
University of Dayton
eCommons

Biology Faculty Publications Department of Biology

6-2001

Salivary Acinar Cells from Aquaporin 5-deficient
Mice Have Decreased Membrane Water
Permeability and Altered Cell Volume Regulation
Carissa M. Krane
University of Dayton, ckrane1@udayton.edu

James E. Melvin
University of Rochester

Ha-Van Nguyen
University of Rochester

Linda Richardson
University of Rochester

Jennifer E. Towne
University of Cincinnati

See next page for additional authors

Follow this and additional works at: https://ecommons.udayton.edu/bio_fac_pub

Part of the Biology Commons, Biotechnology Commons, Cell Biology Commons, Genetics
Commons, Microbiology Commons, and the Molecular Genetics Commons

This Article is brought to you for free and open access by the Department of Biology at eCommons. It has been accepted for inclusion in Biology
Faculty Publications by an authorized administrator of eCommons. For more information, please contact frice1@udayton.edu,
mschlangen1@udayton.edu.

eCommons Citation
Krane, Carissa M.; Melvin, James E.; Nguyen, Ha-Van; Richardson, Linda; Towne, Jennifer E.; Doetschman, Thomas; and Menon,
Anil G., "Salivary Acinar Cells from Aquaporin 5-deficient Mice Have Decreased Membrane Water Permeability and Altered Cell
Volume Regulation" (2001). Biology Faculty Publications. 131.
https://ecommons.udayton.edu/bio_fac_pub/131

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dayton

https://core.ac.uk/display/232843025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/bio_fac_pub?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/bio?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/bio_fac_pub?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/111?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/10?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/29?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/48?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/31?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ecommons.udayton.edu/bio_fac_pub/131?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu


Author(s)
Carissa M. Krane, James E. Melvin, Ha-Van Nguyen, Linda Richardson, Jennifer E. Towne, Thomas
Doetschman, and Anil G. Menon

This article is available at eCommons: https://ecommons.udayton.edu/bio_fac_pub/131

https://ecommons.udayton.edu/bio_fac_pub/131?utm_source=ecommons.udayton.edu%2Fbio_fac_pub%2F131&utm_medium=PDF&utm_campaign=PDFCoverPages


Salivary Acinar Cells from Aquaporin 5-deficient Mice
Have Decreased Membrane Water Permeability and
Altered Cell Volume Regulation*

Received for publication, September 25, 2000, and in revised form, March 9, 2001
Published, JBC Papers in Press, March 9, 2001, DOI 10.1074/jbc.M008760200

Carissa M. Krane‡, James E. Melvin§, Ha-Van Nguyen§, Linda Richardson§, Jennifer E. Towne‡¶,
Thomas Doetschman‡, and Anil G. Menon‡i

From the ‡Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati College of
Medicine, Cincinnati, Ohio 45267-0524 and the §Center for Oral Biology, University of Rochester School of Medicine and
Dentistry, Rochester, New York 14642

Aquaporins (AQPs) are channel proteins that regulate
the movement of water through the plasma membrane
of secretory and absorptive cells in response to osmotic
gradients. In the salivary gland, AQP5 is the major aqua-
porin expressed on the apical membrane of acinar cells.
Previous studies have shown that the volume of saliva
secreted by AQP5-deficient mice is decreased, indicat-
ing a role for AQP5 in saliva secretion; however, the
mechanism by which AQP5 regulates water transport in
salivary acinar cells remains to be determined. Here we
show that the decreased salivary flow rate and in-
creased tonicity of the saliva secreted by Aqp52/2 mice
in response to pilocarpine stimulation are not caused by
changes in whole body fluid homeostasis, indicated by
similar blood gas and electrolyte concentrations in
urine and blood in wild-type and AQP5-deficient mice.
In contrast, the water permeability in parotid and sub-
lingual acinar cells isolated from Aqp52/2 mice is de-
creased significantly. Water permeability decreased by
65% in parotid and 77% in sublingual acinar cells from
Aqp52/2 mice in response to hypertonicity-induced cell
shrinkage and hypotonicity-induced cell swelling.
These data show that AQP5 is the major pathway for
regulating the water permeability in acinar cells, a crit-
ical property of the plasma membrane which deter-
mines the flow rate and ionic composition of secreted
saliva.

The precise regulation of water and electrolyte transport in
the acinar cells of the salivary gland is crucial for proper
production of saliva. The fluid component of salivary secretions
hydrates the oral cavity, aiding in the mastication and swal-
lowing of food, in the neutralization of acids, and in protection
against the invasion of potential pathogens. Clinically, salivary

gland hypofunction commonly presents as xerostomia, a symp-
tomatic complaint of dry mouth prevalent in the geriatric pop-
ulation (for review, see Ref. 1) which may result from either
systemic or extrinsic causes (for review, see Refs. 1–3).

Saliva formation is a two-stage process (4, 5). First, the
acinar cells secrete an isotonic plasma-like fluid, and second,
ductal cells modify the acinar secretions primarily through the
reabsorption of Na1 and Cl2 so that the final saliva is hypo-
tonic. This fluid secretion model predicts that saliva formation
is primarily caused by transepithelial Cl2 transport and that
Cl2 uptake is dependent on an inwardly directed Na1 chemical
gradient across the basolateral plasma membrane. An increase
in intracellular Ca21, usually associated with muscarinic re-
ceptor stimulation, triggers fluid secretion by simultaneously
activating apical Cl2 channels and basolateral K1 channels.
The efflux of Cl2 and K1 across the apical and basolateral
membranes, respectively, produces a transepithelial potential
difference that is neutralized by paracellular Na1 transport
across tight junctions. The resulting transepithelial osmotic
gradient drives the movement of water, creating a plasma-like
primary secretion.

In salivary gland acinar cells, secretion is associated with
cell volume changes (6, 7). The shrinkage and swelling of sal-
ivary gland acinar cells following muscarinic and b-adrenergic
stimulation, respectively, are thought to occur as a result of an
imbalance between the influx and efflux of ions (specifically
Cl2) between the luminal and basolateral membranes (8). The
resulting change in tonicity requires a rapid and regulated
change in acinar cell water permeability which is necessary
for secretion and maintenance of cell volume following
stimulation.

Aquaporin 5 (AQP5),1 a mercury-sensitive water channel,
has been localized to the luminal surface of acinar cells in the
salivary gland, the site of salivary secretion (9). Recently Ma et
al. (10) showed that AQP5-deficient mice secrete a low volume
of viscous hypertonic saliva after supramaximal pilocarpine
stimulation. They hypothesized that AQP5 plays a role in reg-
ulating membrane water permeability and that it is also re-
quired for maintaining proper osmolality of the secreted saliva,
although a mechanism by which this is accomplished was not
examined. The results of this study are consistent with at least
two potential mechanisms whereby hyposalivation might be
induced in mice lacking AQP5. The simplest explanation is that
AQP5 acts as the apical water pathway during stimulated fluid
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secretion, although no basolateral channel has been identified
as yet. Alternatively, targeted disruption of the Aqp5 gene may
alter whole animal water balance, resulting in an increase in
the osmolarity of the blood. Previous studies clearly show that
dehydration increases the osmolarity of blood, and this in turn
correlates with decreased salivation (11, 12)

Here we directly measure membrane water permeability of
isolated acinar cells from Aqp51/1 and Aqp52/2 mice as well as
flow rates and osmolality measurements of secreted saliva.
Hyposalivation is not caused by changes in whole body fluid
homeostasis, but instead, we demonstrate that the membrane
permeability of salivary gland acinar cells is dramatically re-
duced in mice lacking AQP5. Our results are the first to provide
a mechanism for AQP5 function during salivary secretion.

EXPERIMENTAL PROCEDURES

Generation of Aqp5 Replacement Targeting Construct—Mouse
genomic clones containing the Aqp5 locus were isolated from a 129SvJ
DNA bacteriophage l library by hybridization with an AQP5 partial
cDNA clone and characterized as described (13). Two fragments of the
Aqp5 locus, an ;1.8-kb KpnI fragment extending from within exon 1

through intron 2, and an ;800-bp HindIII/BamHI fragment extending
from intron 3 to within the 39-untranslated region of exon 4, were
inserted to flank the 39- and 59-ends of a PGK-neomycin resistance gene
(14), respectively. A herpes simplex virus-thymidine kinase expression
cassette (pMC1-TK (14)) was placed outside of the homologous seg-
ments, 59 to the left arm, to provide selection against random insertion
of the targeting vector.

Embryonic Stem Cell Targeting—Isogenic ES cells derived from the
129SvJ mouse strain were electroporated with 50 mg of linearized
targeting vector. After electroporation, the cells were subjected to se-
lection with G418 and gancyclovir as described (15). A 931-bp diagnostic
probe 59 to the homologous region represented in the targeting vector
was used to screen 187 ES cell clones by Southern analysis. The probe
was polymerase chain reaction amplified from an AQP5 genomic clone
(13) using 10 pmol of each primer (forward primer (4.5 Seq) 59-CCG-
GCAGAAACAAAGACCT-39; reverse primer (Pri Ext 3) 59-CGCATCGT-
GCGCTCAGCG-39); 0.25 mM each dNTP, 2.0 mM MgCl2, 60 mM Tris-
HCl at pH 9.0, 12.5 mM (NH4)2 SO4, 10 ng of 2.1/4.5 plasmid DNA (11),
0.1 unit of Taq polymerase (Life Technologies, Inc.) in a total reaction
volume of 20 ml. Polymerase chain reaction was performed in an MJ
PTC-100 Thermocycler device (Watertown, MA) with the following con-
ditions: 94 °C for 2 min; (92 °C for 30 s 257 °C for 1 min 272 °C for 1
min) 35 times; 272 °C for 7 min. Products were separated by gel

FIG. 1. Mouse Aqp5 gene targeting construct, Southern, Northern, and Western analyses. Panel A, generation of an Aqp5 locus-specific
replacement type targeting vector. A schematic of the genomic organization and partial restriction map of the wild-type mouse Aqp5 locus based
on analysis of a 129SvJ genomic subclone (11) is shown. B, BamHI; H, HindIII; K, KpnI. Exons are shown as indicated. Two fragments of the Aqp5
locus, a 1.8-kb KpnI left arm fragment and a 0.8-kb HindIII/BamHI right arm fragment, were inserted to flank the 39- and 59-ends of the
PGK-neomycin resistance minigene (pPGK-NEO), respectively. A herpes simplex virus-thymidine kinase expression cassette (pMC1-TK) was
positioned outside of the homologous segment, 59 of the left arm in the 39-59 orientation. The replacement construct deletes 55 bp of intron 2, the
entire exon 3 (84 bp), and 467 bp of intron three and replaces them with a 1.6-kb PGK-neomycin minigene cassette, resulting in a net addition of
1 kb. A 931-bp 59-screening probe outside of the homologous region is indicated. UTR, untranslated region. Panel B, genotypic analysis of an F2
litter from sibling matings of Aqp5 heterozygous F1 founders. Mouse tail DNA was isolated and digested with BamHI. Southern hybridization was
performed using a 931-bp 59-screening probe. All three genotypes are represented in this litter: 1/1 (4.5 kb), 1/2 (4.5 kb/5.5 kb), and 2/2 (5.5 kb).
Panel C, Northern hybridization of total RNA from Aqp51/1, Aqp51/2, and Aqp52/2 parotid glands. A mouse AQP5 cDNA clone containing the
entire open reading frame and 39-untranslated region was a-32P labeled and used to hybridize 20 mg of adult mouse parotid gland total RNA from
Aqp51/1, Aqp51/2, and Aqp52/2 mice (n 5 2 each genotype). A 1.8-kb transcript is indicated with an arrow. The 28 S and 18 S rRNA bands were
visualized by UV illumination of the ethidium bromide-stained agarose gel and are shown to demonstrate RNA quality and loading. Panel D,
Western analysis of total membrane preparations from Aqp51/1, Aqp51/2, and Aqp52/2 parotid glands. An AQP5 rabbit polyclonal antibody
(LL639; 0.5 mg/ml) generated against a C-terminal peptide specific to mouse AQP5 sequence was used in immunoblotting experiments against 20
mg of total membrane proteins isolated from the parotid glands of Aqp51/1, Aqp51/2, and Aqp52/2 mice. Two immunoreactive bands at 27 and 29
kDa are indicated in the Aqp51/1 and Aqp51/2 lanes by arrows but are absent in the Aqp52/2 lanes (n 5 2 each genotype). Protein isolation and
Western blotting were performed as described (see “Experimental Procedures”).
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electrophoresis on a 1% low melting point agarose (Life Technologies,
Inc.) in 1 3 TAE buffer and gel extracted (Qiagen gel extraction kit,
Valencia, CA). The replacement construct deletes 55 bp of intron 2, the
entire exon 3 (84 bp), and 467 bp of intron 3, and replaces them with the
1.6-kb PGK-neomycin cassette. ES cell lines with a correctly targeted
Aqp5 allele resulting from homologous recombination were identified by
the presence of a neomycin-containing (5.5 kb) and wild-type (4.5 kb)
BamHI fragment.

Generation of Aqp5-deficient Mice—Two ES cell clones (175 and 187)
were used in blastocyst-mediated transgenesis (16). 11 mice, 30–90%
chimeric for the ES cell-derived 129SvJ agouti coat color, were gener-
ated. Germline transmission of the targeted allele was obtained from
five chimeric male matings to outbred Black Swiss females. Those
offspring carrying 129SvJ-derived genetic material were identified by
their agouti coat color, and those carrying the targeted allele were
determined by Southern analysis of tail DNA using the diagnostic probe
described above. Intercross sibling matings of the F1 animals heterozy-
gous for the targeted allele were used to establish recombinant inbred
129SvJ 3 Black-Swiss Aqp5 targeted lines. Mice used throughout this
study were Aqp51/1, Aqp51/2, and Aqp52/2 age- and sex-matched lit-
termates from the F3 generation of recombinant inbred Aqp5 targeted
129SvJ 3 Black Swiss genetic background.

Histology—Gross histological analysis was performed by Dr. Greg
Boivin (Department of Comparative Pathology, University of Cincin-
nati College of Medicine) on submandibular, sublingual, and parotid
glands from Aqp51/1, Aqp51 /2, and Aqp52/2 age- and sex-matched
littermates by light microscopic analysis of paraformaldehyde-fixed
paraffin-embedded hematoxylin and eosin-stained tissue sections (not
shown).

Northern Analysis—Total RNA was prepared from submandibular,
sublingual, and parotid glands dissected from adult Aqp51/1, Aqp51/2,
and Aqp52/2 littermates and analyzed by Northern blot with an AQP5
cDNA clone as described (13). Equal loading and quality of RNA sam-
ples were confirmed by the relative abundance of the 28 S and 18 S
rRNA bands visualized by UV illumination of the ethidium bromide-
stained gel.

Western Analysis—Total membrane preparations from submandibu-
lar, sublingual, and parotid glands were isolated from adult Aqp51/1,
Aqp51/2, and Aqp52/2 littermates and analyzed by immunoblotting
with 0.5 mg/ml rabbit polyclonal anti-AQP5 peptide derived antibody
(LL639) as described (13). Equal loading of membrane samples was
confirmed by Coomassie Blue staining of SDS-polyacrylamide gels.

Cell Volume Determinations—Parotid and sublingual acini from
adult (8–20 weeks old) Aqp51/1 and Aqp52/2 age- and sex-matched
littermates were dispersed as described previously (17). Briefly, mice
were killed by exsanguination after exposure to CO2 gas. The parotid
and sublingual glands were quickly removed, trimmed of connective
tissues, and minced finely in digestion medium (Eagle’s modified essen-
tial medium, Biofluids, Inc., Rockville, MD) containing collagenase P
(0.3 mg/7.5 ml/animal) 1 1% bovine serum albumin. The minced glands
were incubated at 37 °C in a shaker with continuous agitation (100

cycles/min). After the first 20-min interval the minced glands were
dispersed by gentle pipetting (10 times) with a 10-ml plastic pipette and
centrifuged (210 3 g for 15 s). The supernatant was discarded, and the
pellet was resuspended in 7.5 ml of collagenase digestion medium for an
additional 40 min, and the acinar cells were then rinsed and harvested
by centrifugation. The dispersed acinar cells were loaded with the
fluoroprobe calcein by incubation for 15 min at room temperature in 2
mM calcein-AM (Molecular Probes, Eugene, OR).

Cell volume was estimated by confocal microscopy, as described (18).
Cells were allowed to adhere to the base of a superfusion chamber
mounted on an Olympus PMT2 fluorescence microscope interfaced with
an UltimaTM confocal microscope (Genomic Solutions, Ann Arbor, MI).
Intracellular dye was excited with 488 nm band of an argon laser and
emitted fluorescence measured at 530 nm. Changes in cell volume were
monitored by measuring the fluorescence intensity of calcein within a
defined intracellular volume. In combination with an Olympus Dpla-
nApo 403 objective, a 225-mm confocal pinhole produces an ;4-mm-
thick optical section in the z direction. Using UltimaTM software, an x-y
area of the two-dimensional image was circumscribed within individual
acini. In some experiments, cell volume was estimated using a Nikon
Diaphot 200 microscope interfaced with an Axon Imaging Workbench
system (Foster City, CA). Cells were excited at 490 nm, and emitted
fluorescence was measured at 530 nm. The initial linear rate of cell
volume change was used as an index of acinar cell water permeability.
Cell volume was correlated with fluorescence by in situ calibration of
the dye performed using solutions of different osmolalities. The rela-
tionship between dye fluorescence and the volume change was linear
over a volume range from 130% to 230%, which is within the physio-
logical range of cell volume changes observed in acinar cells. Cell
volume was expressed in arbitrary units as 1/normalized calcein
fluorescence.

Mercury-sensitive Water Permeability—The initial linear rate of cell
volume change was used as an index of acinar cell water permeability.
Aqp51/1 and Aqp52/2 parotid and sublingual acinar cells were enzy-
matically dispersed and loaded with fluorescent dye as described above
and subsequently equilibrated in an isosmotic (;300 mosM), intracel-
lular-like solution to eliminate ion gradients. The solution contained 15
mM NaCl, 50 mM KCl, 75 mM potassium gluconate, 0.4 mM KH2PO4,
0.33 mM NaH2PO4, 20 mM Hepes, 10 mM glucose, 0.8 mM MgSO4, and
1.2 mM CaCl2. A 30% hyperosmotic shock was induced by perfusion of
acini in the above solution containing 90 mM sucrose, and the rate of cell
volume change was determined (“control” rate). Sucrose was then re-
moved to permit the cell volume to reequilibrate before exposure to 1
mM HgCl2 for 5 min. The same cells were then exposed to a second
hypertonic shock in the presence of HgCl2. The rate of volume change in
the presence of 1 mM HgCl2 was used to calculate the mercury-sensitive
water permeability of acinar cells.

Hyposmotic Shock and the Associated Regulatory Volume Decrease
(RVD)—Aqp51/1 and Aqp52/2 parotid and sublingual acinar cells were
enzymatically dispersed and loaded with fluorescent dye as above, and
then equilibrated in an isosmotic physiological solution containing 135
mM NaCl, 5.4 mM KCl, 0.4 mM KH2PO4, 0.33 mM NaH2PO4, 20 mM

Hepes, 10 mM glucose, 0.8 mM MgSO4, and 1.2 mM CaCl2. Hyposmotic
cell swelling was induced by switching the perfusate to the above
solution after diluting by 30% with water. Cell volume change was
measured as described above by monitoring the change in calcein flu-
orescence. The rate of RVD was determined over the course of ;300 s
while the cells remained in the hyposmotic solution.

Stimulated Flow Rates and Saliva Composition—Adult Aqp51/1 and
Aqp52/2 age- and sex-matched littermates (12–16 weeks of age, n 5 6

FIG. 2. Severe impairment of salivation in Aqp52/2 mice. Saliva
flow rates for Aqp51/1 (panel A) and Aqp52/2 (panel B) mice (n 5 6 each
genotype) were determined over three 5-min intervals (5, 10, and 15
min) after intraperitoneal administration of two physiological doses of
the sialagogue pilocarpine HCl (2 or 10 mg/kg of body weight).

TABLE I
Osmolality of pilocarpine-stimulated salivary secretion

Statistically significant values are indicated (*) (p , 0.05).

Agonist concentration
Osmolality

Aqp51/1 Aqp52/2

2 mg pilocarpine/kg
body weight

5 min 165.8 6 6.5 225.8 6 16.6*
10 min 174.0 6 11.1 229.7 6 18.4*
15 min 173.0 6 10.7 246.8 6 17.0*

10 mg pilocarpine/kg
body weight

5 min 196.5 6 4.1 257.0 6 9.8*
10 min 216.5 6 10.1 271.8 6 14.6*
15 min 221.5 6 6.9 272.3 6 10.1*

Salivary Gland Hypofunction in Aqp52/2 Mice 23415
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each group) were anesthetized with an intraperitoneal injection of 300
mg of chloral hydrate/kg of body weight and then stimulated with either
2 or 10 mg of pilocarpine HCl/kg of body weight (BW). Whole saliva was
collected, representing a combination of parotid, submandibular, and
sublingual secretions, with a very minor component from minor sali-
vary, nasal, and tracheal glands. Saliva was collected from the lower
cheek pouch by a suction device at intervals of 5, 10, and 15 min and
expressed as ml/min. The osmolality of the saliva was measured using a
vapor pressure osmometer (Wescor 5500, Logan, UT).

Water Intake and Urine Output Analysis—Adult Aqp51/1 and
Aqp52/2 littermates (n 5 12 each genotype; n 5 6 male, n 5 6 female
per genotype) were housed one per metabolic cage and acclimated for
48 h prior to urine collection. Mice had free access to drinking water and
standard 1% NaCl mouse chow diet throughout the experiment. Base-
line urine samples were collected over a period of 24 h for 3 consecutive
days, and the volume, electrolyte composition, and osmolality were
recorded. Aliquots of urine samples were centrifuged at 10,000 3 g for
5 min to remove any suspended material, and the supernatants were
used to measure the osmolality by freezing point depression on a Fiske
One-Ten Osmometer (Norwood, MA). Sodium and potassium concen-
trations (meq/liter) were determined using a Ciba-Corning Flame
photometer, model 480 (Medfield, MA), and chloride (meq/liter) was
determined using a Labconco Digital Chloridometer (Kansas City, MO).
The volume of water intake/24 h was recorded. Body weight was re-
corded prior to acclimation and at every 24-h time point. The mean
average of 3 days of collection was calculated for each parameter meas-
ured, normalized for body weight, and used in statistical analysis com-
paring sex-matched wild-type versus knockout mice.

Blood Gas and Electrolyte Analysis—Tail vein blood (50 ml) was
collected from adult Aqp51/1 and Aqp52/2 age- and sex-matched litter-
mates (12–16 weeks of age, n 5 6 each genotype) and analyzed for
gases, electrolytes, and pH as described (19).

Statistical Analyses—All cell volume measurements were expressed
in arbitrary units as 1/normalized calcein fluorescence for the indicated
number of acini studied (n). Experiments were repeated using at least
three separate preparations. Data were analyzed by a two-tailed Stu-
dent’s t test, and differences between test and control values at p , 0.05
were considered to be statistically significant.

RESULTS

Generation of Aqp52/2 Mice—The Aqp5 targeted allele was
generated by replacing 600 bp of the mouse Aqp5 gene, which
includes a portion of intron 2, all of exon 3, and a portion of
intron 3, with the neomycin resistance gene (Fig. 1A). The
targeted replacement results in the deletion of extracellular
loop E of the mouse AQP5 protein, which contains the highly
conserved Asn-Pro-Ala (NPA) motif (20) and the mercury-sen-
sitive cysteine residue at position 182 (13). Alterations in the
NPA motifs in either the B or E loops have been shown to
disrupt water permeability in aquaporin family members (21).
Six independently derived Aqp5 targeted ES cell lines were
identified by the presence of both 5.5-kb and 4.5-kb BamHI
fragments by Southern analysis corresponding to the targeted

and wild-type alleles respectively (not shown). Chimeras were
generated through blastocyst injection of two ES cell lines, and
germline transmission was obtained. A representative South-
ern blot from an F1 heterozygous mating is shown in Fig. 1B.
We observed a birth genotypic ratio of 1 (1/1): 2 (1/2): 0.5
(2/2), suggesting a role for Aqp5 in prenatal survival. Adult
Aqp52/2 mice weighed ;90% of their Aqp51/1 and Aqp51/2

age- and sex-matched littermates (not shown). No difference in
morbidity, mortality, or longevity was observed among the
three genotypes from birth to .1 year of age (not shown).
Submandibular, sublingual, and parotid glands from 12–16-
week-old Aqp5/1, Aqp51/2, and Aqp52/2 littermates were his-
tologically normal as revealed by light microscopic analysis of
hematoxylin and eosin-stained tissue sections (not shown).

Northern Analysis of Salivary Gland Total RNA—Northern
analysis was performed on total RNA isolated from parotid
glands from Aqp51/1, Aqp51/2, and Aqp52/2 littermates using
a mouse AQP5 cDNA probe containing the entire open reading
frame and the 39-untranslated region. A 1.8-kb band corre-
sponding to the mouse AQP5 transcript was observed in RNA
from 1/1 and 1/2 mice but was not present in the RNA from
Aqp52/2 glands (Fig. 1C). Thus, the targeted replacement of
the Aqp5 locus results in the absence of AQP5 mRNA in
Aqp52/2 mouse salivary glands. Identical results were ob-
tained with total RNA from the sublingual and submandibular
glands (not shown).

Western Analysis of Salivary Gland Total Membrane Prepa-
rations—Immunoblotting of total membrane fractions pre-
pared from parotid glands from Aqp51/1, Aqp51/2, and
Aqp52/2 mice with an anti-AQP5 peptide-derived rabbit poly-
clonal antibody identified both the 27-kDa and 29-kDa AQP5
immunoreactive bands in Aqp51/1 and Aqp51/2 mice, which
were reported previously in mouse salivary glands (13). Nei-
ther the 27-kDa nor the 29-kDa bands were present in Aqp52/2

membrane fractions (Fig. 1D). Therefore, the targeted replace-
ment of the Aqp5 locus ablates AQP5 protein production and
results in AQP5 null mice. Identical results were obtained with
total membrane fractions from the sublingual and submandib-
ular glands (not shown).

Salivary Flow Rate—A previous study has shown that Aqp5-
deficient salivary glands produce less saliva in response to a
supramaximal concentration of a cholinergic agonist (80 mg/kg
pilocarpine), and the saliva was hypertonic (420 mosM) (10)
rather than hypotonic as in wild-type mice. In the present
study, two different physiological concentrations of agonist (2
and 10 mg of pilocarpine HCl/kg of body weight, injected intra-
peritoneally) were used to stimulate salivary secretion. The

TABLE II
Water intake, urine output, urine osmolality and electrolytes

Values are expressed as the mean 6 S.E.

Water intake Urine output Urine
osmolality (n 5

12)

Urine electrolytes

Male (n 5 6) Female (n 5 6) Male (n 5 6) Female (n 5 6) Na1 K1 Cl2

ml/g body weight 6 S.E. ml/g body weight 6 S.E. mosM/kg H2O meq/liter

Wild-type 0.151 6 0.013 0.136 6 0.019 0.074 6 0.012 0.046 6 0.007 2824 6 206 427.6 6 43.1 298.0 6 25.1 368.6 6 20.3
Knockout 0.124 6 0.020 0.135 6 0.012 0.055 6 0.07 0.035 6 0.008 3149 6 244.9 459.4 6 43.7 333.0 6 25.5 417.2 6 24.1

TABLE III
Blood gas and plasma electrolyte measurements of Aqp51/1 and Aqp52/2 mice

Values are the means 6 S.E.

Blood gas/electrolyte

pH pCO2 pO2 Na1 K1 Cl2 HCO3
2

mm Hg meq/liter

Aqp51/1 7.436 6 0.011 31.950 6 1.994 83.833 6 5.703 149.333 6 0.422 5.945 6 0.252 113.000 6 0.856 21.240 6 0.823
Aqp52/2 7.437 6 0.015 35.160 6 0.829 82.460 6 3.795 150.8 6 0.583 5.968 6 0.288 113.000 6 0.837 22.775 6 0.641
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pilocarpine-stimulated salivary flow rate was determined for
Aqp51/1 and Aqp52/2 mice at three 5-min intervals over the
course of 15 min (see Fig. 2). The flow rate for Aqp52/2mice at
all three intervals with both pilocarpine concentrations was
inhibited significantly compared with the rate observed for
Aqp51/1 mice (range 5 45–80% of the control rate; mean 6
S.E. 5 64.7 6 6.8% inhibition). Thus, AQP5 deficiency results
in a sustained ;65% decrease in the rate of pilocarpine-stim-
ulated saliva flow regardless of the agonist concentration used.
These data demonstrate that AQP5 is critically important to
salivation, independent of the magnitude of receptor
activation.

Salivary Osmolality—In addition to flow rate measure-
ments, the osmolality of stimulated salivary secretions was
determined for three 5-min intervals over a 15-min duration
after stimulation with 2 or 10 mg of pilocarpine/kg of body
weight (Table I). Osmolality was increased significantly (p ,

0.01) in the saliva from Aqp52/2mice compared with their
wild-type littermates, and it remained increased over the col-
lection period at all three intervals (Table I). These results
indicate that the final osmotic composition of stimulated saliva
is affected by AQP5 expression.

Fluid Intake and Urine Output—To determine whether the
absence of AQP5 affects whole animal fluid homeostasis, water
intake and urinary volume output were monitored in adult
Aqp51/1 and Aqp52/2 mice (Table II). Interestingly, there were
no significant differences in the volume of water intake or urine
excreted by Aqp52/2 mice compared with their age- and sex-
matched littermates. In addition, urine osmolality, potassium,
sodium, and chloride concentrations did not differ between
wild-type and AQP5 knockout mice (Table II).

Blood Gas and Electrolyte Analysis—To examine the role of
AQP5 in the maintenance of blood gas and plasma electrolyte
homeostasis, blood samples from awake adult Aqp51/1 and
Aqp52/2 mice were collected and analyzed for plasma electro-
lytes, blood pH, and blood gas levels. No significant differences
were observed in these parameters when comparing the AQP5
knockout mice with wild-type littermates (Table III). Taken
together, the results shown in Tables II and III demonstrate
that the hyposalivation observed in Aqp52/2 mice is not caused
by changes in whole animal fluid and electrolyte homeostasis.

AQP5-dependent and Mercury-sensitive Acinar Cell Water
Permeability—AQP5 was initially identified and cloned from
the rat submandibular gland and was shown to be a mercury-
sensitive water channel (22). To examine whether AQP5 is

FIG. 3. Cell volume changes: mercury-sensitive hypertonicity-
induced parotid acinar cell shrinkage. Panel A, hypertonicity-
induced rate of shrinkage of parotid acinar cell from wild-type mice and
the effect of HgCl2. HgCl2 inhibits the rate of Aqp51/1 parotid acinar
cell volume changes induced by hypertonic shock. The cell volume of
mouse parotid acinar cells was estimated by confocal microscopy using
the intracellular fluorescent dye calcein. Acinar cells were loaded with
the fluoroprobe by incubation for 15 min with 2 mM calcein-AM, and the
fluorescence intensity emitted from within a defined intracellular vol-
ume was monitored. The normalized fluorescence intensity (Fn) in-
creases as cell volume decreases in response to hypertonic shock.
Parotid acinar cells from wild-type mice were exposed to a hypertonic
shock by the addition of 60 mM sucrose during the time indicated by the
cross-hatched rectangle to determine the control rate of water perme-
ability. Cells were then returned to an isosmotic solution and treated
with 1 mM HgCl2 for 5 min (indicated by the open rectangle; note the
break in the x axis) followed by exposure to a second hypertonic shock
in the continued presence of HgCl2. Changes in cell volume are ex-
pressed as 1/Fn. Panel B, summaries of the rates of hypertonicity-
induced Aqp51/1 and Aqp52/2 parotid acinar cell shrinkage in the
absence and presence (stippled bar) of 1 mM HgCl2. The asterisks (*)
indicate a significant difference in the rate of cell shrinkage of Aqp51/1

(filled bar) in the presence of mercury (;50%; p , 0.0001, n $ 36), and
a ;65% decrease in Aqp52/2 (open bar) compared with the intrinsic
Aqp51/1 rate. The membrane permeability of Aqp52/2 acinar cells was
enhanced (** p , 0.0001; n $ 36) in the presence of mercury compared
with untreated Aqp52/2 cells.

FIG. 4. Cell volume changes: mercury-sensitive hypertonicity-
induced sublingual acinar cell shrinkage. Panel A, HgCl2 inhibits
sublingual acinar cell volume changes induced by hypertonic shock (for
description of the protocol, see the Fig. 2A legend). Panel B, summaries
of the rates of hypertonicity-induced Aqp51/1 and Aqp52/2 sublingual
acinar cell shrinkage in the absence and presence (stippled bar) of 1 mM

HgCl2. The asterisks (*) indicate a significant decrease in the rate of
hypertonicity-induced cell shrinkage of Aqp51/1 (filled bar) in the pres-
ence of mercury (;35%; p , 0.0001, n $ 36) and a ;77% decrease in
Aqp52/2 (open bar) compared with the intrinsic Aqp51/1 rate. The
membrane permeability of Aqp52/2 acinar cells was enhanced (** p ,
0.0001; n $ 36) in the presence of mercury compared with untreated
Aqp52/2 cells.
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involved in acinar cell water permeability, the rate of volume
change was determined in wild-type cells in response to a
hypertonic stress in the presence and absence of HgCl2. Water
movement was osmotically driven by introducing a 30% hyper-
tonic shock (see “Experimental Procedures”). Parotid (Fig. 3A)
and sublingual (Fig. 4A) acinar cell volumes were measured by
monitoring the fluorescence intensity of calcein within a de-
fined intracellular volume, and the rate of cell shrinkage was
used as an index of water permeability. The same cells were
allowed to recover in isotonic medium prior to testing the Hg21

sensitivity of the hypertonicity-induced changes in cell volume.
The rate of hypertonicity-induced cell shrinkage was then de-
termined in the presence of HgCl2 after a 5-min preincubation
in 1 mM HgCl2. An approximate 50% decrease (p , 0.0001, n $
36) in the rate of shrinkage was observed in the presence of
HgCl2 in wild-type parotid cells (Fig. 3A), and an ;35% de-
crease (p , 0.0001, n $ 36) was seen in wild-type sublingual
acinar cells (Fig. 4A) in response to hypertonic challenge. The
volume change resistant to inhibition by HgCl2 represents the
intrinsic water permeability of the plasma membrane as well
as the water transport mediated by aquaporins not blocked by
mercury.

As observed after inhibition with HgCl2, knocking out the
Aqp5 gene dramatically reduced the water permeability of aci-
nar cells. An ;65% decrease in the rate of hypertonicity-in-
duced cell shrinkage was observed in Aqp52/2 parotid acinar
cells compared with wild-type acinar cells (Fig. 3B), and an

;77% decrease in the rate of cell shrinkage was observed in
Aqp52/2 sublingual acinar cells (Fig. 4B). These results indi-
cate that AQP5 is involved in mediating the water permeability
of acinar cells. Mercury did not inhibit water movement in
Aqp52/2 acinar cells but actually enhanced the water perme-
ability of both parotid and sublingual Aqp52/2 acinar cells by
an unknown mechanism (Figs. 3B and 4B; p , 0.0001; n $ 36).

Hyposomotic Cell Swelling and Associated RVD—Isolated
parotid and sublingual acinar cells (Figs. 5 and 6, respectively)
from Aqp51/1 and Aqp52/2 mice were subjected to a hypos-
motic shock, and the rates of cell swelling and the subsequent
RVD were monitored. Water permeability was significantly
less in parotid (Fig. 5, B and C; p , 0.005; n $ 16;) and
sublingual (Fig. 6, B and C; p , 0.005; n $ 39) acinar cells from
Aqp52/2 mice compared with wild-type littermates. The rate of
parotid acinar cell swelling was decreased by ;70% in Aqp52/2

cells (Fig. 5B), with an accompanying ;58% decrease in the
rate of RVD (Fig. 5C). Sublingual acinar cell swelling decreased
by ;77% in Aqp52/2 cells (Fig. 6B), with a coordinate ;60%
decrease in the RVD rate (Fig. 6C). These data suggest that the
AQP5-mediated water permeability is a major component in
the regulatory volume decrease response. Moreover, a signifi-
cant difference in the rate of RVD intrinsic to parotid versus
sublingual acinar cells was observed (Figs. 5C and 6C, respec-
tively). The rate of RVD for wild-type parotid acinar cells was
determined to be 1.07 6 0.20 units/min and was 0.40 6 0.03
units/min for sublingual acinar cells. As a result, parotid acini

FIG. 5. Targeted disruption of the Aqp5 gene inhibits the hy-
potonicity-induced cell swelling and the associated RVD in
parotid acinar cells. The role of AQP5 in the RVD response was
examined in parotid acinar cells loaded with calcein as described under
“Experimental Procedures.” Panel A, parotid acini isolated from
Aqp51/1 (solid line) and Aqp52/2 (dotted line) were perfused in an
isosmotic solution, and then hyposomotic cell swelling was induced by
switching the perfusate to a second medium diluted with 30% water
during the time interval indicated by the cross-hatched rectangle.
Changes in cell volume are represented as values of 1/Fn. Panels B and
C, summaries of the relative rates of swelling (panel B) and RVD (panel
C), respectively, in Aqp51/1 (filled bar) and Aqp52/2 (open bar) of
parotid acinar cells. Values represent mean 6 S.E. of n $ 36 cells from
three different experiments. Significant differences from the control are
indicated by asterisks (*) (p , 0.01).

FIG. 6. Targeted disruption of the Aqp5 gene inhibits hypoto-
nicity-induced cell swelling and the associated RVD sublingual
acinar cells. The role of AQP5 in the RVD response was examined in
sublingual acinar cells loaded with calcein as described under “Exper-
imental Procedures.” Panel A, sublingual acini isolated from Aqp51/1

(solid line) and Aqp52/2 (dotted line) were perfused in an isosmotic
solution, and then hyposomotic cell swelling was induced by switching
the perfusate to a second medium diluted with 30% water during the
time interval indicated by the cross-hatched rectangle. Changes in cell
volume are represented as values of 1/Fn. Panels B and C, summaries of
the relative rates of swelling (panel B) and RVD (panel C), respectively,
in Aqp51/1 (filled bar) and Aqp52/2 (open bar) sublingual acinar cells.
Values represent mean 6 S.E. of n $ 36 cells from three different
experiments. Significant differences from the control are indicated by
asterisks (*) (p , 0.05).
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regulate their cell volume subsequent to swelling ;2.7-fold
faster than sublingual acini from wild-type mice. Because the
water permeabilities of parotid and sublingual acini were com-
parable in response to anisosmotic challenges (see Figs. 5B and
6B), the differences in the rates of RVD were probably caused
by differences in the membrane permeability of ions in these
two cell types.

DISCUSSION

Defects in water channel protein expression and/or function
have been implicated in the pathogenesis of inherited and
acquired forms of diseases of fluid imbalance (23, 24). To un-
derstand the molecular mechanisms by which the aquaporins
regulate water balance in mammals, targeted disruption of
individual aquaporins in mice has been actively investigated
(AQP1 (25), AQP3 (26), AQP4 (27), AQP5 (10)).

We used AQP5-deficient mice to dissect the mechanisms by
which AQP5 functions in the regulation of acinar cell volume
and in the stimulation of salivary secretion. Northern and
Western analyses show that mice homozygous for the targeted
allele produce no full-length AQP5 mRNA and are null for
AQP5 protein, respectively. Phenotypically, Aqp52/2 mice are
10% smaller in body weight compared with wild-type litter-
mates. Birth genotypic ratios were 1:2:0.5 and deviated from
the expected 1:2:1 Mendelian ratio, suggesting a role for AQP5
in prenatal development. The ratios observed by us also differ
from a previously published report by Ma et al. (10), indicating
an observed 1 (Aqp51/1): 1 (Aqp51/2): 0.4 (Aqp52/2) ratio of F2
litters in an independently generated AQP5-deficient mouse
strain. It is possible that the difference observed between our
results (1 (Aqp51/1): 2 (Aqp51/2): 0.5 (Aqp52/2)) and the ratios
reported by Ma et al. (10) is attributable to a difference in the
genetic backgrounds of the two Aqp5-deficient strains.

Functionally, AQP5 deficiency results in dramatically re-
duced saliva production during pilocarpine stimulation. This
result suggests two potential mechanisms whereby Aqp5 dis-
ruption might induce hyposalivation. The simplest explanation
is that AQP5 is required for transcellular water movement.
Alternatively, targeted disruption of the Aqp5 gene may alter
whole animal water and electrolyte balance, resulting in a state
of dehydration, a condition known to inhibit salivation (11, 12).
To test this latter hypothesis, we measured multiple parame-
ters related to whole animal water and electrolyte homeostasis.
Loss of AQP5 function did not alter serum electrolyte and gas
levels in AQP5 knockout mice. Likewise, urine osmolality and
electrolyte composition, and urine output and water intake
were not significantly different between wild-type and knock-
out mice, suggesting that AQP5 deficiency does not alter whole
animal fluid homeostasis under normal physiological
conditions.

Thus, decreased saliva production by mice lacking AQP5
cannot be explained easily by an indirect effect of water and
electrolyte imbalance. This conclusion strongly suggests that
the secretion defect observed in Aqp52/2 mice is caused by a
loss of a critical transcellular water movement pathway. In
fact, AQP5 deficiency results in a large decrease in mercury-
sensitive, acinar cell water permeability as well as decreased
ability of acinar cells to regulate cell volume under anisosmotic
conditions. The regulation of acinar cell volume during salivary
secretion is a dynamic process influenced by muscarinic and
b-adrenergic stimulation, resulting in cell shrinkage and swell-
ing, respectively. Mechanistically, changes in transepithelial
osmotic forces drive fluid movement into the lumen and corre-
late with changes in acinar cell volume. Our data suggest that
AQP5 is responsible for mediating the bulk of the acinar cell
water permeability under anisosmotic conditions ($65%). In-
terestingly, we observed that the addition of mercury to iso-

lated Aqp52/2 parotid and sublingual acinar cells resulted in a
relatively small but significant increase in water permeability.
A recent study by Yasui et al. (30) reported a similar effect of
mercury on the osmotic membrane permeability of oocytes ex-
pressing AQP6, a related water channel. It is therefore possible
that an AQP6-like molecule is expressed in salivary gland
acinar cells which is enhanced by the presence of mercury. It is
also possible that mercury works nonspecifically to affect other
membrane proteins, thereby affecting membrane permeability.
Consistent with this latter possibility, mercury was also shown
to mimic the effects of low pH on the activation of ion conduct-
ance in AQP6-expressing oocytes (30).

The Aqp5 knockout mouse has also allowed us to evaluate
the importance of this water channel in the context of whole
animal physiology. The in vivo analysis of pilocarpine-stimu-
lated salivary secretion and osmolality revealed that AQP5 is
critically important in determining both saliva flow rates and
final ionic composition. Aqp5 null mice secrete saliva at an
;65% slower rate than wild-type mice, consistent with the
$65% reduction of water permeability of acinar cells in the
knockout mice (Fig. 2). In our studies, the average osmolality
during the 15 min of saliva collection from wild-type mice was
171 mosM and 212 mosM during 2-mg and 10-mg pilocarpine
stimulation, respectively. Our results are consistent with the
observation that mammalian saliva, including that of the
mouse saliva (29), is generally hypotonic (28). It is possible, but
unlikely, that the difference in osmolality seen in our study and
that reported by Ma et al. (10) is caused by the supramaximal
concentration of pilocarpine used by Ma et al. (80 mg/kg of body
weight), as our measurements of the average osmolality of the
saliva collected from wild-type mice was 202 6 2.6 mosm when
80 mg of pilocarpine was used (data not shown, n 5 6). Thus we
also performed experiments using lower concentrations of pi-
locarpine which are likely closer to the physiological range of
agonist concentrations (see Table I). Genetic background dif-
ferences may explain the variation we observed in the osmola-
lity between our Aqp5 knockout mice and the Aqp5 strain
examined by Ma and colleagues (420 mosM).

Taken together, the cell volume measurements and in vivo
measurements of saliva flow rates and composition reveal the
critical mechanism by which fluid secretion is accomplished in
the salivary gland. The cell volume measurements directly
show that AQP5 regulates salivary secretion by increasing the
membrane water permeability of acinar cells and that AQP5
regulates the cell volume of individual acinar cells. To date,
this is the first reported evidence that deficiency in a water
channel dramatically affects the regulation of cell volume in a
native tissue. Based on the significant effect of AQP5 ablation
on fluid secretion in the salivary gland, it is likely that other
members of the mammalian AQP family which are involved in
secretory or absorption may also be involved in controlling cell
volume. The AQP5-deficient mouse may thus prove to be a
useful animal model to investigate pathophysiological mecha-
nisms of salivary gland dysfunction in humans.
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