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REVIEW Open Access

Conservation of the three-dimensional structure
in non-homologous or unrelated proteins
Konstantinos Sousounis1, Carl E Haney1, Jin Cao2, Bharath Sunchu3 and Panagiotis A Tsonis1*

Abstract

In this review, we examine examples of conservation of protein structural motifs in unrelated or non-homologous
proteins. For this, we have selected three DNA-binding motifs: the histone fold, the helix-turn-helix motif, and the
zinc finger, as well as the globin-like fold. We show that indeed similar structures exist in unrelated proteins,
strengthening the concept that three-dimensional conservation might be more important than the primary amino
acid sequence.

Keywords: 3D protein structure, Conserved motifs, Unrelated proteins

Introduction
When the human genome was sequenced (as well as that
of other mammals), it was estimated that there are ap-
proximately 25,000 genes encoding for proteins [1,2].
After being synthesized, proteins assume their three-
dimensional structure by a specific arrangement of beta
strands, alpha helices, turns, or loops. In many cases, a
combination of these structural features creates certain
motifs, exerting a particular function (i.e., DNA binding)
that is quite conserved in proteins from virtually all organ-
isms. Interestingly, the number of these motifs is much
smaller than the number of genes. However, it has also
been noted that some structural motifs show significant
robustness even though no significant homology exists
among them at the primary amino acid sequence. It seems
that evolutionary constraints have limited the ability of
proteins to become vastly different. Moreover, it has been
shown that protein structures are three to ten times more
conserved than the amino acid sequence [3]. Thus, a par-
ticular motif, i.e., a zinc-binding domain of very similar or
virtually identical structure, can be found in many differ-
ent proteins, which could also be unrelated to each other
when function is concerned. Thus, it seems that evolution
does favor conservation of structural motifs in proteins.
The purpose of this tutorial/review is to illustrate this

diversity that exists in the function of structurally con-
served protein motifs. For this reason, protein folds with

low homology in amino acid sequence and high struc-
tural similarity were used. The analysis for the obvious
reason of space is not exhaustive and is focused on four
specific protein structural folds: We have selected to
present data with three different DNA-binding domains:
the histone fold, the helix-turn-helix motif (HTH), and
the zinc finger, as well the globin-like fold, part of an im-
portant protein in oxygen binding and transport. These
four folds were chosen because they are ubiquitous in
many different organisms and are well represented in
many different proteins.
For our comparisons, an intensive search of the Vector

Alignment SearchTool (VAST) [4,5], an algorithm to deter-
mine three-dimensional (3D) structure similarities accord-
ing to geometric criteria, was done. A protein family was
identified using a representative protein and, using VAST
and the Molecular Modeling Database [6], dissimilar struc-
ture proteins were identified and annotated followed by
root mean square deviation (RMSD) determination. The
structures were then downloaded into Cn3D (‘see in 3D’)
[7] for viewing the sequence alignment. The above are part
of Entrez [8,9]. These structures were then aligned in
PyMOL [10] for 3D viewing. The files for the PyMOL
structures provided have been downloaded from the
Protein Data Bank (PDB) [11]. The lower the RMSD means
better structural alignment. Lower identity means that the
two proteins do not share the same amino acids in the cor-
responding structural alignment. Though, depending on
how big are the structures that we are comparing, the
RMSD and sequence identity may vary. Small domains may
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contain always certain amino acids increasing the identity.
On the other hand, big proteins may not align well and
may increase the RMSD. For the present analysis, we chose
to set the limits as follows: RMSD to be lower than 3.5 and
amino acid identity to be lower than 25% in order to con-
clude that this pair of proteins has similar structures but
dissimilar sequences.

Globin-like fold
Globin-like fold is an all-alpha protein fold normally
consisting of six alpha helices [12]. The number of heli-
ces can be altered in different families of globin-like pro-
teins. These helices are not randomly distributed in the
protein, but they are oriented following standard helix-
helix packing rules in order to form a globular structure.
Globin-like fold is mostly known from hemoglobins
(Figure 1) and myoglobins which play an important role
in transferring oxygen to all the tissues of an organism
with the help of heme groups which can bind oxygen
reversibly. The heme-binding proteins are part of the
actual family of globins [12].
The globin family was the first example that showed

structural conservation even in different organisms [14-17]
and led scientists' pursuit to prove that 3D structures of
proteins are more conserved than their sequences. It turned
out that globin-like folds exist in many proteins with differ-
ent functions. Hemoglobins and myoglobins play a role in
oxygen transport; cyanoglobins [18] bind to oxygen to help
in cellular processes; phycocyanins and phycoerythrins
[19,20] play a role in absorbing light; cytokines and
immuno-globins [21,22] play a role in the immune system;
and fibronectin [23] is part of the extracellular matrix. Nat-
ural selection kept the 3D structure of this fold intact [24]
while utilizing it for different functions to meet other
required organismal requirements.
We have compared pairs of functionally different proteins

or proteins from organisms that diversified long ago.

Figure 2 shows the 3D structural conservation despite low
sequence similarity.structure is conserved in a monomeric
hemoglobin of a trematode (PDB: 1H97) compared to a
hemoglobin which is part of a large protein (3.6 million Da)
from an annelid (PDB: 2GTL). In this case, the single
hemoglobin from a trematode can bind and transport
oxygen. However, it is structurally relevant to hemoglobins
that are part of a 3.6 million-Da protein, an erythrocruorin,
which serves the same purpose but has more advantages
such as resistance to oxidation and other cooperative bind-
ing properties [25,26]. Both proteins are part of the globin-
like superfamily [12].
In the next example, structural conservation of a plant

hemoglobin (PDB: 2GNW), which may play a role in
binding free molecules that cause oxidation, and a
globin-coupled sensor (PDB: 2W31), which plays a role
in adapting the organism in the presence of oxygen via
transmitted signals to a transmembrane protein, can be
seen [27,28]. This example demonstrates how a globin-
like fold has been used for different kinds of responses
from scavenging hazardous active molecules to sense ex-
ternal stimuli and cooperate with other proteins to get
the appropriate response. Both proteins are part of the
globin-like superfamily [12].
Nitric oxide detoxification in M. tuberculosis occurs

with the help of a truncated hemoglobin protein (PDB:
2GLN). Its structure is similar to an extracellular giant
hemoglobin from an annelid (PDB: 2ZS1) that plays a
role in binding oxygen [29,30].
Certain organisms absorb light through pigments. Allo-

phycocyanin is a pigment and its structure is part of the
phycobilisome family [12]. This structure (PDB: 1KN1) is
similar to a protein that plays a role in regulating the
sigma (s) factor during transcription (PDB: 2BNL) and
belongs to the Rsbr_N superfamily (VAST) [31,32]. This is
an example of using the globin-like fold as a building
block to make a larger structure like the N-domain of the
rsbr to serve a different role.
The last example is from two organisms that evolved

separately for many millions of years: a neuroglobin (PDB:
1OJ6) from Homo sapiens and a protoglobin (PDB: 2VEB)
from archaea. The role of globin-like proteins in archaea is
not yet fully determined. It is proposed to play a role in
metabolism of the strictly anaerobic M. acetivorans and to
be the building block of globin-coupled sensors. The
structure is similar to the neuroglobin from humans which
play an important role in regulating oxygen transport in
neural tissues [33,34].

Histone fold
This motif is most commonly associated with histones
but can also be found in a multitude of proteins such as
DNA-binding transcription initiation factors which are
functionally conserved in archaea and eukaryotes [35].

Figure 1 Human hemoglobin (PDB: 2DN2; chain A) [13].

Sousounis et al. Human Genomics 2012, 6:10 Page 2 of 10
http://www.humgenomics.com/content/6/1/10



Because of this functional conservation in archaea and
eukaryotes, the histone fold is thought to be an ancient
motif [36]. Interestingly, the pure functionality of the
histone fold is not found in eubacteria [37]. As seen in
Figure 3, the basic structure of the histone fold com-
prises a central alpha helix flanked on each side by two
smaller helices.
Due to the hydrophobic nature of the histone fold, it is

only stable within histone fold-to-histone fold dimers.
Eukaryotic histones, for example, dimerize specifically
with H2A dimerizing with H2B and H3 dimerizing with
H4, thereby creating the basis of the histone octamer.
Archaea histones appear to have less specificity in

dimerizing to a specific partner but, through dimerization,
utilize the histone fold to produce a similar histone struc-
ture [38,39].
Since the function of histones and the histone fold are

shared by archaea and eukarya, it is thought to have
been derived from an early thermophile which initially
utilized the histone fold to maintain the integrity of
DNA under thermal stress. This increased integrity
would have also brought about the added benefit of
genome compaction which would have required a mech-
anism to unwind and transcribe those genes and thus
the appearance of proteins such as TATA box-binding
proteins and transcription initiation factors which also

PDB # - Function RMSD - % Identity Images from PyMOL and Cn3D References
Example 1
- 2GTL_Chain A: Lumbricus terrestris

(annelide) hemoglobin part of a 
3.6million Dalton protein. Transports 
oxygen.

- 1H97_Chain A: Paramphistomum 
epiclitum (trematode) monomeric 
hemoglobin. High affinity to oxygen.

RMSD: 2.3
Identity: 12.1%

24, 25 

Example 2
- 2GNW_Chain B: Found in plants. Its

role is not yet determined. Oryza 
sativa.

- 2W31_Chain A: detects oxygen and 
transmits signal. Geobacter 
sulfurreducens.

RMSD: 3.2
Identity: 13.4%

27, 26 

Example 3
- 2GLN_Chain A: nitric oxide 

scavenging. Mycobacterium 
tuberculosis.

- 2ZS1_Chain A: extracellular giant 
Hb. Cooperative oxygen binding via 
inorganic cations. Oligobrachia 
mashikoi.

RMSD: 2.4
Identity: 6.7%

28, 29,  

Example 4
- 1KN1_Chain A: allophycocyanin, 

absorbs light, part of phycobilisomes 
and phycobilisome structural family.
Pyropia yezoensis.

- 2BNL_Chain C: Non heme, regulates 
s factor after environmental stress. 
Bacillus subtilis

RMSD: 2.9
Identity:11.4%

30, 31 

Example 5
- 2VEB_Chain A: Found in archae, role 

is not yet determined. 
Methanosarcina acetivorans.

- 1OJ6_Chain A: A neuroglobin found 
in human brain. Binds to oxygen.
Homo sapiens.

RMSD: 2.9
Identity: 12.7%

32, 33

Figure 2 Comparison of structure and sequence similarity of sample globin-like fold proteins according to PDB number. First column:
PDB number and a brief description of the protein. Second column: RMSD and amino acid sequence identity as defined by VAST. Third column:
Left is the alignment of the two proteins taken by PyMOL. In the structure representation, the first protein is in pink, and the second, in cyan.
Right is the alignment of the two proteins taken by Cn3D. In the sequence representation, red indicates the same amino acid, whereas yellow
indicates differing amino acids. Fourth column: references.
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utilize the histone fold and are functionally conserved in
both eukaryotic and archaea organisms [35,40,41]. Since
the packaging and protection of DNA is paramount
along with the ability to transcribe DNA when needed,
the numerous essential interactions have caused the his-
tone fold to be conserved [42].
From a molecular point of view, the histone fold is

thought to have evolved from the helix-strand-helix
(HSH) motif where duplication caused two helices to
merge, forming a larger central helix [36,43]. Alva et al.
demonstrated how this could occur by shortening the
HSH strand which led to a 3D swap and caused the
dimerization of two HSH motifs. This dimerization
recovered the interactions between the HSH motifs due
to the strand shortening and thereby causing the histone
fold [43].
As mentioned previously, eubacteria do not appear

to contain the histone fold motif. They do, however,
contain proteins which have histone-like proteins.
The most ubiquitous of these proteins is the HU
protein (H for histone-like and U from the U93 strain
of Escherichia coli, in which it was identified from).
HU proteins are essential in maintaining the nucleoid
structure and are involved in all DNA-dependent
functions [44]. Interestingly, the HSH-type motif is
found in HU proteins of eubacteria which also have
histone-like functionality [42,45]. Looking at the
structures of HU and the histone fold (Figure 4), one
can easily identify similarities in the HSH with re-
spect to the histone fold, thereby showing how the
functionality of DNA binding has been conserved
through different but similar means.

Interestingly, some proteins have evolved a method to
overcome the need of the dimerization of different pro-
teins through a double histone fold. A double histone
fold is essentially two histone folds occurring in a single
peptide chain which can ‘dimerize’ with itself [47]. As
seen in Figure 5, a great structural similarity between
the H2A/H2B two-protein dimer has a great structural
similarity to the single-protein Son of sevenless (Sos)
protein [48,49]. With the double histone fold being so
‘economical’ by not needing to dimerize with another
protein, it is not surprising that it was recently found in
a virus where it is hypothesized to aid in the packaging
and organization of DNA inside the capsid [50].
Due to the multiple interactions required of the histone

fold, the selective pressures limit a large differentiation in
sequence identity. For example, H3 and H4 histones are
among the most highly conserved proteins in terms of se-
quence and length due to their specific interactions with
DNA. H2A and H2B have regions which show greater
variability but show great specificity to dimerizing with
each other. Despite the conservation of the histone fold in
the histone structure, these four core eukaryotic histones
have little sequence similarity (15–20%) with one another
[42]. Interestingly, even proteins such as the histone H2A/
H2B and the cytoplasmic hSos [50] (Figure 5, example 4)
which show strong structural similarity but do not seem
to function as histones or DNA-binding factors still do
not stray far from this sequence identity. This sequence
similarity is seen in organisms which are obviously so
evolutionary distant as archaea and eukaryotes [51,52]

Figure 3 The typical histone fold. It consists of one central helix
flanked on each side by a shorter alpha helix (PDB: 1HTA) [38].

Figure 4 Comparison of the histone fold (PDB: 1HTA) [38] to
eubacteria HU protein (PDB: 1MUL) [46]. Hot pink: histone fold,
cyan: eubacteria HU protein. Notice the similarity in the
helix-turn-helix and the size difference in the central helix.
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(Figure 5, examples 1 and 2). This may be due to the
hydrophobic residue interactions required in all six helices
of a histone fold dimer [39].

Helix-turn-helix motif
HTH motif consists of an α-helix, a turn, and a second
α-helix which is often called the ‘recognition’ helix as the

part of the HTH motif that fits into the DNA major
groove. There are several positions significant to keep the
HTH structure rather than to specify contacts with the
DNA, while the amino acid residues in other positions are
usually varied to determine the specificity of DNA-protein
interactions [53]. This motif is found in many DNA-
binding domains and transcriptional factors such as
homeotic proteins. This sequence, which is conserved in
many organisms for related proteins, was used to discover
a large number of DNA-binding proteins [54]
Winged helix-turn-helix (wHTH, Figure 6) shares the

same original ancestor as that of HTH in evolutionary
history; it is also a DNA-binding domain which binds to

specific DNA sequences. The wHTH is formed by a
three-helix bundle (α1, α2, α3) and a three- or four-

PDB # - Function RMSD - % identity Images from PyMOL and Cn3D References
Example 1
- 1BH8_Chain B: TATA binding protein 

associated factor (TAF)II28 in Homo 
sapiens

- 1A7W: Histone HMfB from archaea 
Methanothermus fervidus

RMSD: 1.0
Identity: 22.6%

37, 69

Example 2
- 3R45_Chain A: Histone H3-like 

centromeric protein A in Homo 
sapiens

- 1B6W: Histone HmfA from archaea  
Methanothermus fervidus

RMSD: 1.1
Identity: 24.6%

37, 70

Example 3
- 3AFA_Chain E: Histone 3 in Homo 

sapiens
- 1H3O_Chain D: Transcription 

Initiation Factor (TFIID) in Homo 
sapiens

RMSD: 1.0
Identity: 12.3%

71, 72

Example 4
- 2JSS: Yeast (Saccharomyces 

cerevesiae) Histone H2A/H2B
- 1Q9C: Double histone fold of Homo 

sapiens Son of sevenless (hSos)

RMSD:1.9
Identity: 22.7%

73, 74

Figure 5 Comparison of structure and sequence similarity of sample histone fold proteins according to PDB number. First column: PDB
number and a brief description of the protein. Second column: RMSD and amino acid sequence identity as defined by VAST. Third column: Left is
the alignment of the two proteins taken by PyMOL. In the structure representation, the first protein is in pink, and the second, in cyan. Right is
the alignment of the two proteins taken by Cn3D. In the sequence representation, red indicates the same amino acid, whereas yellow indicates
differing amino acids. Fourth column: references.

Figure 6 A typical winged helix-turn-helix structure (PDB: 3JSO)
[55].
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strand beta-sheet. The α2 and α3 helices are similar to
those of the HTH motif except that wHTH has beta-
sheet wings on the ends of HTH parts. Many repressor
DNA-binding domains like LexA, arginine, Rex, ArsR,
and MarR form a wHTH structure.
Figure 7 shows five examples of HTH comparisons of

different proteins. All of them show high structural simi-
larity and low sequence identity. In addition, the exam-
ples compare HTH motifs from different organisms that
do different functions.
An ancestral archaea homolog of the N-terminal of

the transcription factor II E subunit a (PDB: 1Q1H) [56]
folds as a wHTH. This domain has a groove which is
negatively charged. Thus, it cannot bind to negatively

charged DNA as in vitro experiments show. Though, it
promotes interactions with other proteins. This domain
has structural similarities with a catabolite gene activator
protein (PDB: 1RUN) [57], a protein that is known to
bind DNA. This example clearly illustrates that natural
selection chose structures to have different roles than
the dominant ones. Cro repressor from the λ phage
(PDB: 1D1L) [58] forms a dimer by two antiparallel
b-strands in order to bind to DNA. This protein has
structural similarities with the bacterial Fis protein
(PDB: 3JRH) [59] which binds to DNA with no sequence
specificity.
Transcriptional regulators can be triggered to function

by different signals from the environment. Signals that

PDB # - Function RMSD - % Identity Images from PyMOL and Cn3D References
Example 1
- 1Q1H_Chain A: The alpha subunit of 

transcription factor TFIIE homolog 
from archae Sulfolobus solfataricus.

- 1RUN_Chain A: DNA binding domain 
of Escherichia coli regulatory proteins 
which belongs to catabolite activator 
protein family.

RMSD: 1.0
Identity: 22.7%

47, 48

Example 2
- 1D1L_Chain A: Cro repressor of 

Enterobacteria phage lambda. 
- 3JRH_Chain B: Escherichia coli

protein from Fis family which binds to 
unspecific DNA.

RMSD: 2.0
Identity: 21.4%

50, 49

Example 3
- 1R1T_Chain A: Negatively allogestic 

regulated DNA binding of SmtB 
protein in presence of metals.
Synechococcus elongatus.

- 1ZLK_Chain A: Hypoxia – induced 
DosR protein. Mycobacterium 
tuberculosis. 

RMSD: 1.5
Identity: 20.5%

51, 52

Example 4
- 1RES_Chain A: DNA-binding 

domains of Escherichia coli γδ 
resolvase. 

- 1Z9C_Chain F: Chimeric winged 
helix-turn-helix (wHTH) DNA-binding 
domain of OhrR-ohrA complex.
Bacillus subtilis.

RMSD: 1.4
Identity: 10.7%

53, 54

Example 5
- 3OIO_Chain A: Bacterial regulatory 

helix-turn-helix proteins of AraC 
family from Chromobacterium 
violaceum.

- 1XS9_Chain A: MarA Escherichia 
coli regulatory helix-turn-helix protein 
that binds DNA as a monomer.

RMSD: 2.2
Identity: 20.7%

55 Chang et al., 
deposited in PDB, 
not published

Figure 7 Comparison of structure and sequence similarity of sample helix-turn-helix motif proteins according to PDB number. First
column: PDB number and a brief description of the protein. Second column: RMSD and amino acid sequence identity as defined by VAST. Third
column: Left is the alignment of the two proteins taken by PyMOL. In the structure representation, the first protein is in pink, and the second, in
cyan. Right is the alignment of the two proteins taken by Cn3D. In the sequence representation, red indicates the same amino acid, whereas
yellow indicates differing amino acids. Fourth column: references.
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are not related with signal transduction cascades, which
involve primarily phosphorylation or dephosphorylation
of proteins, can involve smaller molecules like metals or
oxygen. This is the case for SmtB (1R1T) [60], a cyano-
bacterial repressor protein that has reduced affinity for
DNA in the presence of metals. The HTH motif of this
repressor is structurally similar to the HTH motif of the
bacterial DosR protein (PDB: 1ZLK) [61] which prolongs
survival when the organism is left without oxygen.
OhrR is a bacterial protein (PDB: 1Z9C) [62] that has

a HTH motif composed of eukaryotic-like wHTH, pro-
karyotic HTH motifs, and other helices. This protein is
induced to function by oxidation of certain residues.
This chimeric HTH motif is structurally similar to the
HTH motif of a DNA-binding domain of a γδ resolvase
in E. coli (PDB: 1RES) [63].
Finally, the HTH motif from a bacterial transcriptional

regulator, AraC-type (PDB: 3OIO), is structurally similar
to that of the transcriptional activator MarA (PDB:
1XS9) [64] which is associated with the RNA polymerase
and binds to DNA as a monomer.

Zinc finger motif
Zinc (Zn) fingers (see Figure 8) are small structural motifs
whose structure is stabilized by a zinc ion, and they are the
most common DNA- or RNA-binding motif in different
proteins. There are different structural types of Zn fingers
and are present in proteins that perform a broad array of
functions such as replication and repair, transcription and
translation, metabolism and signaling, cell proliferation,
and apoptosis [65]. Zn fingers occupy 3% of the genes in
the human genome [66]. The major part of structural sta-
bility of Zn fingers is provided by zinc coordination and by
the conserved hydrophobic core that flanks the Zn binding
site. There are a relatively small number of conserved resi-
dues present in Zn fingers [67].

Classical Cys2-His2 (C2H2) Zn fingers have about 30
amino acids in which 25 of the 30 amino acid residues
form a loop around the central Zn ion and the 5 other
amino acids form the linkers between the consecutive
Zn fingers. It consists of two secondary structural units:
The first one is an antiparallel beta-sheet, which con-
tains the loop formed by the two cysteines, and the sec-
ond one is an alpha helix containing the His-His. These
two structural units are held together by the zinc atom.
The Zn ion tetrahedrally coordinates to the conserved
pairs of cysteines and histidines, and this coordination is
vital for the maintenance of the overall structure of the
Zn finger. The majority of the 30 amino acids are polar
and basic residues which are important in nucleic acid
binding. In addition to the conserved cysteines and histi-
dines which are vital for the formation of the Zn finger
fold, there are other conserved amino acids, notably Tyr,
Phe, and Leu, which form a hydrophobic structural core
of the folded structure [66].
In the example shown in Figure 9, each pair of the com-

pared Zn fingers have less sequence similarity, sometimes
bind to different types of molecules, may have different
functions, may belong to different species, but exhibit a
great structural overlap. This supports the notion that only
few small numbers of conserved residues are required for
the maintenance of the overall structure of the zinc finger.
Example 1 in Figure 9 shows two DNA-binding pro-

teins: a DNA-binding domain (DBD) from the GAGA
factor (PDB: 1YUJ) [69] and one of the zinc finger
domains from zinc finger protein 692 (PDB: 2D9H),
which belong to D. melanogaster and H. sapiens, re-
spectively. The DBD of the GAGA factor uses only one
zinc finger in contrast to other zinc finger proteins
which commonly use more than two in order to have a
good affinity for the DNA. They show a great structural
similarity despite low sequence identity.

Figure 8 Structure of C2H2 zinc finger of transcription factor IIIA of Xenopus laevis (PDB: 2HGH, [68]). (A) Cartoon representation with
zinc as a ball. (B) Includes the two cysteines and two histidines that interact with the zinc as sticks.
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The hydroxylase domain from methane monooxygen-
ase (PDB: 1MHZ) [70] contains a Zn finger which does
not bind to DNA. Though, it is structurally very similar
(RMSD: 1.5) and their sequence is very different (3%)
from the human Zn finger 2 which binds to DNA (PDB:
3ODC) [71]. This is a good example to point out that
structures are built up from extensively used raw materi-
als (domains) like the Zn finger even if they are not
going to be used as the majority of the other proteins in
which these domains are found.
In the third example, and as a follow up from the

previous one, the two proteins are monooxygenases

(PDB: 1MHZ, 2INC) [70,72] which belong to different
species and have Zn finger domains whose structures
overlap.
YY1 (PDB: 1UBD) [73] is a protein with four Zn

fingers and is structurally similar to kruppel-like factor 3
(PDB: 1U85), which contains a Zn finger with trypto-
phan as shown in the fourth example.
Finally, the Zn finger in U11/U12 (PDB: 2VY4) [74],

which is a RNA-binding protein, has a good structural
overlap with SAGA protein (PDB: 3MHH) [75], which is a
DNA-binding protein, in spite of the low sequence similar-
ity. In addition, the role of SAGA is to deubiquitinate H2B

- structure of DNA 
binding domain of the 
GAGA factor(DNA binding protein) 
Drosophila melanogaster

- 2D9H_Chain A: forth and fifth zf-
C2H2 domains of zinc finger protein 
692(DNA binding protein). Homo 
sapiens

tryptophan-containing 
CCHH zinc finger-Kruppel like factor 
3-DNA binding protein. 

- Human YY1 zinc 
finger domain which binds to DNA.  
Homo sapiens.

PDB # - Function RMSD - % Identity Images from PyMOL and Cn3D References
Example 1

1YUJ_Chain A:
RMSD: 0.8
Identity:16.0%

59 Zhang et al., 
deposited in 
PDB, not 
published

Example 2
- 3ODC_Chain B: Human zinc finger 2. 

Binds to DNA. Homo sapiens.
- 1MHZ_Chain D: hydroxylase

component of methane 
monooxygenase. No evidence that 
binds to DNA. Methylosinus 
trichosporium.

RMSD: 1.5
Identity: 3%

60, 61

Example 3
- 1MHZ_Chain D: hydroxylase 

component of methane
monooxygenase Methylosinus
trichosporium

- 2INC_Chain A: Native Toluene/o-
xylene Monooxygenase Hydroxylase 
Pseudomonas stutzeri

RMSD: 2.4
Identity: 21.0%

60, 62

Example 4
- 1U85_Chain A:

Mus 
musculus
1UBD_Chain C:

RMSD: 1.0
Identity: 15.8%

Cram et al., 
deposited in 
PDB, not 
published 63

Example 5
- 2VY4_Chain A: A splicing protein 

which Binds the 5 Splice Site of U12-
Type intron. Homo sapiens.

- 3MHH _Chain C: Transcriptional 
coactivator complex;has multiple 
roles on role in deubiquitination of 
histone H2B. Saccharomyces 
cerevisiae.

RMSD: 1.2
Identity: 23.1%

64, 75

Figure 9 Comparison of structure and sequence similarity of sample zinc finger motif proteins according to PDB number. First column:
PDB number and a brief description of the protein. Second column: RMSD and amino acid sequence identity as defined by VAST. Third column:
Left is the alignment of the two proteins taken by PyMOL. In the structure representation, the first protein is in pink, and the second, in cyan.
Right is the alignment of the two proteins taken by Cn3D. In the sequence representation, red indicates the same amino acid, whereas yellow
indicates differing amino acids. Fourth column: references.

Sousounis et al. Human Genomics 2012, 6:10 Page 8 of 10
http://www.humgenomics.com/content/6/1/10



histone, so the affinity for DNA helps to dock to the nu-
cleosome. This example was selected because these two dif-
ferent proteins bind to two different types of nucleic acids,
have different functions, have low sequence identity, but ex-
hibit a good overall structural similarity.

Concluding remarks
In this review, we have selected four protein motifs, which
are present in several DNA-binding proteins and in
oxygen-carrying and -transporting proteins. Using several
comparisons, we show that these motifs exhibit an aston-
ishing degree of structural conservation even though their
primary sequence is not similar and even when they are
involved in different functions. The examples underscore
the importance of structure selection in evolution and a
strategy of economy that nature is implementing. Much is
to be learned when similar structures have evolved despite
unrelated function. It will be interesting to determine how
such similar structures have evolved and what could the
possible ancestors be. Eventually, when all structures have
been solved, evolution of protein structure will provide
valuable information on protein function in general.
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