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The use of polymer matrix composites in aerospace propulsion applications is currently limited by
insufficient resistance to erosion by abrasive media. Erosion resistant coatings may provide
necessary protection; however, adhesion to many high temperature polymer matrix composite
�PMC� materials is poor. A low pressure oxygen plasma treatment process was developed to
improve adhesion of CNx coatings to a carbon reinforced, fluorinated polymer matrix composite.
Fullerene-like CNx was selected as an erosion resistant coating for its high hardness-to-elastic
modulus ratio and elastic resilience which were expected to reduce erosion from media incident at
different angles �normal or glancing� relative to the surface. In situ x-ray photoelectron spectroscopy
was used to evaluate the effect of the plasma treatment on surface chemistry, and electron
microscopy was used to identify changes in the surface morphology of the PMC substrate after
plasma exposure. The fluorine concentration at the surface was significantly reduced and the carbon
fibers were exposed after plasma treatment. CNx coatings were then deposited on oxygen treated
PMC substrates. Qualitative tests demonstrated that plasma treatment improved coating adhesion
resulting in an erosion resistance improvement of a factor of 2 compared to untreated coated
composite substrates. The combination of PMC pretreatment and coating with CNx reduced the
erosion rate by an order of magnitude for normally incident particles. © 2007 American Vacuum
Society. �DOI: 10.1116/1.2746049�

I. INTRODUCTION

Advanced polymer matrix composites �PMCs� are light-
weight and exhibit mechanical properties that meet or exceed
aerospace alloys in some applications;1 however, their use in
propulsion applications such as air intake and compression in
jet engines or leading edges of rotor blades is currently lim-
ited by susceptibility to erosive wear.2,3 Coating PMC parts
with a thin �5–100 �m� layer of protective material may
allow the use of PMCs in components that are vulnerable to

high-velocity sand or other particulate media carried in the
air. Such protective coatings should be hard in order to resist
microcutting from media impinging at grazing angles, yet be
elastically or plastically compliant to absorb impact energy
to resist cracking and decohesion under direct particle im-
pacts normal to the surface.4,5

Fullerene-like carbon nitrde �CNx� is a material that has
demonstrated high hardness �15–30 GPa� and elasticity
��80% �, and therefore has potential for PMC erosion
protection.6 Moreover, the coefficient of thermal expansion
�CTE� of fullerene-like CNx, with its high fraction of sp2a�Electronic mail: chris.muratore@wpafb.af.mil
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bonding,6,7 should demonstrate less CTE mismatch with a
PMC substrate than other metallic erosion resistant
coatings.8 Matching the coating CTE to that of the substrate
is desirable, as it would expand the range of potential pro-
pulsion applications of PMCs to include those that operate at
both subzero and elevated temperatures.2

Erosion resistance is also dependent on adhesion of the
coating to the substrate.9–11 The majority of protective ce-
ramic coatings currently in use were developed for metal
alloys and utilize mechanical interlocking of the coating with
the roughened workpiece surface.12 The relatively low yield
strength of the polymer matrix limits the utility of this ap-
proach for improving adhesion. Furthermore, many high-
temperature PMC materials are comprised of stiff fibers em-
bedded in a fluorinated polymer matrix. The fluorinated
polymer chemistry, combined with the resin-rich mold re-
lease agent-coated surface, severely inhibits coating
adhesion.13–17

To explore the effect of adhesion on the erosion resistance
of CNx coatings on the composite of interest �with the poly-
mer matrix molecule shown in Fig. 1�, it was necessary to
introduce a predeposition treatment method. Exposure to low
pressure plasmas, or reactive species produced in a plasma,
is a well-documented technique for defluorinating and rough-
ening fluorinated polymer surfaces.15,17–22 Generally these
treatments are performed by exposing the polymer to a re-
motely generated plasma produced away from the
workpiece.15,18,19,21–23 In the current work, midfrequency
pulsed power was applied directly to the PMC workpiece to
drive a pure oxygen dc glow discharge. CNx coatings were
grown on oxygen treated and untreated substrates, which
were then subjected to qualitative adhesion tests to determine
the effect of the plasma treatment. Erosion testing further
demonstrated the effectiveness of the substrate treatment
technique for improving coating adhesion in addition to the
erosive wear resistance associated with application of the
CNx coating material.

II. EXPERIMENTAL PROCEDURE

Figure 2 shows a schematic of the processing and charac-
terization chamber. The processing chamber was pumped to
a base pressure �4�10−5 Pa, then 40 SCCM of ultrahigh
purity oxygen or argon gas was admitted to the chamber. A
throttle valve was used to maintain a total pressure of 4 Pa as
measured with a low pressure capacitance manometer. The
power lead from an Advanced Energy Pinnacle Plus power
supply was connected to a 25.4 mm diameter�4.0 mm thick

PMC disk, which consisted of an electrically insulating flu-
orinated polyimide resin matrix reinforced with T650/35-3K
carbon fibers. The composite substrates were fabricated into
laminates with approximately 60% fiber volume using stan-
dard autoclave processing techniques and then waterjet ma-
chined into the disk geometry. Samples of PMC were biased
to −600 V �nominally� at 150 kHz with a 1 �s reverse time
for a duration of 30–240 s. The PMC workpiece was sur-
rounded by a 20 mm thick PTFE holder to eliminate plasma
generation from any surface other than that intended for
treatment. A new polymer sample was used for each treat-
ment time investigated. An optical emission monitor was
used to measure the time-averaged spectra resulting from the
pulsed oxygen plasma approximately 1 cm above the cath-
ode surface.

After exposure to the plasma, the treated PMC was trans-
ferred to the x-ray photoelectron spectroscopy �XPS� analy-
sis chamber under vacuum �Fig. 2�. The XPS system em-
ployed a magnesium anode and was used to analyze the
changes in surface chemistry of the PMC substrates after
each plasma treatment. Upon completion of the surface
analysis, samples were removed from the characterization
chamber and examined in the scanning electron microscope.
The contact angle of water was also measured on the surface
of treated and untreated PMC materials. Based on the results
from examination of treatment time on surface chemistry and
morphology, oxygen plasma exposure times �prior to CNx

coating deposition� of 0, 60, and 240 s were selected. Sub-
strates were treated under identical conditions for the differ-
ent times prior to the coating growth.

For CNx coating growth on plasma treated PMC samples,
oxygen was evacuated from the chamber and the applied
potential on the PMC substrate was adjusted to −70 V dc. A

TABLE I. Erosion test conditions.

Media 80 �m Al2O3 powder
Feed rate 2 g min−1

Gas pressure 80 psi
Sample position 10 mm from nozzle tip
Cycle description 50 s on/50 s off
Number of cycles 10
Total mass of erodent 16.7 gFIG. 1. Molecular structure of fluorinated polymide matrix of the composite

material.

FIG. 2. Schematic of the processing and surface analysis chambers.
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carbon interlayer was deposited by laser ablation from a ro-
tating graphite target for 1 min using 840 mJ, 248 nm laser
pulses �Fig. 2�. The 20 ns laser pulses were directed to ran-
dom positions and focused to an approximately 15

�5.0 mm2 spot on the 50 mm diameter target surface at a
repetition rate of 10 Hz. After the initial carbon layer depo-
sition, nitrogen was introduced at a flow rate of 27.5 SCCM
�SCCM denotes cubic centimeter per minute at STP�, and the
system throttle valve adjusted to maintain a total chamber
pressure of 1.33 Pa. The laser continued to operate in the

FIG. 3. Optical emission spectrum of the pulsed dc oxygen plasma used for
pretreatment.

FIG. 4. �a� XPS spectra from the polymer matrix composite after exposure to
the oxygen plasma and processed data �b� showing the fluorine-to-carbon
peak intensity ratios from PMCs exposed to oxygen plasma.

FIG. 5. Scanning electron micrographs of polymer matrix composite sur-
faces �a� as received, and after �b� 60 s and �c� 240 s of exposure to oxygen
plasma.
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nitrogen atmosphere for 9 h to produce a CNx layer of ap-
proximately 5 �m thickness �±150 nm�, as measured with a
contact profilometer. These coating growth conditions were
consistent with those used in a previous study for the depo-
sition of hard and elastically resilient fullerene-like CNx.

6

The coating surfaces were examined after deposition in
optical and electron microscopes and in the XPS. The me-
chanical properties of the CNx material were examined with
nanoindentation. Coatings deposited on treated and untreated
PMC substrates were subjected to scratch testing and
Daimler-Benz tests24 to qualitatively determine the effect of
treatment time on adhesion. Scratch tests were conducted
with a 0.2 mm radius diamond tip dragged with a constant
speed of 5 mm min−1 on the coating surface. The applied
load was increased linearly up to 100 N at a rate of
50 N min−1. Daimler-Benz testing consisted of indentation at
60 and 150 kg with a diamond Rockwell C indenter. Both
adhesion tests were followed by examination in optical and
electron microscopes. Samples were also tested in a FALEX
erosion test unit with the conditions listed in Table I. Erosion
testing was performed at incident angles of 40° and 90° rela-
tive to the surface of the test specimens at room temperature.
The wear scars on each sample were examined with a Wyco
white light interferometer to measure the wear volume after
erosion testing.

III. RESULTS

Figure 3 shows the optical emission spectrum from the
pure oxygen plasma generated with the midfrequency bipolar
pulsed PMC cathode. A large peak corresponding to atomic
oxygen was measured, as were peaks attributed to positively
charged atomic and molecular oxygen ions. Examination of
the surface composition by XPS immediately after process-
ing revealed decreased concentrations of fluorine and the loss
of the C–F3 peak in the spectrum �Fig. 4�a�� after exposure
to the oxygen plasma. Figure 4�b� shows how the fluorine-
to-carbon ratios at the surface changed with treatment time.
The line shown in the figure is an exponential decay function
fit to the data. Substantial defluorination occurred after 60 s,
with only a small decrease after longer treatments.

Figure 5�a� is a scanning electron micrograph of as-
received PMC composite surface, where the carbon fibers
were coated with the fluorinated polymer matrix. The space
between fibers in the as-received polymer appeared to be
filled with rough, poorly adherent material exhibiting fiber/
matrix decohesion at the interface. After exposure to the oxy-
gen plasma for 60 s �Fig. 5�b��, the polymer was partially
etched away, leaving some fiber surfaces exposed. The
pulsed oxygen plasma treatment reduced the number of to-
pographical features on the polymer matrix between fibers.
Increasing the plasma treatment time to 240 s �Fig. 5�c��
resulted in complete exposure of the carbon fibers. The re-
maining polymer matrix had no evidence of any decohesion
along the matrix/fiber interface.

Water contact angles on the PMC surfaces were also ex-
amined. A 60 s treatment resulted in a reduction in contact
angle from 105° to 43°. This reduced contact angle was con-
sistent with both the changes in surface chemistry and mor-
phology, revealing a PMC surface with a higher surface en-
ergy and chemical reactivity after plasma treatment.

Micrographs of the coatings deposited on treated and un-
treated substrates are shown in Figs. 6�a�–6�c�. The coating
deposited on the untreated substrate demonstrated periodic
delamination of the coating across the surface �Figs. 6�a� and
6�b��, while the substrates treated for 60 s or longer were
uniformly coated �Figs. 6�a� and 6�c��. XPS of all coated
samples showed that the coating was composed of approxi-
mately 80 at. % carbon and 20 at. % nitrogen, independent
of the processing history of the substrate.

Nanoindentation was performed on the coated samples.
Results from nanoindentation tests of the coatings on un-
treated polymer substrates were difficult to interpret due to
excessive scatter in results between measurements; however,
coatings on treated substrates demonstrated repeatable mea-
surements of hardness at 19 GPa and an elastic modulus of
approximately 120 GPa. The elasticity of the coating was
measured to be approximately 75% for a 1000 nm displace-
ment �Fig. 7�. These measurements were consistent with me-
chanical properties of fullerene-like CNx coatings.6,25

Figure 8 shows how the predeposition oxygen treatment
affected coating adhesion after severe substrate deformation.
As seen in Fig. 8�a�, the coating showed extensive cracking
around the perimeter of the 150 g indent on the untreated

FIG. 6. �a� Micrographs of the treated and untreated polymer samples after
coating with CNx. �b� and �c� show higher magnification views of each
sample.
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sample, while the edges remained intact for the samples
treated for �b� 60 and �c� 240 s. Examination of the scratch
tracks in Fig. 9 also showed differences in adhesion resulting
from plasma pretreatment of the substrates. The inset in Fig.
9�a� shows a low-magnification view of the scratch track in
the region loaded to approximately 10 N, with alternating
coated and uncoated regions at the bottom of the scratch. On
the treated substrate, the coating adhered throughout the
scratch. In Fig. 9�b�, the scratch is shown where a 90 N load
was applied. Some cracking perpendicular to the scratch di-
rections is shown, but the coating still covers the substrate,
and appears to be fully adherent.

Table II lists the worn volume and erosion rates �in terms
of mass lost per gram of erodent� for the coated and uncoated
samples. The CNx coating coupled with the oxygen plasma
treatment yielded an erosion rate that was roughly an order
of magnitude less than that measured for the PMC alone in
the normal incidence test, and a factor of 3 less for the glanc-
ing angle test. Samples that were coated without oxygen pre-
treatment had an erosion rate that was approximately twice
that of the treated and coated samples for both normal and
grazing angle erosion tests.

IV. DISCUSSION

Driving an electrically insulating fluorinated polymer
workpiece with a midfrequency pulsed dc power supply as a
plasma cathode in pure oxygen was a simple and effective
way to alter the structure and surface chemistry of the poly-
mer to improve coating adhesion compared to ion beam, rf
biasing, and other methods.15,18,19,26,27 The reactive oxygen
plasma generated with the pulsed dc PMC cathode produced
reactive neutral and ionized oxygen species, which altered
the surface chemistry and morphology of the PMC prior to
coating deposition in a manner consistent with that reported
by workers using other techniques. A frequency of 150 kHz
was selected as it was the minimum frequency required to
maintain a continuous glow discharge with power delivered
via the insulating polymer substrate. Driving the discharge
with dc power resulted in the loss of electrons at the insulat-
ing surface as the incident positive ions were neutralized by

electrons at the surface, thus reducing the voltage below that
required to sustain the discharge. As argued by Chapman,28

an overestimate of the time required to charge up the surface
can be compared to the time to charge up a capacitor, where

C = Q/V = it/V ,

thus t=CV / i.
For the expected values of capacitance ��1 pF/cm2�, dis-

charge voltage ��500–1000 V�, and current ��1 mA/cm2�,
the required frequency should be roughly 1 MHz. Lower fre-
quencies �5–500 kHz� are generally sufficient as the current
delivered to the insulator decreases as it charges up, unlike

FIG. 7. Load-displacement curve for the treated and coated PMC.

FIG. 8. Optical micrographs of 150 kg indents on coated samples �a� with no
pretreatment, �b� 60 s oxygen pretreatment and �c� 240 s oxygen
pretreatment.
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the constant current model above. The PTFE holder was
much thicker and had different dielectric properties than the
PMC material and therefore did not produce a discharge at
150 kHz.

Coating adhesion was qualitatively shown to improve af-
ter exposure to the oxygen plasma via indentation, scratch
testing, and erosion testing. Rabinovich et al. describe how
cracking due to indentation �as shown in Fig. 8�a�� is related
to weak interfacial bonding.29 The crack patterns in Figs.
9�a� and 9�b� are consistent with those described by Burnett
and Rickerby for scratch testing of slightly different coating/

substrate systems.30 They illustrated how spallation resulting
from total coating failure results in scratch tracks that look
like that shown in Fig. 9�a�. Tensile cracking, which is char-
acterized by cracks that are normal and concave with respect
to the scratch direction rather than normal and convex as in
Fig. 9�b�, results from tensile bending moments within the
coating as it is pushed down underneath the indenter, and
occurs only when the coating is fully adherent. Last, the
erosion rate of the coated PMC decreased when the sample
was treated, consistent with reports found in the literature
relating coating adhesion to erosion resistance.9–11

CNx coatings deposited on oxygen plasma treated poly-
mer matrix composite substrates were hard, with a low
modulus, resulting in H /E ratio of 0.16, which is quite high
in comparison with typical ceramic wear protective
coatings.7 The erosion rate of the uncoated PMC was slightly
higher when the erodent media was incident on the surface at
40° compared to that measured when the media were di-
rected normal to the surface. Such dependence on the angle
of incidence is expected for a softer, polymer-based material.
For the coated PMC material, the erosion rates were signifi-
cantly reduced. Erosive wear from media directed at 90°
relative to the coated surface was suppressed more than that
directed at 40°, suggesting that the elastic properties of the
CNx coating made a stronger contribution to the protective
nature of the coating than the hardness. Deposition of adher-
ent CNx coatings substantially reduced the erosion rate of the
polymer, even though the 5 �m coating was very thin com-
pared to those typically found in erosion resistant
applications.2,3 Typical thicknesses of erosion protective hard
coatings used on metal alloys in jet engines are on the order
of 100–1000 �m. A thicker CNx coating should provide an
increased capability for elastic damping of normal incidence
sand impacts and a longer scratch endurance of sand impacts
at oblique angles. The production of such thick coatings re-
quires modifications to the deposition process to increase the
CNx coating growth rates, which are currently in develop-
ment. The erosion performance of thicker CNx coatings and
coatings with different hardness-to-modulus ratios will be
evaluated in a future work.

V. CONCLUSIONS

Midfrequency pulsed power was applied directly to a
fluorinated polymer matrix composite workpiece in an oxy-
gen atmosphere to generate a reactive plasma and reduce the
surface fluorine concentration and remove loosely adhered
surface material. A CNx coating with a very high hardness-
to-modulus ratio of 0.16 with �75% elasticity was produced
by laser ablation of carbon in a nitrogen atmosphere. Inden-
tation, scratch, and erosion testing all showed that the adhe-
sion of CNx coatings deposited after oxygen plasma treat-
ment of the PMC substrate was improved when compared to
the same coatings deposited on the untreated PMC material.
Improvements in coating adhesion reduced the erosion rate
by a factor of 2 when compared to untreated, CNx coated

FIG. 9. Electron micrographs of scratch tracks on the coated surfaces of the
�a� untreated and �b� 60 s treated PMC substrates.
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PMC samples. Uncoated substrates wore approximately ten
times faster for normally incident abrasive particles com-
pared to the treated and coated samples.
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TABLE II. Erosion data for all samples.

Substrate
pretreatment

CNx

coating ��m�

40° incidence 90° incidence

Volume
loss

�cm3�10−3�

Erosion
rate

�cm3 g−1�

Volume
loss

�cm3�10−3�

Erosion
rate

�cm3 g−1�

�None� �None� 1.20 0.07 1.00 0.06
�None� 5 0.34 0.02 0.70 0.04

oxygen plasma 5 0.18 0.01 0.36 0.02
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