCl structured transition metal
nitrides.

Voevodin et al.23 and Muratore et al.24 also showed that
intermittent spikes of high ion-to-atom ratios during pulsed
deposition processes can effectively inhibit growth of closely
packed planes, resulting in preferred growth of other orien-
tations in other materials. For the analogous case of TiN
deposition studied here, larger pulses of high ion flux should
have resulted in increased growth of �002� crystals at the
expense of those with the �111� orientation. Table I shows the
peak ion-to-atom ratios for the deposition experiments that
employed the pulsed electron beam source. The values in the
table were calculated using the peak ion flux values shown in
Fig. 2 and assuming the deposition rate provides a reason-
able estimate of the neutral metal flux. The table indicates
that the normalized �002� diffraction peak intensity

FIG. 3. X-ray diffraction data showing �a� raw diffractograms and �b� linear approximation of the normalized integrated �002� / �111� peak intensities for TiN
films deposited with different electron beam duty factors.

FIG. 4. Atomic force micrographs for the TiN films deposited with �a� the magnetron only and �b� the magnetron and electron beam plasma source at 50%
duty. Units are in nanometers.
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decreased with an increased peak ion-to atom ratio, but in-
creased with electron beam duty factor. This suggests that
TiN film texture was less dependent on the magnitude of the
ion flux pulses than on other deposition parameters.

Plasma flux composition was also altered by the presence
of the electron-beam-generated plasma. While no character-
izations were performed in the current hybrid PEPVD sys-
tem, previous measurements have shown that the composi-
tion of the ion flux is different compared to a magnetron
alone. Mass spectrometric measurements of magnetron dis-
charges with titanium cathodes in nitrogen have shown that
nearly all of the ion flux consists of N2

+ ions at low
pressures.21 Electron beam-generated plasmas have been
characterized under similar operating conditions,20,25 and
were shown to generate a much higher fraction of atomic
nitrogen ions, so increasing the beam duty factor in the hy-
brid system �while maintaining a constant ion flux� served to
increase the flux of atomic nitrogen ions. Similarly, the flux
of nitrogen atoms should be dependent on the presence of the
electron beam produced plasma. For the high-energy electron
beam employed for this work, approximately one N atom per
electron-ion pair is expected to result from interaction of the
electron beam with the ambient gas.26 Also, the electron tem-
perature in the beam-generated plasma was approximately
0.5 eV,25 compared to 1–10 eV in unbalanced magnetron
discharges27–29 and low electron temperatures promote disso-
ciative recombination of molecular nitrogen ions into pairs
of nitrogen atoms.30 Therefore, the flux of both atomic nitro-
gen ions and atoms was likely to increase with the electron
beam duty factor.

Figure 3 shows the effect of the electron beam duty factor
on texture evolution for the reactively sputtered titanium ni-
tride films. As is evident, increasing the duty factor increased
the normalized �002� / �111� x-ray diffraction intensity ratios.
The increase in �002� texture was accompanied by the pres-
ence of shorter, broader grains and smoother films. These
results are similar to those observed with an increase in ion
flux, substrate bias or temperature in other works.31–35 Here,
however, all of those factors were held constant. As men-
tioned earlier, other authors have reported comparable micro-
structural responses for TiN when the nitrogen partial pres-
sure or total nitrogen ion flux was increased.13–16

The TiN microstructure and texture observed in the
present work might also reflect that atomic nitrogen ions
deliver more energy to the growing film due to their longer
mean free path. The charge exchange mean free path for
100 eV N2

+ ions in 30 mTorr nitrogen is �0.3 cm, but is

�3.4 cm for the N+ ion.36 From the flux measurements, the
plasma density at the sheath edge is estimated to be
�109 cm−3 �Ref. 37�, and for a sheath potential of 100 V,
the sheath width is �0.6 cm �Ref. 38�. Therefore, a large
number of the molecular nitrogen ions arrived at the sub-
strate with energies below 100 eV, while nearly all of the
atomic nitrogen ions arrived with an energy equal to 100 eV,
which was sufficient to cause resputtering39 and enhanced
diffusion at the film surface. Moreover, the molecular nitro-
gen ions had to share incident kinetic energy between both
atoms comprising the molecule, further reducing the energy
available to induce atomic rearrangements at the film
surface.

V. CONCLUSION

The effect of nitrogen flux composition on reactive depo-
sition of titanium nitride was studied by varying the compo-
sition of the ion flux in a hybrid PEPVD system during film
growth. At the same time, the metal deposition rate, time-
averaged ion flux, substrate bias, nitrogen pressure and nitro-
gen flow rate were all held constant. Increasing the flux of
atomic nitrogen ions and neutrals resulted in smoother film
surfaces and an increase of the normalized �002� / �111� x-ray
diffraction peak intensities from 0.68 to 0.91.

The �002� texture for TiN has previously been associated
with an increase in ion flux, substrate bias or temperature,
but all of those factors were held constant in the present
experiment. This result suggests that the flux of atomic ni-
trogen species, rather than the ion-to-atom flux ratio, can be
used to control texture evolution in reactively sputtered tita-
nium nitride. According to other authors, the surface kinetics
of the atomic nitrogen neutrals and ions should lead to the
observed texture development. In this work, the additional
kinetic energy imparted to the growing film by N+ ions �be-
cause of their longer mean free path and atomic nature� was
also considered. The correlation between ion flux composi-
tion and film microstructure suggests that the use of an aux-
iliary plasma source that efficiently generates atomic nitro-
gen ions and neutrals can alter film properties more
effectively than techniques that simply increase the molecu-
lar nitrogen ion flux for TiN deposition. Substrates subject to
damage from heating or other effects of excessive ion bom-
bardment are especially likely to benefit from efficient
atomic species generation. Additionally, increasing the
atomic nitrogen ion and neutral flux might be useful for im-
proving the step or surface coverage of very thin transition
metal nitride layers, as the �002� grains grow outward more
rapidly than upward.
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