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The Future of Carbon-
Based Scaffolds in Foot and
Ankle Surgery

Khalid Lafdi, DSc, PhDa,*, Jarema S. Czarnecki, MS, PhDb,
Panagiotis A. Tsonis, PhDc Q2 Q3

Q4

INTRODUCTION Q7

Autologous grafts have been the gold standard in tissue replacement and the most ac-
curate means of recapitulating both the biological andmechanical properties of tissue.
However, autologous grafts have had complications and drawbacks. Skin grafting, a
prime example of an autologous tissue graft, has been limited by the size of graft,
availability, and secondary donor site morbidity.1 Use of cadaveric tissues circum-
vents several limitations of autologous grafts; however, sterilization processes used
to reduce the risk of disease transmission potentially weaken tissues and eliminate
living cells and some growth factors from scaffolds, making them suboptimal tissue
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KEY POINTS

� Carbon-based materials offer enhanced biological response and tunability.

� Carbon-based scaffolds offer tensile properties comparable with those of current syn-
thetic tissue scaffolds.

� Cellular behavior on carbon-based scaffolds is enhanced by varying material orientation,
porosity, and crystallinity.
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replacements.2,3 Chemical cross-linkage of tissue scaffolds has been used in some
circumstances to strengthen weak tissues, but can result in a prolonged inflammatory
response and limit graft integration in vivo.4–9 Partial enzymatic digestion of cadaveric
tissues has also been used to improve graft porosity, which potentially assists with
graft neovascularization, although this procedure has not been overwhelmingly suc-
cessful.8 Proprietary methods of chemically and physically stripping tissues of cellular
materials have been commercially developed to minimize graft rejection and loss of
essential biological factors; however, these methods cannot be universally applied
to all tissues.6,10 GraftJacket Matrix (GJ) (Wright Medical, Arlington, TN, USA),4 an
acellular human dermis–derived graft, is an example of a commercially available graft
that is commonly used in surgery for soft-tissue augmentation and repair.4,10–13 The
elastic properties of skin-derived scaffolds make GJ an inferior replacement for stiffer
tissues such as tendon. Hence, current limitations in tissue processing have spawned
interest in emerging technologies that enable precise engineering and manufacturing
of scaffold materials on a nanoscale that recapitulate the unique mechanical needs of
a variety of tissues while promoting tissue repair that also occurs on a nanoscale.
To date, biomedical scaffold materials have included synthetic, semisynthetic, and

tissue-derived matrices with or without biological activity from growth factors or living
cells incorporated within the scaffolds.10,14–19 Various extracellular matrix molecules
such as collagen and resorbable synthetic materials commonly utilized in suture and
medical implants have all been used as scaffolds in the past.16,18,20,21 The most
advancedgenerationsof commercially available scaffolds attempt toprovide some level
of structural function with biological activity, such as Trinity (Orthofix, Lewisville, TX,
USA),22 which combines mesenchymal stem cells with a cancellous bone allograft
and is used for bone healing; Infuse (Medtronic, Minneapolis, MN, USA),23 which incor-
porates recombinant bone morphogenic protein 2 with a resorbable collagen scaffold
spongeand is used in spine fusion; Apligraf (Organogenesis,Canton,MA,USA),24which
integrates human keratinocytes and dermal fibroblasts with bovine type I collagen as a
graft for the treatment of skin ulcerations; and GraftJacket Matrix,4 an acellular human
dermis–derivedscaffoldwith retainedgrowth factors andextracellularmatrixmolecules.
Carbon-based materials are novel subsets of synthetic materials that have been

incorporated into medical scaffolds, implants, and nanoartifact drug-delivery vehicles
because of their strength, flexibility, durability, and biocompatibility, but have been
examined less extensively as a combined vehicle for cell delivery and biomechanical
construct for soft-tissue repair and regeneration.25–30 Potential advantages of an engi-
neered carbon scaffold may include the following: (1) tunable geometric and surface
characteristics to fit biological demands of a healing tissue; (2) reproducible mechan-
ical properties to meet specific functional requirements; (3) lack of donor site
morbidity; (4) no communicable disease transmission; and (5) unlimited availability.
This article examines the mechanical behavior of 2 fibrous carbon-based scaffolds

and evaluates their potential as a vehicle for cell and biologics delivery that promotes
tissue repair. The structure, tensile properties, and human fibroblast adhesion and
proliferation on carbon scaffold substrates were analyzed and compared with a con-
trol scaffold, GJ, which is commonly used in surgery for soft-tissue augmentation and
repair.4,6,10,11,13,31,32

MATERIALS AND METHODS
Materials

A spool of commercially available PAN-based carbon fibers from Cytec Industries Inc.
(Woodland Park, NJ, USA) was used to create carbon scaffold substrates. Before
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scaffold preparation, carbon fibers were heat treated at 150�C for 30 minutes and
milled to 5-mm size. A 1% (weight/volume) poly(ε-caprolactone)/acetone solvent
was added to form a slurry. The slurry was cast in a mold and evaporated to leave
behind a veil scaffold (labeled CV1 and CV2, n 5 10 per group). Unidirectional carbon
laminate was made by aligning unidirectional P120 carbon tow fabric (labeled CF1 and
CF2, n 5 10 per group). Samples were ultrasonicated and sterilized in 100% ethanol
for 1 hour. GraftJacket Matrix (labeled GJ, n 5 20) was donated by Wright Medical
Technology Inc (Arlington, TN).

Environmental Scanning Electron Microscopy of Scaffolds

Environmental scanning electron microscopy (ESEM) was used to examine geometric
properties of scaffolds. A Hitachi ESEM device (Hitachi, Schaumburg, IL, USA) was
used to visualize the microscale surface of scaffolds. Samples were imaged at 500�.

Micro–Computed Tomography of Scaffolds

Micro–computed tomography (mCT; Scanco Medical, Wayne, PA, USA) was used to
analyze scaffold porosity, pore size, and scaffold geometry. Samples were analyzed
before mechanical testing and culture. Samples were scanned at a resolution of
7 mm/slice. Sample porosity was calculated with proprietary software provided by
Scanco Medical.

Mechanical Characterization of Scaffolds

Tensile properties of scaffolds were examined using an MTS mechanical tester (MTS,
Eden Prairie, MN, USA). Grip fixtures were used to secure samples and prevent sam-
ple tearing. All scaffolds were hydrated when tested under tension, as GJ function
in vivo is under hydrated conditions. Hydration of GJ and carbon scaffolds was per-
formed according to manufacturers’ instructions for GJ hydration. Ten samples for
each scaffold group were analyzed at 25.4 mm/min. Stress and strain data were
recorded. The slope of the linear region of the stress-strain curve was used to deter-
mine the elastic modulus. For this study, the strain region between 0% and 3% was
considered low strain, for comparison of carbon-based scaffolds with GJ control.

Fibroblast Culture on Scaffolds

Human dermal fibroblasts (ATCC CRL2703, Manassas, VA, USA) were cultured in
flasks with Dulbecco F12 medium (DMEM; Gibco BRL, Invitrogen, Carlsbad, CA,
USA) supplemented with 10% fetal bovine serum (FBS; Atlanta Biologicals, Lawrence-
ville, GA, USA) and 1% penicillin/streptomycin (100 U/100 mg per mL; Gibco BRL),
labeled complete media for simplicity. Cells were incubated at 37�C in 5% CO2 with
100% humidity. Fibroblasts from 5 to 8 passages were used for all cell studies.

Morphometric Analysis of Fibroblast Growth on Scaffolds

Fibroblast morphology was characterized after 12, 48, and 96 hours of cell culture on
scaffolds using fluorescent microscopy. Samples were rinsed twice with sterile
phosphate-buffered saline (PBS) to remove nonattached debris. Cells were then fluo-
rescently labeled with 20 mM rhodamine phalloidin to identify polymerized actin (Invi-
trogen) and 20 mM 40,6-diamidino-2-phenylindole (DAPI) nuclear counterstain
(Invitrogen) to identify the cell nucleus. Scaffolds were then rinsed in PBS to clear
excess label. Cell fluorescence was preserved with Prolong Gold reagent (Invitrogen).
Cell fluorescence and morphology were characterized at a magnification range from
10� to 40�.

Q1The Future of Carbon-Based Scaffolds
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Fibroblast Viability in Scaffold Cultures

Multiple methods were used to quantify cell adhesion and proliferation. Carbon and
GJ scaffolds (area: 25 mm2) were placed in 100-mm2 round tissue culture dishes
(n 5 10 per experimental group). Fibroblasts (60,000 cells/sample) were seeded
onto scaffold samples in 200-mL aliquots of F12 complete media containing 10%
FBS (300,000 cells/mL) and placed into the incubator at 37�C, 5%CO2, and 100% hu-
midity. After 12 hours, samples were moved to 24-well plates, retaining only cells
attached to the scaffolds, and 2 mL of complete media was added to each well and
returned to the incubator. Growth media were changed every second day. Scaffolds
were immediately processed for biochemical characterization as described below to
measure cell attachment. To characterize fibroblast proliferation, cell-seeded scaf-
folds were cultured in 2 mL of complete media for a period of 12, 48, and 96 hours
before analysis.
Cell attachment and proliferation was quantified with fluorescence microscopy and

the WST-1 biochemical assay (Roche Scientific, Indianapolis, IN, USA) cultured for 12,
48, and 96 hours. Cell adhesion to scaffold surfaces was quantified by counting cell
nuclei labeled with DAPI at each culture time point. For each scaffold, 5 images
were acquired, spanning the entire length of the sample. Fibroblasts were imaged
and nuclei were counted using the Metamorph software package (Molecular Devices,
Sunnyvale, CA, USA).
Concurrently, cell viability was assessed at 12, 48, and 96 hours usingWST-1 assay.

The tetrazolium salt 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-
tetrazolium, better known as WST-1, was used to quantify viable fibroblasts in culture.
Photometric quantification of viable cells was performed by measuring absorbance at
450 nm and 690 nm using a microplate reader. Cell proliferation was measured as a
function of absolute absorbance values (absorbance at 450 nm � absorbance at
690 nm). Fibroblast growth in wells without scaffolds was used as a positive control
while scaffolds without seeded cells were used as negative controls. Nonspecific
absorbance from media and scaffold samples was subtracted from absorbance read-
ings. Absorbance values were compared with control values and related directly to
cell viability.

Statistical Analysis

Statistical analyses were performed using the SPSS Statistics 19 Software Package
(SPSS, Inc, Chicago, IL, USA). All experimental results were statistically evaluated us-
ing 1-way analysis of variance, with P<.05 indicating significant differences among
experimental groups. Post hoc multiple comparison analyses were also performed us-
ing the Tukey-Kramer test. Multivariate stepwise linear regression was carried out to
model the relationship between experimental parameters (porosity, elastic modulus,
stress, and thickness) and load failure of carbon scaffolds and GJ. In addition, linear
regression was performed to model the relationship between scaffold porosity and
elastic modulus. Carbon samples were pooled for an n5 40. GJ data were also pooled
for data analysis for n 5 20.

RESULTS
Scaffold Characterization

As shown in Fig. 1, at low magnification (2�), all samples demonstrated porous char-
acteristics; however, GJ was less porous than carbon scaffolds (see Fig. 1), which
was most apparent on ESEM imaging shown in Fig. 2. GJ also displayed 2 distinct
textured sides that relate to the natural stratification of structures in the human dermis

Lafdi et al
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(see Fig. 2). The deeper dermal side was characterized by an extensive vascular
network and was more porous than the more superficial epidermal side of GJ control.
GJ demonstrated less continuity and consistency in physical characteristics than
engineered carbon, in accordance with natural variations typically observed in living
tissues (Table 1) Q8but not observed with highly engineered scaffolds such as carbon
(see Fig. 1). Microscale porosity was examined in all scaffolds by mCT (see Fig. 2).
Scaffold porosity was most uniform in carbon-engineered scaffolds, whereas GJ
demonstrated inconsistent porosity attributes hallmarked by regions of large defects
up to 1 mm in size that were not observed in any carbon-engineered scaffolds (see
Fig. 2). GJ displayed a closed porosity of (35%), whereas carbon scaffolds showed
an open cell structure (CF1 and CF2: 55% and 70%, respectively; CV1 and CV2:
80% and 95%, respectively) (see Fig. 2, Table 2). Structural characterization of scaf-
folds demonstrated less variability in porosity of carbon scaffolds compared with GJ,
as indicated by smaller average standard deviations in porosity measurements. The
standard deviation of carbon scaffold porosity was approximately 75% smaller than
that of GJ (see Table 2). CF1 and CF2 exhibited greater unidirectional fiber orientation,
whereas CV1 and CV2 scaffolds consisted of more randomly organized fibers (see
Fig. 2; Fig. 3).

Mechanical Behavior of Carbon Scaffolds

The mechanical properties of scaffolds were tested under tension. As shown in the
magnified low strain range (0%–3%), GJ samples displayed a smaller stress-strain ra-
tio than carbon-based scaffolds (Fig. 4). This finding is consistent with deformation
characteristics commonly observed in the “toe region” of biological tissues. Further-
more, as is displayed by the gradual decrease in the slope of the curve, GJ exhibited
longer strain regions with a yielding behavior and no catastrophic failure (see Fig. 4).
Conversely, carbon scaffolds carried more load and handled a larger stress at lower
strain, and failed catastrophically. From a load-failure perspective, CF1 displayed
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Fig. 1. - Q10
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Fig. 2. -

Table 1
Mechanical properties of living tissue Q11

Maximum
Load (N)

Maximum
Stress (MPa)

Maximum
Strain (%)

Elastic
Modulus (MPa)

Femura 111.0 � 11.9 131 � 13 5.00 � 1.2 16,600 � 174

Anterior cruciate ligamentb 1627 � 491 26.8 � 9.1 28.5 � 9.1 109.00 � 50.0

Superior infraspinatus tendonc 462.8 � 237 14.6 � 7.7 Not reported 120.00 � 53.1

a Fung Y. Biomechanics: mechanical properties of living tissues. Springer-Verlag; 1993. Q12

b Holzapfel G, Ogden R. Mechanics of biological tissue. Springer; 2006.
c Halder A, Zobitz ME, Schultz F, et al. Mechanical properties of the posterior rotator cuff. Clin Bio-
mech (Bristol, Avon) 2000;15:456–62.
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Table 2
Comparison of carbon scaffolds with GraftJacket scaffold

Density
(g/cm3) Porosity (%) Thickness (mm)

Maximum
Load (N)

Maximum Stress
(MPa) Maximum Strain (%)

Elastic Modulus
(MPa)

Carbon veil 1 (CV1) 0.50 95 � 1.0** 0.30 � 0.03 3.0 � 0.20** 2.5 � 0.10*** 3.3 � 0.20*** 860 � 45**

Carbon veil 2 (CV2) 0.60 80 � 4.0** 0.32 � 0.02 4.0 � 0.20** 3.2 � 0.20*** 2.5 � 0.20*** 910 � 47**

Carbon fabric 1 (CF1) 0.80 55 � 9.0 0.43 � 0.03 56 � 4.0* 21 � 0.90** 2.3 � 0.10** 995 � 83**

Carbon fabric 2 (CF2) 0.70 70 � 7.0* 0.42 � 0.03 27 � 3.0* 16 � 1.0 2.7 � 0.20** 835 � 66**

GraftJacket Matrix (GJ) 1.1–1.4 35 � 20 0.48 � 0.14 36 � 16 15 � 2.5 49 � 13 80 � 19

Values with asterisks are significantly different from GJ: *P�.05; **P�.005; ***P<.001.
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the greatest strength, with a maximum load of 56� 4 N, significantly greater than other
carbon scaffolds and the GJ control. CF2 and GJ were most similar (27 � 4 vs 36 �
16 N), without statistically significant differences in load failure (P>.05) (Fig. 5, see
Table 2). On the other hand, CV1 and CV2 scaffolds exhibited significantly lower

Fig. 4. -
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Fig. 3. -
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(P 5 .01) maximum loads (3 � 0.2 and 4 � 0.2 N), than both CF scaffolds and the GJ
control (see Fig. 5, Table 2). Results also showed that CF1 displayed a significantly
greater (P 5 .005) maximum stress (21 � 0.9 MPa) in comparison with the GJ control
(15 � 2.5 MPa) (Fig. 6, see Table 2). The variability of load failure and porosity was

Fig. 5. -

Fig. 6. -
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much greater in GJ than in engineered carbon scaffolds, as demonstrated by higher
standard deviations of test measurements. In addition, all carbon-engineered scaf-
folds (CV1, CV2, CF1, and CF2) displayed significantly greater (P 5 .005) elastic
modulus values (860 � 45, 910 � 47, 995 � 83, and 835 � 66 MPa, respectively)
than the GJ control (see Fig. 6, Table 2).

Cytoskeletal Actin Polymerization and Morphology of Fibroblasts Cultured on Carbon
Scaffolds

Cell density and morphology of fibroblasts cultured on scaffolds were characterized
using fluorescent microscopy (Fig. 7). Actin filament organization was most distinct
in elongated fibroblasts, which grew in a collinear pattern along carbon fibers. This
pattern of fibroblast growth wasmost prevalent in CV, which was notably more porous
than other tested scaffolds. Actin polymerization was diffuse and without distinct actin
filament formation in fibroblasts with a round morphology and in fibroblasts observed
in clusters. This pattern of morphology was most prevalent in regions of dense carbon
fiber arrangement more frequently observed in CF than in CV where CF fibers were ar-
ranged in a tightly packed parallel alignment (see Fig. 2). Although round and elon-
gated fibroblast morphology was observed in all scaffolds, predominant patterns of
morphology suggest that cell aggregation and roundmorphology may bemore related
to the density of carbon fiber distribution rather than differences between parallel and
divergent fiber orientation within carbon scaffolds.
Cell adhesion and proliferation exhibited 2 distinct growth patterns in GJ controls

that were specific to the epidermal and dermal surfaces of GJ. The dermal surface
of GJ supported cell adhesion and growth with extensive filamentous actin organiza-
tion in fibroblasts, while the epidermal surface supported minimal actin polymerization
in fibroblasts (see Fig. 7). The morphology of fibroblast adhesion and growth on CF
scaffolds closely resembled that of fibroblast adhesion to the epidermal surface of
GJ controls where extensive actin polymerization could be identified in fibroblasts
(see Fig. 7). The morphology of fibroblast adhesion to CV scaffolds more closely
resembled fibroblast adhesion to the dermal surface of GJ controls (see Fig. 7).

Fibroblast Adhesion and Proliferation on Carbon Scaffolds

Cell density and viability assays were conducted to assess fibroblast growth and pro-
liferation on carbon scaffolds. The cell density of fibroblasts cultured on scaffolds for
periods of 12, 48, and 96 hours was determined using Metamorph counting software.
Fibroblast adhesion and proliferation on CF and CV scaffolds was significantly lower
than growth on GJ controls (P<.01) (Fig. 8). Total fibroblast adhesion to CF1 was
significantly greater than that in CV scaffolds (P 5 .005) (see Fig. 8). There were sig-
nificant differences in cell adhesion (P 5 .01) and proliferation (P 5 .005) between
CF1 and CF2 scaffold cultures. Furthermore, there was a positive proportional trend
in fibroblast adhesion to scaffolds with lower porosity (see Fig. 8).
WST-1 analysis demonstrated marginal differences in fibroblast viability and prolif-

eration on carbon and GJ control scaffolds during the first 12 hours of culture; how-
ever, significantly higher WST-1 absorbance was measured in dermal control
cultures at 96 hours, which suggests that carbon scaffolds were less capable of sup-
porting a high rate of cell proliferation over time (P 5 .01). At 96 hours, CF was most
similar to GJ controls in sustaining fibroblast growth, with CF1 and CF2 demonstrating
16% and 27% less absorbance than GJ controls. By contrast, CV scaffolds showed
notably lower capacity to support cell growth than GJ, with 80% and 77% less absor-
bance on CV1 and CV2.

Lafdi et al
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Multivariate Stepwise Regression

Stepwise regression analysis demonstrated that scaffold thickness and porosity
accounted for significant variability in load failure of GJ (adjusted R2 5 0.787 and
0.924, respectively) but not carbon scaffolds (Fig. 9). The variability in load failure of
carbon scaffolds was more closely related with modulus and stress properties of car-
bon (AdjustedR25 0.924). In addition, linear regression analysis revealed that porosity
did not strongly correlate with elastic modulus in both control and carbon scaffold
groups (adjusted R2 5 0.087 and 0.383, respectively) (Fig. 10).
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DISCUSSION

Carbon has previously been used in a limited capacity in medical implants used for
soft-tissue augmentation.26,27,30,33,34 In the past, researchers have combined biopoly-
mers35–37 and have altered the surface chemistry38 of materials to optimize the
biocompatibility and function of scaffolds. The use of fibrous carbon materials for
medical research has steadily grown as processing and characterization methods
have become more sophisticated, allowing precise tuning of physical and structural
properties of carbon-based scaffolds on a nanoscale. The objective of this study
was to investigate the potential use of carbon as a biomedical scaffold for the surgical
reconstruction of soft tissues, with a hypothesis that carbon may provide an optimal
balance of biomechanical strength and the capacity to deliver living cells and biologics
to surgical sites to promote tissue repair while restoring tissue function. This study
demonstrated that carbon may support biological functions in addition to serving
biomechanical functions as a material known for its biocompatibility, durability, and
strength.
Cell adhesion and proliferation studies showed that there is little difference between

carbon and GJ’s capacity to support early cell adhesion, a critical factor for scaffold
integration and healing in vivo. This finding is supported by marginal differences in
fibroblast density and viability on both carbon and control scaffolds during short-
term in vitro cultures at 12 hours and up to 48 hours in CF cultures. The capacity for
carbon to sustain fibroblast adhesion and viability at 96 hours’ culture suggests a po-
tential use of carbon as a scaffold for sustained delivery of growth factors to sites of
injury to promote tissue healing, such as the commercially available scaffold Apligraft,
which is composed of a collagen scaffold seeded with keratinocytes and dermal fibro-
blasts.24 Fibroblast adhesion to carbon and the capacity to sustain cell growth are crit-
ical factors for the use of carbon as a vehicle for delivering viable cells to a region of
soft-tissue reconstruction where the combination of cells and scaffold are a source of
extracellular matrix synthesis, paracrine release of growth factors, and nidus for tissue
repair.
Although fibroblast adhesion to carbon and GJ was followed by cell proliferation,

proliferation was slower on carbon scaffolds, as demonstrated by fewer cells and
less metabolic activity measured byWST-1 assays in longer-term cultures of 96 hours.
These findings suggest significant biological property differences between carbon and
the tissue-derived GJ. These differences yielded a higher rate of fibroblast proliferation
on GJ than on carbon. It is reasonable to speculate that enhanced fibroblast prolifer-
ation on GJ was stimulated by residual activities of growth factors such as basic fibro-
blast growth factor, which has been shown to be retained in GJ but not to be present in
carbon.6 Hence carbon’s limited potential in supporting a high rate of cell proliferation
may be due to its lack of a naturally derived tissue factor found in GJ. Further inves-
tigation of the specific role of growth factors present in GJ and selective conjugation
of growth factors to carbon scaffolds may be necessary to optimize carbon’s potential
to promote cell proliferation to levels observed with tissue scaffolds used in surgery
today. Recent studies have shown that some synthetic fiber scaffolds can be modified
to mimic the activity of specific growth factors such as vascular endothelial growth
factor and to promote regenerative processes such as neovascularization.39 This op-
tion may offer an alternative approach to growth factor conjugation to carbon that im-
proves the biological potential of carbon as a regenerative scaffold.
It is unlikely that lower rates of fibroblast proliferation on carbon scaffolds was due

to carbon toxicity, as carbon has been shown to be nontoxic in itself17,27,33,40,41 and
progressive cell proliferation would not be expected as observed if carbon was
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cytotoxic. Lower levels of total fibroblast adhesion to carbon scaffolds than to GJ may
have been a result of geometric differences in the design and structure of carbon and
GJ scaffolds. CV, the more porous of the 2 carbon scaffolds, demonstrated less ca-
pacity for cell adhesion and lower proliferation rates, as noted by a smaller plateau
in WST-1 absorbance and lower levels of cell adhesion than carbon fabric and GJ.
This finding is consistent with other studies that demonstrate increased cell prolifera-
tion on less porous scaffolds and densely organized regions of carbon fiber organiza-
tion.42 These findings are also consistent with literature regarding cell proliferation on
synthetic fibers, in which cell proliferation was greatest in regions of cell aggregation
and spreading.41,43,44 The carbon fiber used in this study had a high degree of basal
planes oriented along the fiber axis. The basal planes are formed during the carbon-
ization step of carbon fiber processing. After carbonization, the fibers exhibit a high
degree of axial preferred orientation with thick crystallite stacking. As shown in
Fig. 7, there was high actin polymerization along the fiber axis. This material property
has been previously shown to promote cell growth.33,45 The optimal pattern of fiber
organization, dimension, and porosity that maximizes the ability of carbon to deliver
cells, promote tissue repair, and enable tissue ingrowth and neovascularization needs
to be further explored.
In the past, it has been exceptionally challenging to engineer synthetic scaffolds or to

process naturally derived tissues to recapitulate the biological parameters necessary
for tissue repair without compromising the mechanical strength and stiffness of scaf-
folds. This problem is a particularly keen onewith scaffolds used to repair major tendon
injuries of the rotator cuff or Achilles tendon, where dermal scaffolds currently used to
augment tissue repair are composed of similar extracellular matrix molecules but fail to
restore the elastic properties of tendons.10,12,14,46–48 Regression modeling demon-
strated that scaffold porosity, a major factor influencing graft neovascularization and
cell-delivery capacity of fibrous scaffolds, did not significantly influence the load failure
and modulus of carbon but did influence variance in load failure of GJ. These findings
suggest design advantages of carbon scaffold engineering that maximize porosity at-
tributes conducive to scaffold neovascularization, without compromising the mechan-
ical strength of a scaffold that is needed but often lacking in currently available
products. The results of this study demonstrated greater consistency, less variation,
and fewer defects in the dimensions, porosity, and thickness of engineered carbon
than the commercially available GJ (see Fig. 6). The ability to consistently manufacture
precise physical and dimensional properties of carbon may further minimize design,
biomechanical, and manufacturing limitations of current scaffolds used in surgery.
Hence, achieving the optimal tunable balance between biological properties and
biomechanical function of scaffolds may be technically easier through carbon engi-
neering than by developing improved technologies of human tissue processing. The
possibility of engineering carbonwithmechanical properties of amature tissue, despite
its lack of a mature cellular and extracellular matrix, provides a potential advantage of
carbon over current biological scaffolds that require prolonged processes of tissue
healing, reorganization, and fibrosis to achieve their maximum mechanical strength.
This advantage potentially shortens periods of postoperative inactivity in patients, as
the mechanical strength of tendons repaired with carbon may be restored sooner
with surgery without the need for prolonged periods of immobilization to achieve
maximal tissue strength. This approachmay ultimately reduce the risk of postoperative
morbidity andmortality associatedwith prolonged periods of inactivity and immobiliza-
tion by enabling patients to return to unrestricted activities earlier.49,50

In vitro studies have been the first stepping-stone in biological explorations.
However, to complement such explorations, researchers have looked toward
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computational programs to determine efficacy or performance. Finite element analysis
has long been used as a computational method to determine failure criteria of designs,
for example, in understanding flow and strength in structures used as blood vessel
replacements. In the current study, cellular automata are explored as a method to
investigate cellular response. It would greatly benefit researchers to understand
response by executing a program and analyzing the results. The implication of compu-
tational technology in biological studies is enormous. This study has been able to
show that 3-dimensional models may help understand the attachment, growth, and
proliferation of cells on carbonaceous materials. However, this model may also be
expanded to incorporate other types of materials. Themodel indicated that the attach-
ment and growth of osteoblasts was initially on carbon materials. However, most
growth was around the intersection of carbon materials; this may be a key factor in
designing scaffolds with optimized architecture. The optimum distance and orienta-
tion for cellular movement across ligaments may be analyzed by modifying the model
parameters. In addition, cells seemed to proliferate from these intersections and
across carbon fibers. Increasing the immediate surface area of scaffold material
may support greater cell attachment, movement, and overall growth. Whereas the cur-
rent model only integrated 3 parameters, incorporating other parameters such as sur-
face roughness, surface charge, or fiber orientation may strengthen a future model.

SUMMARY

Carbon may represent an alternative material suitable for future development as a
soft-tissue substitute that potentially optimizes the biological and mechanical proper-
ties required for a graft product used in surgery. In addition, other modes of charac-
terization such as 3-dimensional computational modeling may offer an insight into
material performance in a biological environment. Further investigation is required to
characterize and model the relationships between biological, mechanical, and design
properties of this material to maximize its potential as a biomechanical scaffold and
vehicle for delivering biologics that promote tissue repair and regeneration.
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