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Abstract  

 
The use of a high-energy electron beam was explored in this study as an alternative technique for 

oxidizing vapor grown carbon nanofiber surfaces. The radiation exposures were carried out at three 

different electron beam facilities with beam energies of 1.5, 3.0 and 4.5 MeV and radiation doses 

ranging from 1000 to 3500 kGy. XPS analysis showed that oxygen was readily incorporated on the 

surface: the ratio O1s/C1s increased approximately by a factor of 4 when the carbon nanofibers 

were irradiated at 3500 kGy. The oxidized nanofibers exhibited better dispersion in a 

water/methanol solution (50% v/v) than as-received nanofibers. Raman spectroscopy revealed that 

the ID/IG ratios for most of the samples were statistically unchanged because the damage on the 

nanofiber surface was highly localized and did not lead to modifications on the bulk carbon 

nanofiber structure. The samples irradiated at higher dose rate exhibited significantly higher ID/IG 

ratios. The radiation process introduced defects on the graphene layers leading to a decrease of the 

decomposition onset temperatures up to 56°C lower than the non-irradiated samples. Overall the 

results were repeatable across all facilities, illustrating the robustness of the process. 

Keywords: Electron beam, carbon nanofiber and oxidation. 
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1. Introduction 
 
 
The effects of ionizing radiation on carbon materials have been thoroughly 

investigated because of its importance in the fields of nuclear, medical, and materials 

science. Basically, the effect of ionizing radiation on carbon materials takes place as a 

displacement of carbon atoms from their amorphous or graphitic structures. For 

nanocarbon materials, only destructive effects were observed in early experiments 

involving bombardment of carbon nanotubes and fullerenes with ions. However, recent 

work reveals that radiation can exploit defect creation for novel materials development 

especially in electronic nanotechnology (Krasheninnikov et al., 2007) 

It is known that electron beam can be used to mechanically manipulate the 

interconnection of carbon nanostructures at high temperatures using TEM. For example, 

two crossing pristine tubes would not normally join, even at high temperatures, while e-

beam irradiation has been observed to lead to cutting and welding of tubes and 

transformation of single wall nanotubes (SWNTs) to multiwall tubes (MWNTs) (Li et al., 

2004). The stability of nanotubes under electron irradiation is governed by generation and 

annealing of vacancies-interstitials pair. The interstitial defects have higher mobility and 

will determine the annealing process. Agglomeration of vacancies will lead to radiation 

cutting (Banhart et al., 2005). Also, radiation induces vacancies and the energy gain by 

dangling bond saturation can both weld tubes as well as allow for reaction with oxygen. 

This can contribute favorably to the nano-electronic structure because it may improve the 

electric conductivity for example. Previous studies have shown that making an electrically 

conductive connection between nanotubes is not straightforward. Instead of the desirable 



 
 

ohmic contacts, tunnel junctions are often generated with high resistance(Gupta et al., 

2005; Krasheninnikov et al. 2007; Zou et al, 2002; Eleketronenmikroskopie, et al 2001). 

For example, at high temperature a focused electron beam in a field emission transmission 

electron microscope (TEM) was able to transform local arrangements of SWNTs to 

MWNTs (Li et al., 2004). Plegler et al. used computational molecular dynamic simulation 

to study electron beam modification of MWNTs. They concluded that electron beam is not 

surface limited and may lead to cross-links between inner layers (Pregler et al., 2006) 

Carbon nanofibers are being thoroughly investigated for application in structural 

composites for in the aerospace industry. This will require careful control of the surface to 

promote properties required for end use because CNFs are not highly compatible with most 

polymers. Therefore, it is necessary to modify their surfaces through chemical or physical 

techniques to produce optimized polymer nanocomposites. Oxidizing the nanocarbon 

surface creates active sites, changing non polar sites to polar compounds that are available 

for further chemical reaction or “grafting” (chemical reaction) with additional organic 

groups. Graphitic nanostructures show a variety of structural transformations under 

electron irradiation. For example, at ambient temperature, it may allow accumulation of 

defects and the structure may collapse. However, if the radiation is carried out above 300-

400°C, the mobility of atoms can be high enough to avoid this accumulation, and the 

structure can rearrange to new morphologies with desirable properties. The goal of the 

present study is to explore the potential of using e-beam radiation to oxidize CNF surfaces. 

To this end, CNF samples were exposed to different electron beam facilities at high levels 

of e-beam radiation doses in an atmosphere of air. The irradiated samples were analyzed 



 
 

by X-Ray Photoelectron Spectroscopy (XPS), Raman spectroscopy, and 

Thermogravimetric Analysis (TGA) to assess the change to the surface and bulk 

mechanical properties.  

 

2. Experimental 

2.1. Raw Materials  

Pyrograf III™ Vapor Grown Carbon Nanofibers (VGCF) was purchased from Applied 

Science Inc. (Cedarville, Ohio). Many grades of VGCF are available, which differ in bulk 

density, wall architecture, overall diameter, and prior heat treatment. We selected the PR-

25-PS-XT grade, which has an average diameter of 80 nm and has been heated treated in 

inert atmosphere up to 1100°C to remove polyaromatic hydrocarbon and metal catalyst 

impurities from the surface. This grade has a good balance of mechanical and electrical 

properties. Compared to other grades of Pyrograf III, such as PR-24 and PR-19, the PR-25 

grade has lower iron content, a smaller diameter, and a larger number of graphitic edge 

sites available along the length. A prior investigation was made with the VGCF PR-24-

LHT-XT grade to verify the possibility of grafting oxygen functional groups onto it (Evora 

et al. 2007 a, 2007 b). The results showed little or no change in oxygen content. PR-24-

LHT-XT has an average diameter of 100 nm, and it has been heated treated in inert 

atmosphere up to 1500°C to increase the degree of graphitization compared to lower or 

non-heat treated versions such as PR-25-PS. In addition, the manufacturing process leads 

to formation of a CVD layer along the PR-24-LHT-XT external wall which can hinder the 

functionalization process by covering up graphitic end planes.  



 
 

  
2.2. E-beam Irradiation Apparatus 
 
2.2.1. University of Dayton Research Institute electron beam facility 

Materials were irradiated with a pulsed linear accelerator operated by the University of 

Dayton Research Institute (Dayton, Ohio). Samples were placed on a steel platform below 

a linear scan horn as shown in Figure 1. This equipment was operated with the following 

parameters: beam energy 3 MeV, pulse rate 150 pulses/sec, pulse width 5 μsec, pulse 

current 120 mA/pulse (equates to 0.09 mA time-averaged beam current), and air gap of 35 

cm, resulting in a dose rate of approximately 16.7 kGy/min. The beam was spread over an 

area that was approximately constant in the X and Y directions for the irradiated samples. 

The details of the electron beam accelerator system are described in detail by Klosterman 

(Klosterman, 2003). 

Fig 1:  
 

As-received CNFs (PR-25-PS-XT) was irradiated in the form of a loose powder with 

bulk density of approximately 0.032 g/cm3. PR-25-PS-XT loose powder was irradiated in 

air up to 3500 kGy. The samples were placed in an aluminum pan (21.5 cm x 11.5 cm x 6 

cm) to a depth of 4 cm and heated on a hot plate up to 350oC. The hot plate was then 

turned off and the radiation process was carried out. 

 Heating the samples was intended to provide higher mobility between atoms in the 

graphitic nanofiber walls. The goal was to increase the likelihood of displacing carbon 

atoms to enable the surface oxidation process. At ambient temperature, nanofibers can 

collapse easily due high accumulation of defects. Increasing the temperature (via electron 

beam heating or external heating) increases the mobility of atoms and to avoid this 



 
 

accumulation. The structure can rearrange itself to new morphologies with desirable 

properties (Banhart, 2006; Ritter et al., 2006).  

2.2.2. Instituto de Pesquisas Energeticas e Nucleares (IPEN) electron beam facility  

As-received PR-25-PS-XT was irradiated with a direct accelerator operated by the 

Instituto de Pesquisas Energetica e Nucleares (IPEN- Sao Paulo/Brazil). Samples in the 

form of a loose powder were placed on a steel platform below a linear scan horn. The 

samples were irradiated with an industrial electron accelerator Dynamitron, from radiation 

Dynamics Inc., model DC 1500/25-JOB 188 that was operated with the following 

parameters: beam energy 1.5 MeV, pulse current 3.36 mA, 7 kGy/pass with dose rate of 

15.7 kGy/sec.  

The samples were placed in a sample holder of wood, and the PR-25-PS-XT 

powder was placed in small containers with 112 mm diameter to a depth of 4 mm. The 

samples were irradiated with 200, 1000, 2000 and 3500 kGys. An external heat source was 

not used during this process because the high dose rate elevated the sample temperature 

around 200oC due to the high dose rate. Carrying out the radiation process in a number of 

passes allowed the samples to cool between e-beam exposures and limit the upper 

temperature. 

2.2.3. E-BEAM Services Inc. electron beam facility 

 As-received PR-25-PS-XT was irradiated with a direct accelerator operated by the  

E-BEAM Services Inc. (Lebanon,–Ohio, USA). Samples, as a loose powder, were placed 

on a steel platform below a linear scan horn. The samples were irradiated with a 150kW 

Dynamitron manufactured by RDI (Radiation Dynamics Inc.) This equipment is a DC 



 
 

potential drop accelerator that was operated with the following parameters: beam energy 

4.5 MeV, dose rate 15.7 kGy/sec, dose history: 25 kGy/pass for 10 passes, 20 kGy/pass for 

37 passes, 10 kGy/pass for 1 pass for a total dose of 1000 kGy. Samples were irradiated in 

air by placing loose powder in an aluminum pan (21.5 cm x 11.5 cm x 6 cm) to a depth of 

4 cm. Another sample was irradiated in vacuum using a Mylar vacuum bag evacuated to 

about 25-25.5 in Hg of vacuum. The vacuum and open-air sample was irradiated at the 

same time one next to another. 

2.4. Material Analysis 
 

The surface oxygen content of the nanofibers was characterized with X-ray 

Photoelectron Spectroscopy (XPS) analysis. A Surface Science Labs SSX-100 XPS 

spectrometer was used with a base pressure of 6x10-10 Torr in the analysis chamber, and an 

X-ray source with a 600 µm spot size. Samples were prepared by first drying the 

nanofibers in a vacuum oven overnight at 100°C or higher, and then distributing a small 

amount of material on copper adhesive tape. Two areas were analyzed on each sample. 

Results are reported in terms of atom% oxygen in the form of single bonded oxygen (O-C), 

double bonded oxygen (O=C), single bonded nitrogen (N), and water (H2O). The signals 

for single and double bonded oxygen are caused by groups that are covalently bonded to 

the nanofiber/tube wall, for example in the form or phenolic groups (-OH), aldehyde (-

CHO), or carboxylic acid (-COOH). Water molecules would be attached by secondary 

bonding; especially hydrogen bonding in highly oxidized samples. The technique is 

sensitive only to surface atoms. 



 
 

To verify modification in their graphitic structure, the samples were analyzed by 

Raman spectroscopy. Raman is a powerful physical technique that is commonly used to 

characterize carbon materials. It is a nondestructive technique and is sensitive to the 

surface modifications occurring in graphitized carbon structures. A Renishaw 1000 micro 

Raman Spectrometer with an Ar+ ion laser at 514 nm (2.14 eV) was used. Incident and 

scattered beams were focused with a 50x objective lens and laser spots with resolutions as 

low as 2 μ m and a spectrum range between 100 and 5000cm-1. The samples were 

analyzed in form of a thin paper (around 20 μ m) to reach more accurate results. The 

papers were prepared the same way as described above. Twelve measurements were made 

on different areas of each sample to provide statistically significant results. 

The thermal and thermo-oxidative stability of the samples were characterized with 

Thermogravimetric Analysis (TGA) using a TA Instruments Q5000 unit. Both air and pure 

nitrogen atmospheres were used, with a heating rate of 10oC/min from 25 to 1000oC; the 

sample weight was around 3.5 mg. Lower degradation temperature may indicate that some 

damage was introduced on the nanofiber surface, and it can be an indicative of cutting and 

oxidation caused by the radiation process. 

 
3. Results and Discussion 
 
3.1 XPS results 
 

 XPS results are presented in Table 1.  

Table 1: 

The results given by XPS analysis showed that the ratio O1s/C1s increased 

approximately by a factor of 3 when the PR-25-PS was irradiated at 3500 kGy in the UDRI 



 
 

facility and a factor of 4.3 for the sample irradiated in the IPEN facility. The relative 

amount of carbon bonded to oxygen-containing groups increased, indicating that oxygen 

reacted with the carbon nanofiber surface and modified the carbon nanofiber structure. The 

only further detail from XPS results was that both carbon oxygen bonds (C-O) and 

carbonyl (C=O) increased, which may be related to carboxylic acid. Further investigation 

would be necessary to verify specifically which oxygen functional groups were 

predominant and is beyond the scope of this work. Generally, the types of oxygen 

functional groups introduced to the surface are a strong function of the oxidation process 

used. For example, Zhou et al. showed that the amount and distribution of surface oxygen 

complexes on carbon nanofibers varied with different chemical and thermal treatments 

(Zhou et al., 2007). The current research will focus on using radiation process to oxidize 

carbon nanofibers surface.  

3.2. Raman results 

Raman spectroscopy is very sensitive to the breakdown in translational symmetry of 
carbon materials and can supply some detailed quantitative information about the 
microstructure. Generally the Raman spectra of carbon materials are simple, with the two 
most intense bands between 1000 and 2000 cm-1. The dispersion of π  electrons in 
graphene is why Raman spectroscopy is always resonant for carbon. However, Raman has 
some drawbacks that may lead to misinterpretation of the spectra. Ferrati investigated the 
impact of multiple layers of graphene on the D band of Raman spectrum (Yang et al., 
2009; Ferrari et al., 2007). For more than five layers, the D band Raman spectrum becomes 
hardly distinguishable from the bulk graphite. Thus Raman spectroscopy can clearly 
identify less than 5 graphene layers. Ferrati also pointed out that the same sample can have 
a G peak with different positions and different values for full width half mean (FWHM). 

The Raman spectra results are summarized in Table 2 and presented in Figures 3 

and 4. In general, the Raman results showed that there were no statistically significant 

change of ID/IG ratios, and the shapes and intensities of D and G bands in the spectrum of 

non-irradiated nanofibers were not much different from those of irradiated ones. Thus, 



 
 

there was no indication of damage to the microstructure. Some change was noticed in the 

sample irradiated at IPEN facilities. The IPEN electron beam facility carried out process 

with very high radiation dose rate (15.7 kGy/sec) leading to higher beam heating due to 

less time for heat transfer away from the sample. Higher mobility of the atoms in the 

graphene layers and an immediate recombination process may have allowed for more 

diffusion of oxygen into the carbon nanofiber structure, but this process was not able to 

damage the bulk PR-25-PS structure.  

Table 2: 

The radiation damage was localized to the surface and did not compromise the core 

of the carbon nanofiber. Thus, the advantage of this process is that the overall graphitic 

structure has not been damaged. The electron beam interacts with the external layer, which 

is less organized than the bulk of the wall. Raman spectroscopy is a bulk characterization 

technique in which the laser penetration (~1 µm) (Darmstadt et al., 1997) exceeds the 

thickness of the turbostratic carbon layer deposited on the nanofiber surface where the 

oxidation takes place. In general, the graphite structure of the nanofiber core did not show 

any damage.  

In Figure 2 the Raman curves of samples irradiated in two different electron beam 

facilities are presented. The samples irradiated at 1000 and 2000 kGy in IPEN exhibit a 

slightly higher intensity D and G band than for UDRI. The E-BEAM Services Raman 

curves for sample irradiated in air at 1000 kGys presented in Figure 3 also had slight 

higher intensity compared to the ones irradiated at 1000 kGys in vacuum and non 

irradiated samples. The small increasing of the D and G band indicates that the e-beam 



 
 

process carried out in air not only induces some defects on carbon nanofiber walls related 

to oxygen attachment and a possible change in graphitic order, but also further removes 

some amorphous carbon.  

Fig 2: 

3.3. TGA results 

The onset degradation temperature results for the electron beam irradiated samples 

are presented in Table 3. It shows that the irradiated samples degraded at lower 

temperature. For instance, the decomposition onset temperatures for the samples irradiated 

at 3500 kGy at UDRI and IPEN facilities were 13oC (Evora et al., 2010) and 56oC lower 

than the non-irradiated samples respectively. The reason for the decrease of onset 

degradation temperature is that the radiation process introduced defects on the graphene 

layers structure. The samples irradiated with higher dose rate (IPEN) at 1000 kGy showed 

higher decrease of onset degradation temperature. 

Table 3: 

The TGA results for electron beam irradiated samples heated under nitrogen 

atmosphere are given in Figure 4 (Evora et al., 2010) and 5 indicating that the thermal 

stability of non-irradiated PR-25-PS was higher than the irradiated ones. This stability can 

be attributed to a variety of factors, including length/diameter and the size distribution, 

degree of defects and damages. The non-irradiated sample (0 kGy) began to lose mass 

around 600°C, which was attributed to impurities or imperfections in the nanofiber. A 

distinct weight loss occurred around 200-500oC for the irradiated samples. In addition, the 

irradiated samples exhibited a more pronounced weight loss from 500-1000°C than non-



 
 

irradiated nanofibers, although the final weight loss was still fairly low. This was not 

surprising given that the total amount of surface oxidation (~2.4 atom %) comprises a very 

small fraction of the total mass of the nanofiber. Overall, the samples irradiated to 1000 

kGy and 3500 kGy showed a higher total mass loss by a factor of 1.7 and 2.2, respectively 

compared to non-irradiated.  

Fig 4 and Fig 5 

 The extra weight loss and lower onset degradation temperature were attributed to 

the higher amount of non-graphitic carbon in the irradiated samples due to the oxidation 

process. Non-graphitic carbon is inherently less thermally stable than graphitic carbon. The 

radiation has generated more defects and higher surface area that increase carbon oxidation 

reaction. 

 
4 Conclusions 
 

The results presented in this study represent an alternative way to modify the 

surface of nanofibers via electron beam. The reproducibility of the oxidation process using 

different types of electron beam facility was verified by XPS, Raman and TGA. The 

carbon nanofibers irradiated in air experienced the creation of free radicals on the 

nanofiber surface by e-beam knock-on damage which lead to vacancies and other point 

defects. These produced a very energetic surface that enhanced bonding with polar media. 

When the e-beam interacted with the carbon structure in an oxidative environment (O2, 

H2O), the carbon surface oxidized to CO and CO2. Additional research is needed to 

investigate more closely the effects of key parameters such as power of exposure, 

temperature, time, and atmosphere. 
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Figure Captions 

Figure 1: Photograph of sample platform located inside shielded vault of e-beam facility. 

Figure2: Raman spectroscopy results for PR-25-PS powder irradiated in UDRIa and IPEN 

facilities. 

Figure 3: Raman spectroscopy results for PR-25-PS powder irradiated in air and in vacuum 

at E-BEAM Services facility. 

Figure 4: TGA results of UDRI irradiated PR-25-PS (10o C/min in nitrogen).  

Figure 5: TGA results of IPEN irradiated PR-25-PS (10oC/min in nitrogen). 

TABLES 

Table 1: XPS results of non-irradiated and irradiated samples showing the oxygen/carbon 

ratio. 

Table 2: Raman results of PR-25- PS irradiated at various facilities showed the D and G 

peak frequency and their ratio. 



 
 

Table 3: Onset degradation temperature for sample irradiated in UDRI and IPEN facilities 

at different doses. 

Figure 1 

 

Figure 2 

 

 

 

 



 
 

Figure 3 

 

 

Figure 4 

 

 

 

 

 



 
 

Figure 5 

 

Table 1 

 Dose 

XPS - O 1s/C1s 
UDRI a IPEN E-BEAM 

Services 
Non irradiated  
 (non heated) 

 
0.03 

 
0.03 

 
0.03 

 
200 kGy in air 

 
- 

 
0.04 

 
- 

 
1000 kGy in air 

 
0.08 

 
0.08 

 
0.07 

 
2000 kGy in air 

 
- 

 
0.10 

 
- 

 
3500 kGy in air 

 
0.09 

 
0.13 

 
- 

1000 kGy in/vaccum 
 
- 

 
- 

 
0.02 

 a (Evora et al.,2010) 
 

 

 



 
 

Table 2 

a (Evora et al.,2010) 
Table 3 

 Dose 

TGA- Onset Degradation temperature (oC), 
(10 o C/min in air) 

UDRI a IPEN 
Non irradiated  
 (non heated) 

 
572 556 

200 kGy in air - 556 
1000 kGy in air 558 517 
2000 kGy in air - 506 
3500 kGy in air 559 500 

  

 
Non 

irrad.  
 

1000 kGy 
in air 

2000 kGy 
in air 

3500 kGy 
 in air 

1000 kGy 
in vacuum

 
UDRIa 

 

 
ID/IG 

3.67 
±0.07  

3.70 
±0.10  

 
-- 

3.72 
±0.09  

 
-- 

D 
frequency (cm-1) 

 

1350.72 
±1.06 

1352.41 
±0.94 -- 1351.83 

±0.9 -- 

 
G frequency 

(cm-1) 

1590.80 
±1.5 

1590.22 
±1.09 

 
-- 

1590.37 
±1.03 

 
-- 

 
IPEN 

 
ID/IG 

3.63 
±0.06 

3.75 
±0.1 

3.88 
±1.17 

3.82 
±0.08 

 
-- 

D 
frequency (cm-1) 

1351.3 
±0.99 

1352 
±0.68 

1352.40 
±0.85 

1354.10 
±1.00 

 

-- 

 
G frequency 

(cm-1) 

1591.4 
±1.2 

1591.6 
±0.78 

1591.4 
±0.84 

1592.10 
±0.48 

 
-- 

 
E-

BEAM 
service 

 
ID/IG 

3.70  
±0.08 

3.73 
±0.07 

 
-- 

 
-- 

3.68 
±0.06 

D 
frequency (cm-1) 

1350.9 
±0.67 

1351.35 
±0.89 

 
-- 

 
-- 

1351.50 
±1.12 

G frequency 
(cm-1) 

1590.18 
±1.36 

1590.11 
±1.37 

 
-- 

 
-- 

1591.46 
±1.47 
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