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REVIEW Open Access

Patterns of gene expression in microarrays and
expressed sequence tags from normal and
cataractous lenses
Konstantinos Sousounis and Panagiotis A Tsonis*

Abstract

In this contribution, we have examined the patterns of gene expression in normal and cataractous lenses as
presented in five different papers using microarrays and expressed sequence tags. The purpose was to evaluate
unique and common patterns of gene expression during development, aging and cataracts.

Keywords: Lens, Microarray, Cataract, EST

Introduction
The lens is the organ inside the eye dividing it into two
chambers: the aqueous humor in the anterior side and
the vitreous humor in the posterior side. Lens focuses
light from the environment to the retina for correct vi-
sion. The cornea is the most anterior surface that is in
contact with the aqueous humor and the environment.
Both the cornea and lens originated from the surface
ectoderm during development. During gastrulation, the
ectoderm is patterned to be the presumptive lens ecto-
derm and retina. Neurulation makes the presumptive
retina tissues invaginate and become part of the neural
ectoderm, which will form the optic vesicle, and it inter-
acts with the presumptive lens ectoderm in later stages
of neurula. In this stage, the fate of the presumptive lens
ectoderm is already determined, and the induction of
lens begins with the lens placode, which will evaginate
to form the lens vesicle. The lens vesicle will give rise to
mature lens, which is polarized with lens epithelium in
the anterior side and differentiated lens fibers in the pos-
terior (for reviews see [1-5]).
During all these steps, signaling pathways, transcrip-

tion factors and gradients of growth factors play essen-
tial role in patterning the different tissues, making them
competent in forming the appropriate tissues, stabilizing
their fate during the development of the organism and
finally differentiate them to play their designated role

[6,7]. Some of these factors are paired box protein 6
(Pax6) [8-35], sex determining region Y-box 1 (Sox1),
Sox2, Sox3 [16,28,31,36-43], sine oculis homeobox
homolog 3 (Six3) [17,32,44-46], pituitary homeobox 3
(Pitx3), [47-54], prospero homeobox protein 1 (Prox1),
[23,55-60], transcriptional factor of the fork head family
(Fox3e), [61-64], leucine zipper transcription factors of
the maf family [65-70], fibroblast growth factors (FGF)
[71-99], fibroblast growth factor receptors (FGFR)
[91,94,100-105], bone morphogenetic proteins 4 (Bmp4),
bone morphogenetic protein 7 (Bmp7) [106-109] Bmps/
TGFb and their receptors [110-117], extracellular matrix
(fibrin, laminin and fibronectin) [118-121], integrin sig-
naling [122-124], insulin [125,126], insulin-like growth
factor-1 (IGF-1) [127] and activator protein 2 (AP2)
[128,129].
Functional analysis for most of these factors using

transgenic animal models revealed that they associate
with known diseases. Disruption of one or more of these
factors from their normal role during development leads
to abnormal phenotypes. In lens, most of the abnormal
phenotypes result to cataract, a term which is used for
all the situations where light cannot pass through the
lens or it is scattered but not focused on the retina.
Crystallins, the most abundant proteins in the lens,
which also make the lens transparent, are disorganized
during cataract. Cataract has many forms and causes,
and it can change depending on the age and the region
of the globe [130-135]. Classification depends on the
patient's age, location in the lens, maturity stage and
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cause. Cataract can be formed together with other devel-
opmental disorders depending on mutations of factors
that play roles in the differentiation of the lens, such as
Pitx3 [136], crystallins, ferritin, connexins, aquaporins,
LIM2, filensin, phakinin, heat shock transcription factor
4, Foxe3, Chx10, Maf family, Pax6, Gcnt2, Chmp4b
(reviewed [137]), extracellular matrix (Capsule), fibrillin-
1 [138], lysyl oxidase-like 1 (Loxl1) [139-141], laminin
subunit b2 (lam-b2) [142], collagen IV a1 (col4a1) [143],
collagen IV a3 (col4a3), collagen IV a4 (col4a4), collagen
IV a5 (col4a5) [144], collagen XVIII [145], fibronectin
[146], Sparc [147,148], collagen type I [149-151], FGF
receptors [105], matrix metalloproteinases 2 and 9
[152,153] and integrins [154]. Similarly, metabolic dis-
eases like diabetes, which leads to accumulation of glu-
cose products inside the lens, can result in cataracts
[155,156]. Also, there are certain genetic syndromes that
contribute to cataract formation, such as Nance-Horan
syndrome [157,158], Lowe syndrome (neurofibromatosis
type 2) [136], hyerferritinemia cataract syndrome, Mar-
fan syndrome [138], pseudoexfoliation syndrome [159],
Pierson syndrome, Alport's syndrome [144,160], Kno-
bloch syndrome [145] and phacotoxic uveitis [161,162].
However, despite the high percentage of success in cata-
ract surgeries, complication can result in secondary cata-
ract. The most important mechanism that is recognized
to play a role in secondary cataract formation is the
Epithelial-Mesenchymal Transition (EMT). This path-
way is heavily studied because of its role in different
kinds of situations, pathological or developmental
[151,163,164]. TGFb is the soluble protein that activates
this pathway in the lens epithelial cells to differentiate to
fibro-myoblasts and not to lens fiber cells, which eventu-
ally leads again to opacification of the lens.
Age is a factor that influences many molecular, genetic

and metabolic networks. For example, in lens, the lens
capsule becomes thicker with age [165-167]. The lens
loses functional properties and changes its protein con-
tents. Membranes become harder, and that can influence
the function of transmembrane proteins playing a role in
cell-cell communication or homeostasis like aquaporins
or connexins. The appearance of an internal lens barrier
may play a role in preventing the smooth transportation
of molecules in and out of this avascular tissue
[168,169]. This might result in accumulation or lack of
certain molecules, which can result in cataract. Further-
more, modifications in proteins appear in aged lens.
These modifications can be cleavage of structurally im-
portant proteins like crystallins or modifications in cer-
tain residues, which can lead to altered interactions with
other molecules. Finally, the lens' UV defenses are lost
with age. UV can cause many structural alterations to
proteins, resulting in lens opacification [170,171]. Oxida-
tive stress is very important in cataract formation and is

extensively studied [172]. Reduced levels of glutathione
are the major cause of age-related nuclear cataract
[130,171,173,174]. Additionally, proteins are oxidized,
modified and cross-linked, so they lose their functional
properties. Also, hyperoxide with metals can influence
molecular and homeostatic regulation in the lens, result-
ing in age-related nuclear cataract (see review [171]).
As discussed above, there are mechanisms that induce

lens from the ectoderm. Signaling pathways, molecular
interactions and cell communication create the normal
lens in the eye cup. It has the mechanisms to repair gen-
etic and molecular damage from light. Also, this avascu-
lar tissue needs mechanisms to keep homeostasis. All
these networks must restart if the tissue is injured or if
it regenerates a part of it. During regeneration, all the
cascades must be enabled again. In the past years, meth-
ods, such as microarrays, to analyze genes and gene
expressions in a high-throughput approach have been
utilized. Genes expressed in developing lens, lens during
regeneration, aging lens and lens with cataract have been
analyzed by these approaches. The purpose of this con-
tribution is to summarize and compare the genomic
analysis that has been performed in these different con-
ditions. Most of the times, the data generated from this
kind of analysis make it difficult to interpret and even
more when different data sets are compared. Here, we
have compared data sets from five different studies, and
we have identified similar and different patterns between
the different tested groups that were generated from
genomic analysis.

Analysis
We have selected five papers dealing with microarray
data and expressed sequence tag analysis. There are, of
course, other papers in the literature that use high-
throughput approaches to study gene expression in the
lens [34]. However, we have decided to concentrate to
these papers because of the conditions of the lens used
(age-related cataract, Sparc-null mice and regenerating
lens).

Study #1: ‘Expressed sequence tag analysis of adult
human lens for NEIBank Project: over 2000 non-
redundant transcripts, novel genes and splice variants’
Two adult (40 years old) human lenses were used, and
two libraries were created: (by) non normalized and (fs)
normalized. Genes that are expressed in the lens or are
abundant in the lens were found [175]. However, there
was no mention of any comparison with other tissues.
The data we used have been taken from the following
tables of the paper:

� Table one: The twenty five most abundant
transcripts in the unamplified lens library (by)
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� Table two: Cytoskeleton related transcripts from the
combined lens libraries (by + fs)

� Table three: Oxidation related transcripts observed
in by and fsEST collections

� Table four: Protease related transcripts
� Table five: Transcription factors
� Table six: Transcripts for growth factors, cytokines

and growth factor related genes in lens libraries.
� Table seven: Apoptosis related transcripts in lens

Study #2: ‘Expression profiling and gene discovery in the
mouse lens’
Mouse lenses of different ages and non-lens tissues to
compare differentially regulated genes were used [176].
The data we used have been taken from the following
tables of the paper:

� Table two: ONTO-express analysis of the 1,668
genes expressed at above background plus 2 SD
levels in at least one of the lens

� Table three: A list of the 50 most highly expressed
genes identified in the lens samples

� Table four: Genes potentially preferentially expressed
in lens compared to non lens samples as determined
by K-means clustering

� Table six: Apoptosis genes expressed in the lens
� Table seven: Additional novel and uncharacterized

genes expressed in the lens confirmed by Reverse
transcription-Polymerase chain reaction
(RT-PCR)

� Table eight: Additional known genes expressed in
the lens confirmed by RT-PCR

Study #3: ‘Gene expression changes during cataract
progression in Sparc null mice: differential regulation of
mouse globins in the lens’
Microarray analysis of adult lenses from Sparc knockout
mice on two strain backgrounds was used [177]. The
data we used have been taken from the following tables
of the paper:

� Table four: Confirmed genes: Nine month
Sparctm1cam 129 Sv/Ev lenses versus 129 Sv/Ev
controls

� Table five: Confirmed genes: Nine month
Sparctm1cam 129/Ev/Mf1GPI-BB lenses versus
Mf1GPI-BB controls

Study #4: ‘Identification and functional clustering of
global gene expression differences between human
age-related cataract and clear lenses’
Microarray analysis was used to find differences between
age-related cataract and clear lenses in human [178].

The data we used have been taken from the following
tables of the paper:

� Table one: Genes exhibiting differential expression in
cataract relative to clear lenses

� Table continued: Genes exhibiting decreased
expression in cataract relative to clear lenses

Study #5: ‘Gene expression and discovery during lens
regeneration in mouse: regulation of epithelial to
mesenchymal transition and lens differentiation’
Microarray analysis of mouse lens was used during re-
generation after surgery [179]. The data we used have
been taken from the following tables of the paper:

� Table one: Top 50 genes with the greatest increase in
relative mRNA expression levels of regenerating lens
compared to intact control lens 1, 2 and 3 weeks post-
extracapsular surgery. For a better visual presentation
of the regulated genes at 1, 2 and 3 weeks, the times
that each gene is highest is marked in red.

� Table two: Top 50 genes with the greatest decrease in
relative mRNA expression levels of regenerating lens
compared to intact control lens 1, 2 and 3 weeks post-
extracapsular surgery. For a better visual presentation
of the regulated genes at 1, 2 and 3 weeks, the times
that each gene is highest is marked in red.

� Table four: The gene cluster displaying a weak
uniform increase in relative mRNA expression levels
of regenerating lens compared to intact control lens
1, 2 and 3 weeks post-extracapsular surgery. For a
better visual presentation of the regulated genes at
1, 2 and 3 weeks, the times that each gene is highest
is marked in red.

� Table six: The gene cluster displaying a strong
uniform increase in relative mRNA expression levels
of regenerating lens compared to intact control lens
1, 2 and 3 weeks post-extracapsular surgery. For a
better visual presentation of the regulated genes at
1, 2 and 3 weeks, the times that each gene is highest
is marked in red.

� Table eight: The gene cluster displaying a strong
increase in relative mRNA expression levels of
regenerating lens compared to intact control lens 1,
2 and 3 weeks post-extracapsular surgery. For a
better visual presentation of the regulated genes at
1, 2 and 3 weeks, the times that each gene is highest
is marked in red.

� Table ten: The gene cluster displaying a weak decrease
in relative mRNA expression levels of regenerating lens
compared to intact control lens 1, 2 and 3 weeks post-
extracapsular surgery. For a better visual presentation
of the regulated genes at 1, 2 and 3 weeks, the times
that each gene is highest is marked in red.
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� Table twelve: The gene cluster displaying a strong
uniform decrease in relative mRNA expression levels
of regenerating lens compared to intact control lens
1, 2 and 3 weeks post-extracapsular surgery. For a
better visual presentation of the regulated genes at
1, 2 and 3 weeks, the times that each gene is highest
is marked in red.

Presentation of analysis
The data taken from the tables above were sorted and
categorized depending on their expression in the differ-
ent conditions that we examine. In our tables, the col-
umns represent the following:

� Column 1: Name. Name of genes are the same with
those taken from the tables of the different papers. If
the same names were identified, they were fused in
one row.

� Column 2: Accession number. Accession numbers
are the ones from the selected papers. They can be
from gene, protein or expressed sequence tags (EST)
databases. If two or more genes (same gene, with a
different name) are presented as one in a row, more
accession numbers may appear in the corresponding
column. In parenthesis are the new accession
numbers that are assigned to the different genes,
without omitting the old accession number from the
original paper.

� Column 3: Lens. Genes found in the lens in general.
Red, information from the paper ‘Expressed
sequence tag analysis of adult human lens for
NEIBank Project: over 2000 non – redundant
transcripts, novel genes and splice variants’ [175].
Dark red, information from the paper ‘Expression
profiling and gene discovery in the mouse lens’ [176]
for genes that are not shown to be differentially
expressed between lens and non-lens tissues.

� Column 4: More in lens. Genes that are found to be
differentially expressed between lens and non-lens
tissues. Red, information from the paper ‘Expression
profiling and gene discovery in the mouse lens’ [176]
for genes that are differentially expressed between
lens and non-lens tissues. Yellow, information from
the same paper but for genes that are not
differentially expressed between lens and non-lens
tissues.

� Column 5: Up in Sparc. Genes that are up-regulated
in Sparc-null mice compared to normal controls.
Red, information from the paper ‘Gene expression
changes during cataract progression in Sparc-null
mice: differential regulation of mouse globins in the
lens’ [177].

� Column 6: Down in Sparc. Genes that are down-
regulated in Sparc-null mice compared to normal

controls. Red, information from the paper ‘Gene
expression changes during cataract progression in
Sparc-null mice: differential regulation of mouse
globins in the lens’ [177].

� Column 7: Up in cataract. Genes that are up-
regulated during age-related cataract compare to
clear lenses. Red, information from the paper
‘Identification and functional clustering of global
gene expression differences between human age-
related cataract and clear lenses’ [178].

� Column 8: Down in cataract. Genes that are
down-regulated during age-related cataract
compared to clear lenses. Red, information from the
paper ‘Identification and functional clustering of
global gene expression differences between human
age-related cataract and clear lenses’ [178].

� Column 9: Up in regeneration. Genes that are
up-regulated during lens regeneration compared to
intact lenses. Red, information from the paper ‘Gene
expression and discovery during lens regeneration in
mouse: regulation of epithelial to mesenchymal
transition and lens differentiation’ [179].

� Column 10: Down in regeneration. Genes that are
down-regulated during lens regeneration compared
to intact lenses. Red, information from the paper
‘Gene expression and discovery during lens
regeneration in mouse: regulation of epithelial to
mesenchymal transition and lens differentiation’
[179].

� Column 11 to 16 (Only present in Additional file 1:
Table S2). Categories for gene functions. Red, if
there was information from the five papers used.

Discussion
From the analysis we have performed, we have divided
the regulated genes into eight major groups for our
discussion.

Crystallins-heat shock proteins
Crystallins and heat shock proteins (Additional file 2:
Table S4) comprise the main structural part of the lens.
They have protective antioxidant properties and work as
chaperones. Crystallins account for approximately 90 %
of total lens proteins [180]. They make the lens transpar-
ent in order for light to pass through and focus on the
retina. Most of the different kinds of crystallins are
present in the lens, as shown in Additional file 2: Table
S4, column 3. Some of them are found up-regulated in
the lens than in other tissues (crystallin beta A1, beta
A2, gamma A, gamma C, gamma E; Additional file 2:
Table S4, column 4). During cataract, crystallins are dis-
rupted; cross-linking between them results in aggrega-
tion, insolubility and opacification of the lens. Most of
the crystallins are down-regulated during age-related
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cataract, as shown in Additional file 2: Table S4, col-
umn 6. Among them, crystallin alpha A is a protein
associated with known cases of cataract formation due
to a mutation that results in an early stop codon in the
gene [181] or other mutations that affect its interac-
tions [182-189]. Furthermore, crystallin alpha B does
not show any change during age-related cataract
(Additional file 2: Table S4, columns 8 and 7), which is
consistent with the fact that it has been shown to cause
myopathy through other effects [190,191]. However,
cataract has been associated with mutated crystallin
alpha B in humans [192-196]. Beta crystallins are
down-regulated during cataract (Additional file 2: Table
S4, column 8), and they have a known role in cataract
formation [197-215]. Crystallins gamma A and gamma
D are also found in cataracts [216-234] and are down-
regulated during age-related cataract (Additional file 2:
Table S4, column 8). Some of the crystallins are down-
regulated during regeneration of the lens from the lens
capsule that is left behind, probably depending on the
emergence of EMT in the early stages. Thus, crystallins
that are found in mature lens, especially gamma crystal-
lins, are down-regulated during regeneration (Additional
file 2: Table S4, column 10). However, early crystallins
are not up-regulated except a cytosolic thyroid hormone-
binding protein, crystallin mu (Additional file 2: Table
S4, column 9).
Heat shock proteins have structural and sequence

similarities with crystallins and play transcriptional,
structural and, most importantly, protective roles in the
lens. Heat shock proteins are chaperones, and they pro-
tect the lens from oxidation and stress [235,236]. Some
of them are found in the lens, as shown in Additional
file 2: Table S4, column 3, but they do not seem to be
significantly differentially expressed between the lens
and other tissues (Additional file 2: Table S4, column 4).
Similarly with crystallins, they are down-regulated dur-
ing age-related cataract and regeneration (Additional
file 2: Table S4, columns 8 and 10).
Overall, the comparison of the datasets clearly shows

that crystallins malfunction during the different types
of cataract except Sparc-related cataract. During age-
related cataract and regeneration, crystallins are mostly
down-regulated. There is an apparent connection be-
tween cataract and crystallins from all the studies that
are performed in this field. The data are consistent,
and they link the abnormal regulation of crystallins as
a key player for cataract formation (Additional file 3:
Table S5).

Cytochrome
Cytochrome (Additional file 4: Table S6) is a protein
related to electron transfer chain in the mitochondria,
and it has been linked to stress [237]. Light induces

stress response in the lens due to oxidation. This can be
the reason why there are a lot of cytochrome oxidases
present in the lens (Additional file 4: Table S6, column
3). The regulation of cytochrome oxidases is disrupted
due to stress in the eye after surgically removing the lens
fibers, a procedure that leads to regeneration-EMT re-
sponse in the lens (Additional file 4: Table S6, columns 9
and 10).
Other than mitochondrial stress-related cytochrome

oxidases, cytochromes of the P450 family seem to
play a role in cataract formation. These proteins that
are located in the endoplasmic reticulum can oxidize
different kinds of substrates. Their regulation is dis-
rupted similarly like cytochrome oxidases (Additional
file 4: Table S6, columns 9 and 10). Studies show that
cytochrome P450 is directly linked to cataract forma-
tion after metabolizing acetaminophen [238]. In
addition, it is blamed for initiating cataract formation
[239].

Transcriptional factors
Many transcriptional factors (Additional file 5: Table S7)
are present in the lens, as shown in Additional file 5:
Table S7, column 3. Many of them can be found in all
tissues in order to maintain housekeeping functions
(ATF4, apoptosis antagonizing transcription factor,
bHLH transcriptional factors, general transcriptional fac-
tor II and III, and transcriptional elongation factors).
Others, as discussed in the introduction, are transcrip-
tional factors during development that define the differ-
ent regions of the optic cup which, with appropriate
interactions, create a functional eye. The expression of
these transcriptional factors also persists after the eye is
formed. The lens specific transcriptional factors define
the lens epithelium, the transition zone and the lens
fibers [1,2,4]. These, important for the integrity of the
lens transcriptional factors, are not found in age- or
Sparc-related cataract or regeneration (Additional file 5:
Table S7, columns 5, 6, 7, 8, 9 and 10). Mutated tran-
scriptional factors can result in cataract formation along
with other effects, but these situations are not part of
the cataract cases we examine, which are caused by age,
the lack of a glycoprotein (Sparc) or the surgically
removed lens fibers.
As mentioned earlier, studies implicate transcriptional

factors with cataract formation. These studies include
human patients. To sum up, transcriptional factors are
difficult candidates in studying cataract formation during
aging or EMT because they are involved in many differ-
ent aspects of cell physiology.

Immunity
The lens is an avascular organ. Consequently, it is not in
direct contact with blood flow. Thus, it is not surprising
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to see that proteins playing a role in the immune sys-
tem are not expressed in the lens (Additional file 6:
Table S8, column 3). However, two of them differen-
tially show expression between the lens and other tis-
sues (CD24 antigen and IL2-inducible T cell kinase;
Additional file 6: Table S8, column 4). After surgically
removing the lens fiber, which represents cataract for-
mation through activation of EMT, many proteins that
activate inflammation response, like complement com-
ponents, are present, as seen in Additional file 6: Table
S8, column 9. Interestingly a C5 antagonist has been
found to be beneficial by inhibiting EMT in a lens re-
generation model, even though the receptors involved
are not known [240]. This implicates an inflammatory
immune response [240]. On the other hand, during
age-related cataract, there are a few proteins that are
actually down-regulated (Additional file 6: Table S8,
column 8), which might mean that the regulation of
the immune system may play a role in maintaining the
opacity of the lens. Sparc-null-related cataract shows
up-regulation of complement components (Additional
file 6: Table S8, column 5) that is linked to cell lysis,
which is observed during Sparc-null cataract at the later
stages.
Surgical removal of the lens fibers is a process that will

trigger the immune system. The blood near the area of
the damage brings molecules playing role in immune re-
sponse. Also, white blood cells secrete other cytokines.
These signals might promote the EMT process and play
a role during age-related cataract. Oxidative stress is in-
creasing with age, which in turn can trigger an inflam-
mation response in neighboring tissues.

Growth factors
Growth factors (Additional file 7: Table S9) are small
proteins that bind to certain receptors and activate spe-
cific downstream cascade events. Gradients of growth
factors are regulating the correct gene expression and
patterning in the lens [1,3]. All the major growth factors
are present in the lens (Additional file 7: Table S9, col-
umn 3), and there is not much variation in expression
during age- or Sparc-related cataract or regeneration
(Additional file 7: Table S9, column 5, 6, 7, 8, 9 and 10).
These molecules, if not produced in the lens, must dif-
fuse from the other parts of the eye like the cornea and
retina and pass through the extracellular matrix of the
lens capsule in order to reach the lens epithelium or
fibers. During aging, the lens capsule is changing, so the
regulation in the capsular bag level is reduced. This dis-
rupts the accommodation of the lens and can lead to
presbyopia with age or interfere with metabolic pro-
cesses in the lens [153,171,241,242]. FGFR proteins are
very important for the lens to sense the FGF gradient in
the optic cup and have known roles during cataract

formation without showing any change during age-
related cataract (Additional file 7: Table S9, columns 7
and 8). TGFb, a molecule that plays the major role in
EMT, and proteins that interact with it, such as latent
TGFb-binding proteins, are up-regulated during regen-
eration (Additional file 7: Table S9, column 9). There
might not be much about Sparc-null-related cataract
and growth factor regulation (Additional file 7: Table S9,
columns 5 and 6), but Sparc is a very important protein
of the extracellular matrix. It can regulate various
growth factors including FGF2, VEGF and PDGF [243].
This indicates that the cataractous lens might not differ-
entially express growth factors, but it might respond dif-
ferently to growth factors that reach the lens from other
parts of the eye.
Overall, growth factors play an important role in cata-

ract formation. They are directly implicated to secondary
cataract formation through EMT where TGFb is the key
player. For age-related cataract and Sparc-null cataract,
growth factors seem to play a secondary role.

Metalloproteinases/cathepsins
In the lens, there is a lot of extracellular matrix, which
has to be maintained in the appropriate proportion of
proteins in order to serve its role as the first barrier for
molecule trafficking. Extracellular matrix is replaced
over time [244]. Metalloproteinases are proteins that
can degrade extracellular matrix composed of collagen,
fibrin, various receptors, etc. As shown in Additional file
8: Table S10, column 3, there are many kinds of metal-
loproteinases present in the lens. During regeneration,
the lens epithelial cells proliferate and migrate in order
to create again the fibers. In order for the remaining
lens epithelial cells to accomplish that, they have to
degrade the extracellular matrix that has covered all the
area in the eye after the surgical operation. They also
have known roles in regeneration in various systems
[245-251]. Additional file 8: Table S10, column 9 shows
metalloproteinases and cathepsins that are up-regulated
during regeneration. On the other hand, tissue in-
hibitors of metalloproteinases are up-regulated too
(Additional file 8: Table S10, column 9). The correct
regulation of extracellular matrix degradation is essential
for the regeneration of the lens. A not so well-known
role of metalloproteinases is the relationship they have
with cataract. There are reports showing that the dis-
ruption of normal regulation of metalloproteinases can
lead to cataract [252-254]. As shown in Additional file
8: Table S10, column 8, some metalloproteinases are
down-regulated during age-related cataract. Interest-
ingly, expression of matrix metalloproteinases is not
altered in Sparc-null cataract even though the compos-
ition of the extracellular matrix in these lenses is
altered.
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Matrix metalloproteinases and cathepsins can be an
area of investigation since they are found to be respon-
sible for cataract formation. Inhibition of migration of
epithelial cells after lens surgery can inhibit the forma-
tion of secondary cataract. In addition, maintaining the
correct proportion of extracellular matrix around the
lens is essential for the integrity and the ability of the
lens to regulate outgoing signals.

Collagen
Some of the main components of the extracellular
matrix of the lens are different types of collagens
(Additional file 9: Table S1). These proteins are part of
the capsular bag and are essential to maintain the integ-
rity of the lens. Interestingly, there is only one type of
collagen differentially expressed between the lens and
non-lens tissues (Additional file 9: Table S1, column 4).
Collagen proteins are down-regulated during Sparc-
related cataract, which might reflect an interaction be-
tween the Sparc glycoprotein (Additional file 9: Table
S1, column 6). Sparc protein is very important when it
comes to extracellular matrix. It can interact with colla-
gen and other proteins of the extracellular matrix. It can
also have an effect in the production of collagen. Thus,
the Sparc-null lens make less collagen, which in turn can
result in weaker lens capsule and disruption of its nor-
mal osmosis. Some collagen proteins are up-regulated
during regeneration of the lens (Additional file 9: Table
S1, column 9). Also, mutations in collagen genes have
been shown to link with diseases, as discussed in the
introduction.

Ribosomal proteins - protein synthesis
All the cells require ribosomal proteins and the protein
synthesis machinery in order to create proteins that are
needed for cell survival (Additional file 10: Table S3). It
has been shown that there is differential regulation of
these ‘housekeeping’ proteins, and they may have other
roles in the cell for different conditions [255-257]. As
shown in Additional file 10: Table S3, column 8, there
are a lot of ribosomal proteins that are down-regulated
during age-related cataract, which might reflect the
disorganization of crucial networks leading to lens opa-
cification. On the other hand, there are mitochondrial
ribosomal proteins that are down-regulated during
regeneration, which can reflect stress in the lens
(Additional file 10: Table S3, column 10). Inactivation of
ribosomal proteins S3, S8, S11 and of translation initi-
ation factors is linked to the increase of life span in
Caenorhabditis elegans, which means a possible energy
conservation by controlling the rate of protein synthesis
[258]. Such a mechanism might be more wide-spread in
diseases as well.

Additional files

Additional file 1: Table S2. List of all genes and their expression in
different conditions of the lens.

Additional file 2: Table S4. List of genes related to crystallins and heat
shock proteins and their expression in different conditions of the lens.

Additional file 3: Table S5. List of genes that are present in two or
more different conditions of the lens.

Additional file 4: Table S6. List of genes related to cytochromes and
their expression in different conditions of the lens.

Additional file 5: Table S7. List of genes related to transcriptional
factors and their expression in different conditions of the lens.

Additional file 6: Table S8. List of genes related to immunity and their
expression in different conditions of the lens.

Additional file 7: Table S9. List of genes related to growth factors and
their expression in different conditions of the lens.

Additional file 8: Table S10. List of genes related to
metalloproteinases and cathepsins and their expression in different
conditions of the lens.

Additional file 9: Table S1. List of genes related to collagen and their
expression in different conditions of the lens.

Additional file 10: Table S3. List of genes related to ribosomal
proteins and translation and their expression in different conditions of
the lens.
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