
A STUDY OF THE DESIGN AND REAL-TIME
IMPLEMENTATION OF A SEMI-GENERIC

INTEGER-TO-INTEGER DISCRETE
WAVELET TRANSFORM

A Thesis

Submitted to

the Engineering School of the

UNIVERSITY OF DAYTON

In Partial Fulfillment of the Requirements for

The Degree

Master of Science in Electrical Engineering

by

Michael P. Flaherty, B.E.E

UNIVERSITY OF DAYTON

Dayton, Ohio

May 2006

A STUDY OF THE DESIGN AND REAL-TIME

IMPLEMENTATION OF A SEMI-GENERIC

INTEGER-TO-INTEGER DISCRETE WAVELET TRANSFORM

APPROVED BY:

Dr. Frank A. Sc&frino, Ph.D.
Adviser Committee Chairman
Electrical &; Computer Engineering

Dr. Russell Hardie, Pli.D.
Committee Member
Electrical & Computer Engineering

/V)r. John Weber, PV.D.
Committee Member
Electrical & Computer Engineering

Dr. Donald L. Moon, Ph.D.
Associate Dean, School of Engineering

D^rJJos/ph E. Saliba, Ph.D., P.E.
Dean, School of Engineering

ii

ABSTRACT

A STUDY OF THE DESIGN AND REAL-TIME
IMPLEMENTATION OF A SEMI-GENERIC
INTEGER-TO-INTEGER DISCRETE WAVELET TRANSFORM

Name: Michael P. Flaherty
University of Dayton, 2006

Advisor: Dr. Frank A. Scarpino

JPEG2000 became an international standard in December of 2000 as the newest

and most state of the art still image compression standard available according to the

Joint Photographic Experts Group (JPEG). This compression standard is based on

the discrete wavelet transform(DWT), instead of the more commonly used discrete

cosine transform (DCT) which is part of the original JPEG standard. The result of

which has been ever increasing amounts of research in the field of wavelet transforms.

This research paper presents a method for the real-time implementation of several

types of wavelet transforms including the CDF(9,7) and the LeGall(5,3) transforms

which make up the core kernels of the JPEG2000 standard[21].

In this thesis, a forward discrete wavelet transform is designed and implemented

on the Vertex 2 Pro package 7 FPGA. It is intended for use in a hardware acceler­

ated JPEG2000 implementation. This implementation would have many potential

applications including use in digital cameras, motion JPEG2000 applications, or high

altitude surveillance schemes.

iii

This thesis details a design that effectively uses the designs internal memory to

allow for a single read - single write design. The single read - single write capability of

this provides much more flexibility. By having to input the data only once, a potential

implementor has only to worry about feeding the data to a “black box” in the right

order and retrieving the data in the correct order. It also make the design very

flexible because no specific memories or memory interfaces have to be used. These

features allows a user to incorporate this design without the need to understand the

implementation details.

IV

To Myself..
...for all of your hard work.

v

ACKNOWLEDGMENTS

I would like to thank anyone and everyone who had to listen to me talk about this
for months on end. However, I would especially like to thank the following people.

• Dr. Frank Scarpino, PhD:
I would like to thank you for all of your guidance over the course of my time
in grad school. You have not only given sage advice on academic matters, but
provided me with valuable life lessons.

• Dr. Russell Hardie, PhD and Dr. John Weber, PhD:
Thank you to Dr. Hardie and Dr. Weber for your advice and input on the
writing of my thesis and for being on my thesis committee. I know you have
busy schedules, so thank you for allowing me to take up some of your valuable
time.

• Dr. Eric Balster, PhD:
I would like to thank you for providing me as much insight, if not more, than
my actual advisor, and easily answering as many questions. Thank you for all
of your time and patience.

• Dave Mundy Thaddeus Marrara:
I would like to thank you both for listening to me complain and ask an endless
number questions I knew you didn’t know the answer to either, when I wasn’t
understanding. And for letting me bounce ideas off of you constantly.

• Kerry Hill, A1 Scarpelli, and Rob Ewing:
I would like to thank you all, as well as the rest of the researchers and managers
at Wright-Patterson Air Force Base, whose financial support and use of their
resources made this thesis and my continuing education possible.

• B. Jane Flaherty:
Thank you to my mother for all of you support throughout my fife. You have
given me the opportunities that allowed me to go to grad school and do research
like this. Thank you.

vi

• Kristin Schleppi:
Thank you for your infinite patience and support throughout my time in grad­
uate school. You supported me every way possible. Without you pushing me
to do better, I probably never would have finished.

vii

TABLE OF CONTENTS

Page

Approval ... ii

Abstract iii

Dedication... v

Acknowledgments ... vi

List of Tables.. x

List of Figures xi

Chapters:

1. Introduction.. 1

1.1 Image Compression... 1
1.1.1 JPEG Image Compression Standard....................................... 4
1.1.2 JPEG2000 Image Compression Standard................................ 4

1.2 Real-Time Implementation .. 6
1.2.1 Motion JPEG2000 .. 6
1.2.2 Cost of Hardware Implementations... 7
1.2.3 Importance.. 8

1.3 Innovative Contribution... 9
1.4 Thesis Organization... 10

2. Wavelet Overview... 11

2.1 The Wavelet Transform... 12
2.1.1 The Discrete Wavelet Image Transform 14

2.2 Benefits of the Wavelet Transform .. 16

viii

3. Lifting Overview......................... ... 19

3.1 Origins of Lifting .. 19
3.2 Benefits of Lifting 19

3.2.1 Integer-to-Integer Lifting ... 22
3.3 Deriving Lifting Equivalent Filters.. 22

4. Lifted Wavelet Algorithm ... 30

4.1 Overview.. 30
4.2 Implementation... 32

4.2.1 Column Processor.. 33
4.2.2 Row Processor.. 36
4.2.3 Symmetric Extensions...................... 39

4.3 Creating Generality ... 40

5. Hardware Implementation . .. 41

5.1 Synthesis Constraints .. 41
5.2 Implementing a Lifting Step.. 42

5.2.1 Implementing the Column Lifting Step 43
5.2.2 Implementing the Row Lifting Step... 44
5.2.3 Semi Generality ... 44

5.3 Implementing the Row Processor Memory... 45
5.3.1 Memory Solution... 45

6. Conclusions & Future Work... 47

Appendices:

A.. 50

Bibliography ... 69

ix

LIST OF TABLES

Table
2.1 Dabchicks Orthogonal Wavelets..
2.2 LeGall(5,3) & CDF(9,7) Bi-orthogonal Wavelets.....................................
4.1 Memory Conservation Examples...
5.1 Synthesis Constraints..

Page
16
16
37
42

x

LIST OF FIGURES

Figure Page
1.1 A General Image Compression Process... 2
2.1 One MR Level Haar Transform... 14
2.2 Three MR Level Haar Transform.. 15
3.1 Wavelet Filter Bank Approach.. 20
3.2 Wavelet Polyphase Representation.. 20
3.3 Lifting Filter Structure... 26
4.1 Wavelet Column and Row Processors.. 32
4.2 Column Processor.. 33
4.3 Row Processor... 37
5.1 Column Lifting Step.. 43
5.2 Row Lifting Step.. 44

xi

CHAPTER 1

Introduction

JPEG2000 became an international standard in December 2000 as one of the

newest and most state of the art still image compression standards available, according

to the Joint Photographic Experts Group (JPEG). This compression standard is based

on the discrete wavelet transform(DWT), instead of the more commonly used discrete

cosine transform (DCT) which is part of the more popular original JPEG standard.

The result of this has been ever increasing amounts of research in the field of wavelet

transforms.

This research paper presents a design and implementation for the real-time im­

plementation of several types of wavelet transforms including the CDF(9,7) and the

LeGall(5,3) transforms which make up the core kernels of the JPEG2000 standard[21].

First, however, it is important look at why we need to compress images, and what are

the current defacto standards for doing so. Consideration is also given to the impor­

tance of real-time processing. Finally, what are the costs involved in implementing

the transforms with real-time processing constraints in mind.

1.1 Image Compression

Image compression is vital to filling the ever-increasing demand to store, transmit,

and process images. Image compression allows us to store more pictures in less space,

1

transmit pictures to other locations faster and with better quality, and process or

refine images in different ways, as they are compressed them.

Image compression does all of these things by reducing the amount of data that

is necessary to reconstruct the images into what the human eye perceives as a visual

image. Compression is accomplished by using a set of steps that are used in almost

all image compression standard. These basic steps of typical image compression and

decompression schemes are expressed in Figure 1.1.

C ainei a -
5

X 1 time uiduuri ----r
: i - ------------ — v oragi r ion —

Ti amf'o lr.i Quantizer Encoder1 0 ------H 1--- t—M*I (
J 1

►

C . - . image Data Tramming;;

Figure 1.1: A General Image Compression Process

In Figure 1.1 it is seen that the first step is the image transform. The image

transform is a mathematical function that allows the spatial reorganization of the

data into a form that is, more compressible than the original data. The process of

compression can be lossy1 but, the loss is typically set so that the quality degradation

is visually negligible. It is this step which the discrete wavelet transform (DWT),

which is the topic of this thesis, falls under. However, the most common present image

lrThe word lossy is used here to mean a process by which data can be reconstructed reasonably
close to the original but is not perfect in all cases.

9

transform is the discrete cosine transform (DCT), which is used in such standards

as JPEG, MPEG-1&2, and MPEG-4 [12], The next step that comes in Figure 1.1 is

the quantization step. It is in this step where a compression scheme becomes either

lossless, in which a picture can be perfectly reconstructed, or lossy, in which the image

can be approximately reconstructed. In the quantization step the designer/developer

decides how much data can be disregarded before the distortion in the image becomes

so great that the image quality is no longer tolerable. The final step in the compression

process is the encoding of the data. In this step the data is truly “shrunk”. It is in

the encoding process that the data is translated into another representation using one

of a number of different encoding schemes that allows the new data representation

to take up less storage space by exploiting not only the spatial redundancies that

were created in the image transform step, but many other types of redundancies that

exist in images as well. One method of doing exploiting these redundancies is using

a table of symbols that takes the statistical frequency of a data value into account.

This is called Huffing Coding and it is a common encoding scheme that is used in

the JPEG, M-JPEG, MPEG standards, as well as other image compression standards

[24, 12], Once the image is compressed it can then be stored, transmitted or sometimes

manipulated, after which the image can be reconstructed by performing the inverse

operations of the compression process in reverse as can be seen in Figure 1.1. The

following subsections give a overview of compression standards for completeness.

3

1.1.1 JPEG Image Compression Standard

The JPEG file format was developed by the Joint Photographic Experts Group,

and was the first and most common compressed, true-color image file format 2. The

JPEG format is used to display images on web pages, to store satellite imagery

in military applications, and is embedded in most digital camera microprocessors.

The JPEG compression scheme follows the generic compression model represented

in Figure 1.1. In the JPEG standard the image transform used is the block-based

discrete cosine transform (DCT) which sorts an image into 8x8 pixel blocks of data,

and then transforms those blocks into one DC coefficient which is placed in the upper-

left most position of the block and 63 higher frequency coefficients, which make up the

rest of the positions in the block. The quantization is then done by dividing the data

block by one of a set of a few 8x8 quantization matrices. The data is then passed to

the encoding step using a “zigzag” pattern which helps to facilitate the encoder used.

Finally, the data is encoded using either entropy or arithmetic encoding or sometimes

both. Just as in the generic process described in the previous section, to reconstruct

the image the reverse processes are run in reverse order. JPEG is arguably the most

widely accepted image compression format available today. However, in 2000 the

JPEG group that developed JPEG, created a new standard, JPEG2000, which it

intends to supersede its original standard.

1.1.2 JPEG2000 Image Compression Standard

The image transform that is used in JPEG2000 is the DWT. The basics of how

a DWT work are further developed in Chapter 2, but generally the DWT performs

2A true color image is usually considered one in which there are at least 24-bits per pixels in its
uncompressed format.

4

on the entire image rather than breaking the picture into smaller 8x8 blocks as the

DCT does. This does make processing the DWT more complex but in general the

DWT has been observed to yield a restored image that has better quantitative qual­

ity as well as being more pleasing to the eye. JPEG2000 and wavelet transforms in

general has been shown to yield approximately 25% more compression than that of

the original JPEG standardfl]. Moving to the next step in the compression model,

quantization, the JPEG2000 standard quantization step is optional because of the

way that the encoding step process encodes the data. If quantization is used, it is

quantized uniformly over each wavelet sub-band by simply dividing that sub-band

by some specified amount. Also, the encoder used in JPEG2000 has the option of

performing quantization as part of its processing method. For this reason combined

with the fact that the JPEG2000 standard also offers a lossless mode in which no

quantization is done, that the quantization step in JPEG2000 becomes optional. The

final step in the compression model is the encoder which as stated is called EBCOT

(Embedded Block Coding with Optimal Truncation). This is an arithmetic encoder

that is extremely complex and process intensive, but extremely effective. The advan­

tages that are brought to JPEG2000 by this step are many, as are the improvements

the entire JPEG2000 standard brings over the original JPEG standard. These im­

provement include a progressive data stream, ROI (Region of Interest) capabilities,

resolution scalability, SNR (Signal-to-Noise Ratio) scalability, and much more. For

further reading any part of the JPEG2000 standard see [1, 9, 21],

1.2 Real-Time Implementation

The term “real-time” has many definitions but its basic meaning is typically the

same. “Real-time” refers to the ability to process incoming data fast enough that

one set3 of data is finished being processed before the next one is ready given some

timing constraints. Real-time implementations for video are considered to be able

to process approximately 30 frames (or pictures) a second using a popular video

display standard called NTSC [12]. In order to meet this standard requirements, the

process must be able to output one picture every 0.03 seconds in order to be able

to keep up in real time. This is can sometimes be faster than a average PC can

handle using software implementations, especially with the growing complexities of

the compression algorithms (i.e. JPEG2000) and other image processing algorithms.

With most of these highly complex algorithms, real-time processes need to either be

implemented completely in hardware or in some cases merely hardware-accelerated4.

Using Field Programable Gate Arrays (FPGA’s) in conjunction with a newer type

of programming called HDL (Hardware Description Language) algorithms can easily

and much more rapidly be developed and implemented on hardware while at the same

time at a much lower cost in terms of time, money and risk than in the past.

1.2.1 Motion JPEG2000

In order to create the appearance of motion images are captures one after the

other in sequence to create the appearance of motion. This is the way that all video

3A set might be anything as small as a 16-bit audio sample to as large as 300 KB image or larger.

4Hardware-accelerated refers to a process that has some of the lower level processes performed
in hardware allowing for speed gains, while still retaining the flexibility that software provides to
other complex processes of an algorithm.

e

is created, however in many of the video compression schemes there is a temporal

component, or analysis of the video across multiple pictures over time. This is not the

case with M-JPEG2000. Motion JPEG2000 (or M-JPEG2000) is simply a standard

that uses the JPEG2000 Image compression standard to compress the images one after

another. In M-JPEG2000 pictures are compressed as independent entities exactly as

would be done if only one picture were being compressed. However, in M-JPEG2000

there is the need to be able to compress each picture in a much shorter amount of time

for real-time applications. As stated in Section 1.2, to create a real-time video stream

of JPEG2000 compressed images, each image must be compressed in 0.03 seconds.

It is in this situation that a hardware or a hardware-accelerated implementation of

JPEG2000 is useful. It is with the hardware-accelerated JPEG2000 implementation

that that the research and development of a hardware implemented DWT is conducted

for this thesis.

1.2.2 Cost of Hardware Implementations

The costs of hardware implementations are much less than they have been in the

past, but they still need to be considered. Hardware implementations typically take

more time to develop and implement than most software implementation. This is in

part because HDL languages are so new and developers are still learning to use them.

It also takes more time to program a chip and run a test algorithm than it does to

simply compile some software, so the debugging process takes longer than in software.

Lastly, there is not always a one-to-one equivalence between the resources available in

different hardware architectures, so the same HDL script may synthesize correctly and

within the resource constraints of one chip and not on another. Additional hardware

also means additional power in most cases. This is a consideration that must be taken

into account if a hardware implementation is to be used. Hardware implementations

also need access to memory. Memory must be supplied from the overall system

resources or additional memory must be given to the algorithm separately. There may

also need to be some shared memory, and for a hardware-accelerated design, it can

lead to a much more complex overall hardware design. Finally, there is monetary cost.

Chips cost money, the extra time it takes to develop a hardware implementation costs

money, and additional power needs cost money as well. There are many costs involved

in the development of a hardware implementation and these costs must be weighed

against the potential benefits in order to determine if a hardware implementation is

right design decision.

1.2.3 Importance

Because the DWT is an ineffective means of compression by itself other processes

must be used in conjunction with the DWT. This means, for example, that if a wavelet

compression scheme, like JPEG2000, is to be used for creating video, not only does

the DWT have to happen in our 0.03 seconds, but the quantization and encoding steps

do as well. Also, as stated above, the EBCOT process is extremely complex [20]. This

makes it very important to speed up each individual process as much as possible in

order to be able to perform the compression in real-time. Real-Time implementations

then become important to the DWT and JPEG2000 in order to reduce the amount

of time that the DWT takes so that the entire process can remain quick. While the

EBCOT is complex and therefore difficult to implement in hardware, the DWT is

less complex by comparison. The DWT only requires two processing passes over the

8

image, where as the EBCOT could require as many as 69 passes over the image to

complete. As a result, the DWT would make a much more likely candidate to have its

operations performed in hardware in order to achieve an overall hardware-accelerated

design. By having a having the DWT performed in hardware not only would the

DWT be performed faster that it would be in a software implementation, but by

having dedicated hardware for the DWT it could be performed concurrently with the

other processes. This could make a hardware implementation of the DWT invaluable

in the right context.

1.3 Innovative Contribution

While the idea of hardware implementation of a discrete wavelet transform has

been explored, there are several points in this paper where ideas and work are new.

The first of which is the idea of building a generic wavelet in hardware. While this

design has only some generality to it, meaning it allows more than one type of wavelet

but not all wavelets, at the date of this writing, a literature search yields no docu­

mentation dealing with the subject. Second, the idea for the memory management

of the wavelet data, that allows this design to be single read - single write was pre­

sented in a paper by S. Barua and others in 2005, the design focused on row-wise

operations as the initial pass on the data[4]. While this design is much more memory

efficient than an external memory implementation discussed in Chapter 4, the design

is more memory efficient if the data is processed column-wise initially, if the statistical

prevalence of images to be wider than they are tall is taken into account. In the im­

plementation of the design presented in this paper, the data is processed column-wise

initially. Finally, the design presented in the Barua paper was never developed into

9

an implementation and verified as a usable method. In the implementation of this

design, that verification is achieved.

1.4 Thesis Organization

This thesis is organized into 6 chapters. In Chapters 1 through 3, the relevant

topics that are needed for the design and implementation of the discrete wavelet trans­

form are introduced. Chapter 4 introduces the specific method of implementation of

the DWT algorithm. In it an overall abstracted view of how the design will work

is taken. Also, the design choices that are made, and the reasoning behind them,

are discussed. In Chapter 5 the method of the implementation of the algorithm is

discussed, including all of the hardware resources that are used and design decisions

are discussed and justified. Also discussed are the difficulties faced and how the im­

plementation changed as a result. Finally, in Chapter 6 the conclusions are stated

as well as possibilities for future additions to this design and further research that is

possible in this area.

10

CHAPTER 2

Wavelet Overview

In this chapter, the wavelet transform is discussed, as is the general process by

which a wavelet transform is performed. In addition, an integration example is given

in JPEG2000. It is also important to note that while video and the wavelet transform

are being discussed in this paper, there is a form of wavelet transform that exists called

the 3-D or temporal transform. However, since this is not the subject of this research

it will not be discussed.

In image compression there are two types of redundancy that are typically ex­

ploited: spectral and spatial[16]. Spectral redundancy is usually utilized by the per­

formance of a color transform in a compression step called preprocessing which is done

before the image transform. For more information on color transforms see [1, 9, 21].

The DWT (Discrete Wavelet Transform), on the other hand, fits under the head­

ing of image transform and its purpose is to be a reversible process that spatially

reconfigures the data in order to decrease its spatial entropy (or increase its spatial

redundancy) which makes the data much more compressible than its original form.

This is why image transforms and the wavelet transform in particular are so important

to the image compression process.

11

2.1 The Wavelet Transform

The first thing to note about the DWT is that there is more than one set of DWT

filters, unlike the DCT which has only one type of forward transform and therefore

only one image transform. On the other hand there are nearly an infinite number

of different wavelet transforms. This is the reason that a generic wavelet, or in the

case of this design a “semi-generic” wavelet, is needed. The reason there are so

many different wavelets is because the effective process behind wavelet transforms is

relatively generic. The basic concept of the forward DWT is to low-pass h(z) and

high-pass g(z) filter image data in either the vertical or horizontal direction and then

in the direction not initially chosen. This is done in order to “push” all of the energy

in an image into a smaller area. Once this is done the data is down-sampled by a

factor of 2. This can be repeated on the quadrant of the image that was low-pass

filtered twice until a satisfactory entropy is achieved. This process can be seen in

Figures 2.1 and 2.2. The down-sampling is done so the number of filtered data points

is the same as that of the original data. Even though the data has been down-sampled

the data can be reconstructed perfectly with the inverse DWT [21], This is done with

a specific set of filters called wavelet filters. In these sets of wavelet filters the low-

pass filter is called the scaling function and the high-pass filter is called the wavelet

function. An example of this process will follow shortly.

The discrete high-pass filter can be determined from the discrete low-pass filter

using,

g(z) = (2.1)

12

Previously the wavelet process was discussed in terms of entropy. Another way to

describe the wavelet process is in terms of energy. The DWT compacts and preserves

energy[23]. An example of this is the simplest and first wavelet transform developed,

the Haar Transform[22]. The discrete transform equation for the Haar low-pass filter,

also called the scaling function is given by,

(2-2)

and if we apply Equation 2.1 to 2.2 the Haar high-pass filter, also called the wavelet

function is yielded as,

s(z) = 72 ■ 722'1' (2'3)

For example, if a signal is given as f = {4,6,10,12,8,6,5, 5} and the data set f is

run through the Haar filters the resulting data is

fh = {55/2,85/2,11V2, lOv/2,7y/2,5.55/2,5^2, ?}

fg = {-y/2, -2y/2,-lV2, 2>/2, I5/2,0.55/2, 55^, ?}• 5

Next, the signals are down-sampled by 2 and combined, low-pass on the left and

high-pass on the right. This yields,

fgh = {5^2, lly/2,7V2,5x/2| - V2,-V2, 5/2,0}

which is the discrete wavelet transformed data. Now, if the energy of the data is

compared, defining energy as,

E = £/H2 (2.4)
1=1

and Equation 2.4 is applied to the original data set, the energy of that set is E = 446.

If then, Equation 2.4 is applied to the new data set fgh the total energy there also

5The last values in these sets are undetermined because the type of extension has not been
discussed or determined.

13

Original Image Row Transformed Wavelet Transformed
Image Image

Figure 2.1: One MR Level Haar Transform

yields E = 446. This shows energy preservation. If we then look at the energy on

either side of data set fgh it is seen that E = 440 on the left half and E = 6 on the

right. This shows energy compaction[23]. Another illustration of this can be seen in

Figure 2.1 where the image at the far right appears to be squeezed onto the left half

of the center image. While there is still some data on the right half it is at very low

energy and therefore is barely detectable by the eye. However, the majority of the

energy has be moved to the left half and so that half can be seen plainly.

2.1.1 The Discrete Wavelet Image Transform

In order to extend the previous example into two dimensions so that an image can

be transformed, the process is repeated as in the previous example, first in one of the

two image dimension, either across the rows or down the columns. Then the process is

repeated in the direction that was not covered by the first pass. The transform would

then look something like Figure 2.1. This process creates a one multi-resolution (MR)

level transfom. In order to compact the energy of the image even further, and by doing

so make the image even more compressible, the same two dimensional process is again

14

repeated on the bulk of the energy which is located in the upper left of transformed

image as seen in Figure 2.1. This successive transforming can be seen in Figure 2.2.

J TC ; J! C C
’...

j.;n-

1 S';
- *

; I f
▼

<• /

•
__ ,1^ r

, -l«t, j^r‘ ; ,r

.-I
V 4

Figure 2.2: Three MR Level Haar Transform

Wavelet Types

While in the examples in this chapter have only used the Haar Wavelet, it is

important to note that, as stated previously, there are nearly an infinite number of

possible wavelet transforms. One special distinction between that presented, and the

CDF(9,7) and the LeGall(5,3), which are the wavelets of focus for this research, is

that the Haar is a orthogonal wavelet. This means that is has the energy preservation

property discussed above, as well as having all of the same coefficients for both the

scaling function and the wavelet function, although the coefficients are in different

order and have differing signs. In Table 2.2 a set of wavelets developed by Ingrid

Daubechies illustrates these coefficients.

15

Wavelet Name Coefficients
Haar (D2) Scaling: 0.707 0.707

Wavelet: -0.707 0.707
D4 Scaling: -0.1294 0.2241 0.8365 0.4830

Wavelet: -0.4830 0.8365 -0.2241 -0.1294
D6 Scaling: 0.0352 -0.0854 -0.1350 0.4599 0.8069 0.3327

Wavelet: -0.3327 0.8069 -0.4599 -0.1350 0.0854 0.0352
D8 Scaling: -0.0106 0.0329 0.0308 -0.1870 -0.0280 0.6309 0.7148 0.2304

Wavelet: -0.2304 0.7148 -0.6309 -0.0280 0.1870 0.0308 -0.0329 -0.0106

Table 2.1: Dabchicks Orthogonal Wavelets.

Bi-orthogonal wavelets have the same traits and follow the same rules as orthog­

onal wavelets, except for the two distinctions made previously for the orthogonal

wavelets. Bi-orthogonal wavelets do not always preserve energy as is the case of the

LeGall(5,3), however, in some instances they do, as is the case for the CDF(9,7)

[8]. Also, the coefficients are not the same in bi-orthogonal filters. In fact the filters

are not the same length in most cases. This is illustrated in Table 2.2 where the

coefficients for the LeGall(5,3) and the CDF(9,7) are listed.

Wavelet Name Coefficients
LeGall(5,3)[21] Scaling: -0.125 0.25 0.75 0.25 -0.125

Wavelet: -0.5 1 -0.5
CDF(9,7)[7] Scaling: 0.037 0.023 -0.110 -0.377 0.852 -0.377 -0.110 0.023 0.037

Wavelet: -0.064 -0.040 0.418 0.788 0.418 -0.040 -0.064

Table 2.2: LeGall(5,3) &; CDF(9,7) Bi-orthogonal Wavelets.

2.2 Benefits of the Wavelet Transform

The DWT has many benefits over the DCT, the first of which is quality of the

images it can produce[15]. There are two aspects to this topic. The first is the sheer

16

variety of wavelets available. With so many wavelets to choose from, a wavelet can

almost always be found that allows for better image compression than the DCT. This

must also mean that if better compression can be achieved at the same quality, then

it must be possible to get a better quality image at the same compression ratio. The

second part of this argument is the method transform. Because the wavelet transform

encompasses the entire image rather than a 8x8 block at a time there are no blocking

artifacts. This, arguably, makes the image seem better at higher compression rates

than the DCT because the eye is better equipped to deal with a blurry images rather

than blocky ones [3].

The wavelet transform also lends itself to making an image resolution scalable.

In fact, this trait, combined with a progressive encoding, allows JPGE2000 to have

resolution scalability as well a progressive resolution capability, which allows the

image to be reconstructed with only the first fraction of the compressed data and

then increase the resolution as more data is access, as part of its feature set.

Finally, because there are many different wavelets available an emerging field is

that of multivalent compression. In this technique a combination of wavelets are

used, a different one for each multiresolution level. This research is showing promise

in making wavelet combinations that are allowing for even more compression than

that of the single wavelet compression schemes that are already out performing the

DCT based compression schemes[14].

Drawbacks

While there are so many benefits of the DWT and wavelet analysis, the drawbacks

must be mentioned as well. The first of which is the number of wavelets available.

Because there are so many wavelets and no closed form solution for finding which one

17

is the best for a particular set of data, the only option left is experimental iteration.

It could take some time to find a wavelet that will give a substantial improvement

over more established compression schemes in certain cases. It also makes finding

combinations that work well in the emerging multivalent field all that more difficult.

A second minor drawback of the wavelet transform is the fact that the entire image

is processed together. While this makes the image arguably easier to look at it, it

also makes the computational complexity and memory requirements more demanding.

This drawback is discussed further in later chapters.

18

CHAPTER 3

Lifting Overview

3.1 Origins of Lifting

The term “Lifting” is used to describe the factorization of a discrete wavelet

filter, was coined by Wim Sweldens who discovered and introduced the subject in

the 1990’s[10, 17, 19]. Sweldens uses a factorized filter structure to implement the

discrete wavelet transform filters in order to obtain a more compact representation

of the data. This structure has been refined and is now what is known as lifting [6].

Lifting has many benefits for effectively implementing wavelet filters. Some of these

benefits are briefly discussed in the following section.

3.2 Benefits of Lifting

A method of performing a discrete wavelet transform is introduced in Chapter 2

and one method of achieving the transform is discussed. This method is called the

filter bank approach, and a graphical representation can be seen in Figure 3.1. It

is named as such because the image data is passed through a series of FIR filters

called a filter bank. However, the filter bank approach is a generic method for imple­

menting any type of filter and does not taking into account redundancies in wavelet

filters. Therefore the filter bank approach is not the most efficient method for the

implementation of the discrete wavelet filters. In using the filter bank method, all

19

h(i ')
0>

Figure 3.1: Wavelet Filter Bank Approach

of the data is run independently through each of the two forward transform filters,

seen in Figure 3.1, h{z~x) and g(z~x). Once that is done, the data is then twice the

size of the original, so it then has to be down-sampled decimating by 2 and throwing

half of the output data, and half of the processing time is wasted. The wasted time

and data are the most significant reasons the filter bank approach to implementing

wavelet filters is so inefficient.

Lifting takes into account the redundancies present in wavelet filters and eliminates

some of the inefficiencies discussed with the filter bank approach. First it allows

the down-sampling to take place before the filter processing. It also allows parallel

processing of the data. Utilizing these improvements over the filter bank approach, a

lifting implementation reduces the number of operations needed to perform a forward

DWT to nearly halffll, 18]. This helps to significantly speed up the DWT. The lifting

implementation is represented in Figure 3.2 where P represents the polyphase matrix,

which is the standard mathematical representation of a lifting filter[6, 10].

Figure 3.2: Wavelet Polyphase Representation

20

Another advantage that lifting has over the filter bank implementation is process­

ing order. Utilizing the filter bank approach, the data must be run through the

low-pass filtration process and then the high-pass process, or the two processes can

be run simultaneously at the cost of additional resources. However, if the lifting ap­

proach is used then the data is run through the filtering process only once and the

lifting filter outputs both the low and high-pass data at the same time. This result

is again illustrated in Figure 3.2. Lifting has the added benefit of allowing in-place

processing[17]. The benefit of in-place processing is that because the input data needs

to be read once there is no need for the input data to be retained as with the fil­

ter bank approach. In-place processing allows for the input data to be immediately

overwritten by the output data and essentially halves the memory requirement for

performing a DWT.

A third benefit of lifting allows for pipelining of the filtering process. Pipelining is

achieved as a result of the factorization that takes place in order to obtain the lifting

filter from the originals. As a result of this process, lifting factors the wavelet FIR

filters into a series of smaller filters that produces the same results as the originals.

These smaller filters are called steps [6]. A series of smaller filters is beneficial because

it allows for pipelining of the filtration process. Pipelining in this case is a process in

which the filter can move onto another data point before the previous one has finished.

The benefit is that it allows for a more efficient use of resources. This becomes

especially important in a either a custom ASIC or FPGA hardware implemented

design.

21

3.2.1 Integer-to-integer Lifting

One final benefit that can only be achieved through the lifting process is the

creation of integer-to-integer DWT filters[5]. This is advantageous when attempt­

ing hardware implementations of DWT’s. Integer outputs are advantageous because

floating point numbers are complex elements to introduce to a hardware system, as

are the operations needed to do floating point operations. On the other hand, if

an integer-to-integer implementation is used, the hardware complexity and resources

needed to implement these same operations are reduced[2, 5].

With the integer-to-integer approach, however, there are several drawbacks that

result. These drawback occur because of the method used to achieve the output

integers. The integerization of the lifting filters will be discussed in more detail in later

sections, however essentially a non-linearity is introduced to the transform[5]. The

introduction of the non-linearity results in the loss of separabilty6. Therefore the order

of the one dimensional transforms must be predetermined and run in opposite orders

in the forward and inverse DWT’s. An additional drawback is that any compression

scheme that uses the integer-to-integer approach must use the same approach during

the decompression process or perfect reconstruction will not be achieved.

3.3 Deriving Lifting Equivalent Filters

The lifting filters are determined by factoring the wavelet filter coefficients. This

factorization is done by putting the wavelet filters into a polyphase matrix, and

factoring that matrix into alternating upper and lower triangular matrices each of

Separability in the of case the DWT refers to the transforms ability to have the one dimensional
transforms performed in either order in both the forward and inverse transforms and still achieve
perfect reconstruction.

22

which represents a new smaller filter. Once the factorization is done the wavelet can

then be implemented using the smaller filters that each upper and lower triangular

matrices represent.

In order to begin the lifting derivation, one must obtain the polyphase matrix

representation of the wavelet filter pair,

F(^) M~) 9e(z)
ho(z) go(z) (3.1)

where P(z) is the polyphase matrix, he(z) & ho(z) are the even and odd coefficients

of the inverse low-pass filter, respectively, and ge(z) go(z) are the even and odd

coefficients of the inverse high-pass filter, respectively. Figure 3.2 it shows that P(z)

is associated with the synthesis wavelet filter. The analysis or decomposition matrix,

P(2-1)', can then be obtained directly from the synthesis matrix, and it is more

convenient to find the synthesis filter. The even and odd coefficient equations for the

scaling filter are obtained by,

h(z) = he(z2) + z 1ho{z2\ (3-2)

where in Figure 3.1 it can be seen that h(z) is the synthesis scaling function. Also,

Laurent polynomials he{z) and ho(z) can be obtained more directly using,

h„(?) =

(3-3)

(3-4)

The synthesis wavelet function, g(z) can be decomposed in the same manner.

The Euclidean algorithm is now introduced as a method of finding the greatest

common divisor of the two Laurent polynomials he(z) and ho(z). While the Euclidean

23

algorithm7 was originally developed to find the greatest common divisor of natural

numbers, it can be extended to Laurent polynomials8 with only the caveat that the

solution is not unique[6]. In order to use the Euclidean algorithm let he(z) = a(z)

and h0(z) = b(z) where |a(z)| > |6(^)| and iterate through equations 3.5 and 3.6,

where initially let a0(z) = a(z) and b0(z) = b(z), until bn(z) = 0. As a result

an(z) = gcd(a(z),b(z)).

ai+1(z) = bi(z) (3.5)

bi+1 = a,i(z)%bi(z) (3.6)

where % is the modulus operator. While not part of the Euclidean algorithm, it is

important in deriving the lifting filter to keep track of the quotient q(z). In order to

do this another equation is added to the iterations in the Euclidean algorithm and it

is,

Qi+i = a^zj/b^z). (3.7)

It should also be noted that q(z) can take many values, which is why the solution

of the Euclidean Algorithm is not unique. This allows for a certain freedom when

developing lifting filters which also allows for a variety of lifting filter equivalents for

a given wavelet filter pair. It is up to the developer to decide which is best for a given

design [6].

Once all of the quotients qn(z)

shown as,
he(z)
ho(z)

7Euclidean algorithm is an algorithm to determine the greatest common devisor of two integers.

8 Laurent Polynomial is a polynomial which has the form of the Laurent Series in which functions
are represented as power series.

are obtained a representation of the filter can be

n
i=l

K
0

Qi(^)
0 (3-8)

24

where K = a„(z). An intermediate representation of the polyphase matrix P°(z) can

then be found by a small change in the constant matrix so that,

P°(z) = = n
i=l L

<h(z) 1
0 0 0 i/K (3-9)he{z) g°(z)

ho(z) g°(z)
K 0

which can be shown to be equivalent to,

P\z) = he(z) g°e(z)
ho(z) g°o(z)

n/2n
i=l L

1 0
921(2) o

K 0
0 1/K (3.10)1 ?2i-l(z)

0 1

Finally, the complete factored representation of the polyphase matrix P(z) can be

found by,

1 s(z)
0 1P(z) = P°(z)

However, it is difficult to find s(z) using this representation. Instead, by noticing that

both the intermediate and the original filter pairs are complementary,9 the filters are

then reconstructed from the polyphase matrices using equation 3.2. s(z) can then be

found using,

5°(2) = g(z) + h{z)s(z2). (3.12)

(3-11)

This still leaves a problem. Using 3.11 the polyphase representation,

n/2 '

p(-)=n
z=l .

1 921—1(2)

0 1
1 0

921(2) 0
K 0
0 1/K (3.13)1 s(z)

0 1

where for the easiest implementation the constant gains will be moved to the last

step. In order to move the last matrix inside of the constant matrix the Laurent

polynomial inside s(z) must be scaled by,

sm(z) = K2s(z). (3.14)

9 Complementary in this case refers to any filter pair whose polyphase matrix has determinate 1.

25

This yields a final polyphase matrix factorization of,

^7)
he{z) ge(z)
ho(z') go(z) =n i

0 1
1 0

t(z) 0
K 0
0 1/A (3.15)

where m = n/2 + 1 because of the extra step generated in equation 3.11. Once this

procedure is complete the filter construction then looks like that seen in Figure 3.3,

which is a more detailed representation of the left half of Figure 3.2.

Figure 3.3: Lifting Filter Structure

An Example

To show a useful example, the factorization of the D4 (Daubechies 4) wavelet is

demonstrated. The equations for the D4 synthesis filters are as follows,

, / , 1 + 73 3 + i 3 — 73 9 1 — 73 3
h(z) = + —-~z~x 4---- ^77* 4------^2

4\/2 4\/2 4\/2 4/2
(3.16)

1 — 73, 3 — 73 3 + 73 1 + 73 ,
g\z) =-----~f^z 4---- -^-z----- 4------------ —f^z (3-17)

4^2 ~ ' 472 ~ 472 ' 472

Here is it useful to recognize that the D4 is a orthogonal set of filters based on

stipulations set in Chapter 2. Using Equations 3.3 and 3.4 on equation 3.16 the left

two elements of the polyphase matrix are defined by,

fie72) =
i . ;i ,4.-; , l vj.-a. l.y^ 3+'/3.-l , 3-V5.-2 1-V3--3

4 V? 1^2 ' 4^2 -I-.'I * jy/5 ' “ 'W 4 via

(z2) _ 1+73 , 3-73 -2
n^Z > ~ 4+2 + 472 Z

h (z) — i±+3 1 3-73 ^-1
- 472 + 472 ~

26

ho(z2) =
I PyVl 1 vmL-.4v$ 'w2^ + 4V2 * + 4s/2 2

2:-1

ho(z2) 3+73 i 1-73 ~—2
iV2 + 472 Z

ho(z) 3+73 i 1 — 73 1
472 + 4-/2 2

Thus far the polyphase matrix looks like,

P(^)
1+73 , 3-73 r-l
472 ■+' 472

3+73 , 1-73 ^-1
472 -T 472 Z

9e(z)
9o(z)

The right two elements of the polyphase matrix can then be found by using Equations

3.3 and 3.4 on equation 3.17.

9e(z2)
1- 73 ,2. 3-vg2_ 34 V3 , 1 + 75 .- 1 (_ 1- >/} ,2 . 3-vg) ._ 34V5 , I 475 -Is
472 ' "T 472 ~ -iTi r 4s/2 ' 1 i>/2 ' 173 * ~4vT ls/2 ~ 1

2

n tr2i — 1-73 ^2 _ 3+73
9e[Z > ~ 472 Z 472
n/d- — E'-Tl 2 — -3±/3 9^z> - 472 2 472

9°{z2}
-1 , 3-yft -2 , l-<3

4y^2 4?3 4>/2 4^/2
2-- i

n (72\ _ 3—73-2 , 1+73
9o^ > - 472 z ■+' 472

5°(2) = h^Z + W
The Polyphase matrix representation of the filter pair then is given by,

P(^)
1+73 , 3-73.-1 1-73, 3+73
4y/2 ~l~ 472 Z 472 Z 472

3+73 I 1-73 ,-l 3—73, I 1+73
472 ' 472 Z 472 Z 472 .

This equation is all that is needed to begin using the Euclidian Algorithm. By setting

ao(z) = he(z) and 60(/) = ho(z) and iterating through equations 3.5, 3.6 and 3.7 of

the Euclidean algorithm, the iterations give,

ai(z) 3+73 , 1-73 ,-l
472 + 472 Z

27

3+7? . -
92(2) = Jg— ="? +

Once the Euclidean algorithm is finished the results can be used to construct the

intermediate matrix factorization of the left two original Laurent polynomials and the

right two intermediate Laurent polynomials, as in Equation 3.13. This intermediate

polyphase matrix is found to be,

P°(z) =
1 0

+ 0
-V3

1 0 1+73

The product of the matrices in 3.3 can be used in 3.11 to yield,

1+73. | 3—73
472 'r 472

3+73 , 1-73 ,-l 3-'
4\

1+73 1 3—73~—1 73-3
472 4y/2 Z 72
7T 4y/2 Z 72 J

3+.
. 4

1 «(*)
0 1

Now, by using Equation 3.2 to reconstruct the filter pairs in both the original and

intermediate polyphase matrices the filter equations can then used in Equation 3.12,

73-3 , 73-1 _-i _ 72" + ^"z -

+ (^ + + T^2’3)

and then solving for s(z2) we obtain,

-?■■•* v^t3 ■ a+V?> 1 78-1 14-75. 1 ,.(~2\ _ 77T- 4<2 «af+^?r* 4v2 • _ fo ,/q\ >2J — ■' ■+J; 3-7;..,, 3-75.6)2
4V2 475 47^ 1 + 472

s(z) can be obtained. Finally, by using Equation 3.14 on s(z) the result can be taken

inside the constant matrix K,

28

to find the last triangular matrix for P(z). This yields the final factorization for the

filter pair as,

' 1 -y/3 ' 1 0 ' ' 1 z ' r
72

0 '

0 1 x/3 + 1
4 4

0 1 0 72
1+75 J

This is example will be continued in Chapter 4.

29

CHAPTER 4

Lifted Wavelet Algorithm

4.1 Overview

The hardware design of the lifted wavelet algorithm developed in this chapter

is created to be a single read - single write discrete wavelet transform design. By

employing a single read - single write design method, the overall design becomes

much more flexible. Portability is increased as a result of not having to work with

specific connections to specific memories or memory controllers. The data can simply

be passed into the design and collected at the output. Memory utilization is lower

because there is no intermediate data that needs to be stored and the original data

can be directly over written with the transform data. The speed is increased as a

result of the reduced of memory accesses, as well as not having to process the entire

image twice, once in each of the two dimensions. Also, the data flow is more direct,

allowing an implementer to disregard the data is coming from and going to, be it from

memory or directly from another process. Finally, with the additional design goal of

a semi-generic wavelet, which allows for a wide variety of different wavelet filters, the

proposed design becomes system independent.

However, the single read - single write implementation is a challenging implemen­

tation for a wavelet transform. The difficulty lies in one of the core benefits of the

30

wavelet transform, that it operates over an entire image rather than breaking it up

into smaller more manageable pieces as the block-based DCT does[12]. This fact,

combined with the two dimensional nature of an image makes it difficult to order the

data of an image in such a way that allows the DWT to filter each data element twice,

as is needed for the wavelet transform, without processing it in one direction, writing

it out to memory and then processing that intermediate data in the other direction, as

is the more straightforward approach in implementing wavelet transforms. This is be

called the intermediate data approach in the rest of this paper. The intermediate data

approach requires that each pixel value of an image be accessed in memory and passed

through the filters twice. An implementation for the intermediate data approach con­

sists a technique that is capable of performing the one dimensional wavelet transform

in either of the two dimensions, processing the image in one direction, writing and

entire image worth of intermediate data to another entire image worth of addition

memory, and then processing the intermediate data in the second dimension. Using

the intermediate data method requires two memory accesses for each pixel, one for

each directional dimension in the transform. This method slows the overall process

by doubling the number of memory accesses as well as creating an inefficient amount

of data that is never directly used.

The single read - single write method has a much more straightforward application,

although it may be more complex for the design of DWT. The benefits of the single

read - single write method, as discussed at the beginning of this chapter, result from

each of the data elements needing to be accessed from memory only once, ordered so

that the data can then be passed directly to a second filter and then written back

to memory, directly over the original data. Writing over the original data eliminates

31

the need for the additional memory for the intermediate data, as well as the accesses

needed to read and write from that memory. Therefore, the memory needs of the

single read - single write method are nearly halved, reduced memory needs will be

discussed in greater detail later in the chapter.

4.2 Implementation

Figure 4.1: Wavelet Column and Row Processors

In order to achieve a single read - single write architecture, the DWT is broken

down into two main blocks, a column processor and a row processor. This sets up

a data flow that will allow the data to be moved from the column processor to the

row processor directly, without returning to memory. This design strategy achieves

the desired single read - single write effect. The method by which the data is allowed

to be passed from one block to another without an intermediate write is a variation

on memory management for the lifted wavelet [4], The memory management varia­

tion described in the paper is implemented between the column and row processors,

32

in the current design it became more effective with with addition of the generality

requirements for wavelets that the variation’s implementation is moved into the row

processor. The reason for the move will be discussed in more detail in section 4.2.2.

While it is stated that the order in which rows or columns are processed doesn’t

matter for the wavelet transform, that is not entirely true for the design. The order in

which the processors are positioned is primarily determined by the JPEG2000 Stan­

dard. Floating point wavelet transforms are separable, which means that the order in

which these processes are performed is of no consequence[3]. However, the integer-to-

integer lifting approach introduces a non-linearity to the transform to achieve integer

outputs, a loss of separability is the result, as noted in Chapters 2 and 3[5]. There­

fore, the column processor is applied first because it is called for in the JPEG2000

Standardfl]. The row processor then naturally follows giving a design that is repre­

sented in Figure 4.1.

4.2.1 Column Processor

Figure 4.2: Column Processor

33

In Chapter 3, the polyphase matrix, P(z), is presented and the de-construction

of wavelet filters into polyphase matrices is discussed. It is important to understand

how these polyphase matrices are used to construct filters, for a better understanding

of how the column processor works. Internal to the column processor is a series of

lifting steps. A step in the lifting process is a 2x2 matrix that results from the

decomposition of the polyphase matrix as shown at the end of Chapter 3. These step

are alternately predict and update filters, and are indicated in Figure 4.2 by the P#

or U#. If the example of the D4 polyphase matrix decomposition discussed at the

end of Chapter 3 is picked up where is was left at the end of Chapter 3 where,

= ' 1 -V3'
0 1 L 4

1+73
72

0
0

72
1+73 .

1 0
1

1 Z
0 1

is extended as an example, the conversion of matrix to filter equations is,

d,(1) = rc2/+i - \/3^2;

= x2l +

d^ = d[1} + s/_i

s, - 73+1 (i)
81 - 72 8I

j. - d(2) - C3-I /7dl ~ 1+73®' _ 72 ®' ’

where x2i represents the even input image coefficients, and a^J+i represents the odd

input image coefficients. In these equation, d is the detail, or high-pass, coefficients

and s represents the smooth, or low-pass, coefficients. The detail coefficients are the

output of the update steps which are represented by the U# in Figure 4.2 and the

smooth coefficients are the output of the predict steps which are represented by the

P# steps also in Figure 4.2. In this example the equations shown lead to 3 lifting

steps with gain constants.

34

Continuing the example above the equations are used to determine the two parallel

data paths through each lifting step, that are seen in Figure 4.2. The equations for

each step are,

Pl: dj(1) = x2z+i - a/3x2;

«i(1) = x2i

Ul:

s<2) = +

P2: dz(3)=dj2) + 5a

,(3) _ ,(2)
sl — sl •

While the example given has only three lifting steps and is not in one-to-one corre­

spondence with the figure shown, it is useful to; note that this design requires there

be an even number of lifting steps. The even step requirement can easily be achieved

by setting the last lifting step with the equations,

U2: d{4) = dj3)

„(4) _ „(3)si — si ■

This is the equivalent to adding a 2x2 identity matrix to the polyphase decomposition

equation seen at the end of Chapter 3. By adding this last matrix, the last step is a

pass through and adds a minimal amount of latency while meeting the even number

of steps requirement. This allows wavelets filters whose decomposition leads to only

three steps to still be implemented using this design. The reasons for the even step

design requirement will be further discussed in Chapter 5. The final two equations

are simply multipliers that come at the end, which can be seen represented by G1

and G2 shown in Figure 4.2.

35

In summary, the column processor receives the image data in a column-wise fash­

ion. Reading the data in two pixels at a time from top to bottom and left to right.

The data is then passed through a structure similar to the one outlined in this section

and then out of the column processor and onto the row processor. It is useful to note

that the column processor could be used to both the column processing and the row

processing in a implementation similar to the intermediate data method described

in section 4.1. In that case, the image data would initially be read into the column

processor in the same fashion as before, however, it would be read to a secondary

memory, and then the image stored in that secondary image data would then be read

back into the column processor in row-wise fashion from left to right and then from

top to bottom. The output of the column processor could then be read over the orig­

inal data and ready for a second MR Level to be performed. This again illustrates

the memory savings that the DWT design helps to create.

4.2.2 Row Processor

The row processor design is quite a bit different than the column processor. Inter­

nal to the row processor is a significate amount of memory, which is needed to re-order

the data and the pass it into the row ordered lifting steps. The row processor ar­

chitecture can be seen represented in figure 4.3. Specifically, there must be enough

memory internal to the row processor to hold 8 x Image Height x 2 * (# of lifting

steps) + 1, in bits. The memory internal to the row processor is necessary in order to,

reorder the image data so that the column ordered data from the column processor

can be redistributed allowing the row processor to preform row processing. It is also

for because of this internal memory that in all previous references to the single read

36

Row Processor
Memory

P1 J1 P2 U2

Figure 4.3: Row Processor

- single write method, it was stated that the memory was “nearly” halved. In order

to get a better idea of how much memory is saved, Table 4.1 contains examples of

memory usage in the row processor for both external and internal memory designs.

Wavelet Filter Square Image
Dimensions

Single read - Single Write
vs. Intermediate Memory

Five-Three
(minimum width 5)

512 pixels 0.5% memory utilization

Nine-Seven
(minimum width 9)

512 pixels 1.3% memory utilization

Five-Three
(minimum width 5)

1024 pixels 0.2% memory utilization

Nine-Seven
(minimum width 9)

1024 pixels 0.6% memory utilization

Table 4.1: Memory Conservation Examples

The memory internal to the row processor is used to store a minimum amount

of column data, n columns worth, coming from the column processor so that the

37

row processor can perform the first row-wise filter operation, where n is the length

of the larger of the two wavelet filters. The trick to this technique is that instead

of proceeding to the next filter position down the row, the first filter operation is

performed on the first row-wise portions of the next row down. By iterating this

process, the wavelet coefficients of the first row position of all of the rows is completed

and the rows can be processed while minimally reordering the data from a column

order. This method requires enough of the columns to be buffered to match the width

of the filter, allowing the first lifting step to retrieve memory from three different

columns. Each additional step obtains two of its inputs for the step before, and the

third from addition column memory. By using this amount of memory there are

enough columns memories’ to allow access to all of the steps while the column ahead

of the filter is being filled with the next column of image data, and the two behind to

allow for the lag of the following steps, starting over at the top. It is this process that

allows the data to be read into the column processor and then passed directly into

the row processor without being intermediately stored or dramatically reordered.

However, by using this method two things about the row processor fundamentally

change compared to what was described in the column processor. First, there is the

need for much more memory than was allocated to the column processor. While the

row processor memory is still much smaller than needed to perform the intermediate

memory reordering, it is still more than was used in the column processor, and needs to

be noted. The second fundamental difference between the column and row processors

is the need for three inputs for each step, instead of the two inputs per step that are

reflected in the column processor diagram in Figure 4.2. Three inputs are needed

because in the column processor the data is being passed in in spacial order. As a

38

result, the column processor is allowed to store one of its past inputs as one of the

filter inputs. Because the row processor is processing its data in column order instead

of row order, the exact data that needs for each of the three filter inputs is needed

to be passed to the each of the filters. The memory usage for re-ordering the data is

reflected with the loops from memory to each of the row step in the row processor

representation in Figure 4.3. A method by which so many simultaneous reads and

writes maybe performed is described in Chapter 5.

4.2.3 Symmetric Extensions

Symmetric extensions are widely regarded as the best method for handling the

image edges while utilizing the wavelet transform to achieve compression [13]. While

using a standard filter bank approach dealing with the filter extensions can be a

bottleneck in the filter process. The bottleneck results because when the filter bank

is centered on the outermost edge of an image, the filter taps that are extended beyond

the image have to be filled in order to achieve perfect reconstruction[13]. In the case

of image transforms it will be symmetric data to the other side of the filter, thus

“symmetric” extensions. While using filter banks to perform the image transform,

extra time must be taken to fill those extra taps, or extra resources must be used to

handle the condition. This is not the case when using the lifted wavelet approach.

In the lifted wavelet approach there is never a loss of time and and only and extra

multiplexor and 16-bit register to handle the edge conditions. More effective edge

handling results because in the lifted wavelet filters the number of taps tied directly

to the original data is minimal, only three in this design. Three taps allow the output

of this filter that is tied to the original data to only reflect one data point, instead

39

of as many data points as half of a filter length using the filter bank method. This

reduces not only the data that has to be reflected but squeezes the the inconsistency

of an edge to a very narrow part of the filter. Therefore, in each step the step filter

needs to recognized, by means of a external signal, if it is on the edge of an image. If

it is, then one of its three taps off the edge of the image is ignored and the other is

simply doubled to handle the symmetric extensions.

4.3 Creating Generality

The method of creating generality in this filter is the same as would be done in a

standard filter bank approach, by changing or the filter coefficients the smaller filters.

Allowing the filter coefficients to change allows a virtually infinite number of possible

filters of length n, where n is the filter length, using the filter bank method. However,

in the lifted wavelet approach it is not the length of the filter that is limited, in fact

steps can be added to increase the filter length indefinitely. It is the types of wavelet

filter that can be created that is limited. This is because it is not mathematically

possible to have all filters of any length decompose into only 3 tap filters. However,

the lifting steps in this design have been developed to be low latency. Low latency

in this case means spatially there will never be more than one look forward or one

look behind to obtain data and the total smaller filter widths are limited to 3 taps

each. Because the smaller filters of the lifted design are pipelined the first filter is

looking at data that is further ahead spatially than that of the last filter. Pipelining

allows the filter lengths to be expanded indefinitely by substituting spatial length for

temporal length using pipelining of the filters.

40

CHAPTER 5

Hardware Implementation

While in chapter 4 the general principles and concepts that are used in the design

of the lifted wavelet filter are discussed. This chapter discusses the design specifics of

the actual hardware Implementation. These specifics include architecture diagrams

for each of the blocks that are discussed in chapter 4 as well as detailed descriptions

of each. Also, discussed are the design difficulties that effected the outcome of the

overall design of each block. These are important because it is necessary to note how

the original design concepts change due to specific implementation difficulties.

5.1 Synthesis Constraints

Synthesis constraints are design requirements that are not in the designers control.

That is because the resources that are available on each platform will be different.

This is further exacerbated because the design is intended to be generic enough to

be used across many different platforms. Thus, the result is usually varying timing

results as well as resource costs. The design is then an effective implementation on

some devices, while on others, has unreasonable resource utilization. This makes it

very difficult to design with synthesis requirements in mind. One method of managing

this problem is to simply chose a specific platform and try and meet specific design

requirement on that platform. Then if similar or more advanced platforms are used

41

in the future the resulting requirements should either be met or exceeded. This is the

approach that is taken in the design of this DWT implementation and the constraints

that are attempted to be met are seen in Table 5.1.

Constraint Quantity
Timing 100 MHz Clock
Area Less than 50% gates
Memory Less than 76 KB*

Table 5.1: Synthesis Constraints

*This is the maximum internal block ram of the V2P7 Xilinx FPGA.

5.2 Implementing a Lifting Step

The most basic element of the lifted wavelet design is that lifting step. As de­

scribed in Chapter 4, the lifting step is a three tap FIR filter. However, in order

to get this simple three tap filter to operate as generically as possible the design is

extended to accommodate several design specifics, including: whether it is a predict

or update step as described in Section 4.2.1, creating the capability to change the fil­

ter coefficients, and the symmetric extension capability. There are also two different

implementation of the lifting step, one for the column processor and the second for

the row processor. This stems from the fact that, as mentioned in Section 4.2.2, the

column processor lifting steps only have to accommodate two data inputs. This is

because the data is read into the DWT in column-wise order. In the row processor,

however, the lifting steps have to accommodate three inputs allowing for the input

from memory in order to facilitate the reordering of the data that is necessary to

perform the row-wise operations. The differences can be more clearly illustrated in

Figures 4.2 and 4.3 with a more in depth analysis in Figures 5.1 and 5.2.

42

5.2.1 Implementing the Column Lifting Step

Figure 5.1: Column Lifting Step

The design of the lifting step changes to meet the synthesis constraints listed in

Table 5.1. Specifically the timing constraint listed in Table 5.1. In the development of

this design the Virtex 2 Pro package 7 with speed grade 5 is used. This is significate

because if this design is built on that platform then all of the synthesis constraints

listed should be met.

In Figure 5.1 more register can be seen than may seem necessary. The reason for

the extra register is to allow for less path delay during each clock cycle. For instance,

because the data is registered at the end of the multiplier, the data is not forced to

continue through the adder which would elongate the data path and slow the over all

timing of the design. In the column lifting step this modification was made from an

earlier design to meet the timing requirement set in Table 5.1.

43

5.2.2 Implementing the Row Lifting Step
BEdge EEdge

f-
P»x3

1—1
Alpha
Prime Alpha

0 0 •'■Clr?
"8

Figure 5.2: Row Lifting Step

The row step also has additional registers added to it in order to shorten data

paths, allowing for the system timing requirements, set in Table 5.1, to be met. Note

that the row processor design is far less complex than that of the column processor,

illustrated in Figures 5.1 and 5.2. The lower complexity is the result of the addition of

the third input. By allowing a third input the filter is a more direct implementation of

the three tap filter equations that the hardware is meant to mimic. The more direct

implementation makes the design simpler by forcing fewer conditions that need to be

handled on the design.

5.2.3 Semi Generality

At this point the reason for designing a semi-generic filter instead of a completely

generic one is addressed. It is address in this chapter instead of Chapter 4 because

44

there reason for this design change is purely form a practical hardware implementation

point of view. It is the limiting of the smaller filters to three tap filters that forces

this design to only be semi-general. As stated in Section 4.3 it is not mathematically

possible to factor all possible wavelet filters in to three filter taps, and at this time,

it is much more difficult to implement hardware filters that are variable in length.

Hence one of the reasons lifting was developed, the filters are limited to fixed lengths.

Filter lengths of 3 where chosen for many reasons. First, filters of length two or

three are the smallest filter size possible, any less is merely DC scaling. Filter length

of three allows for some versatility allowing for both look-ahead’s and delays. Finally,

the three tap filters are the smallest lifting steps that allow for the implementation

of both the Five-Three and the Nine-Seven wavelets, the two key kernels required for

the implementation of JPEG2000.

5.3 Implementing the Row Processor Memory

One implementation problem that is essentially ignored in chapter 4 is memory

accesses that are required for implementation of this design. The conceptual descrip­

tions in chapter 4 calls for one write and one read to memory for every step in the

wavelet transform, with and additional two reads for the first step. In the case of

the Nine-seven wavelet, which was the highest length filter that was tested this would

amount to six reads and four writes per system clock cycle. This is clearly not possible

using any single memory implementation available today.

5.3.1 Memory Solution

The solution to the single clock read - write dilemma lies in the type of memory

being used. By allowing each column of image data to be contained in a separate

45

memory, the problem is simplified to a maximum of two reads and one write per

memory per clock cycle. In forcing the design to conform to this constraint, the

reads and writes necessary are possible. While there are memories that have the

functionality to implement the design at this point, the target FPGA has only dual

port block rams internal to its design, which will only allow one read and one write

on a single clock. Therefore, in order to further simplify memory requirements for

the design each column of image data instead of being one memory, is two dual port

memories. The first will memory will contain the first half on the column and the

second the second. By using two memories per column it allows two reads and two

writes per column of image data per clock. The number of reads and writes now

allowed are more than enough to be able to implement the design, and because there

is never the need to read twice or write twice to the same half of a column of image

data, no functionality is lost.

46

CHAPTER 6

Conclusions & Future Work

In this thesis, a design and implementation for a semi-generic lifted discrete

wavelet transform is presented. The design’s primary application, as mentioned pre­

viously, is intended to be one of the key pieces of an hardware accelerated JPEG2000

design and implementation. However, the proposed design can be used in any design

that requires the discrete wavelet transform where speed or dedicated hardware is an

issue. One possible implementation includes, use on digital cameras. Currently most

digital cameras use the original JPEG standard formate to store the digital images

when they are taken. In the future if the JPEG2000 standard truly becomes the

replacement the original JPEG2000 then this design can be used to help implement

the replacement dedicated hardware to do that. A second, implementation which was

mentioned in this thesis is an implementation of Motion JPEG2000. Which would

basically take a series of JPEG2000 image to create a video stream without cross

compressing the image. In this instance the proposed design would help to meet of

increase the speed at which an individual image could be compressed. This in turn

would increase the potential frame rates that that implementation could achieve.

In the future there are several improvements that could be made to the proposed

design to make it more effective for implementation. The first of which is to allow the

design to complete more than one multi-resolution level. As the design stands now

47

only one multi-resolution level can be performed per implementation. This means

that in order to do a five MR Level wavelet transform there would have to be five

instantiations of this design in the completed design. This could become cumbersome

in an design that calls for multiple MR Levels. However, because this design was

started with the possibility of that in mind the transition to a design that would

accommodate this capability should take very little effort.

Another possible design improvement is it incorporate the capability to change

then filter coefficients on the fly. This would allow the type of wavelet filter that is

used to be change electronically though software or simple changing a few register

values, instead of having to re-flash the FPGA. This would potentially allow for

different wavelet transform to be used for different MR Levels in the transformation

of an image. Another alternative for this capability is to be able to switch between

the two core wavelet kernels using the same instance of this design instead of having

to have two instances to perform that task as is now necessary.

Most of the changes to the design presented in this chapter would be very easy to

implement. This is because during the design stages these capacities were considered

and going to be implemented should time have allowed. However, because time did

not allow but the ground work has been laid for this capacities the changes to the

overall design should be few. The desired synthesis constraints may however not hold

as no testing was done that included these changes.

One final improvement that was never considered at the conception of this design

would be to allow for variable step filter length. While this design change would

involve more work than some of the other proposed in this chapter, by adding the

flex ability of letting the lifting step filters be any length this design would no longer

48

be only semi-generic. Variable lifting step filter length would allow for any wavelet

filter to be decomposed into lifting step and implemented using this design. This

would make the overall design much more flexible. This is something that during

the process of designing and implementing this design, it is now believed is not only

possible but would take only moderately more work than those already proposed here.

There are also many more potential applications for this design than just that of

the originally intended purpose of JPEG2000. One of those applications that might be

aided by this design is signal processing in the wavelet domain. Dr. Eric Blaster has

conducted some research in this area and he has found effective de-noising algorithms

in the wavelet domain. These algorithms help to produce much less noisy images than

the originals. He has also developed a video compression technique in the wavelet

domain which finds motion in video streams and updates those area of an image at

the tradition 30 frames a second while updating the stationary portions of a image

at lower rates like 5 frames per second.

Any or all of the design improvement detailed in this chapter would increase the

flexibility of this design. In the future with improvements in FPGA design as well as

to the tools that are used to synthesis this design all of the proposed improvements

may be able to be made with negligible resources and timing loss to the entire design.

49

APPENDIX A

HDL Code

50

DWT.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;

entity DWT is
generic(

);

PortC

BitWidth : integer := 9;
MemDepth : integer := 512;
Steps integer := 4;
PicHeight : integer := 334;
PicWidth
);

: integer := 600

elk : in std_logic;
VSync : in std_logic;
HSync : in std_logic;
EvenPix : in std_logic_vector(15 downto 0);
OddPix : in std_logic_vector(15 downto 0);
DataValid : out std_logic;
LowPass : out std_logic_vector(15 downto 0);
HighPass : out std_logic_vector(15 downto 0)

end DWT;

architecture behavioral of DWT is
------Column Input---
signal CValid : std_logic := ’O’;
signal CLowPass : std_logic_vector(15 downto 0);
signal CHighPass : std_logic_vector(15 downto 0);

component ColumnProcessor
generic(Steps, PicHeight, PicWidth : integer);
Port(

);
end component;

elk : in
VSync : in
HSync : in
EvenPix : in ,
OddPix : in ;
DataValid : out
LowPass : out
HighPass : out

component RowProcessor
generic(BitWidth, MemDepth,Steps, PicHeight, PicWidth : integer)
Port(

elk : in std_logic;
InputValid : in std_logic;
EvenPix : in std_logic_vector(15 downto 0);
OddPix : in std_logic_vector(15 downto 0);

51

OutputValid : out std_logic := ’O’;
LowPass : out std_logic_vector(15 downto 0);
HighPass : out std_logic_vector(15 downto 0)

);
end component;

begin

Column : ColumnProcessor
generic mapCSteps, PicHeight, PicWidth)
port map(

elk »> elk,
VSync => VSync,
HSync "=> HSync,
EvenPix -> EvenPix,
OddPix => OddPix,
DataValid => CValid,
LowPass => CLowPass,
HighPass => CHighPass
);

Row : RowProcessor
generic mapCBitWidth, MemDepth, Steps, PicHeight, PicWidth)
port map(

elk *=> elk,
InputValid «> CValid,
EvenPix »> CLowPass,
OddPix »> CHighPass,
OutputValid -> DataValid,
LowPass -> LowPass,
HighPass => HighPass
);

end behavioral;

52

ColumnProcessor.vhd
library IEEE;
use IEEE.STD_L0GIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

entity ColumnProcessor is
generic(Steps, PicHeight, PicWidth : integer);
Port(

elk : in std_logic;
VSync : in std_logic;
HSync : in std_logic;
EvenPix : in std_logic_vector(15 downto 0);
OddPix : in std_logic_vector(15 downto 0);
DataValid : out std_logic := ’O’;
LowPass : out std_logic_vector(15 downto 0)
HighPass : out std_logic_vector(15 downto 0)

);
end ColumnProcessor;

architecture behavioral of ColumnProcessor is

type Coefficents is array (0 to 2*Steps-l) of std_logic_vector(31 downto 0);
constant Coeff : Coefficents := (

x"ff800000",x"ff800000",x"00400000",x"00400000") ;
x"FE69F31A",x"FE69F31A",x"FFF26FE6",x"FFF26FE6",
x"00E20675" ,x"00E20675",x"007189AA",x"007189AA");
x"FFD3F8BB",x"00000000",x"FF215090",x"00000000",
x"00264C79",x"00000000",x"01000000",x"00000000");

constant UorP

signal ColCount
signal RowCount
signal Bedge

signal Eedge

signal Edg
signal EndEdge
signal Valid

type data is array
signal LowOut
signal HighOut

: std_logic_vector(Steps-1 downto 0) :=
CONV_STD_LOGIC_VECTOR(44739242.Steps);

: integer range 0 to PicWidth;
: integer range 0 to PicHeight/2-1;
: std_logic_vector(2*(Steps+l)+l downto 0) :=

C0NV_STD_L0GIC_VECT0R(0,2*(Steps+1)+2);
: std_logic_vector(2*(Steps+l)+l downto 0) :=

C0NV_STD_L0GIC_VECT0R(0,2*(Steps+1)+2);
: std_logic_vector(Steps-l downto 0);
: std_logic := ’O’;
: std_logic := ’O’;

(0 to Steps-1) of std_logic_vector(15 downto 0);
: data;
: data;

type ColState is (Idle, Run);
signal CSt : ColState := Idle;

53

—Column Instance
component Column

Port (
elk
UorP
Edg
EvenPix
OddPix
Alpha
AlphaP
LowPass
HighPass
);

end component;

: in std_logic;
: in std_logic;
: in std_logic;
: in std_logic_vector(15 downto 0);
: in std_logic_vector(15 downto 0);
: in std_logic_vector(31 downto 0);
: in std_logic_vector(31 downto 0);
: out std_logic_vector(15 downto 0);
: out std_logic_vector(15 downto 0)

begin
LowPass <= LowOut(Steps-1);
HighPass <= HighOut(Steps-1);
DataValid <= Valid;
C: for N in 0 to Steps/2-1 generate

Edg(2*N) <= Eedge(N*5);
Edg(2*N+l) <= Bedge(N*5+2);

end generate C;

SO : Column
port map(

);
end generate G;

elk => elk, — Clock
UorP => UorP(O), — P Select
Edg => Edg(O), — Edge Calc
EvenPix => EvenPix, — EvenPix
OddPix => OddPix, — OddPix
Alpha => Coeff(O), — Alpha
AlphaP => Coeff(l), — AlphaP
LowPass => LowOut(0), — LowPass
HighPass => HighOut(0)
);

— HighPass

in 1 to Steps-1 generate
Column
map(

elk => elk, — Clock
UorP => UorP(N), — P Select
Edg => Edg(N), — Edge Calc
EvenPix => LowOut(N-l), -- EvenPix
OddPix => HighOut(N-l), — OddPix
Alpha => Coeff(2*N), — Alpha
AlphaP => Coeff((2*N)+1), — AlphaP
LowPass => LowOut(N), — LowPass
HighPass => HighOut(N) — HighPass

54

process(elk)
begin

if(elk’event and elk - ’1’) then
Bedge <= Bedge(2*(Steps+l) downto 0) ft HSync;
Eedge <= Eedge(2*(Steps+l) downto 0) ft EndEdge;
case CSt is

when Idle =>
RowCount <= 1;
EndEdge <= ’O’;
Valid <= ’O’;
if HSync = ’1’ and VSync = ’1’ then

CSt <= Run;
end if;

when Run =>
if RowCount = PicHeight/2-2 then

EndEdge <= ’1’;
RowCount <= RowCount + 1;

elsif RowCount = PicHeight/2-1 then
EndEdge <= ’O’;
RowCount <= 0;
ColCount <= ColCount + 1;

else
RowCount <= RowCount + 1;

end if;
end case;
if ColCount = 0 and RowCount - 5*Steps/2-l then

Valid <= ’1’;
elsif ColCount = PicWidth and RowCount ■ 5*Steps/2-l then

Valid <= ’O’; CSt <- Idle;
else

Valid <= Valid;
end if;

end if;
end Process;
end behavioral;

55

Column.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL;

entity Column is
Port (

elk
UorP
Edg
EvenPix
OddPix
Alpha
Alpha?
LowPass
HighPass
);

end Column;

: in std_logic;
: in std_logic;
: in std_logic;
: in std_logic_vector(15 downto 0);
: in std_logic_vector(15 downto 0);
: in std_logic_vector(31 downto 0);
: in std_logic_vector(31 downto 0);
: out std_logic_vector(15 downto 0);
: out std_logic_vector(15 downto 0)

architecture Behavioral of Column is

constant Half : std_logic_vector(47 downto 0) := x"000000800000";
signal Multi : std_logic_vector(47 downto 0);
signal Mult2 : std_logic_vector(47 downto 0);
signal Delayl : std_logic_vector(15 downto 0);
signal Delay2 : std_logic_vector(15 downto 0);
signal Regl : std_logic_vector(15 downto 0);
signal Reg2 : std_logic_vector(15 downto 0);

begin
process(elk) begin

if (elk’EVENT AND elk = ’1’) then
Delayl <= EvenPix; Regl <= Delayl;
Delay2 <= OddPix; Reg2 <= Delay2;
if (UorP) = ’0’ then

Multi <= Alpha * Delayl;
if (Edg = ’1’) then

Mult2 <= AlphaP * Delayl;
else

Mult2 <= AlphaP * EvenPix;
end if;
LowPass <= Regl;
HighPass <= Reg2 + To_StdLogicVector(

(To_bitvector(Multi + Mult2 + Half) sra 24))(15 downto 0)
else

if (Edg = ’l1) then
Multi <= AlphaP * OddPix;

else
Multi <= AlphaP * Delay2;

end if;

56

Mult2 <= Alpha * OddPix;
HighPass <= Delay2;
LowPass <= Delayl + To_StdLogicVector(

(To_bitvector(Multi + Mult2 + Half) sra 24))(15 downto 0);
end if;

end if;
end process;
end Behavioral;

57

RowProcessor. vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity RowProcessor is
generic(BitWidth, MemDepth,Steps, PicHeight, PicWidth : integer);
Port(

elk
InputValid
EvenPix
OddPix
OutputValid
LowPass
HighPass

);
end RowProcessor;

in std_logic;
in std_logic;
in std_logic_vector(15 downto 0);
in std_logic_vector(15 downto 0);
out std_logic := ’O’;
out std_logic_vector(15 downto 0);
out std_logic_vector(15 downto 0)

architecture behavioral of RowProcessor is

------Seek Function--
function Seek(B: integer; D: integer; 0: character; W: integer) return integer is

variable R: integer;
constant P: integer := D/2;

begin
case 0 is

when 'A’ =>
if (B + 1) = W/2 then R := P;
elsif (B + 1) > (P + W/2-1) then R := 0;
else R := B + 1; end if;

when ’P’ =>
if (B + D) > W-l then R := B + D - W;
else R := B + D; end if;

when ’M’ =>
if (B - D) < 0 then R := B - D + W;
else R := B - D; end if;

when others => R := B;
end case;
return R;

end Seek;
------Control Signals---
signal Columnldx : integer range 0 to Steps+2 := 0;
signal Rowldx : integer range 0 to PicHeight/2-1 := 0;

type RowState is (Idle, Run);
signal RSt : RowState := Idle;

signal ReadRowIdx : integer range 0 to MemDepth/2+PicHeight/2-l := 0;

type WrBksRow is array (0 to Steps-2) of integer range 0 to MemDepth/2+PicHeight/2-l;

58

signal WrRow : WrBksRow;

type WrBksCol is
signal WrCol

signal ColCount

array (0 to Steps-2) of integer range 0 to (Steps+2);
: WrBksCol;

: integer range 0 to PicWidth-1;

signal Valid : std_logic := ’O’;
signal InValid : std_logic := ’O’;
------Memory--
type RAdds is array (0 to Steps+2) of std_logic_vector(BitWidth-1 downto 0);
signal ReadAdd : RAdds;

type WAdds is array (0 to 2*(Steps+3)-l) of std_logic_vector(BitWidth-1 downto 0);
signal WriteAdd : WAdds;

type Reads is array (0 to Steps+2) of std_logic_vector(15 downto 0);
signal Readout : Reads;

type Writes is array (0 to 2*(Steps+3)-l) of std_logic_vector(15 downto 0);
signal Writeln : Writes;

signal be : std_logic_vector (Steps+2 downto 0) := conv_std_logic_vector(0,Steps+3) ;
signal ce : std_logic_vector (Steps+2 downto 0) := conv_std_logic_vector(0,Steps+3);

component OneColumn
generic(BitWidth, MemDepth : integer);
port (

elk : in
RdAddress : in
WtAddress1 : in
WtAddress2 : in
DataOut : ou'
Datalnl : in
Dataln2 : in
WtEnable1 : in
WtEnable2 : in

0);
0);
0);

end component;
------Row Operations---
type Coefficents is array (0 to 2*Steps-l) of std_logic_vector(31 downto 0);
constant Coeff : Coefficents := (

x"ff800000",x"ff800000",x"00400000",x"00400000");
x"FE69F31A",x"FE69F31A",x"FFF26FE6",x"FFF26FE6",
x"00E20675",x"00E20675",x"007189AA",x"007189AA");
x"FFD3F8BB",x"00000000",x"FF215090",x"00000000",
x"00264C79",x"00000000",x"01000000",x"00000000");

type dataln is array (0 to Steps+1) of std_logic_vector(15 downto 0);
signal Pix : dataln;

59

type dataOut
signal Pass
signal Alter

is array (0 to Steps-1) of std_logic_vector(15 downto 0);
: dataOut;
: dataOut;

signal Bedg : std_logic_vector(Steps-1 downto 0):=conv_std_logic_vector(0,Steps);
signal Eedg : std_logic_vector(Steps-l downto 0):=conv_std_logic_vector(0,Steps);

type Rdlys is array (0 to 2) of integer range 0 to (Steps+2);
type Readln is array (0 to Steps+1) of Rdlys;
signal MemRead : Readln;

type Wdlys is array (0 to 3+2*(Steps-2)) of integer
range 0 to MemDepth/2+PicHeight/2-l;

signal WtDelay : Wdlys;

type DlySig is array
type NumDly is array
signal RdDelay

signal OutDlyl
signal 0utDly2

component Row
Port (

elk
BEdg
EEdg
Pixl
Pix2
Pix3
Alpha
AlphaP
Pass
Alter
);

end component;

(0 to 2*Steps-3) of std_logic_vector(15 downto 0);
(0 to Steps-2) of DlySig;

: NumDly;

: std_logic_vector(15 downto 0);
: std_logic_vector(15 downto 0);

: in std_logic;
; in std_logic;
: in std_logic;
: in std_logic_vector(15 downto 0);
: in std_logic_vector(15 downto 0);
: in std_logic_vector(15 downto 0);
: in std_logic_vector(31 downto 0);
: in std_logic_vector(31 downto 0);
: out std_logic_vector(15 downto 0);
: out std_logic_vector(15 downto 0)

begin
----- Memory---------------------------------------
GMem: for N in 0 to Steps+2 generate

M0: OneColumn
generic map(BitWidth, MemDepth)
port map(

elk => elk,
RdAddress => ReadAdd(N),
WtAddress1 => WriteAdd(2*N),
WtAddress2 => WriteAdd(2*N+l),
DataOut => ReadOut(N),
Datalnl => WriteIn(2*N),
Dataln2 => WriteXn(2*N+l),

60

WtEnablel -> be(N),
WtEnable2 -> ce(N)
);

end generate;
----- Row Operations--

50 : Row
port map(

elk => elk, — Clock
BEdg ■*> BEdg(O) , — Edge Calc
EEdg •> EEdg(O), -- Edge Calc
Pixl ■> Pix(O),
Pix2 => Pix(l),
Pix3 -> Pix(2),
Alpha => Coeff(O), — Alpha
AlphaP =*> Coeff (1), — AlphaP
Pass => Pass(O),
Alter => Alter(0)
);

GRow: for N in 1 to Steps-1 generate
51 : Row
port map(

elk «> elk, — Clock
BEdg -> BEdg(N), — Edge Calc
EEdg -> EEdg(N), — Edge Calc
Pixl -> Pix(N+2),
Pix2 •> Pass(N-l),
Pix3 -> Alter(N-l),
Alpha ■> Coeff(2*N+(N mod 2)), — Alpha
AlphaP => Coeff(2*N+1-(N mod 2)),-- AlphaP
Pass “> Pass(N),
Alter ■> Alter(N)
);

end generate;
----- Input Control--
InCtrl: process (elk)
begin

if(elk’event and elk ■ ’1’) then
InValid <» InputValid;
if (InputValid = ’1’) then

Rowldx <•= Seek(RowIdx,l,’P’,PicHeight/2);
if (Rowldx » PicHeight/2-1) then

Columnldx <■ Seek(Columnldx,1,’P’,Steps+3);
end if;

else
Rowldx <“ 0; Cn~l limnTrix <= 0;

end if;
end if;

end process;
----- Read Control-----------------------------------
RdCtrl: process (elk)
begin

61

if(elk’event and elk = ’1’) then
case Rst is

when Idle =>
ReadRowIdx <= 0; Valid <= ’O’;
ColCount <= Seek(0,Steps/2,’M’.PicWidth);
for N in 0 to Steps/2-1 loop

BEdg(2*N) <= ’0’;BEdg(2*N+l) <= ’1’;
EEdg(2*N) <= ’0’;EEdg(2*N+l) <= ’O’;

end loop;
for N in 0 to Steps + 1 loop

MemRead(N)(0) <= Seek(2,N,’M’,Steps+3);
end loop;
if Columnldx = 2 then

RSt <= Run;
end if;

when Run =>
ReadRowIdx <= Seek(ReadRowIdx,MemDepth,’A’.PicHeight);
if ReadRowIdx = MemDepth/2 + PicHeight/2 - 1 then

MemRead(O)(0) <= Seek(MemRead(0)(0),2,’P’,Steps+3);
MemRead(l)(0) <= Seek(MemRead(l)(0),2,’P’,Steps+3);
for N in 0 to Steps-1 loop

MemRead(N+2)(0) <= MemRead(N)(0);
end loop;

end if;
for N in 0 to Steps + 1 loop

for M in 0 to 1 loop
MemRead(N)(M+l) <= MemRead(N)(M);

end loop;
end loop;
for N in 0 to Steps/2-1 loop

if MemRead(2*N)(0) = 4 and ReadRowIdx = (N+l)*4 then
BEdg(2*N+l) <= ’O’;

end if;
if ColCount = PicWidth/2-l-Steps/2+N and

ReadRowIdx = 4*(N+l)-2 then
EEdg(2*N) <= ’1’;

end if;
end loop;
if ReadRowIdx = Steps*2+2 then

ColCount <= Seek(ColCount,1,’P’.PicWidth);
if ColCount = PicWidth/2-1 then

Valid <= not Valid;
RSt <= Idle;

elsif ColCount = PicWidth-1 then
Valid <= not Valid;

end if;
end if;

end case;
end if;

end process;
------Write Control--

62

WtCtrl: process (elk)
begin

if(elk’event and elk - *1’) then
if InputValid = ’1’ or Valid = ’1’ then

if Rowldx = 0 and (InputValid = ’1’ or InValid - ’1’) then
be(Columnldx) <= ’1’; be(Seek(ColumnIdx,l,’M’,Steps+3)) <■ ’O’;
ce(Columnldx) <= ’1’; ce(Seek(Columnldx,1,’M’,Steps+3)) <= ’O’;

end if;
else

be <= conv_Btd_logic_vector(0,Steps+3);
ce <= conv_std_logic_vector(0,Steps+3);

end if;
case Rst is

when Idle ->
for N in 0 to Steps - 2 loop

WrRow(N) <= Seek(0,2,’M’.PicHeight);
WrCol(N) <= Seek(Steps+2,N,’M’,Steps+3);

end loop;
for N in 0 to 3+2*(Steps-2) loop

WtDelay(N) <= MemDepth/2+PicHeight/2-l-N;
end loop;

when Run =>
WtDelay(0) <= ReadRowIdx;
for N in 0 to 2+2*(Steps-2) loop

WtDelay(N+l) <= WtDelay(N);
end loop;
for N in 0 to Steps - 2 loop

WrRow(N) <= WtDelay(3+2*N);
end loop;
for N in 0 to Steps - 2 loop

if WrRow(N) = then
be(WrCol(N)) <= ’1’;
be(Seek(WrCol(N),2,’M’,Steps+3)) <= ’O’;

elsif WrRow(N) - MemDepth/2 + PicHeight/2-1 then
WrCol(N) <= Seek(WrCol(N),2,’P’,Steps+3);

end if;
end loop;

end case;
end if;

end process;
----- Read---
Rd: process (elk)
begin

if(elk’event and elk = ’1’) then
— Step One Inputs
for N in 0 to 2 loop

Pix(N) <= ReadOut(MemRead(2-N)(2));
ReadAdd(MemRead(N)(0)) <= conv_std_logic_vector(ReadRowIdx,BitWidth);

end loop;
— Delays

63

for N in 0 to Steps-2 loop
RdDelay(N)(0) <= ReadOut(MemRead(N+3)(2));
ReadAdd(MemRead(N+3)(0)) <= conv_std_logic_vector(ReadRowIdx,BitWidth);

end loop;
for N in 0 to Steps-2 loop

for M in 0 to 2*N loop
RdDelay(N)(M+l) <= RdDelay(N)(M);

end loop;
end loop;
— Following Steps
for N in 0 to Steps-2 loop

Pix(N+3) <= RdDelay(N)(2*N+1);
end loop;

end if;
end process;
------Write--
Wt: process (elk)
begin

if(elk’event and elk = ’1’) then
— For Inputs from Column Processor
WriteAdd(2*ColumnIdx) <= conv_std_logic_vector(RowIdx,BitWidth);
WriteAdd(2*ColumnIdx+l) <= ’1’ & conv_std_logic_vector(Rowldx,BitWidth-1);
WriteIn(2*ColumnIdx) <= EvenPix;
WriteIn(2*ColumnIdx+l) <= OddPix;
— Write Back
for N in 0 to Steps - 2 loop

WriteAdd(2*WrCol(N)) <= conv_std_logic_vector(WrRow(N).BitWidth);
WriteIn(2*WrCol(N)) <= Alter(N);

end loop;
OutDlyl <= Alter(Steps-2);
0utDly2 <= OutDlyl;

end if;
end process;
------Outputs--
OutputValid <= Valid;
LowPass <= Alter(Steps-1);
HighPass <= 0utDly2;

end behavioral;

64

Row.vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_SIGNED.ALL;

entity Row is
Port (

elk : in std_logic;
BEdg : in std_logic;
EEdg : in std.logic;
Pixl : in std_logic_vector(15 downto 0);
Pix2 : in std_logic_vector(15 downto 0);
Pix3 : in std_logic_vector(15 downto 0);
Alpha : in std_logic_vector(31 downto 0);
AlphaP : in std_logic_vector(31 downto 0);
Pass : out std_logic_vector(15 downto 0);
Alter : out std_logic_vector(15 downto 0)
);

end Row;

architecture Behavioral of Row is

constant Half : std_logic_vector(47 downto 0) x"000000800000";

signal Multi
signal Mult2
signal Delay
signal PassDelay

: std_logic_vector(47 downto 0);
: std_logic_vector(47 downto 0);
: std_logic_vector(15 downto 0);
: std_logic_vector(15 downto 0);

begin
process(elk) begin

if (elk’EVENT AND elk - ’1’) then
PassDelay <» Pixl;
Pass <~ PassDelay;
Delay <= Pix2;
if BEdg = ’1’ then

Multi <= Alpha * Pix3;
Mult2 <» AlphaP ♦ Pix3;

elsif EEdg ■ ’1’ then
Multi <■ Alpha * Pixl;
Mult2 <■ AlphaP * Pixl;

else
Multi <» Alpha * Pixl;
Mult2 <= AlphaP * Pix3;

end if;
Alter <= Delay + To_StdLogicVector(

(To_bitvector(Multi + Mult2 + Half) sra 24))(15 downto 0)
end if;

end process;
end Behavioral;

65

OneColumn. vhd
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity OneColumn is
generic(BitWidth, MemDepth : integer);
port (

elk : in std_logic;
RdAddress : in std_logic_vector(BitWidth-l downto 0);
WtAddress1 : in std_logic_vector(BitWidth-l downto 0);
WtAddress2 : in std_logic_vector(BitWidth-l downto 0);
DataOut : out std_logic_vector(15 downto 0);
Datalnl : in std_logic_vector(15 downto 0);
Dataln2 : in std_logic_vector(15 downto 0);
WtEnablel : in std_logic;
WtEnable2 : in std.logic

);
end OneColumn;

architecture behavioral of OneColumn is

component Mem
generic(BitWidth, MemDepth : integer);
port (

addra in std_logic_VECTOR(BitWidth-l downto
addrb in std_logic_VECTOR(BitWidth-l downto
elka in std_logic;
elkb in std_logic;
dinb in std_logic_VECT0R(15 downto 0);
douta out std_logic_VECT0R(15 downto 0);
web

1.
in std.logic

end component;

signal be std.logic;
signal ce std_logic;
signal test std_logic;
signal betest std_logic;
signal cetest std.logic;
signal dinltest 8td_logic;
signal din2test std.logic;
signal dinl std_logic_vector(15 downto 0);
signal din2 std_logic_vector(15 downto 0);
signal doutl std_logic_vector(15 downto 0);
signal dout2 std_logic_vector(15 downto 0);
signal waddrl std_logic_vector(BitWidth-2 downto 0)
signal waddr2 std_logic_vector(BitWidth-2 downto 0)

begin
betest <■• (WtEnablel and not WtAddressl(BitWidth-l)) or

66

(WtEnable2 and not WtAddress2(BitWidth-1));
be <= ’1’ when betest = ’1’ else ’O’;

cetest <= (WtEnablel and WtAddressl(BitWidth-1)) or
(WtEnable2 and WtAddress2(BitWidth-1));

ce <= ’1’ when cetest = ’1’ else ’O’;

dinltest <= (WtEnable2 and not WtAddress2(BitWidth-1));
dinl <= Dataln2 when dinltest = ’1’ else Datalnl;

din2test <= (WtEnablel and WtAddressl(BitWidth-1));
din2 <= Datalnl when din2test = ’1’ else Dataln2;

waddrl <= WtAddress2(BitWidth-2 downto 0) when dinltest = ’1’
else WtAddressl(BitWidth-2 downto 0);

waddr2 <= WtAddressl(BitWidth-2 downto 0) when din2test = ’1’
else WtAddress2(BitWidth-2 downto 0);

DataOut <= dout2 when test = ’1’ else doutl;

MO: Mem
generic map(BitWidth-1, MemDepth/2)
port map(

addra => RdAddress(BitWidth-2 downto 0),
addrb => waddrl(BitWidth-2 downto 0),
clka => elk,
elkb => elk,
dinb => dinl,
douta => doutl,
web => be
);

Ml: Mem
generic map(BitWidth-1, MemDepth/2)
port map(

addra => RdAddress(BitWidth-2 downto 0),
addrb => waddr2(BitWidth-2 downto 0),
clka => elk,
elkb => elk,
dinb => din2,
douta => dout2,
web => ce
);

process(elk)
begin

if(elk’event and elk = ’1’) then
test <= RdAddress(BitWidth-1);

end if;
end process;
end behavioral;

67

Mem.vhd
library IEEE;
use IEEE.STD_L0GIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity Mem is
generic(BitWidth, MemDepth : integer);
port (

end mem;
);

addra : in std_logic_VECTOR(BitWidth-l downto 0);
addrb : in std_logic_VECTOR(BitWidth-l downto 0);
clka : in std_logic;
clkb : in std_logic;
dinb : in std_logic_VECT0R(15 downto 0);
douta : out std_logic_VECT0R(15 downto 0);
web : in std_logic

architecture behavioral oi mem is

type Gnlnmn is array (0 to MemDepth-1) of std_logic_vector(15 downto 0);
signal Pixels : Q>1 nmn;

begin
process (clka)
begin

if(clka’event and clka = ’1’) then
douta <= Pixels(conv_integer(addra));

end if;
end process;
process (clkb) x’
begin

if(clkb’event and clkb = ’1’ and web = ’1’) then
Pixels(conv_integer(addrb)) <= dinb;

end if;
end process;
end behavioral;

68

BIBLIOGRAPHY

[1] Tinku Acharya and Ping-Sing Tsai. JPEG2000 Standard for Image Compression. John Wiley
& Sons, Inc., Hoboken, New Jersey, 2005.

[2] Michael D. Adams and Faouzi Kossentini. ’’Reversible Integer-to-Integer Wavelet Transforms
for Image Compression: Performance Evaluation and Analysis”. IEEE Transactions on Image
Processing, 9(4), 2000.

[3] Eric J. Balster. ’’VIDEO COMPRESSION AND RATE CONTROL METHODS BASED ON
THE WAVELET TRANSFORM". 2004.

[4] S. Barua, J.E. Carletta, K.A. Kot.teri, and A.E.Bell. ”An Efficient Architecture for Lifting-
based Two-Dimensional Dicrete Wavelet Transforms”. INTEGRATION, the VLSI journal,
38:341-352, 2005.

[5] R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo. ’’Wavelet transforms that map
integers to integers”. Appl. Comput. Harmon. Anal., 5(3):332-369, 1998.

[6] I. Daubechies and W. Sweldens. ’’Factoring Wavelet Transforms into Lifting Steps”. J. Fourier
Anal. Appl., 4(3):245-267, 1998.

[7] Pascal Getreuer. ’’Filter Coeffcinets to Popular Wavelets”. 2004.

[8] Jaideva C. Goswami and Andrew K. Chan. Fundamentals of Wavelets. John Wiley & Sons,
Inc., New York, New York, 1999.

[9] Gaetano Irnpoco. Jpeg2000 - a short tutorial. 2004.

[10] A. Jensen and A. la Cour-Harbo. Ripples in Mathmatics: The Discrete Wavelet Transform.
Springer, New York, New York, 2001.

[11] Wenqing Jiang and Antonio Ortega. ’’Lifting Factorization-Based Discrete Wavelet Transform
Archit.echture Design”. IEEE Transactions on Circuits and Systejris for Video Technology,
ll(5):651-657, May 2001.

[12] J.J. Hwang K.R. Rao. ’’Techniques & Standards for Image, Video & Audio Coding”. Prentice
Hall PTR, Upper Saddle River, New Jersey, 1996.

[13] S. Li and W. Li. ’’Shape-Adaptive Discrete Wavelet Transforms for Arbitrarily Shaped Visual
Object Coding.”. IEEE Transactions on Circuits and Systems for Video Technology, 10(5):725
743, August 2000.

69

[14] Michael B. Martin and Amy E. Bell, ’’New Image Compression Techniques Using Multiwavelets
and Multiwavelet Packets”. IEEE TRANSACTIONS ON IMAGE PROCESSING, 10(4).

[15] F. McMahon. ’’JPEG2000”. Digital Output, June. 2002.

[16] S.R. Subramanya. ’’Image Compression Techniques”. IEEE Potentials, 20(1), 2001.

[17] W. Sweldens. ’’The Lifting Scheme: A New Philosophy in Biorthogonal Wavelet Constructions”.
In A. F. Laine and M. Unser, editors, Wavelet Applications in Signal and Image Processing III,
pages 68-79. Proc. SPIE 2569, 1995.

[18] W. Sweldens. ’’Wavelets and the lifting scheme: A 5 minute tour”. Z. Angew. Math. Meeh., 76
(Suppl. 2):41-44, 1996.

[19] W. Sweldens. ’’The lifting scheme: A construction of second generation wavelets”. SIAM J.
Math. Anal., 29(2):511-546, 1997.

[20] David Taubman. ’’High Performance Scalable Image Compression with EBCOT”. IEEE Trans­
actions on Image Processing, 9(7):1158-1170, July 2000.

[21] David S. Taubman and Michael W. Marcellin. JPEG2000 Image Compression Fundimentais,
Standards and Practice. Kluwer Academic Publishers, Boston, Mass., 2002.

[22] William F. Turri. ’’DESIGN AND IMPLEMENTATION OF A SUPER-EFFICIENT
WAVELET TRANSFORM FOR COMPRESSION OF COLOR IMAGES”. 2002.

[23] James S. Walker. ”A Primer On Wavelets and their Scientific Applications”. Chapman &
Hall/CRC, Boca Raton, FL, 1999.

[24] Gregory K. Wallace. ’’The JPEG Still Picture Compression Standard”. IEEE Transactions on
Consumer Electronics, 1991.

70

