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Hybrid Carbon-Based Scaffolds for Applications
in Soft Tissue Reconstruction

Jarema S. Czarnecki, M.S.,1,2 Khalid Lafdi, D.Sc., Ph.D.,1,3,4 Robert M. Joseph, D.P.M., Ph.D.,3,5

and Panagiotis A. Tsonis, Ph.D.3,6

Current biomedical scaffolds utilized in surgery to repair soft tissues commonly fail to meet the optimal com-
bination of biomechanical and tissue regenerative properties. Carbon is a scaffold alternative that potentially
optimizes the balance between mechanical strength, durability, and function as a cell and biologics delivery
vehicle that is necessary to restore tissue function while promoting tissue repair. The goals of this study were to
investigate the feasibility of fabricating hybrid fibrous carbon scaffolds modified with biopolymer, poly-
caprolactone and to analyze their mechanical properties and ability to support cell growth and proliferation.
Environmental scanning electron microscopy, micro-computed tomography, and cell adhesion and cell prolif-
eration studies were utilized to test scaffold suitability as a cell delivery vehicle. Mechanical properties were
tested to examine load failure and elastic modulus. Results were compared to an acellular dermal matrix scaffold
control (GraftJacket� [GJ] Matrix), selected for its common use in surgery for the repair of soft tissues. Results
indicated that carbon scaffolds exhibited similar mechanical maximums and capacity to support fibroblast
adhesion and proliferation in comparison with GJ. Fibroblast adhesion and proliferation was collinear with
carbon fiber orientation in regions of sparsely distributed fibers and occurred in clusters in regions of higher fiber
density and low porosity. Overall, fibroblast adhesion and proliferation was greatest in lower porosity carbon
scaffolds with highly aligned fibers. Stepwise multivariate regression showed that the variability in maximum
load of carbon scaffolds and controls were dependent on unique and separate sets of parameters. These finding
suggested that there were significant differences in the functional implications of scaffold design and material
properties between carbon and dermis derived scaffolds that affect scaffold utility as a tissue replacement
construct.

Introduction

Autologous grafts have been the ‘‘gold standard’’ in
tissue replacement and the most accurate means of re-

capitulating both the biologic and mechanical properties of
tissue. However, autologous grafts have had complications
and drawbacks. Skin grafting, a prime example of an au-
tologous tissue graft, has been limited by the size of graft,
availability, and secondary donor site morbidity.1 Use of
cadaveric tissues circumvents several limitations of autolo-
gous grafts, however, sterilization processes used to reduce
the risk of disease transmission potentially weaken tissues
and eliminates living cells and some growth factors from
scaffolds to make them suboptimal tissue replacements.2,3

Chemical cross-linkage of tissue scaffolds has been employed
in some circumstances to strengthen weak tissues but can
result in a prolonged inflammatory response and limit graft
integration in vivo.4–9 Partial enzymatic digestion of cadav-
eric tissues has also been utilized to improve graft porosity,
which potentially assists with graft neovascularization,
however, this procedure has not been overwhelmingly suc-
cessful.8 Proprietary methods of chemically and physically
stripping tissues of cellular materials have been commer-
cially developed to minimize graft rejection and loss of es-
sential biologic factors; however, these methods cannot be
universally applied to all tissues.6,10 GraftJacket� Matrix
(Wright Medical),4 an acellular human dermis derived graft,
is an example of a commercially available graft that is
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commonly utilized in surgery for soft tissue augmentation
and repair.4,10–13 The elastic properties of skin-derived scaf-
folds make GraftJacket (GJ) an inferior replacement for stiffer
tissues such as tendon. Hence current limitations in tissue
processing has spawned interest in emerging technologies
that enable precise engineering and manufacturing of scaf-
fold materials on a nanoscale that recapitulate the unique
mechanical needs of a variety of tissues while promoting
tissue repair that also occurs on a nanoscale (Table 1).

To date, biomedical scaffold materials have included
synthetic, semi-synthetic, and tissue derived matrices with or
without biologic activity from growth factors or living cells
incorporated within the scaffolds.10,14–19 Various extracellu-
lar matrix molecules such as collagen and resorbable syn-
thetic materials commonly utilized in suture and medical
implants have all been employed as scaffolds in the
past.16,18,20,21 The most advanced generations of commer-
cially available scaffolds attempt to provide some level of
structural function with biologic activity such as Trinity�

(Orthofix),22 which combines mesenchymal stem cells with a
cancellous bone allograft that is utilized for bone healing,
Infuse� (Medtronic),23 which incorporates recombinant bone
morphogenic protein-2 with a resorbable collagen scaffold
sponge is utilized in spine fusion, Apligraf� (Organogen-
esis),24 which integrates human keratinocytes and dermal
fibroblasts with bovine type I collagen as a graft for the
treatment of skin ulcerations, and GJ Matrix,4 an acellular
human dermis derived scaffold with retained growth factors
and extracellular matrix molecules.

Carbon-based materials are novel subsets of synthetic
materials that have been incorporated in medical scaffolds,
implants, and nanoartifact drug delivery vehicles because of
their strength, flexibility, durability, and biocompatibility but
have been examined less extensively as a combined vehicle
for cell delivery and biomechanical construct for soft tissue
repair and regeneration.25–30 Potential advantages of an en-
gineered carbon scaffold may include the following: (i) tun-
able geometric and surface characteristics to fit biologic
demands of a healing tissue (ii) reproducible mechanical
properties to meet specific functional requirements (iii) lack
of donor site morbidity (iv) no communicable disease
transmission (v) unlimited availability.

The current study examined the mechanical behavior of
two fibrous carbon-based scaffolds and evaluated their po-
tential as a vehicle for cell and biologics delivery that pro-
motes tissue repair. The structure, tensile properties, and
human fibroblast adhesion and proliferation on carbon
scaffold substrates were analyzed and compared to a control
scaffold, GJ Matrix, which is commonly utilized in surgery
for soft tissue augmentation and repair.4,6,10,11,13,31,32

Materials and Methods

Materials

A spool of commercially available PAN-based carbon fi-
bers from Cytec Industries, Inc. was used to create carbon
scaffold substrates. Before scaffold preparation, carbon fi-
bers were heat treated at 150�C for 30 min and milled to
5 mm size. A 1% (weight/volume) polycaprolactone (PCL)/
acetone solvent was added to form a slurry. The slurry was
cast in a mold and evaporated to leave behind a veil scaffold
(labeled carbon veil 1 [CV1] and CV2, n = 10/group). Uni-

directional carbon laminate was made by aligning unidirec-
tional P120 carbon tow (labeled carbon fabric 1 [CF1] and
CF2, n = 10/group). Samples were ultrasonicated and steril-
ized in 100% ethanol for 1 h. GJ Matrix (n = 20) were donated
by Wright Medical Technology, Inc.

Environmental scanning electron microscopy
of scaffolds

Environmental scanning electron microscopy (ESEM) was
used to examine geometric properties of scaffolds. A Hitachi
ESEM (Hitachi) was used to visualize the microscale surface
of scaffolds. Samples were imaged at 500 · .

Micro-computed tomography of scaffolds

Micro-computed tomography (labeled mCT; Scanco Med-
ical) was used to analyze scaffold porosity, pore size, and
scaffold geometry. Samples were analyzed before mechani-
cal testing and culture. Samples were scanned at a resolution
of 7 mm/slice. Sample porosity was calculated with proprie-
tary software provided by Scanco Medical.

Mechanical characterization of scaffolds

Tensile properties of scaffolds were examined using a MTS
mechanical tester (MTS). Grip fixtures were utilized to secure
samples and prevent sample tearing. All scaffolds were hy-
drated when tested under tension as GJ function in vivo is
under hydrated conditions. Hydration of GJ and carbon
scaffolds were performed according to manufacturer in-
structions for GJ hydration. Ten samples for each scaffold
group were analyzed at 25.4 mm/min. Stress and strain data
were recorded. The slope of the linear region of the stress/
strain curve was used to determine the elastic modulus. For
this study, the strain region between 0% and 3% was con-
sidered low strain, for comparison of carbon-based scaffolds
to GJ control.

Fibroblast culture on scaffolds

Human dermal fibroblasts (ATCC CRL2703) were cul-
tured in flasks with Dulbecco’s F12 medium (Gibco BRL,
Invitrogen) supplemented with 10% fetal bovine serum (FBS;
Atlanta Biologicals) and 1% penicillin/streptomycin (100 U/
100 mg per mL; Gibco BRL, Invitrogen), for simplicity la-
beled (complete media). Cells were incubated at 37�C in 5%
CO2 with 100% humidity. Fibroblasts from 5–8 passages
were used for all cell studies.

Morphometric analysis of fibroblast growth on scaffolds

Fibroblast morphology was characterized after 12, 48, and
96 h of cell culture on scaffolds using fluorescent microscopy.
Samples were rinsed twice with sterile phosphate-buffered
saline (PBS) to remove nonattached debris. Cells were then
fluorescently labeled with 20 mM Rhodamine phalloidin to
identify polymerized actin (Invitrogen) and 20 mM 4¢,6-
diamidino-2-phenylindole (DAPI) nuclear counterstain (In-
vitrogen) to identify the cell nucleus. Scaffolds were then
rinsed in PBS to clear excess label. Cell fluorescence was
preserved with Prolong Gold reagent (Invitrogen). Cell
fluorescence and morphology were characterized at a mag-
nification range from 10 · to 40 · .
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Fibroblast viability in scaffold cultures

Multiple methods were used to quantify cell adhesion and
proliferation. Carbon and GJ scaffolds (area: 25mm2) were
placed in 100 mm2 round tissue culture dishes (n = 10/
experimental group). Fibroblasts (60,000 cells/sample) were
seeded onto scaffold samples in 200mL aliquots of F12
complete media containing 10% FBS (300,000 cells/mL) and
placed into the incubator at 37�C, 5% CO2, and 100% hu-
midity. After 12 h, samples were moved to 24-well plates,
retaining only cells attached to the scaffolds, and 2 mL of
complete media was added to each well and returned to the
incubator. Growth media was changed every second day.
Scaffolds were immediately processed for biochemical char-
acterization as described below to measure cell attachment.
To characterize fibroblast proliferation, cell seeded scaffolds
were cultured in 2 mL of complete media for a period of 12,
48, and 96 h before analysis.

Cell attachment and proliferation was quantified with
fluorescence microscopy and WST-1 biochemical assay
(Roche Scientific) at 12, 48, and 96 h cultures. Cell adhesion to
scaffold surfaces was quantified by counting cell nuclei la-
beled with DAPI at each culture time point. For each scaf-
fold, five images were acquired, spanning the entire length of
the sample. Fibroblasts were imaged and nuclei were coun-
ted using Metamorph software package (Molecular Devices).

Concurrently, cell viability was assessed at 12, 48, and 96 h
using WST-1 assay. The tetrazolium salt 2-(4-iodophenyl)-3-
(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrasolium, better
known as WST-1, was used to quantify viable fibroblasts in
culture. Photometric quantification of viable cells was per-
formed by measuring absorbance at 450 and 690 nm using a
microplate reader. Cell proliferation was measured as a
function of absolute absorbance values (absorbance at
450 nm–absorbance at 690 nm). Fibroblast growth in wells
without scaffolds was used as a positive control while scaf-
folds without seeded cells were used as negative controls.
Nonspecific absorbance from media and scaffold samples
was subtracted from absorbance readings. Absorbance val-

ues were compared to control values and directly related to
cell viability.

Statistical analysis

Statistical analyses were performed using SPSS Statistics 19
Software Package (SPSS, Inc.). All experimental results were
statistically evaluated using one-way analysis of variance,
with p < 0.05 indicating significant differences among experi-
mental groups. Post hoc, multiple comparison analyses were
also performed using the Tukey-Kramer test. Multivariate
stepwise linear regression was carried out to model the rela-
tionship between experimental parameters (porosity, elastic
modulus, stress, and thickness) and load failure of carbon
scaffolds and GJ. Additionally, linear regression was per-
formed to model the relationship between scaffold porosity
and elastic modulus. Carbon samples were pooled for an n of
40. GJ data was also pooled for data analysis for an n of 20.

Results

Scaffold characterization

As shown in Figure 1, at low magnification (2 · ), all
samples demonstrated porous characteristics, however, GJ
was less porous than carbon scaffolds (Fig. 1). This was most
apparent with ESEM imaging shown in Figure 2. GJ also
displayed two distinct textured sides that relate to the nat-
ural stratification of structures in the human dermis (Fig. 2).
The deeper dermal side was characterized by an extensive
vascular network and was more porous than the more su-
perficial epidermal side of GJ control. GJ demonstrated less
continuity and consistency in physical characteristics than
engineered carbon in accordance with natural variations
typically observed in living tissues but not observed with
highly engineered scaffolds such as carbon (Fig. 1). Micro-
scale porosity was examined in all scaffolds by mCT (Fig. 2).
Scaffold porosity was most uniform in carbon engineered
scaffolds while GJ demonstrated inconsistent porosity attri-
butes hallmarked by regions of large defects up to 1 mm size

FIG. 1. Low magnification
(2 · ) images of carbon veil
(CV), carbon fabric (CF), and
GraftJacket� (GJ) control
scaffolds. (A) CV1; (B) CV2;
(C) CF1; (D) CF2; (E) GJ. GJ
control displayed large
volume defects throughout
the scaffold. Color images
available online at www
.liebertonline.com/tea
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that were not observed in any carbon engineered scaffolds
(Fig. 2). GJ control displayed a closed porosity of (35%),
whereas carbon scaffolds showed an open cell structure (CF1
and 2: 55% and 70%, respectively; CV1 and 2: 80% and 95%,
respectively) (Fig. 2 and Table 2). Structural characterization
of scaffolds demonstrated less variability in porosity of car-
bon scaffolds compared with GJ, as indicated by smaller
average standard deviations in porosity measurements. The
standard deviation of carbon scaffold porosity was approx-
imately 75% smaller than GJ (Table 2). CF1 and CF2 ex-
hibited greater unidirectional fiber orientation, while CV1

and CV2 scaffolds consisted of more randomly organized
fibers (Figs. 2 and 3).

Mechanical behavior of carbon scaffolds

The mechanical properties of scaffolds were tested under
tension. As shown in the magnified low strain range (0%–3%)
GJ displayed a smaller stress-strain ratio compared to carbon-
based scaffolds (Fig. 4). This is consistent with deformation
characteristics commonly observed in the ‘‘toe region’’ of bio-
logical tissues. Further, as is displayed by the gradual decrease

FIG. 2. Environmental scanning electron microscopy images of CV, CF, and GJ scaffolds. (A) CV1; (B) CV2; (C) CF1; (D)
CF2; (E) GJ epidermal surface; (F) GJ dermal surface.
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in the slope of the curve, GJ exhibited longer strain regions
with a yielding behavior and no catastrophic failure (Fig. 4).
Conversely, carbon scaffolds carried more load and handled a
larger stress at lower strain and catastrophically failed. From a
load failure perspective, CF1 displayed the greatest strength,
with a maximum load of 56 – 4 N and was significantly greater
than other carbon scaffolds and GJ control. CF2 and GJ were
most similar (27 – 4 N and 36 – 16 N) without statistically sig-
nificant differences in load failure ( p > 0.05) (Table 2; Fig. 5).
On the other hand, CV1 and CV2 scaffolds exhibited signifi-
cantly lower ( p = 0.01) maximum loads (3 – 0.2 N and
4 – 0.2 N), than both CF scaffolds and GJ control (Table 2; Fig.
5). Results also showed that CF1 displayed a significantly
greater ( p = 0.005) maximum stress (21 – 0.9 MPa) as compared
with GJ control (15 – 2.5 MPa) (Table 2; Fig. 6). The variability
of load failure and porosity was much greater in GJ controls
than engineered carbon scaffolds, as demonstrated by higher
standard deviations of test measurements. Additionally, all
carbon-engineered scaffolds (CV1, CV2, CF1, CF2) displayed
significantly greater ( p = 0.005) elastic modulus values
(860 – 45, 910 – 47, 995 – 83, and 835 – 66, respectively) than GJ
control (Table 2; Fig. 6).

Cytoskeletal actin polymerization and morphology
of fibroblasts cultured on carbon scaffolds

Cell density and morphology of fibroblasts cultured on
scaffolds were characterized using fluorescent microscopy
(Fig. 7). Actin filament organization was most distinct in
elongated fibroblasts, which grew in a collinear pattern along
carbon fibers. This pattern of fibroblast growth was most
prevalent in CV, which was notably more porous than other
tested scaffolds. Actin polymerization was diffuse and
without distinct actin filament formation in fibroblasts with a
round morphology and in fibroblasts observed in clusters.
This pattern of morphology was most prevalent in regions of
dense carbon fiber arrangement more frequently observed in

CF than CV where CF fibers were arranged in a tightly
packed parallel alignment (Fig. 2). Although round and
elongated fibroblast morphology could be observed in all
scaffolds, predominant patterns of morphology suggest that
cell aggregation and round morphology may be more related
to the density of carbon fiber distribution rather than dif-
ferences between parallel and divergent fiber orientation
within carbon scaffolds.

Cell adhesion and proliferation exhibited two distinct
growth patterns in GJ controls that were specific to the epi-
dermal and dermal surfaces of GJ. The dermal surface of GJ
controls supported cell adhesion and growth with extensive
filamentous actin organization in fibroblasts while the epi-
dermal surface supported minimal actin polymerization in
fibroblasts (Fig. 7). The morphology of fibroblast adhesion
and growth on CF scaffolds closely resembled that of fibro-
blast adhesion to the epidermal surface of GJ controls where
extensive actin polymerization could be identified in fibro-
blasts (Fig. 7). The morphology of fibroblast adhesion to CV
scaffolds more closely resembled fibroblast adhesion to the
dermal surface of GJ controls (Fig. 7).

Fibroblast adhesion and proliferation
on carbon scaffolds

Cell density and viability assays were conducted to assess
fibroblast growth and proliferation on carbon scaffolds. The
cell density of fibroblasts cultured on scaffolds for periods of
12, 48, and 96 h was determined using Metamorph counting
software. Fibroblast adhesion and proliferation on CF and CV
scaffolds was significantly lower than growth on GJ controls
( p < 0.01) (Fig. 8). Total fibroblast adhesion to CF1 was sig-
nificantly greater than CV scaffolds ( p = 0.005) (Fig. 8). There
were significant differences in cell adhesion ( p = 0.01) and
proliferation ( p = 0.005) between CF1 and CF2 scaffold cul-
tures. Further, there was a positive proportional trend in fi-
broblast adhesion to scaffolds with lower porosity (Fig. 8).

Table 1. Published Mechanical Properties of Biological Tissues

Maximum load (N) Maximum stress (MPa) Maximum strain (%) Elastic modulus (MPa)

Femura 111.0 – 11.9 131 – 13 5.00 – 1.2 16,600 – 174
Anterior cruciate ligamentb 1627 – 491 26.8 – 9.1 28.5 – 9.1 109.00 – 50.0
Superior infraspinatus tendonc 462.8 – 237 14.6 – 7.7 NA 120.00 – 53.1

aFung (1993).51

bHolzapfel and Ogden (2006).52

cAn (2000).53

NA, data not published.

Table 2. Material Properties of Carbon Veil, Carbon Fabric, and GraftJacket
�

Control Scaffolds

Density (g/
cm3)

Porosity
(%)

Thickness
(mm)

Maximum load
(N)

Maximum stress
(MPa)

Maximum strain
(%)

Elastic modulus
(MPa)

CV1 0.50 95 – 1.0** 0.30 – 0.03 3.0 – 0.20** 2.5 – 0.10*** 3.3 – 0.20*** 860 – 45**
CV2 0.60 80 – 4.0** 0.32 – 0.02 4.0 – 0.20** 3.2 – 0.20*** 2.5 – 0.20*** 910 – 47**
CF1 0.80 55 – 9.0 0.43 – 0.03 56 – 4.0* 21 – 0.90** 2.3 – 0.10** 995 – 83**
CF2 0.70 70 – 7.0* 0.42 – 0.03 27 – 3.0* 16 – 1.0 2.7 – 0.20** 835 – 66**
GJ 1.1–1.4 35 – 20 0.48 – 0.14 36 – 16 15 – 2.5 49 – 13 80 – 19

Values with an asterisk (*) are significantly different from GJ.
*Significance at p < 0.05; **significance at p £ 0.005; ***significance at p £ 0.001.
CV, carbon veil; CF, carbon fabric; GJ, GraftJacket� Matrix.
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WST-1 analysis demonstrated marginal differences in fi-
broblast viability and proliferation on carbon and GJ control
scaffolds during the first 12 h of culture, however, signifi-
cantly higher WST-1 absorbance was measured in dermal
control cultures at 96 h which suggests carbon scaffolds were
less capable of supporting a high rate of cell proliferation
over time ( p = 0.01). At 96 h, CF was most similar to GJ
controls in sustaining fibroblast growth with CF1 and CF2
demonstrating 16% and 27% less absorbance than GJ con-
trols. This contrasts CV scaffolds, which showed notably
lower capacity to support cell growth than GJ with 80% and
77% less absorbance on CV1 and CV2.

Multivariate stepwise regression

Stepwise regression analysis demonstrated that scaffold
thickness and porosity accounted for significant variability in
load failure of GJ (Adjusted R2 = 0.787, Adjusted R2 = 0.924)
but not carbon scaffolds (Table 3). The variability in load

FIG. 4. Mechanical tension testing results for CV, CF, and
GJ scaffolds. (A) Magnified section of stress and strain region
depicts low strain range (0%–3%); (B) Stress/strain behavior
for experimental scaffolds. Rate of test was 25.4 mm/min.

FIG. 5. Maximum load analysis of CV, CF, and GJ scaf-
folds. Values expressed as mean – standard deviation (SD).

FIG. 3. Micro-computed tomography imaging of CV, CF, and GJ scaffolds. (A) CV1; (B) CV2; (C) CF1; (D) CF2; (E) GJ.
Color images available online at www.liebertonline.com/tea
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failure of carbon scaffolds was more closely related with
modulus and stress properties of carbon (Adjusted
R2 = 0.924). Additionally, linear regression analysis revealed
that porosity did not strongly correlate with elastic modulus
in both control and carbon scaffold groups (Adjusted
R2 = 0.087 and Adjusted R2 = 0.383) (Table. 4).

Discussion

Carbon has previously been used in a limited capacity
in medical implants used for soft tissue augmenta-
tion.26,27,30,33,34 In the past, researchers have combined bio-
polymers35–37 and altered the surface chemistry38 of
materials to optimize the biocompatibility and function of
scaffolds. The use of fibrous carbon materials for medical
research has steadily grown as processing and characteriza-
tion methods have become more sophisticated and allow
precise tuning of physical and structural properties of
carbon-based scaffolds on a nanoscale. The objective of this
study was to investigate the potential use of carbon as a
biomedical scaffold for the surgical reconstruction of soft
tissues with a hypothesis that carbon may provide an opti-
mal balance of biomechanical strength and the capacity to
deliver living cells and biologics to surgical sites to promote
tissue repair while restoring tissue function. This study
demonstrated that carbon may support biologic functions in

addition to serving biomechanical functions as a material
known for its biocompatibility, durability, and strength.

Cell adhesion and proliferation studies showed that there
is little difference between carbon and GJ control’s capacity
to support early cell adhesion, a critical factor for scaffold
integration and healing in vivo. This is supported by mar-
ginal differences in fibroblast density and viability on both
carbon and control scaffolds during short-term in vitro cul-
tures at 12 h and up to 48 h in CF cultures. The capacity for
carbon to sustain fibroblast adhesion and viability at 96 h
culture suggests a potential use of carbon as a scaffold for
sustained delivery of growth factors to sites of injury to
promote tissue healing such as the commercially available
scaffold Apligraf which is composed of a collagen scaffold
seeded with keratinocytes and dermal fibroblasts.24 Fibro-
blast adhesion to carbon and the capacity to sustain cell
growth are critical factors for the use of carbon as a vehicle
for delivering viable cells to a region of soft tissue recon-
struction where the combination of cells and scaffold are a
source of extracellular matrix synthesis, paracrine release of
growth factors, and nidus for tissue repair.

Although fibroblast adhesion to carbon and GJ was fol-
lowed by cell proliferation, proliferation was slower on car-
bon scaffolds as demonstrated by fewer cells and less
metabolic activity measured by WST-1 assays in longer-term
cultures of 96 h. These findings suggest significant biologic
property differences between carbon and the tissue derived
GJ. These differences yielded a higher rate of fibroblast
proliferation on GJ than carbon. It is reasonable to speculate
that enhanced fibroblast proliferation on GJ was stimulated
by residual activities of growth factors such as basic fibro-
blast growth factor, which has been shown to be retained in
GJ but not present in carbon.6 Hence carbon’s limited po-
tential in supporting a high rate of cell proliferation may be
due to its lack of a naturally derived tissue factor found in
GJ. Further investigation of the specific role of growth factors
present in GJ and selective conjugation of growth factors to
carbon scaffolds maybe necessary to optimize carbon’s po-
tential to promote cell proliferation to levels observed with
current tissue scaffolds utilized in surgery today. Recent
studies have shown that some synthetic fiber scaffolds can be
modified to mimic the activity of specific growth factors such
as vascular endothelial growth factor and promote regener-
ative processes such as neovascularization.39 This may be an
alternate approach to growth factor conjugation to carbon
that improves the biologic potential of carbon as a regener-
ative scaffold.

It is unlikely that lower rates of fibroblast proliferation on
carbon scaffolds was due to carbon toxicity as carbon has
been shown to be non toxic in itself17,27,33,40,41 and progres-
sive cell proliferation would not be expected as observed if
carbon was cytotoxic. Lower levels of total fibroblast adhe-
sion to carbon scaffolds than GrafJacket may have been a
result of geometric differences in the design and structure of
carbon and GrafJacket scaffolds. CV, the more porous of the
two carbon scaffolds, demonstrated less capacity for cell
adhesion and lower proliferation rates as noted by a smaller
plateau in WST-1 absorbance and lower levels of cell adhe-
sion than CF and GJ. This is consistent with other studies that
demonstrate increased cell proliferation on less porous scaf-
folds and densely organized regions of carbon fiber organi-
zation.42 These findings are also consistent with literature

FIG. 6. Comparison of maximum stress and elastic modu-
lus against porosity of CV, CF, and GJ scaffolds. (A) Max-
imum stress against porosity of experimental scaffold
samples; (B) Elastic modulus against porosity of experi-
mental scaffold samples. Values expressed as mean – SD.
Data points with an asterisk (*) are significantly different
from GJ control (Tukey-Kramer p < 0.01).
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FIG. 7. Phase contrast and
fluorescent imaging of
fibroblast growth on CV, CF,
and GJ scaffold surfaces at 96 h.
First column illustrates phase
contrast background of
scaffold samples. Second
column illustrates cellular
morphology with polymerized
actin labeling (red) and nuclear
labeling (blue). (A) Phase
contrast imaging of fibroblast
adhesion to CV1; (B) Fluores-
cence imaging of fibroblast
adhesion to CV1; (C) Phase
contrast imaging of fibroblast
adhesion to CV2; (D) Fluores-
cence imaging of fibroblast
growth to CV2; (E) Phase con-
trast imaging of fibroblast ad-
hesion to CF1; (F) Fluorescence
imaging of fibroblast adhesion
to CF1; (G) Phase contrast im-
aging of fibroblast adhesion to
CF2; (H) Fluorescence imaging
of fibroblast adhesion to CF2;
(I) Phase contrast imaging of
fibroblast adhesion to the epi-
dermal surface of GJ; ( J)
Fluorescence imaging of
fibroblast adhesion to the epi-
dermal surface of GJ; (K) Phase
contrast imaging of fibroblast
adhesion to the dermal surface
of GJ; (L) Fluorescence imaging
of fibroblast adhesion to the
dermal surface of GJ. Color
images available online at
www.liebertonline.com/tea
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regarding cell proliferation on synthetic fibers where cell
proliferation was greatest in regions of cell aggregation and
spreading.41,43,44 The carbon fiber used in this study had a
high degree of basal planes oriented along the fiber axis. The
basal planes are formed during the carbonization step of
carbon fiber processing. After carbonization the fibers exhibit
a high degree of axial preferred orientation with thick crys-
tallite stacking. As is shown in Figure 7, there was high actin

polymerization along the fiber axis and the fiber axis. This
material property has been previously shown to promote cell
growth.33,45 The optimal pattern of fiber organization, di-
mension, and porosity that maximizes the ability of carbon to
deliver cells, promote tissue repair, and enable tissue in-
growth and neovascularization needs to be further explored.

FIG. 8. Quantification of fibroblast growth on CV, CF, and
GJ scaffolds. (A) Fibroblast quantification on scaffold samples
surfaces by cell counting; (B) Fibroblast quantification on scaf-
fold surfaces by WST-1 assay absolute absorbance measure-
ment of fibroblast viability; (C) Fibroblast proliferation rates on
scaffolds based on WST-1 absorbance. Sample size was n = 10/
experimental group. Values expressed as mean– SD.

Table 3. Multivariate Stepwise Regression Modeling

of Carbon Veil, Carbon Fabric, and GraftJacket
�

Scaffold Load Failure

A. Regression Modeling of Maximum Load Failure

of Carbon Scaffolds (n = 40)

Variable B SE B b

Step 1
Stress 2.55 0.117 0.962*

Step 2
Stress 2.35 0.077 0.886*
Modulus 0.059 0.008 0.229*

R2 = 0.926 for Step 1; Adjusted R2 = 0.924 for Step 1, R2 = 0.972 for
Step 2, Adjusted R2 = Adjusted R2 = 0.971 for Step 2, (*p < 0.01). Porosity
and thickness were removed due to significance test ( p > 0.05).

B. Regression Modeling of Maximum Load Failure

of GraftJacket
� (n = 20)

Variable B SE B b

Step 1
Porosity - 1.15 0.383 - 0.690*

Step 2
Porosity - 1.28 0.234 - 0.764**
Thickness 22.8 5.35 0.596**

R2 = 0.476 for Step 1; Adjusted R2 = 0.423 for Step 1, R2 = 0.826 for
Step 2, Adjusted R2 = 0.787 for Step 2, (*p < 0.05, **p < 0.01). Stress and
elastic modulus were removed due to significance test ( p > 0.05).

Maximum load failure was tested as the dependent variable with
scaffold thickness, porosity, maximum stress, and elastic modulus
tested as independent variables. Both nonadjusted and adjusted R2

values for each regression step are displayed.
B, slope of the regression; SE B, standard error of slope; B/SE B, T

statistic from slope.

Table 4. Linear Regression Modeling of Elastic

Modulus as a Function of Scaffold Porosity in Carbon

Veil, Carbon Fabric, and GraftJacket
�

A. Linear Regression Modeling of Elastic Modulus as

a Function of Porosity in Carbon Scaffolds (n = 40)

Variable B SE B b

Porosity - 3.42 0.681 - 0.631*

R2 = 0.399; Adjusted R2 = 0.383 (*p < 0.001).

B. Linear Regression Modeling of Elastic Modulus

as a Function of Porosity in GraftJacket
� (n = 20)

Variable B SE B b

Porosity - 0.409 0.286 - 0.412

R2 = 0.170; Adjusted R2 = 0.087 ( p > 0.05).
Elastic modulus was tested as the dependent variable with

scaffold porosity as independent variable. Both nonadjusted and
adjusted R2 values are displayed.
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In the past, it has been exceptionally challenging to engi-
neer synthetic scaffolds or process naturally derived tissues
to recapitulate the biologic parameters necessary for tissue
repair without compromising the mechanical strength and
stiffness of scaffolds. This is a particularly keen problem with
scaffolds utilized to repair major tendon injuries of the ro-
tator cuff or Achilles tendon, where dermal scaffolds cur-
rently used to augment tissue repair are composed of similar
extracellular matrix molecules but fail to restore the elastic
properties of tendons.10,12,14,46–48 Regression modeling
demonstrated that scaffold porosity, a major factor influ-
encing graft neovascularization and cell delivery capacity of
fibrous scaffolds did not significantly influence the load
failure and modulus of carbon but did influence variance in
load failure of GJ. These findings suggest design advan-
tages of carbon scaffold engineering that maximize porosity
attributes conducive to scaffold neovascularization without
compromising the mechanical strength of a scaffold that is
needed but often lacking in currently available products.
Results of this study demonstrated greater consistency, less
variation, and fewer defects in the dimensions, porosity,
and thickness of engineered carbon than the commercially
available GJ (Fig. 6). The ability to consistently manufacture
precise physical and dimensional properties of carbon may
further minimize design, biomechanical and manufacturing
limitations of current scaffolds used in surgery. Hence
achieving the optimal tunable balance between biologic
properties and biomechanical function of scaffolds may be
technically easier through carbon engineering than devel-
oping improved technologies of human tissue processing.
The possibility of engineering carbon with mechanical
properties of a mature tissue despite its lack of a mature
cellular and extracellular matrix provides a potential ad-
vantage of carbon over current biologic scaffolds that re-
quire prolonged processes of tissue healing, reorganization,
and fibrosis to achieve their maximum mechanical strength.
This advantage potentially shortens periods of postopera-
tive inactivity in patients as the mechanical strength of
tendons repaired with carbon may be restored sooner with
surgery without the need for prolonged periods of immo-
bilization to achieve maximal tissue strength. This may ul-
timately reduce the risk of postoperative morbidity and
mortality associated with prolonged periods of inactivity
and immobilization by enabling patients to return to un-
restricted activities earlier.49,50

In summary, carbon may represent an alternative material
suitable for future development as a soft tissue substitute
that potentially optimizes the biologic and mechanical
properties required for a graft product utilized in surgery.
Further investigation is required to characterize and model
the relationships of biologic, mechanical, and design prop-
erties of this material to maximize its potential use as a
biomechanical scaffold and vehicle for delivering biologics
that promote tissue repair and regeneration.
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