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ABSTRACT

Derivation of Parameters and Calibration of Modified Cam Clay Constitutive 
Soil Model for Airfield Matting

Doudican, Bradley M
University of Dayton

Advisor: Dr. M. Zoghi

The United States Armed Services seeks to develop next-generation airfield 

matting, made of fiber reinforced polymer (FRP) composite materials to reduce 

the panel weight and improve upon installation difficulties of the current AM-2 

aluminum matting system. Finite element analyses of prototypical systems are 

being developed to evaluate the alternatives. In accordance with the directives 

of the Army Corp of Engineers, this study seeks to provide an effective and 

economical constitutive soil model of Vicksburg Buckshot Clay at a California 

Bearing Ratio (CBR) of 6 for use in modeling the matting subgrade. Based on a 

thorough literature review and the investigation of existing constitutive soil 

models, an extended version of the Modified Cam Clay model was selected as 

the most appropriate soil model for this study. A series of laboratory tests 

consisting of soil classification, one-dimensional consolidation, California Bearing 

Ratio, and consolidated-undrained triaxial testing were performed to correlate the 

test results from this study with existing Buckshot clay material property data and



to append to the existing laboratory database as required to derive input 

parameters for the Modified Cam Clay model. Input values for the model 

parameters were derived from the combined data. These parameters were 

refined by calibration in a first iteration to mirror the ASTM Standard CBR 6 curve 

in a finite element model of the laboratory CBR testing apparatus. Field testing 

of the prototype airfield matting was performed by others and pressure cell

measurements were obtained. A second iteration of calibration was undertaken

using a finite element model of the field arrangement of matting and subgrade to 

refine the first-iteration model parameters. A final set of Modified Cam Clay 

constitutive soil model parameters was developed for use in current and future

research.
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CHAPTER 1 - INTRODUCTION

1.1 Problem Statement

1.1.1 Project Background

The United States Armed Services is charged with the task of providing a quick 

and sustained response to events across the globe. The front-line response 

teams from all branches of the U.S. Armed Services rely heavily on a complex 

support infrastructure to maintain and supplement equipment and personnel 

during activities in any theater. Often the Armed Services are required to 

respond in geographies that do not immediately provide the required 

infrastructure for proper support. Accordingly, the Armed Services often must be 

prepared to airlift all required support to the theater of operation. The airfields in 

these locations, as demonstrated repeatedly by history, are often ill-suited in their 

existing conditions to accommodate the rapid change in usage. The speed at 

which an Armed Services’ response can be mobilized is often a function of the 

condition and size of the receiving theater airfield.

According to Foster and Anderson (2003), a major consideration in the 

evaluation of an airfield’s capacity is the space available for aircraft parking,
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referred to as Maximum on Ground, or MOG. As an example, over 200,000 

square feet of parking apron are required for a squadron of fighter aircraft (Foster 

and Anderson, 2003). Typically the soil subgrade at these remote airfields is 

incapable of adequately supporting the wheel loads from aircraft without 

pavement or matting. Accordingly, portable airfield matting technologies have 

been developed by various branches of the Armed Services to bridge the weak 

subgrade and allow rapid expansion of an airfield.

The first portable airfield matting systems were developed during World War II for 

use in the Pacific Theater “island-hopping,” allowing the Armed Services to 

rapidly establish air power at subsequent islands with the use of aircraft carriers 

(Naval Air Engineering Station - Lakehurst, 2006). Advances in technology 

produced heavier aircraft with greater wheel loads. The original matting 

technology was improved upon by the U.S. Navy in the creation of the AM-2 

aluminum Airfield Matting System during the Vietnam War in 1961. According to 

the Naval Air Engineering Station - Lakehurst (2006), “over 10 million square 

feet of AM2 mat was used by both the Air Force and the Marine Corps 

throughout Vietnam” for use in both aircraft and helicopter airfields. Recently, the 

AM-2 Matting System has been employed abroad in Operation Desert Storm in 

Iraq, Operation Restore Hope in Somolia, Operation Enduring Freedom in 

Afghanistan, and Operation Iraqi Freedom in Iraq (Naval Air Engineering Station 

- Lakehurst, 2006).
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The AM-2 Matting System is composed of 1.5-inch thick aluminum panels 

weighing over six pounds per square foot that are connected into the required 

configuration using a series of key locks, connector bars, locking bars, and other 

hardware as shown in Figure 1 Foster and Anderson (2003). Assembly of the 

system typically requires a 16-person crew. To provide enough taxiway and 

parking space to support a fighter squadron, 480 pallets of matting with a volume 

of 39,066 cubic feet and a weight of 1,274,316 pounds are required. This system 

requires 48 C-130 transport aircraft and a crew working 12 hours per day 

approximately five days to install, excluding additional subgrade treatments.

The AM-2 Matting System has been successfully implemented over the last 40 

years, but drawbacks exist. Fisher, Hartzer, and Pratt (2005, 10) reveal that the 

AM-2 is “heavy, cumbersome, slow to install, difficult to repair, and has very poor 

air-transportability characteristics.” Additionally, Foster and Anderson (2003, 18) 

found the joints between panels to be “complicated, requiring many additional 

parts, and ... not allowing] for individual panel removal for repair or placement.

Its joint also acts as a hinge, flexing in- and out-of-plane, and do not transfer load 

across panels.” In an effort to improve upon the existing system and employ 

modern technologies, the Air Force Headquarters Air Combat Command 

Installations and Mission Support Readiness Division has sponsored research to 

develop a replacement (Fisher, Hartzer, and Pratt 2005, 10). Preliminary studies 

by a joint-services effort of the Army Engineer Research & Development Center, 

the Naval Air Engineering Station - Lakehurst, and the Air Force Research
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Laboratory have concluded that a composite materials alternative will be most 

advantageous (Fisher, Hartzer, and Pratt 2005, 10). More rigid joint connections 

have been proposed to limit panel edge rotation and improve transfer of shear 

forces at the matting edges (Foster and Anderson 2003, 20).

Figure 1 - Original AM2 Aluminum Airfield Matting (Source: Naval Air Engineering 
2003)

Currently two private contractors are working with the Air Force Research 

Laboratory to develop and fabricate test specimens of the AM-2 replacement 

composite matting (Foster and Anderson 2003, 19).

The Structural Materials Branch of the Air Force Research Laboratory’s Materials

and Manufacturing Directorate (AFRL/MLBC) has contracted with the University
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of Dayton Research Institute (UDRI) to employ the finite element method to study 

concept alternatives and systems designs to replace the current AM-2 Matting 

System. The present study considers the panel loading to be modeled by the 

equivalent pressure of the main landing gear of an F-15 fighter jet acting through 

the mat supported by a low strength subgrade. Future evaluations will consider 

loads representing a C-17 aircraft over various subgrades (Foster and Anderson 

2003, 21). This pressure induced by an F-15 wheel is equivalent to an applied 

pressure of 350 pounds per square inch (psi) over a 100.9 square inch tire 

footprint (Johnson and Frank 2006, 8) as shown in Figure 2.

One goal of the aforementioned study was to investigate the various proposed 

alternatives via finite element analysis. The finite element analysis was intended 

to model the transfer of the wheel load through the panels and into the subgrade 

below. Several configurations of panels and panel joints were modeled. An 

example of a typical finite element model is shown in Figure 3.
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“Infinite” 
elements for far- 
field response

15,59-------------------- H

Figure 2 - F-15 Main Gear Footprint Alternatives (Source: Johnson and Frank 
2006, 8)

Representative region 
of matting panels 
including detailed 
geometry of edges

Soil near 
panel

Figure 3 - Isometric Representation of a Typical Finite Element Loading Model 
(Source: Whitney and Frank 2005, 4)
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The Air Force design directive for the subgrade soil was to represent repeated 

loading on a soil with a California Bearing Ratio (CBR) of 6. The Vicksburg 

“Buckshot” clay, a high-plasticity moisture-sensitive clay, was identified as the 

soil type to be utilized in this study for both finite element analysis as well as field 

testing. Earlier finite element models by Whitney and Frank (2005, 5-6) 

employed simplified empirical correlations between the CBR and elastic resilient 

modulus (E) to characterize the soil. They used two correlations, vis-a-vis, one 

by Heukelom and Foster (1960) who proposed:

E = 1500 x CBR (Eq. 1)

and a second by the American Association of State Highway and Transportation 

Officials (AASHTO 1993):

E = 2555 x CBR0 64 (Eq. 2)

These correlations estimated the resilient moduli varying between 9,000 and 

8,043 psi corresponding to a CBR of 6 in accordance with the Heukelom and 

Foster (1960) relation and the AASHTO relation (1993), respectively. Initial finite 

element analysis of the structural panels suggested that the soils would 

experience strains on the order of one to eight percent. Johnson and Frank 

(2006, 9) extracted the secant moduli at each of these strains from the standard 

CBR 100 plot and scaled the values to a CBR 6 soil to establish a spectrum of

7



anticipated soil secant moduli. The values varied from 4,500 psi at one percent 

strain to 1,500 psi at eight percent strain. In the Whitney and Frank (2005) 

report, the soils were modeled as linear elastic isotropic solids with E = 1,500 psi 

and Poisson’s ratio of 0.33. This is a conservative approach with the resilient 

modulus lower than that predicted by the literature correlations and at the low 

end of the interpolated range, forcing the matting panels to sustain higher 

bending stresses under various loading scenarios. Noting these limitations, a 

more accurate soil model was desired to aid in the appropriate comparison of 

structural panel alternatives.

1.1.2 Objectives

The primary objective of this study is to evaluate the soil material properties of 

Buckshot clay in order to develop pertinent input parameters for an accurate and 

economical constitutive soil model. This soil model will supplement the isotropic 

linear elastic correlation employed in previous finite element analysis of the 

alternative structural matting systems to improve the accuracy of the findings. 

More specifically, a model that represents a non-linear elastic-plastic hardening 

response typical of wet, normally consolidated, soils is desired. Additionally, 

economic consideration must be maintained in evaluating alternatives. While it 

may be desirable to create a new finite element constitutive soil model 

compatible with the finite element software specifically to simulate the response 

of this specific soil type and moisture condition, the costs associated with
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laboratory work, engineering time, and algorithm derivation would far exceed the 

value of the model obtained. The more appropriate solution is to adapt an 

existing compatible soil model to reflect the pertinent response characteristics of 

the soil and evaluate potential sources of error.

1.2 Overview of Constitutive Soil Modeling

The mathematical modeling of traditional construction materials such as concrete 

and steel are simplified by the fact that these material are typically isotropic and 

homogeneous, implying that the stress-strain response of each is predictable, 

replicable, and independent of direction of load application. Soils, on the other 

hand, are both anisotropic and heterogenous. Additional consideration must be 

given in establishing mathematical models for soils as opposed to other 

homogenous isotropic materials. Brinkgreve (2005, 71) describes seven aspects 

of real soil behavior that must be considered, paraphrased as follows:

• Influence of water on the behavior of soil. Two key hydraulic components 

of soil stress response are the effective stress and pore water pressure. 

Effective stress is determined by considering the buoyancy effect of the 

pore fluids in the soil. The mechanical response of soil to changing 

conditions is substantially controlled by the current effective stress state. 

For example, a saturated highly impermeable soil subjected to rapid 

loading will respond with increased pore pressures and a slow

9



consolidation response, while the same load applied to a saturated 

permeable specimen will result in little flux in pore pressure and a rapid 

consolidation response.

• Lack of consistency in soil stiffness. The stiffness of soil will vary 

depending upon the state condition of any of the following variables: 

stress level, stress path, strain level, time duration, density, 

water/permeability, over-consolidation state, and direction of load.

• Irreversible deformation. Most soils have a very limited elastic region, and 

will therefore exhibit mainly irreversible deformation (plastic deformation).

• Lack of consistency in soil strength. The shear strength response of a soil 

will vary as a function of loading speed, time duration, density, undrained 

behavior, over-consolidation state, and direction of load.

• Time-dependent responses. Depending on drainage conditions the pore 

pressure stress in low permeability soils can dissipate over time, resulting 

in changes in consolidation characteristics over time such as creep. 

Additionally, dissipation of tensile stresses within a soil mass may permit 

swelling.

• Compaction and dilatency. Loose soils under shear loading may compact, 

while dense soils under the same loading may expand. This is a result of 

the individual interactions between soil particles as they move against one 

another during shearing. Crushing of calcareous soils may occur as well.

• Memory of pre-consolidation stress. A soil that has previously been 

subjected to a higher stress than its current in-situ state is considered
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over-consolidated. Under loading, cohesive soil will exhibit a stiffer 

response up to the previous maximum stress state. Beyond this state it 

will exhibit a softer response to load.

In theory, it might be possible to derive mathematical models of soils by modeling 

the interaction of each individual soil particle as governed by an algorithm of 

responses based upon the aforementioned seven conditions. However, given 

the random distribution of soil particle shapes and sizes and the mathematical 

complexity required of such a model, this type of model has had negligible impact 

on the development of current constitutive models (Prevost and Popescu 1996,

3).

To meet the needs of a simpler mathematical soil model, continuum constitutive 

models (hereafter “constitutive models”) have been employed. A constitutive 

model considers the global response characteristics of a given volume of 

material in response to a change of state. In constitutive soil modeling, the 

response characteristics of a mass of soil particles is modeled, as opposed to the 

interaction of individual particles. Constitutive models typically consist of elastic 

and plastic stress-strain responses. Given the multitude of parameters that 

influence soil behavior, the individual mathematical models are typically tailored 

not only to a specific soil classification, but also to a given set of conditions. For 

example, a constitutive soil model for normally-consolidated saturated cohesive 

soils at strains of less than 20 percent (typical for settlement analyses) should not
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be used to model the response of highly-overconsolidated partially-saturated 

soils at high strain (typical for some slope stability analyses).

1.3 Brief History of Constitutive Soil Models

Scientists and engineers have been developing relationships to model the stress 

strain response of materials for many years. Even a simple log laid over a river 

to serve as a bridge was observed to have some capacity and deflection 

response to load. In regards to soil stress-strain response, Coulomb (1776) 

published the famous relationship between maximum shear stress, cohesion, 

and soil friction angle as a function of stress. This was expanded to describe

failure in three-dimensional stress state as the Mohr-Coulomb criterion. A later

combination of the linear elastic Hooke’s law with the Mohr-Coulomb criterion,

such as that presented by Smith and Griffith (1982), was established as a first

order model of soil behavior.

Nonlinear soil behavior has been modeled using concepts such as nonlinear 

elasticity, hardening plasticity, critical state theory, and hypoplasticity. Due to 

complexity and computational limitations, finite element modeling had very little 

practical application through most of the twentieth century. It has only been 

within the last 20 years that user-friendly finite element software has been made 

widely available and proven cost-effective for use in consultative practice. 

(Brinkgreve 2005, 70)

12



Extensive research has been performed concerning various aspects of 

constitutive soil models. The geotechnical academic community has embraced 

the challenges of model development, and as software and computing power 

improve, more complex and accurate models will continue to evolve. As is often 

observed at the early stages of innovation, there is a lag between academia and 

professional practice. The July/August 2006 publication of Geo-Strata, the bi­

monthly professional trade publication of the American Society of Civil Engineers 

Geo-Institute, devoted the entire content of the issue to geotechnical modeling. 

Krahn and Barbour (Geo-Strata, 2006) contribute an article entitled “The Purpose 

of Numerical Modeling” describing the status and benefits of geotechnical 

modeling in today’s geotechnical practice. They write:

“Numerical modeling is increasingly taking its rightful role in geotechnical 
practice due largely to the software tools and computing power that are 
now so readily available. However, proper use of these powerful 
numerical tools remains somewhat immature. Too often the expectation 
of what is to be achieved is unrealistic, and the purpose of the numerical 
modeling is unclear.”

It is apparent that the professional geotechnical community is still evolving in the 

acceptance and development of broad-based application of finite element 

constitutive soil modeling.
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1.4 Existing Applicable Constitutive Soil Models

While a large number of constitutive soil models have been researched and 

published in the literature, a relative minimal number are commonly applied in 

commercial software. In the interest of both examining the evolution of 

constitutive soil models and providing a comparison of the advantages and 

limitations of each, this study will briefly examine the following applicable models:

• Hooke’s law

• Mohr-Coulomb

• Drucker-Prager

• Duncan-Chang

• Modified Cam Clay

1.4.1 Hooke’s law

1.4.1.1 Model Description

Hooke’s law was conceived to represent the linear stress-strain response of an 

isotropic elastic material as shown in Figure 4. When described in terms of 

general one-dimensional stress, it has two input parameters: Young’s modulus, 

E, and Poisson’s ratio, v. Hooke’s law can be manipulated to represent principal
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stresses and strains, referring to the orthogonal axes x, y, and z (Wood 2004, 

101), or to include anisotropy of stiffness (Brinkgreve, 75-76).

Figure 4 - Hooke’s Law Linear Elastic Stress-Strain Response (Source: Wood 

2004, 98)

1.4.1.2 Advantages and Limitations

Hooke’s law is accurate in modeling the linear elastic response characteristics of 

a given material. However most soils require very minimal elastic response 

characteristics, as a majority of the behaviors being modeled are typically in the 

non-linear plastic range. While Hooke’s law is generally considered too 

rudimentary for practical application, it is often included as the elastic component 

of other elastic-plastic constitutive soil models (Brinkgreve 2005, 76).
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1.4.2 Mohr-Coulomb

1.4.2.1 Model Description

The Mohr-Coulomb model is an elastic-perfectly plastic model that combines 

Hooke’s elastic stress-strain response with the generalized Coulomb failure 

criterion. Figure 5a and Figure 5b show the stress-strain response and 

associated effective stress path, respectively. The material response is elastic at 

stresses up to some critical value, at which point the material instantly translates 

into a perfectly plastic state, deforming continually without any change in stress. 

Figure 6 shows the two-dimensional yield surface in the p’-q plane, which is the 

triaxial stress plane defined by a vertical axis of distortional stress “q” and a 

horizontal axis of mean effective stress (or volumetric stress) “p”’, where

q = CTi - o3 (Eq. 3)

p’ = (oi +02 + o3)/3 (Eq. 4)

Figure 5 - Mohr-Coulomb a) Stress-Strain Response, b) Effective Stress Path 
(Source: Wood 2004, 127)
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Figure 6 - Mohr-Coulomb Yield Surface (Source: Wood 2004, 124)

The Mohr-Coulomb model is comprised of five input parameters: Young’s 

modulus, E, and Poisson’s ratio, v, for the elastic component; the friction angle,

(p, and cohesion, c, for the Coulomb failure criterion; and the dilatency angle, V. 

The dilatency angle is required because the Mohr-Coulomb model for soils 

makes use of a non-associated flow rule, as will be defined in Section 1.6.1. The 

yield surface for the Mohr-Coulomb model in the deviatoric plane is represented 

by a hexagon as shown in Figure 7. The deviatoric plane is defined as the plane 

in principal stress space that is orthogonal to the line defined by Ot = o2 = a3. 

(Brinkgreve 2005, 76-77)
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Figure 7 - Various Yield Surfaces in the Deviatoric Plane (Source: ABAQUS 
“Analysis Users Manual”)

1.4.2.2 Advantages and Limitations

The Mohr-Coulomb model, along with other elastic-perfectly plastic models, is 

typically used to calculate the stress conditions at failure in geotechnical 

modeling. According to Brinkgreve (2005, 77), the hexagon shape of the yield 

surface in the deviatoric plane correlates well with the stress results of true- 

triaxial soils tests. However, given the simplicity of the elastic component as 

modeled by Hooke’s law, there is little reliability in the deformation response prior 

to failure. Wood (2004, 129-133) notes that the linear stress-strain response in 

the elastic stress regions provide a poor correlation with the elastic hardening 

typically observed in laboratory testing. Brinkgreve (2005, 76) recommends that 

“the Mohr-Coulomb model could be used to get a first estimate of 

deformations...but an accuracy of more than 50 percent should not be expected.”
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While the Mohr-Coulomb model is applied quite frequently in practice due to its 

simplicity, the professional is cautioned to thoroughly understand the implicit 

shortcomings of the model under pre-failure stress conditions.

1.4.3 Drucker-Prager

1.4.3.1 Model Description

The Drucker-Prager model, published in 1952, was produced as a simplification 

of the Mohr-Coulomb model. The hexagonal yield surface in the deviatoric plane 

is replaced by a circle, producing a three-dimensional cone in principal stress 

space as shown in Figure 8. The same input parameters as the Mohr-Coulomb 

model are required. (Drucker-Prager, 1952)

Figure 8 - Drucker-Prager Yield Surface in Principal Stress Space (Source: 
Brinkgreve 2005, 78)
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1.4.3.2 Advantages and Limitations

The Drucker-Prager model is constrained by similar limitations as outlined for the 

Mohr-Coulomb model. For loading conditions that include only one stress path, 

the Drucker-Prager model can be well calibrated to the output of the Mohr- 

Coulomb model. However, if multiple stress paths are modeled it becomes 

impossible to select one set of input parameters that will produce the same 

output as the Mohr-Coulomb model (Brinkgreve 2005, 78). Failure behavior is 

subsequently impossible to reliably produce. While this model may be more 

simple to construct, it produces outputs with the same limitations as the Mohr- 

Coulomb model plus the additional limitation that only one stress path may be 

justifiably represented.

1.4.4 Duncan-Chang

1.4.4.1 Model Description

Duncan and Chang (1970, 1629-1653) published a soil response relationship 

that made multiple improvements upon the Mohr-Coulomb theory based upon 

observations of laboratory testing that had not previously been accounted for in 

constitutive models. The model utilizes a hyperbolic stress-strain response 

through both the elastic and plastic stress regions, and includes a stress- 

dependent stiffness parameter to better reflect the difference in a soil’s observed
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response under varying effective stress conditions. In addition, the model 

distinguishes between primary loading stiffness and unloading and reloading 

stiffness as a function of effective stress. The Duncan-Chang model is classified 

as an elastic model because no explicit differentiation is made between elastic 

and plastic behavior criterion. Rather, the model is represented by one 

continuous hyperbola as shown in Figure 9 (Brinkgreve 2005, 78-79).

Figure 9 - Duncan-Chang Stress-Strain Response to CD Traxial Test (Source: 
Brinkgreve 2005, 79)

1.4.4.2 Advantages and Limitations

Because the initial “elastic” regions of the model are curved instead of linear, the 

Duncan-Chang model provides a better correlation to real drained soil stiffness 

behavior than the Mohr-Coulomb model, especially in the pre-failure stress-strain 

regions. The hyperbolic curve approaches an asymptote, which defines the 

failure criteria for the model, and as such does not include a proper plasticity 

formulation as in the other models. Accordingly, a disadvantage is that the 

Duncan-Chang model cannot describe dilatency (Brinkgreve 2005, 79). In 

addition, the stiffness parameters are defined as applicable for loading, 

unloading, and reloading, but do not include a solution for a neutral state. As a
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result the user must select a stiffness coefficient from the two alternatives, which 

may lead to significant differences in distortion response. The hyperbolic shape 

of the curve is applicable only under drained soil conditions, and would provide 

no advantage (and likely a significant disadvantage) over the Mohr-Coulomb 

model for undrained conditions. In summary, the Duncan-Chang model is more 

like a hyperbolic curve-fit to observed drained triaxial tests as opposed to a true 

adaptable mathematical model formulation. However, the model may be 

successfully employed within the context of the inherent limitations, and does 

provide a superior pre-failure distortion response for drained conditions in 

comparison to the Mohr-Coulomb model.

1.4.5 Modified Cam Clay

1.4.5.1 Model Description

Modified Cam Clay, discussed by Schofield and Roth (1968) of the University of 

Cambridge, is a work-hardening elastic-plastic model specifically formulated to 

represent near-normally consolidated cohesive soils. Schofield and Roth based 

their work upon the original formulations of the Cam Clay model as developed by 

Roscoe, Schofield, and Wroth (1958), Roscoe, Schofield, and Thurairajah (1963) 

and Roscoe and Burland (1968). The model assumes a logarithmic relationship 

between effective stress and void ratio, with a linear stiffness constant applied 

dependent upon whether the soil state is within primary plastic compression or
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an unload/reload cycle. The deformation response of the soil exhibits a plastic 

hardening characteristic; that is, as deviatoric strains increase from a normally- 

consolidated state, subsequent volumetric plastic strains occur that reduce to

zero as cumulative deviatoric strain increases. The Critical State is reached

when zero volumetric strain is accompanied by infinite deviatoric strain. 

Additional description of the Modified Cam Clay model is provided in Section 

1.6.1. (Brinkgreve 2005, 79-81)

1.4.5.2 Advantages and Limitations

The Modified Cam Clay model has been specifically formulated to represent 

normally-consolidated cohesive soils, and the input parameters have proven 

quite successful in modeling pre-failure stress-strain response characteristics. 

While the model has a similar yield surface in the deviatoric plane as the 

Drucker-Prager model, and accordingly maintains the same limitations at and 

beyond failure, the Modified Cam Clay model has more options to control the 

pre-failure non-linear and stress-path dependent behaviors. (Brinkgreve, 79-81)
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1.5 Soil model selection criteria

1.5.1 Modeling Objectives

For the purpose of the airfield matting study, the list below outlines criteria that 

have been established to aid in selection of the appropriate soil model (Johnson 

and Frank 2006; Frank 2006).

The soil model shall:

• provide an accurate representation of the soft Buckshot clay behavior 

under undrained, pre-failure conditions;

• “capture both the plastic deformation of the soil in the area near the tire, 

while capturing the proper stiffness in the large area away from the tire 

that provides most of the support for the airfield matting” (Frank 2006);

• be capable of appropriately modeling unload-reload action as a result of 

repeated tire pressure application, specifically at the matting joint 

locations;

• have input parameters that can easily be determined from common 

laboratory experiments;

• be capable of being efficiently input in the ABAQUS finite element analysis 

software currently employed by UDRI for this research.
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1.5.2 Selected Model

The Modified Cam Clay model was selected as the most appropriate model for 

this modeling study. The model was mathematically formulated specifically to 

represent soft cohesive soils such as Buckshot clay, and provides several 

parameters that allow accurate calibration to represent pre-failure stress-strain 

response characteristics. Frank and Whitney (2004) and Johnson and Frank 

(2006) have found that the soil model representing the interaction with the 

matting will likely be required to characterize plastic deformation with higher 

strains immediately below the tire load, but reduced strains and elastic 

unloading-reloading for the remainder of the model volume. Modified Cam Clay 

is well-suited to separately accommodate the plastic initial loading and elastic 

unload-reload scenarios as a logarithmic function of void ratio and effective 

stress. The input parameters for the model can be derived from simple one­

dimensional consolidation and triaxial testing, both tests commonly performed in 

any comprehensive commercial or academic soil laboratory.

The ABAQUS software package (Version 6.5-3, 2005) used by UDRI for this 

research includes pre-packaged Mohr-Coulomb, Drucker-Prager, and Modified 

Cam Clay models with various adaptations. The use of this model will eliminate 

the need to develop compatible input code to represent the soil constitutive 

model, enhancing the efficiency and cost-effectiveness of the research.
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Additionally, the ABAQUS Extended Modified Cam Clay model provides several 

additional input variables that improve the performance of the original Modified 

Cam Clay model. These additions will be discussed in Section 1.6.2.

1.5.3 Scope of work

In order to produce an appropriate soil response characterization utilizing the 

Modified Cam Clay constitutive model, the following scope of work is required:

• Establish the definition of and derivation methods required for the various 

input parameters required for the original Modified Cam Clay model and 

pursuant ABAQUS Extensions;

• Compile existing soils testing data of the Vicksburg clay as developed by 

others;

• Perform laboratory testing consisting of soil classification, California 

Bearing Ratio, Proctor analysis, and consolidated-undrained triaxial 

testing to derive engineering soil material properties of the Vicksburg clay;

• Correlate the results of the Vicksburg clay soils testing from this study with 

the existing Vicksburg clay soils testing data to produce a combined data

set;

• Using the combined data, establish values for each laboratory-determined

soil characteristic from which to derive the ABAQUS Extended Modified

Cam Clay parameters;
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• Calibrate the ABAQUS Extended Modified Cam Clay material 

representation within a finite element model of the CBR testing apparatus 

such that the soil stiffness response is equivalent to a CBR 6 soil along 

the standardized curve;

• Review the output of soil pressure gauges installed at depths of 15 and 30 

inches for field testing of the soil-matting response to simulated loading 

completed at Vicksburg;

• Compare the finite element response of the calibrated soil parameters to 

field testing results;

• Modify the calibration, as required, to permit the finite element model to 

represent the field testing results;

• Discuss differences between the soil response as calibrated to CBR 6 and 

field testing results, and suggest avenues of future research.

1.6 Selected Constitutive Soil Model

1.6.1 Detailed Description of the Selected Constitutive Model

Modified Cam Clay is a critical state model for describing the behavior of near- 

normally consolidated soft soils such as saturated clays. The proposed Modified 

Cam Clay model was published and improved upon through a series of articles 

from the University of Cambridge, beginning with an article entitled “On the 

yielding of soils” (Roscoe, Schoefield, and Wroth 1958).
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Modified Cam Clay is a work-hardening elastic-plastic model. The response of 

the model to varying stress conditions is formulated as a function of strain, which 

is decomposed into elastic and plastic components governed by an elasticity 

theory, a yield surface, a flow rule, and a hardening rule. The elastic component 

response is produced within and up to the state of pre-consolidation effective 

stress (known as “unloading and reloading”), while a plastic component response 

is produced beyond the pre-consolidation stress (known as “primary loading”). In 

general terms, the soil model responds to loading via a plastic strain hardening 

response from the point of normal consolidation up to the critical stress state. At 

the critical stress state the model will exhibit unrestricted deviatoric plastic flow 

under constant effective stress. Any unloading and reloading will be modeled via 

a linear elastic response.

The linear elastic stress change response is governed by the average slope of 

the isotropic consolidation unload-reload line. This slope is identified by a soil 

constant kas graphically demonstrated in Figure 10. Note that this graph is 

formulated in e - In p space, as opposed to e - log p space of a traditional 

isotropic consolidation curve, k is a function of the traditional swelling index Cs. 

Any stress path within the yield surface is modeled as fully elastic, moving up 

and down the unload-reload line with zero net plastic strain. No dilatency or pore 

pressure effects are considered.
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Figure 10 - Isotropic Consolidation Curve (Source: Wood 2004, 155)

Modified Cam Clay assumes that each yield surface is in the shape of an ellipse 

within the triaxial stress plane defined by a vertical axis of distortional stress q 

and a horizontal axis of mean effective stress p’, as described in Equations 3 and 

4. Each yield surface ellipse is thus governed by two controlling variables: the 

aspect ratio of the ellipse M which controls the shape, and the p-axis maxima p’o 

which controls the size. Each yield surface ellipse size will be governed by an 

independent p’o, but all surfaces will be related by a common shape governed by 

M. Figure 11 shows the geometric configuration of a typical yield surface in p'- 

q space. In three dimensional stress space the critical state surface takes on the 

shape of a cone as shown in Figure 12.
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Figure 11 - Typical Yield Surface in the Triaxial Stress Plane 
(Source: Wood 2004, 156)

Figure 12 - Critical State and Yield Surfaces in 3-Dimensional Stress Space 
(Source: ABAQUS Analysis user’s manual)

The non-linear model response during primary loading is a function of a flow rule 

and a hardening rule. Modified Cam Clay observes an associated flow rule, 

meaning that the plastic strain increment vector is assumed to be normal to the 

yield surface at the current stress ratio, n’, defined as the distortional stress “g” 

divided by the mean effective stress “p”’. The hardening/softening response of
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the model is determined dependent only upon the stress ratio at which yielding is 

occurring.

If the stress ratio is less than M, known as the “wet” side, the soil will exhibit a 

hardening behavior, implying compression plus distortion. The yield surface will 

grow in size towards the critical state. If the stress state is greater than M, known 

as the “dry” side, the soil will soften and dilate, implying expansion plus distortion. 

The yield surface will reduce in size towards the critical state. Figure 13 provides 

a graphical representation of the growth or shrinkage of the yield surface as 

described above. The stress path upon which the soil will travel to reach the 

critical state line is a linear function of /, or the slope of the isotropic compression 

curve in e - In p space. See Figure 10.

As n approaches /Wfrom either side of the critical state line, the plastic volumetric 

strains reduce toward zero. Dependently, the stress increments reduce toward 

zero, and thus the change in p’o reduces toward zero. The plastic compliance 

matrix, the derivation of which is beyond the scope of this report, will thus tend 

towards infinity, indicating that shear stiffness has reduced to zero, or critical 

state (Wood 2004, 159). Upon reaching this critical state from either side the soil 

will experience infinite distortion without change in yield locus, effective stress, or

volumetric strain. This is the Critical State soil failure condition in the Modified

Cam Clay model.
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hardening with t] < M

Figure 13 - Hardening and Softening of the Yield Locus in p’ - q Space 
(Source: Wood 2004, 162)

1.6.2 Extension of Modified Cam Clay Theory in ABAQUS

ABAQUS allows the user to select between two methods of defining elastic 

behavior: linear elasticity or porous elasticity. The Linear Elastic response is 

governed by Hooke’s law and can be defined using the Modulus of Elasticity and 

Poisson’s Ratio, or by providing engineering constants. As an alternative, the 

user can specify the Porous Elastic response in which the bulk elastic stiffness of 

the material is increased as the material undergoes compressive strain and 

increased shear. The porous elasticity response is a function of the logarithmic 

bulk modulus, Poisson’s ratio, and the elastic tensile limit. The porous elastic 

response is valid only for strains less than five percent, so care must be taken in 

the final modeling scenario to ensure that this criterion is met.

The Modified Cam Clay model utilizes a circular section to describe the surface 

of the principal deviatoric stress plane as shown in Figure 14. ABAQUS provides 

the option to modify this shape to more closely reflect the Mohr-Coulomb 

hexagonal shape, which has been widely accepted as accurate in current

32



literature (Brinkgreve 2005, 76-77). The variable Kis used to make the

aforementioned modification, and is maintained between 0.778 and 1.0 to ensure

convexity.

S:

Figure 14 - Effect of K on the Shape of the Principal Deviatoric Stress Plane 
(Source: ABAQUS Analysis user’s manual)

Curve K

a 1 0

b o.e

In addition, ABAQUS provides a variable p to modify the shape of the yield 

surface on the “wet” side of critical as shown in Figure 15. This will allow a 

unique yield surface to have two different elliptical degrees of curvature, 

permitting greater flexibility in model calibration. Beta is typically less than one 

on the “wet” side of critical, and equal to one on the “dry” side.
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Figure 15 - Effect of on (3 Yield Surface Curvature 
(Source: ABAQUS Analysis user’s manual)
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CHAPTER 2 - EXPERIMENTAL WORK

2.1 Introduction

The Army Corp of Engineers has identified a “fat” clay soil, commonly referred to 

as the Buckshot Clay, to maintain consistency between this study and other 

airfield pavement studies completed to date and in the future. Buckshot clay has 

a high affinity for water, exhibiting a wide range of material properties at varying 

moisture contents. This variability of material properties is a valuable 

characteristic in evaluating the effectiveness of constitutive soil model because a 

wide range of model responses can be compared to laboratory results for the 

same soil. However, the soil is more challenging to manipulate in the laboratory 

due to low permeability and high swell potential, making moisture conditioning

difficult.

Laboratory testing was performed for this study for three purposes:

• Establish a correlation between the soil tested in this study to an existing 

reference laboratory database on Buckshot clay compiled by the Army 

Corps of Engineers;

35



• Obtain additional material property data needed for the ABAQUS 

Extended Modified Cam Clay finite element model that does not currently 

exist in the literature;

• Calibrate the ABAQUS Extended Modified Cam Clay Model.

2.2 Testing Program

Various laboratory experiments of the Buckshot clay were performed from May 

through October 2006 as referenced in the matrix of tests in Table 1. A majority 

of the experiments were conducted at the University of Dayton’s Geotechnical 

Engineering Laboratory. Several laboratory tests were subcontracted to a local 

independent testing laboratory due to the unavailability of pertinent equipment 

and facilities due to renovations occurring during this time period.

Table 1 - Summary of Laboratory Testing Performed

Test Procedure Quantity
Grain-Size Distribution ASTM D422 1
Atterberg Limits ASTM D4318 1
Modified Proctor Analysis ASTM D1557(B) 1
One-Dimensional Consolidation ASTM D2435 4
California Bearing Ratio 
(Saturated) ASTM D1883 3

California Bearing Ratio (Partially 
Saturated) ASTM D1883 3

Consolidated Undrained Triaxial 
Testing with Pore-Pressure 
Measurements

ASTM D4767 1

A brief description of each test along with the results is presented herein.
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2.3 Grain Size Distribution

One grain-size distribution analysis was performed in accordance with ASTM 

D422 via combination of sieve and hydrometer tests for the purpose of 

comparing to existing data on Buckshot clay in the literature. The soil was air 

dried and broken up into constituent particles using a rubber mallet, taking care 

not to crush any individual particles. The soil was then passed through a No. 10 

sieve. The soil retained on the No. 10 sieve was oven dried and weighed, while 

the soil passing the No. 10 sieve was subsequently passed through a series of 

additional sieves of decreasing aperture size to a minimum No. 200 sieve 

(aperture size of 0.075 mm). Soil passing the No. 200 sieve was mixed into a 

soil-water slurry for hydrometer analysis. Over a period of 24 hours, hydrometer 

readings of the slurry settlement were obtained, providing a grain size analysis of 

the finest particles.

2.4 Atterberg Limits

One set of Atterberg limits tests was performed in accordance with ASTM D4318 

to establish the liquid and plastic limits of the soil with respect to values for 

Buckshot clay in the literature. The liquid limit defines the moisture content at 

which the soil transitions from plastic to liquid behavior characteristics. A 

representative sample of soil passing the No. 40 sieve (aperture size 0.425 mm)
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was mixed with an appropriate amount of distilled or demineralized water as 

determined by experience. The mixture was allowed to sit for a period of at least 

16 hours to achieve moisture equilibrium. Then the soil sample was placed in a 

liquid limit device and grooved with a standard tool. At a constant rate the soil 

sample was dropped from a constant height and the number of blows required to 

close the groove were counted. The liquid limit is defined as the soil moisture 

content at which 25 blows are required to close the groove. Typically a soil with 

a liquid limit greater than 40 is considered highly plastic and potentially 

expansive.

The plastic limit defines the moisture content at which the soil transitions from 

plastic to semi-solid behavior characteristics. A representative sample of soil 

passing the No. 40 sieve was prepared in the same manner as for the liquid limit 

test, but at a lower moisture content. The soil was then rolled on a glass plate 

into threads. The plastic limit is defined as the moisture content at which 1/8-inch 

soil threads lose their cohesiveness and begin to crumble. The plasticity index is 

determined by subtracting the plastic limit from the liquid limit.

2.5 Modified Proctor Analysis

Five compaction tests were performed at varying moisture contents employing 

consistent compaction energy to establish a Proctor curve. For the purpose of 

this analysis ASTM D1557 Method B analysis was performed, implying that soil
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passing a 3/8-inch sieve was compacted in a 4-inch diameter cylindrical mold in 

five layers using 25 blows per layer. Each blow is defined as the energy applied 

by dropping a 10 lbf rammer a distance of 18 inches, which imparts 56,000 lbf.

Berney (2004) and Freeman (2004), engineers from the Army Corp of Engineers 

who have previously studied of Buckshot clay, performed similar compaction 

tests but at varying compaction energies. Berney (2004) employed ASTM D1557 

Method A which uses the same compaction energy, but performed on soil that 

has passed a No. 4 sieve (aperture size 4.75 mm). Freeman (2004) employed

ASTM D1557 Method C which uses a six-inch diameter mold and 55 blows with

the rammer per lift.

2.6 One-Dimensional Consolidation Tests

Four sets of one-dimensional consolidation tests were performed on remolded 

samples of Buckshot clay using a unidirectional loading apparatus in accordance 

with ASTM D2435 Method A. The clay was air-dried to a moisture content 

between 40 and 50 percent before sample preparation. To promote consistency 

of soil density and moisture content, all four samples were extracted from one 

large remolded soil mass. Compaction of the remolded mass was performed 

using a modified Proctor effort on soil placed in a six-inch diameter modified 

Proctor mold. The soil was placed in five lifts to a height of approximately six 

inches. After extrusion from the mold, the soil mass was cut horizontally with a
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wire saw into four separate 1.5 inch soil disks. A 2.5-inch diameter consolidation 

specimen ring with cutting edge was passed through each soil disk to create the 

perimeter shape of the consolidation samples, and a wire saw and soil knife were 

used to trim the ends flush. The samples were arranged in a double-draining 

consolidometer between two porous stones with filter paper and mounted to the 

loading apparatus.

After filling the consolidometers with water, testing was initiated by placing a 0.45 

lb/in2 load on the specimen. Deformation versus time readings were taken 

automatically by computer software through primary consolidation. Upon 

reaching primary consolidation, an additional load was applied and again 

deformation versus time readings were obtained for the sample. From this data 

a specific void ratio corresponding to 100 percent of primary consolidation was 

obtained. Upon completion of testing a plot of void ratio of 100 percent primary 

consolidation versus load was produced in semi-log space. The slope of the 

virgin compression curve, i.e. the slope of the steepest part of the void ratio 

versus applied pressure plot, is identified as the variable Cc as defined in 

Equation 5:

lOg p2~ log pi
(Eq. 5)
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where e, and p, represent the void ratio and pressure, respectively, at the two 

points which define the slope of the virgin compression curve.

After determining the slope of virgin compression curve the soil sample was 

unloaded to determine the elastic rebound curve. Several unloading steps were 

performed, measuring the soil expansion in response to incremental reduction in 

load. From this the slope of the rebound curve was established, identified as the 

variable Cs calculated in the same manner as Equation 5.

Berney (2004) performed nine additional consolidation tests by an alternative 

consolidation method. The remolded samples were placed in a triaxial apparatus 

and varying back and chamber pressure increments were imposed. The 

difference between back and chamber pressure is the effective stress acting on 

the specimen. Measurement of the axial deflection of the sample during loading 

and unloading was obtained, and a plot of effective stress versus void ratio was

determined in accordance with ASTM D2435.

2.7 California Bearing Ratio

The California Bearing Ratio (CBR) test was originally developed by the 

California State Highways Department as a means of determining relative 

roadway subgrade stiffness for pavement design and construction inspection. 

Today the CBR test has been standardized in accordance with ASTM D1883 and
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is used nationwide as a measurement of soil stiffness. Numerous studies have 

correlated the CBR to a number of soil properties, notably the subgrade soil 

modulus. To perform the test, a piston with a cross-sectionaly area of three 

square inches is pushed into the soil at a rate of 0.05 inches per minute and 

measurement of penetration resistance versus depth of penetration is obtained. 

The pressure required to penetrate 0.10 inch into the soil is divided by a standard 

penetration stress of 1,000 pounds per square inch. This standard penetration 

stress represents the average stress required to penetrate 0.10 inch into crushed 

aggregate. The test is continued through at least 0.20 inches of penetration. If 

the CBR determined at 0.02 inch penetration is greater than the CBR at 0.01 inch 

penetration, the test must be rerun. If the CBR value at 0.02 inch penetration is 

yet again greater, the CBR for the soil is determined to then be the value at this 

deeper penetration.

The CBR test can be performed at any soil moisture and density condition as 

deemed appropriate by the design engineer. For the purpose of this study, the 

goal was to determine what moisture and density condition of Buckshot clay 

would produces a CBR of 6 percent. The goal of the testing was to produce a 

remolded sample that achieved a CBR of 6 percent. However, given the 

moisture sensitivity of Buckshot clay, it was known that this would be difficult to 

achieve. Accordingly, sufficient test data was both gathered from the literature 

and performed for this study to provide an acceptable data curve from which to 

interpolate the required soil characteristics at CBR 6.
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Six sets of CBR tests were performed in accordance with ASTM D1883 at 

varying moisture and density conditions. Three of the tests were performed 

under saturated conditions and at dry densities varying from 95.3 to 97.3 pcf. 

Saturation was obtained by soaking the samples for 96 hours. Per the ASTM 

Standard a surcharge of 10 pounds was applied during the soaking, and 

measurement of the soil swell at the end of the 96 hour period was obtained.

The remaining three tests were performed in a partially saturated condition and 

at dry densities varying from 98.2 to 98.8 pcf. No saturation or swelling 

measurements were performed.

Additional laboratory CBR tests were performed by the Army Corp of Engineers 

and are discussed in a subsequent section of this document.

CBR testing may also be performed in the field in accordance with ASTM D4429. 

This test involves jacking a similar piston into the subgrade soils and measuring 

the penetration resistance as a function of depth of penetration. Surcharge 

weights are placed surrounding the piston to eliminate upward soil displacement 

around the testing location. Field CBR tests are performed solely to determine 

the in-situ CBR value for the subgrade moisture and density condition at the time 

of testing. Test results are invalidated by any soil disturbance or moisture 

content change. For the purpose of this study laboratory CBR tests in
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accordance with ASTM D1883 were performed to maintain stricter controls on 

the moisture and density of the soils.

2.8 Consolidated Undrained Triaxial Tests

Triaxial testing of a soil specimen is accomplished by applying external pressure 

to the specimen in each of the three principal stress planes, o-t, o2, and o3 under 

controlled drainage and loading conditions. Soil specimens are typically formed 

in a cylindrical shape, although cubic triaxial tests are possible. The prepared 

soil specimens are wrapped in an impermeable membrane to control pore fluid 

transfer and immersed in a water bath confined within a thick-walled glass or 

plastic vessel. The triaxial testing apparatus has the ability to control the 

pressure of the fluid both within the specimen (pore fluid pressure) and 

surrounding the specimen (confining or radial pressure, (J2 = 03), and permits an

axial stress (crr) to be applied to the specimen via a piston. Three types of

loading scenarios are typically employed: isotropic compression (o1 = o2 = o3), 

triaxial compression (o? > a2 = a3), and triaxial extension (cr? <a2 = a3). Load 

paths can be applied under various configurations of fluid pressure control, 

wherein the degree of saturation and consolidation are designed to meet the 

needs of the tests. Additionally, the drainage configuration of the soil specimen 

can be controlled to permit or prohibit pore fluid flow within the sample.
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For the purpose of this study, a consolidated undrained (CU) triaxial compression 

test was performed on a cylindrical remolded soil specimen in accordance with 

ASTM D4767. This method was selected because it permits correlation with 

equivalent testing previously performed by Berney (2004) and Peters (1982) and 

would allow back calculation of the soil friction angle at the remolded unit weight

and moisture content.

Prior to remolding the sample, the soil was moisture cured to bring the soil 

moisture content to approximately 34 percent, which is the moisture content 

required to achieve CBR 6 as detailed in Section 3.6.2. Moisture curing 

consisted of measuring the pre-cure soil moisture content and adding an 

appropriate amount of water to the soil in a sealed container. The soil was left to 

cure for a period of ten days, agitating daily. Upon completion of the moisture 

curing the soil moisture content was again measured to ensure that the required 

34 percent had been achieved. The soil was then compacted in a 2.5 inch 

diameter mold in a series of five lifts using an aggregate tamper. Between 

subsequent lifts the surface of the compacted soil was roughened to eliminate 

potential horizontal slip surface discontinuities and promote consistency 

throughout the sample. The soil was compacted to a height of six inches in the 

mold and then trimmed using a miter box to a height of 5.25 inches as measured 

using calipers. The unit weight of the soil was calculated using the measured soil 

volume and weight. The desired unit weight of Buckshot clay to produce a CBR 

6, as outlined in Section 3.6.2, was 85.0 pcf. The first remolded soil sample was
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measured at a unit weight of 83.9 pcf, which was determined to be acceptable for 

this study.

The soil specimen was encased in a filter paper cage to improve the rate of 

drainage of the specimen by providing alternative routes for fluid transfer to the 

top and bottom platens of the triaxial apparatus during testing. Filter paper and 

porous stones were placed at the top and bottom of the specimen, and the 

specimen was then wrapped in a 3.5 mil impermeable membrane. The 

specimen was mounted onto the triaxial testing chamber bottom platen and O- 

rings were installed to make the connection to the platens impenetrable by the 

chamber pressure fluid. The plastic confining chamber was installed around the 

specimen, the axial load piston was lowered to contact the top porous stone, and 

the chamber was filled with water to an effective seating pressure of five psi. 

Figures 16 and 17 show the triaxial testing chamber and overall apparatus 

configuration, respectively.
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Figure 16 - Triaxial Testing Chamber

Figure 17 -Triaxial Testing Apparatus
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Once the sample had been successfully seated and no leaks were observed, the 

saturation stage was initiated. This stage consisted of alternating cell pressure 

and back pressure increments designed to fill all voids in the specimen with 

water while not inducing unnecessary stress on the sample. The cell pressure is 

the radial pressure imposed on the circumference of the sample by the chamber 

fluid, while the back pressure is the pore pressure imposed throughout the 

sample as applied through the porous stones. The effective pressure on the soil 

sample, or the cell pressure less the pore pressure, never exceeded three psi 

during the saturation phase. The Skempton B values, which represent the ratio 

of pore water pressure increase to cell pressure increase for a given effective 

stress increment, were calculated at each increasing 10 psi increment. Upon 

reaching a B value of about 0.95 the saturation stage was considered complete. 

For this soil a back pressure of 69.83 psi was required to achieve a B value of 

0.94. This was achieved over seven cycles of cell and back pressure 

increments, averaging approximately 48 hours per cycle for a total of 

approximately 28 days to achieve sample saturation. This time period to 

saturation is quite long in comparison to other soils, and can be attributed to the 

high impermeability of the Buckshot clay and to the size of the specimen tested. 

Berney (2004, 126) compacted smaller samples with a diameter of only 1.5 

inches and a height of 3 inches. This is one-fifth the volume of the samples 

testing in this study, which increased the rate of sample saturation.
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Consolidation of the specimen was performed after complete saturation of the 

sample had been obtained. An effective stress of 20 psi was imposed by 

increasing the cell pressure to 76.84 psi while maintaining the back pressure at 

56.79 psi. The consolidation stage was completed when the plot of cumulative 

volume change versus time stabilized to a constant value. For this study a 

consolidation period of nearly 100 hours was required to achieve completion of 

consolidation, which is a relatively long time period compared to other soil types. 

Berney (2004, 131) experienced similar time to consolidation in his testing, 

ranging from 24 to 96 hours for the smaller specimen size.

Triaxial shearing of the specimen was performed in a Digital TriTest Load frame 

with a load proving ring with a capacity of 2250 psf capacity and an accuracy of 

+/-0.1 lb. Axial deflection was measured using a digital dial gauge. Both the load 

ring and dial gauge were automated via an autonomous data acquisition unit.

The desired rate of strain was calculated using ASTM D4767 Equation 3 (2005, 

922)

' £ =
4%

10 * f(50)
(Eq. 6)

Per the ASTM Standard, this equation assumes that failure will occur at four 

percent strain. t50 is derived from the findings of the consolidation tests 

performed previously. In this study, t50 ranged from 38 to 68 minutes. As such ‘t 

was calculated to range from 0.01 to 0.006 percent per minute. For this study, a
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strain rate of 0.01 percent per minute was selected and triaxial shearing 

occurring over a period of approximately 36 hours. At this time the triaxial 

specimen had demonstrated shear banding as discussed in Section 3.7.1 and no 

additional meaningful data could be derived by continuing the test.

The sample was unloaded and the cell and back pressures reduced, never 

permitting the back pressure to exceed the cell pressure. The testing chamber 

was drained and the specimen removed for weighing and moisture content

determinations.

2.9 Additional Data - Army Corp of Engineers

Additional laboratory testing of Buckshot clay has been performed by the Army 

Corps of Engineers, which has been reproduced for comparison in this study 

(Tingle 2006). This data, provided by the Army Corps of Engineers Engineering 

Research and Development Center - Waterways Experiment Station in 

Vicksburg, Mississippi, is for the internal use of the Army Corps and has not been 

published publicly in the literature. As a result, no literary references are 

available and little written documentation exists regarding the specifics of the 

testing procedures. However, the data is considered to have been accurately 

determined from applicable standard methods, and will be considered reliable for 

this study. For clarity of source and acquisition method, this data has been kept 

separate from the data provided in previous sections.
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Table 2 provides the data compiled by the Army Corps of Engineers. Note that 

the samples have been compacted at low, standard, and modified energies. The 

standard and modified compaction energies are equivalent to the standard ASTM 

D698 and ASTM D1557 procedures, respectively. The “low” compaction energy 

was achieved by utilizing the same equipment and methods outlined in ASTM 

D698 with the modification that each layer was compacted with 15 blows in lieu 

of 25 as the ASTM Standard prescribes.

A discussion of the relevance of this data is included in Chapter 3.

Table 2 - Army Corps of Engineers Buckshot Clay Data (Source: Tingle, 2006)

Test
Type

Moisture
Content

(%)

Dry
Density

(pcf) CBR
modified 12.8 101.8 96.5
modified 14.8 101.7 92.8
modified 17.2 102.6 70.6
modified 19.0 103.9 76.5
modified 21.0 103.6 57.0
modified 23.2 101.5 34.4
modified 24.4 99.7 26.2
standard 26.1 95.7 23.7

low 31.1 87.8 10.1
low 34.0 85.1 8.3
low 34.6 83.4 4.3
low 38.0 79.9 3.9
low 38.9 78.6 3.2
low 41.5 3.0
low 43.0 2.6
low 44.5 1.3
low 45.0 1.8
low 46.0 1.3
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CHAPTER 3 - DISCUSSION AND CORRELATION OF LABORATORY

TEST RESULTS

3.1 Introduction

This chapter will present the laboratory test results, discuss the findings and 

sources of error for the laboratory tests, and correlate the findings to existing 

data by others. A discussion of the application of these findings to the derivation 

of Modified Cam Clay model input parameters is provided in Chapter 4.

3.2 Grain Size Distribution

3.2.1 Laboratory Test Results

In order to complete the grain size distribution testing, the soil was required to be 

dried, the individual soil particles separated (but not crushed or broken), and then 

subjected to sieve and hydrometer analyses. The adjective “Buckshot” in 

Buckshot clay was given because, when dried, the clay soil develops high 

strength inter-particle bonds (Berney 2004, 119). It tends to form hard soil 

masses that resemble buckshot ammunition. This clumping tendency makes 

drying and separating the soil particles difficult. The soil must be repeatedly
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worked and broken down as drying progresses to separate the particles. 

Analysis of the repeatability of grain size distribution testing of Buckshot clay 

should consider this fact, especially when correlating the results of testing from 

multiple laboratories. Figures 18 and 19 provide the results of the grain-size 

distribution analyses for this study and for Berney (2004).

GRAIN SIZE - mm.
%+y % Gravel % Sand % Fines

Coarse J Fine Coarse Medium Fine Silt Clay

Figure 18 - Grain Size Distribution for Buckshot Clay
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Figure 19 - Grain Size Distribution for Buckshot Clay by Berney (2004)

The grain size distribution of the soil matrix as determined in this study was 

composed of 6 percent sand and gravel, 15.9 percent silt, and 78.1 percent clay. 

Clay particles tend to have a high affinity for water and are relatively 

impermeable. In general, the higher the clay fraction, the greater the likelihood of 

swelling potential and impermeability of a soil. Clay mineralogy will affect the 

tendency for absorbing water. The results of grain size distribution testing of 

Buckshot clay has shown a relatively high clay fraction at 78.1 percent. It was 

observed in this study that CBR testing, which includes a measurement of the 

swelling potential of the soil, found that Buckshot clay swelled upwards of 20 

percent during saturation. Additionally, the one-dimensional consolidation and
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consolidated-undrained triaxial testing both required significantly longer time 

durations to achieve completion of the primary saturation and consolidation 

stages of testing than is typically observed for most lean clay or cohesionless 

soils. This is because the Buckshot clay soil has a very low permeability, and 

pore pressures require greater time to dissipate.

3.2.2 Correlation to Existing Data

Figure 20 provides a comparison of the findings of this study and Berney (2004). 

As can be seen from the plot, both curves follow the same trends over time. The 

value of “percent finer” by Berney appears to drop sharply between 0.007 and 

0.004 millimeters. Sharp changes in curvature are uncommon in consistent 

cohesive soil deposits such as Buckshot clay. A potential laboratory procedural 

error or inconsistency in the soil sample may have caused the drop. If this drop 

had not been recorded, both plots would have fallen on nearly exact paths. The 

slopes of the plots throughout the ranges of grain sizes are nearly identical. 

Because the plots follow near-identical trends, and barring one inconsistency, it 

can be reasoned that the two sets of laboratory data correlate well.
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Figure 20 - Grain Size Distribution for Buckshot Clay by Berney and This Study

3.3 Atterberg Limit Tests

3.3.1 Laboratory Test Results

Atterberg limit test results established the liquid limit to be 78 percent, the plastic 

limit to be 27 percent, and the plasticity index to be 51 percent, as shown in 

Table 3. These results are consistent with a highly plastic clay. In physical 

terms, the soil begins to behave like a liquid at 78 percent moisture and begins to 

behave like a semi-solid at 27 percent moisture. The fact that the clay does not 

begin to act like a liquid until 78 percent of the soil matrix consists of water shows 

the high moisture-affinity of the clay. Each individual clay particle is able to
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attract many times its own mass in water due to the strong negative charge of the 

clay particles, causing double layer attraction in addition to absorption. 

Additionally, there is a 51 percent moisture range between the solid and liquid 

phases as represented by the plasticity index. This implies that a majority of the 

soil behavior under varying moisture conditions will be plastic in nature.

However, given the clay fraction of the soil, it can be expected that soil stiffness 

will be high at moisture contents less than 27 percent, then rapidly drop as

moisture content increases.

3.3.2 Correlation to Existing Data

The findings for Atterberg limits testing are presented in Table 3 below. Also 

presented in the table are the experimental data of Buckshot clay by Berney 

(2004), Peterson (1987), Peters et. al (1982), and Freeman (2004).

Table 3 - Summary of Classification Test Results

Property
Doudican

2006
Berney

2001
Peterson

1981
Peters
1991

Freeman
1988 Ave.

Liquid Limit 78 75 56 54 83 69.20
Plastic Limit 27 24 21 17 27 23.20
Plastic Index 51 51 35 37 56 46.00
Clay Fraction 78.1 46 43 40 39 49.22

Overall, it can be seen that the values for liquid and plastic limits and plasticity 

index obtained in the present study correlate well to Berney and Freeman, with 

the Peterson and Peters values typically somewhat lower. This overall trend may
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be a function of variations as the Buckshot clay source has been excavated over 

time, variations in laboratory procedures, or discrepancies due to the inherent 

non-homogeneity of soil materials. The clay fraction obtained in the present 

study averages about 30 percent higher than the other comparable experiments. 

This could be a result of soil crushing during the drying phase of preparation, 

resulting in finer (albeit broken) particles, or an improvement in preparation 

methods that permits the soil to be more efficiently separated. Regardless of the 

reasons for difference in clay fraction, the soil Atterberg indices for this study and 

historical studies are similar. While the clay fraction percentages have been 

found to vary significantly, the Atterberg limit data, which represents the soil 

response characteristics to variations in moisture content, were found to correlate 

within an acceptable degree of variation. Specifically, the most recent testing 

performed in this study and by Berney (2004) were nearly identical except for the 

clay fraction, which has been discussed previously. Given the known source of 

the material for all tests coupled with the expectation of some numerical 

differences due to non-homogeneity, the data has been assumed to establish a 

reasonable correlation to permit use in final model parameter determination.
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3.4 Modified Proctor Analysis

3.4.1 Laboratory Test Results

Five tests were performed for this study at moisture contents varying from 10 to 

26 percent. The curve developed is shown in Figure 21.

Figure 21 - Modified Proctor Compaction Testing Results
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Figure 22 shows the results of compaction tests performed by Berney (2004) and 

Freeman (2004).
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Figure 22 - Modified Proctor Compaction Testing Results by Berney (2004) and 
Freeman (2004) (Source: Berney 2004, 125)

Modified Proctor compaction tests at various moisture contents yielded a 

consistent unit weight versus moisture content curve. The resulting maximum 

dry unit weight and optimum moisture content were 102.1 pounds per cubic foot 

and 13.1 percent, respectively. The optimum moisture falls below the plastic 

limit, as would be expected, and the maximum dry unit weight was within a 

typical range for highly-plastic clays. At moisture contents below 13.1 percent 

the density was observed to decrease. This is a result of inter-particle friction in 

the soil matrix whereby the soil particles resist sliding past one another to form a 

denser configuration, introducing a greater void ratio and subsequent lower unit
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weight. At moisture contents higher than 13.1 percent the soil particles have 

sufficient lubrication to slide past one another, but the water begins to take up 

greater volume in the soil matrix. This increases the void ratio and lowers the dry 

unit weight.

The relative steepness of the graph can be used to interpret the moisture 

sensitivity of a given soil. As steepness increases, the rate of change of unit 

weight increases as a function of moisture content. In the range of moisture 

contents tested for this study, the graph forms a relatively flat curve. This implies 

that as moisture fluctuates within the 10 to 25 percent moisture content range, 

the relative dry unit weight will only fluctuate by approximately seven pounds.

The results of relative compaction unit weight relations will be employed to 

identify the unit weight corresponding to a CBR of 6. This will be discussed

further in section 3.6.

3.4.2 Correlation to Existing Data

Figure 23 provides a comparison of all moisture-unit weight relations as 

produced herein and by Bernie (2004) and Freeman (2004). It can be observed 

that the general graph slopes are consistent. The maximum dry unit weight 

achieved in this study is within two pcf of the maximum achieved by Berney 

(2004) and Freeman (2004); however, the optimum moisture content is over five
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percent lower. This may be attributed to the differences in compaction energy 

and sample preparation methods as discussed in Section 2.6. Beyond the 

discrepancy in optimum moisture, the range of test results tend to correlate well.
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Figure 23 - Combined Compaction Test Results (Modified from Berney)

3.5 One-Dimensional Consolidation Tests

3.5.1 Laboratory Testing Results

Four sets of one-dimensional consolidation tests were performed for this study 

on remolded normally-consolidated samples of Buckshot clay. The results are 

provided in Figure 24.
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Figure 24 - Consolidation Test Results

The resulting consolidation curves showed strong consistency in both the primary 

consolidation and unload-reload phases of testing. For each iteration of 

increasing or decreasing load it was observed that up to 96 hours was required 

for the samples to complete primary consolidation. This incremental load 

duration was ancitipated due to the highly plastic and relatively impermeable 

characteristics of Buckshot clay. As discussed in prior sections, the pore water 

pressures that build upon load application dissipate over time as a function of soil 

permeability. The time required for each load increment in this study is 

significantly longer than is typical for other soil types, but within a typical range 

for highly plastic relatively impermeable clays.
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The consolidation curves for all four tests show a linear relationship for all 

primary consolidation load increments applied except the first data point. This 

indicates that a slight overconsolidation of the molded samples existed prior to 

testing initiation. This is likely due to the compaction energy applied to produce 

the samples being greater than the initial pressure increment in the 

consolidometer. After exceeding the stress of compaction, the soils exhibited 

linear compression and unload-reload responses.

One likely erroneous data point was encountered during the maximum load 

increment for one of the tests. This data point was not included in the calculation 

of Cc or Cs for this curve. All other data points appear accurate.

For comparison, the results of the nine consolidation tests as performed by 

Berney (2004) are provided in Figures 25 through 27 organized by final triaxial 

chamber confining pressure. A discussion of the different consolidation testing 

methodologies has been provided in Section 2.6.
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Figure 26 - Consolidation Test at 30 psi Confining Pressure 
(Source: Berney 2004, 133)
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Figure 27- Consolidation Test at 50 psi Confining Pressure 
(Source: Berney 2004,134)

3.5.2 Correlation to Existing Data

Table 4 provides list of the compression and swelling indices for the one­

dimensional consolidation tests performed for this study as well as those by 

Berney (2004).
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Table 4 - Compression and Swelling Indices

Source (Testing ID) Cc
(1/psi)

Cs
(1/psi)

Present Study (1) 0.442 0.126
Present Study (2) 0.429 0.126
Present Study (3) 0.415 0.100
Present Study (4) 0.392 0.103

Present Study Average 0.420 0.114

Berney (15-2) 0.378 0.063
Berney (15-3) 0.351 —
Berney (15-4) 0.283 0.126
Berney (30-2) 0.312 —
Berney (30-3) 0.332 0.084
Berney (30-4) 0.363 0.076
Berney (50-2) 0.348 0.114
Berney (50-3) 0.323 0.114
Berney (50-4) 0.237 —

Berney Average 0.325 0.096

Delta (A) 0.095 0.018

The average laboratory-determined values for the compression and swelling 

indices vary by 29 and 19 percent, respectively. In the context of soil 

consistency and the typical laboratory values derived form the literature as 

described in Section 4.2.1 and 4.2.6, the correlation can be reasoned acceptable.

3.6 California Bearing Ratio (CBR)

3.6.1 Laboratory Testing Results

The directive of the AFRL7MLBC was to model the airfield mats interacting with 

the soil subgrade with a CBR of 6. Buckshot clay was selected as the soil for
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testing because this was the soil used in field tests at a CBR 6 condition. 

Cohesive soil strength and stiffness characteristics are governed in part by the 

density and void ratio of the sample at the time of testing. In order to properly 

represent a soil with a CBR of 6 in the finite element model, a relationship 

between initial conditions and CBR was required to be established. From this 

relationship the required density and moisture content to produce a CBR 6 soil 

could be derived. This unit weight and moisture content would become the 

required initial condition for the remolded sample to be used in triaxial testing.

The triaxial test results are used to establish the slope of the critical state line, 

and are therefore critical to the derivation of the appropriate model input 

parameters.

Six sets of CBR tests were performed in two rounds of testing at a range of unit 

weight and moisture contents varying from 95.3 to 98.8 pcf and 8.8 to 17.9 

percent, respectively, as shown in Figures 28 and 29 below. The first round of 

CBR tests was performed in accordance with the standard sample preparation 

process, which included saturation of the sample for 10 days prior to testing. The 

intent of this saturation is to represent the worst potential soil strength conditions 

expected to be encountered in the field; i.e. completely saturated. After the 10 

day soak, the prepared samples had swelled and were measured at unit weights 

of 77.0, 79.4, and 82.9 pcf and moisture contents of 39.0, 34.5, and 31.0 percent, 

respectively. The significant lessening of the unit weights was a result of 

expanded volume due to swelling up to 23.8%. The results from this first round
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of testing produced CBR values of 1.2, 1.3, and 1.5 percent, respectively. These 

first tests failed to provide independent conclusive evidence as to the required 

unit weight and moisture content to achieve a CBR of 6. It was apparent that it 

would be impossible to achieve a CBR of 6 for completely saturated Buckshot 

clay.

After a discussion of these primary test results with UDRI and AFRUMLBC, it 

was determined that it would be unnecessary to simulate saturated conditions 

and that a partially saturated sample preparation would be acceptable. Given the 

moisture sensitivity of Buckshot clay, it was anticipated that by testing at a lower 

moisture content and not saturating the samples prior to testing, a significant 

increase of the CBR would be observed. A second round of testing was initiated. 

Three additional samples were prepared and the soaking stage was omitted.

The tests produced CBRs of 49.1,45.7, and 49.6 percent. This was far in 

excess of the required CBR 6 and confirmed the assumption that a change in 

moisture content would have dramatic impact on the soil stiffness.
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Figure 28 - Soaked CBR Test Results

Figure 29 - Partially Saturated CBR Test Results
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3.6.2 Correlation to Existing Data

The laboratory experimental data was plotted along with existing data as 

provided by the ACOE to produce a curve comparing the unit weight to CBR 

value for Buckshot clay. Figure 30 shows the CBR versus unit weight for each 

individual laboratory set of test results. It can be seen that both sets of data 

follow a similar trend of initial gradual increases in CBR as unit weight increased 

from 75 to 90 pcf, followed by a marked exponential increase over the remaining 

unit weight range from 90 to 105 pcf.

A This Study 
♦ ACOE

Figure 30 - Data and Trendline for Unit Weight vs. CBR

An equation describing the relationship between CBR and unit weight was 

prescribed by combining the two sets of data together and applying an
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exponential trendline as shown in the insert in Figure 30. The R2 value was 

calculated as 0.9245 and is considered acceptable given the relatively scattered

nature of the data.

Using the exponential equation trendline the unit weight required to produce a 

CBR of 6 for the Buckshot soil was calculated at 84.98 pcf. The moisture content 

required for a CBR of 6 was determined to be approximately 34 percent as 

interpolated from the Army Corps data shown in Figure 31.

CBR Number

Figure 31 - CBR vs. Moisture Content (Source: Tingle 2006)
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3.7 Triaxial Tests

3.7.1 Laboratory Test Results

One consolidated-undrained (CU) triaxial shear test was completed for this study. 

Figures 32, 33, and 34 provide plots of deviator stress versus axial strain, pore 

pressure versus axial strain, and the p'- q’ diagram, respectively for the testing 

in this study. Figure 35 provides the p’- q’ diagram for the CU triaxial tests by 

Berney (2004). Deviator stress is defined as the axial stress (P) acting on the 

sample as a result of the piston pressure, and is calculated as P divided by the 

area (A) of the specimen cap, which in this case is the surface area of the porous 

stone. The p’ - q’ diagram is a modified Mohr-Coulomb diagram wherein p’ is 

defined as (oi + o3)/2 and q’ is defined as (oi - o3)/2. Note that in the case of 

this testing o2 equals o3t, and therefore p’ in this case is equivalent to Equation 4 

described previously. However, q’ is defined differently in this application than 

the definition provided in Equation 3. By plotting the effective values of p’ and q’ 

at specimen peak strength of a series of CU triaxial tests the Mohr-Coulomb 

failure envelope for effective stresses can be determined.
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Figure 32 - Deviator Stress vs. Axial Strain

Figure 33 - Pore Pressure vs. Axial Strain for CU Triaxial Test

74



18

Figure 34 - p’ - q’ Diagram for CU Triaxial Test

Figure 36 represents the Mohr-Coulomb failure surface for the CU triaxial testing 

by Berney (2004) and Peters (1982) as plotted on a p’ - q’ diagram. Note that 

Peter’s data shows a higher friction angle, and thus a greater strength, than 

Berney’s data. This is due to the sample preparation methods for each. Peters 

prepared his samples by a slurry method while Berney employed a compaction 

method. The slurry method produces a sample that is more consistent 

throughout and has a higher density than if prepared by a compaction method, 

which leads to the observed greater strength. The specimens prepared for this 

study employed the compaction method of sample preparation and are 

subsequently expected to fall closer to Berney’s curve.
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Figure 35 - p’ - q’ Diagram by Berney (2004, 164)
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Figure 36 - Modified Mohr-Coulomb Failure Surface for Buckshot Clay by Berney 
and Peters (Berney 2004, 167)
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The determination of true peak and ultimate strength of Buckshot clay is difficult 

to obtain in laboratory testing due to a phenomenon called shear banding. 

According to Berney (2004),

“Shear-banding is the result of a premature failure occurring within the 
sample during triaxial shear in which a localized plane of weakness or slip 
plane is generated... A slip plane is a saturated surface passing 
diagonally through the triaxial specimen that separates it into two angular 
halves that continue to slide relative to one another without any further 
change in material behavior with increased loading.” (162)

The significance of this is that the test specimens, after shear banding, do not 

reach their ultimate strength states. Additionally, the peak strength is associated 

with the strength at which shear banding has occurred which may not represent 

that soil’s true peak strength. The CU triaxial test performed in this study 

exhibited shear banding similar to that observed in Berney’s testing as 

demonstrated in Figure 37.

A picture of the shear band failure surface within the triaxial sample is provided in 

Figure 38. The picture shows the shiny slickenside surface, which is 

characteristic of the slip plane of a failed cohesive soil. Additionally, a piece of 

gravel observed within the sample along the failure plane is likely to have caused 

a stress concentration within the sample wherein the slip surface formed.
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(a) (b)

Figure 37 - Shear Band Surfaces by (a) Berney (2004, 162) and (b) This Study

Figure 38 - Failure Surface within Shear-Banded Triaxial Specimen
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3.7.2 Correlation to Existing Data

As stated previously, the Mohr-Coulomb failure surface can be determined by 

evaluating the peak stress states for a series of CU triaxial tests. The curve that 

is fit to represent the trend of these tests defines the shear strength 

characteristics of the given soil. Figure 39 is a modification of Figure 36 to 

include the peak stress state as evaluated in this study. As was predicted, the 

peak stress state for this study fell on the trendline for the samples by Berney 

prepared by the compaction method.

Figure 39 - Modified Mohr-Coulomb Failure Surface for Berney, Peters, and This 
Study (Modified from Berney 2004, 167)
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CHAPTER 4 - SOIL MODELING

4.1 Introduction

A successful correlation has been established between the Buckshot clay tested 

in this study and the reference database. Additionally, gaps in the available soil 

data have been filled by the laboratory testing. To complete the establishment of 

input parameters for the soil model, this chapter will:

• Derive values of ABAQUS Extended Modified Cam Clay model 

parameters employing the correlated laboratory data;

• Calibrate the soil model to produce a CBR 6 soil response in a finite 

element model of the CBR testing apparatus;

• Review the findings of an instrumented field test of the composite airfield 

matting and CBR 6 subgrade as performed by the Army Corps of 

Engineers;

• Evaluate the calibrated soil model response with respect to the findings of 

the field testing;

• Recalibrate the soil model as required to achieve optimum correlation to 

the field testing.
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4.2 Derivation of Input Parameters from Lab Testing and Correlations for 

Use in the ABAQUS Extended Modified Cam Clay Model

4.2.1 Logarithmic Bulk Modulus

The logarithmic bulk modulus, kappa (k), is a soil constant defined by the 

average slope of the unload-reload line on a one-dimensional consolidation 

graph. As described in Section 1.6.1, k is used to provide a linear elastic 

volumetric response. As k is defined in the e- In p space, its value can be 

derived from the soil swelling constant Cs as:

k = Cs

In 10
(Eq. 7)

For the purpose of this study, four one-dimensional consolidation tests were 

performed on samples of Buckshot clay. In addition, six additional one­

dimensional consolidation tests with unloading stages were performed on the 

same material by Berney (2004) on the same soil. Table 5 summarizes the 

results of each study.
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Table 5 - Summary of Lab-Derived Kappa Values

Source (Testing ID) Cs
(1/psi) (1/psi)

Present Study (1) 0.126 0.0548
Present Study (2) 0.126 0.0548
Present Study (3) 0.100 0.0433
Present Study (4) 0.103 0.0448

Present Study Average 0.114 0.0498

Berney (15-2) 0.063 0.0273
Berney (15-4) 0.126 0.0546
Berney (30-3) 0.084 0.0364
Berney (30-4) 0.076 0.0330
Berney (50-2) 0.114 0.0495
Berney (50-3) 0.114 0.0495

Berney Average 0.096 0.0417

Delta (A) 0.018 0.0077

There are numerous references in the literature that provide tables of typical Cs 

values. Table 6 outlines some typical values of Cs as provided by Das, and the 

corresponding calculated value of k.

Table 6 - Summary of Literature-Derived Kappa Values (Das 2000, 167)

Description Cs K
Boston blue clay 0.07 0.03

Chicago clay 0.07 0.03
New Orleans clay 0.05 0.02

Montana clay 0.05 0.02
Average 0.06 0.025
Delta (A) 0.02 0.01

It can be seen that the laboratory-determined values for Cs and k are within the 

same scale of magnitude and difference in value (delta) as other cohesive soils 

in the United States. It is reasonable that the Cs values for Buckshot clay are on
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the higher end of most others in the literature because of its observed affinity for 

water and subsequent tendency to swell. As the pressure is released during 

unloading, Buckshot clay tends to expand at a greater magnitude than other less 

water-affinitive soils and the void ratio increases at a greater rate. For the 

purpose of model calibration the values of k should be calibrated from an initial 

value of 0.045, the combined data average.

4.2.2 Poisson’s Ratio

Poisson’s ratio (v) is the ratio of the contraction strain normal to the applied load 

divided by the extension strain parallel to the applied load. Most mechanical 

materials have a Poisson’s ratio that falls within the range of 0.0 to 0.5. 

Measurement of Poisson’s ratio for a given soil is challenging in that the soil is 

likely to be highly heterogeneous within any given sample and is difficult, if not 

impossible, to measure in the laboratory. Thus, an average Poisson’s ratio 

based on established literature is typically used.

The U.S. Army Corps of Engineers has produced several comments on the 

Poisson’s ratio for various soil types. The following table was compiled from the 

U.S. Army Corps of Engineers (1990), Joint Departments of the Army and Air 

Force (1983), and Das (2000):
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Table 7 - Typical Values of v from the Literature

Poisson’s Ratio
Saturated Clays 1 0.5
Partly Saturated Clays 1 0.3
All Soils, Range, with Saturated 
Soils Approaching 0.492

0.25-0.49

Reasonable Value2 0.4
Medium Clay3 0.20-0.50
Sand and Gravel3 0.15-0.35

1 TM 5-818-1, pg 5-4;2 EM 1110-1-1904, pg. D-12; 3Das, pg. 125

For the purpose of model calibration, Poisson’s ratio should be calibrated from an 

initial value of 0.03, the average of the cohesive soils values.

4.2.3 Elastic Tensile Limit

The elastic tensile limit, Pt(el), is the maximum allowable tensile stress, for the 

constitutive model. This parameter is used by the ABAQUS “Porous Elasticity” 

material model to describe the elastic tensile behavior. For Buckshot clay, and 

most soils, the tensile strength is assumed to be zero.

4.2.4 Initial Void Ratio

The initial void ratio, e0, is calculated by dividing the volume of voids by the 

volume of solids in a soil specimen. “Void” is defined as the volume within the 

sample filled by either water or gas. The void ratio is affected by the unit weight 

of a sample, and thus for the purpose of this model the void ratio is required to be
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known at 85 pcf, the unit weight that produces a CBR equal to 6. Void ratio can 

be determined from a one-dimensional consolidation test; however, no one­

dimensional consolidation tests were performed with samples at a unit weight of 

85.0 pcf. In order to determine the initial void ratio for this constitutive model, 

linear extrapolation is required. Figure 40 compares the initial void ratio versus 

unit weight for the four consolidation tests performed in this study as well as the

resultant linear trendline established.

Figure 40 - Void Ratio vs. Unit Weight Including Trendline

Based on the linear extrapolation shown above, the initial void ratio should be 

approximately 0.92 at a unit weight of 85 pcf for this constitutive model. 

ABAQUS provides the option to vary the void ratio as a linear function of depth. 

Given that the subgrade depth influenced in this analysis is relatively shallow,
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such that the overburden soil pressures are unlikely to have caused a significant 

change in soil void ratio, it is recommended that a constant void ratio be 

maintained throughout all depths.

4.2.5 Initial Pressure Stress

The user-input initial pressure stress, Po, is used by ABAQUS to establish 

equilibrium in the first iterative steps of the numerical analysis and to establish 

the size of the initial yield surface. The user has the choice to enter two separate 

initial pressure intensities, one for each usage by ABAQUS, or to allow one input 

to represent both cases. For this discussion, we shall define the two cases as 

“Equilibrium” and “Yield Surface.”

4.1.5.1 Initial Pressure Stress - “Equilibrium”

For the “Equilibrium” case, ABAQUS uses the input initial pressure stress to 

reconcile any numerical differences between the user-input initial horizontal and 

vertical pressure stresses, boundary conditions, and pore fluid pressures to the 

numerically-calculated values in the first iterations of the analysis. Depending on 

the type of finite element model being evaluated, the user may determine to use 

this method if the initial pressure on the system is known and no densities have 

been input for the various materials in the model. The ABAQUS software will 

skip all gravity loading and induce the input initial pressure at time zero. From
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this initial pressure state ABAQUS will iteratively attempt to achieve equilibrium 

prior to proceeding to the next step. For the case of the finite element CBR 

model used for calibration in this study, the equilibrium initial pressure method 

was employed using an initial pressure of -1.0 psi, the seating pressure of the 

piston and confining ring.

4.1.5.2 Initial Pressure Stress - “Yield Surface”

For the “Yield Surface” case, the initial pressure stress is defined as the initial 

value of the equivalent total pressure stress acting on the soil as a function of 

pore pressures, vertical (typically gravitational) loading, horizontal (typically 

earthquake) loading, and boundary conditions. This initial stress state should 

take into account both the stress history of the soil (the overconsolidation state) 

as well as the current imposed pressure stresses. For the purpose of this study, 

the soil is assumed to be in a “normally consolidated” stress state. “Normally 

consolidated” means that the existing in-situ soil stress state is the maximum 

ever experienced by the soil. The only in-situ stresses acting on the soil are due 

to gravity effects on the overlying soil stratum and pore pressures due to 100 

percent saturation of the soil sample. No horizontal loading should be included. 

As provided by ABAQUS (2005) the equation for determination of the existing

pressure stress is:

(7z: = y(dry) *(Z - Zo) - /(wafer) * (1 - Ho) *(Z - Z»o) (Eq. 8)
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where y(dry) is the dry unit weight of the soil, z is the elevation for which the 

pressure is being determined, z0 is the elevation of the surface of the porous 

media, y(water) is the unit weight of water, n° is the ratio of the initial void ratio to 

the initial specific volume, and zw° is the elevation of the phreatic surface. For 

this model, the dry unit weight is equal to 85 pcf, zo=zn°=Q, the unit weight of 

water is 62.4 pcf, and n°=(0.92)/(1.92)=0.479, as derived from the laboratory 

testing. The value of z is dependent on the depth of soil intended to be modeled.

If we assume, for the purpose of calibration with existing load cell data, that the 

soil is at a depth of 15 inches below grade and that the soil density is 85 pcf, the 

resulting stress acting on an infinitely small representative soil sample is 65.61 

psf or 0.456 psi.

In theory, the initial stress state of a soil sample and the stress induced upon it 

should cancel one another in equilibrium, producing zero net initial displacement 

of the sample. ABAQUS performs an initial geostatic load step to ensure that 

this is true, and will make moderate adjustments to a0to ensure compliance if 

there are small discrepancies, or abort the iteration process altogether in the 

event of large discrepancies.
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4.2.6 Logarithmic Hardening Modulus

Lambda (A) is a soil constant defined by the average slope of the virgin 

consolidation line on a one-dimensional consolidation graph. As described 

above, A is the logarithmic hardening constant that defines the plastic 

compressibility characteristics of the clay. Because A is defined in the e- In p 

space, its value can be derived from the soil swelling constant Cc as:

/I = (Eq. 9)
In 10

where:

c =-----gL + l)-g(n)----- (Eq. 10)
lOg P(n + I) - lOg /?(„)

and n and n+1 are the data points that characterize the slope of the virgin

consolidation line.

For the purpose of this study, four one-dimensional consolidation tests were run 

on samples of Buckshot clay. In addition, nine one-dimensional consolidation 

tests were performed on the same soil by Berney (2004). Table 8 outlines the 

findings of each study.
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Table 8 - Summary of Lab-Derived Lambda Values

Source (Testing ID) Cc
(1/psi)

A
(1/psi)

Present Study (1) 0.442 0.192
Present Study (2) 0.429 0.186
Present Study (3) 0.415 0.180
Present Study (4) 0.392 0.170

Present Study Average 0.420 0.182

Berney (15-2) 0.378 0.164
Berney (15-3) 0.351 0.152
Berney (15-4) 0.283 0.123
Berney (30-2) 0.312 0.135
Berney (30-3) 0.332 0.144
Berney (30-4) 0.363 0.158
Berney (50-2) 0.348 0.151
Berney (50-3) 0.323 0.140
Berney (50-4) 0.237 0.103

Berney Average 0.325 0.141

Delta (A) 0.095 0.041

An extensive amount of research has been compiled in the literature regarding 

typical values for Cc. Table 9 outlines the findings of Holtz and Kovacs (1981), 

and the calculated corresponding values of A.

Table 9 - Summary of Literature-Derived Lambda Values 
by Holtz and Kovacs (1981)

Description (USCS Classification) Cc (1/psi) A (1/psi)
Normally consolidated medium sensitive clays 0.2 to 0.5 0.086 to 0.217

Chicago silty clay (CL) 0.15 to 0.30 0.065 to 0.130
Boston blue clay (CL) 0.3 to 0.5 0.130 to 0.217

Vicksburg Buckshot clay (CH) 0.5 to 0.6 0.217 to 0.261
San Francisco Bay Mud (CL) 0.4 to 1.2 0.174 to 0.521

San Francisco Old Bay clays (CH) 0.7 to 0.9 0.304 to 0.391
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It can be seen that the laboratory-determined values for A fall within the range of

values observed in other cohesive soils as described in the literature. For the

purpose of model calibration the values of k should be calibrated from an initial 

value of 0.154, the combined data average.

4.2.7 Critical State Ratio

The Critical State Ratio, M, is the slope of the critical state line, as defined 

previously. As the plastic volumetric strains of a stressed sample approach the 

critical state, the sample tends towards constant strain without change in stress 

or volume. Subsequently, a relationship has been established relating the 

ultimate value of the angle of shearing resistance to M, as follows:

6sinciM =------—
3-sin^

(Eq. 11)

As discussed previously, the determination of ultimate shear strength for a 

sample of Buckshot clay is difficult due to shear banding. To overcome the 

inherent limitations imposed on the ability to determine peak strength 

parameters, a series of p’ - q’ diagrams have been plotted together and 

evaluated for trends. A plot of the p’ - q’ diagrams for tests by Berney (2004) 

and Peters (1982) up to and including the point of shear banding is shown in 

Figure 41. This data is for both saturated and unsaturated soil specimens, and 

as such the values of mean (p’) and shear (q’) stress have been normalized by
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an appropriate reference pressure (Berney 2004, 70). A discussion of 

unsaturated soil mechanics and reference pressures is beyond the scope of this 

study.
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Figure 41 - Stress Paths with Failure Surface and Critical State Line (Source: 
Berney 2004, 167)

The solid line in the figure represents the Mohr-Coulomb failure surface, which 

was evaluated based upon the trend of shear banding failure for the tests. The 

dashed line represents the trend of the critical state line, which is the visually- 

interpreted line that follows a path tangent to the tail ends of the stress paths. In 

soils that do not exhibit shear banding, the critical state line is equivalent to the 

failure surface. The discrepancy in this diagram is due to the shear banding 

effect, which does not permit a true, non-shear banded failure stress path to be

established. However, the trends of the critical state lines and the failure surface
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lines progress towards one another. This intersection point represents the 

anticipated point of maximum yield stress the soil can be expected to resist prior 

to initiation of plastic failure, or critical state. The slope of the critical state line 

can be evaluated using this point, plus or minus a tolerance inherent in the curve 

fitting. From this evaluation, Berney predicted that the value of /Wfor Buckshot 

clay is represented by an average value of 1.02.

4.2.8 Initial Overconsolidation Parameter

The parameter “a” is used to define the size of the yield surface within the 

Modified Cam Clay model. The initial overconsolidation parameter, a0, is the size 

of the yield surface at initiation of loading and is given by the equation

czo = —exp(------ ---------—) (psi) (Eq. 12)
2 A —K

where p0 is the value of the initial equivalent pressure stress and e? is the 

intercept of the virgin consolidation line with the void ratio axis in e - In p space 

as shown in Figure 42.
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stress)

Figure 42 - Graphical Representation of ei (ABAQUS Theory Manual 4.4.3)

To define a0 in ABAQUS, the user must define e0, e?, A, k, and p0. These 

parameters, with the exception of e?, were defined in previous sections of this 

report. The value of e? as determined through testing by Berney and this study

was calculated as show in Table 10.

For the purpose of model calibration, e? should initially be input as 1.61, the 

average of the combined data.
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Table 10 - Summary of Laboratory-Derived ei

Source (Testing ID) ei
Present Study (1) 1.84
Present Study (2) 2.04
Present Study (3) 1.91
Present Study (4) 1.79

Present Study Average 1.90

Berney (15-2) 1.53
Berney (15-3) 1.48
Berney (15-4) 1.40
Berney (30-2) 1.47
Berney (30-3) 1.53
Berney (30-4) 1.58
Berney (50-2) 1.50
Berney (50-3) 1.42
Berney (50-4) 1.39

Berney Average 1.48

Delta (A) 0.42

4.2.9 Wet Yield Surface Size

The wet yield surface size, beta ((3), is a user-specified constant used to control 

the shape of the yield surface on the wet side of the critical state. It allows the 

user to create a two-piece yield surface with two different degrees of curvature 

for the yield surface ellipses; one for each side of the critical state. (3 is typically 

taken as 1.0 on the dry side of critical and varied from 0.5 to 1.0 on the wet side 

of critical, with 1.0 representing the original formulation of the Modified Cam Clay 

model. According to the ABAQUS Analysis User’s Manual, |3 is calibrated from a 

series of triaxial tests performed at high confining pressures. The completion of 

these high confining pressure triaxial tests exceeds the limitations of the lab
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equipment and was beyond the scope of this study. For the purpose of model 

calibration p should be assumed to be equal to 1.0, and can be varied between 

0.5 and 1.0 as a supplemental calibration parameter, as required.

4.2.10 Flow Stress Ratio

The flow stress ratio, K, is defined as the ratio of the flow stress in triaxial tension

to the flow stress in triaxial compression, and, as described above, determines 

the shape of the yield surface in the principal deviatoric stress plane. K controls 

the yield dependence on the third stress invariant, and calibration is obtained by 

performing a series of true cubical triaxial tests. These tests are beyond the 

capabilities of most laboratories, and ABAQUS recommends the use of a user- 

defined value for K or ignore this effect altogether which will default to K - 1.0. 

The original Modified Cam Clay model is represented by K= 1.0, and this value 

should be used in the modeling for this project.

4.3 Summary of Modified Cam Clay Model Parameters

Table 11 provides a summary of the Modified Cam Clay Model parameters as 

derived from the laboratory testing results and other data from the literature.
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Table 11 - Summary of the Modified Cam Clay Model Initial Values

Variable Initial
Value

Kappa (k) (1 /psi) 0.045
Nu (v) 0.3

Pt(el) (psi) 0
eo 0.92

Po (Equilibrium) (psi) -1.0
Lambda (A) (1 /psi) 0.154

M 1.02
ei 1.61
/3 1.0
K 1.0

4.4 Model Calibration

4.4.1 Introduction

The purpose of this study is to produce a constitutive soil model to represent a 

CBR 6 Buckshot clay soil subgrade for the finite element analysis of the fiber 

reinforced polymer composite airfield matting panels. The requisite laboratory 

testing has been performed and adequate correlations have been established to 

produce a compiled reference database of soil parameters. These parameters 

have been evaluated in the context of the ABAQUS Extended Modified Cam Clay 

constitutive soil model and the value of anticipated initial input variables has been 

produced. Calibration is the final stage required to meet the scope of this study.

Two stages of calibration have been undertaken to produce a set of constitutive 

soil model input parameters. The first stage calibrated the Buckshot clay model
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input parameters for a finite element model of the CBR testing apparatus to 

produce the CBR 6 curve. The second stage evaluated the calibrated soil 

material input parameters in a finite element model of the field testing 

configuration at Tyndall Air Force Base as compared to the pressure cell data 

acquired from the field testing. As required, additional soil model calibration was 

performed to improve correlation of the finite element model soil response

characteristics to those measured in the field.

While the finite element analysis and calibration of the CBR model was 

performed by the author of this study, the ABAQUS finite element base model 

input file upon which the calibration model was built was created by Dr. Geoff 

Frank of UDRI. Additionally, given the CPU capacity required and proprietary 

nature of the finite element model input files, Dr. Frank performed all finite 

element analyses of the airfield matting system field tests on the Air Force 

ASC/HPC computer network, and produced the post-process analyses of the 

performance of various soil models provided by the author.

4.4.2 Calibration to Standard CBR 6 Curve

In the first stage of calibration, the finite element model input parameters were 

iterated to produce a stress-displacement diagram that mirrors the standard CBR 

curve using the initial parameter values derived from the laboratory testing along

with the correlated reference database. The standardized stress-strain curve
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representing a CBR of 100 was produced in accordance with ASTM D1883 and 

scaled by a factor of 0.06 to produce the standard CBR 6 curve shown in Figure 

43. The goal of model calibration, then, was to reproduce the CBR 6 curve using 

the ABAQUS Extended Modified Cam Clay (MCC) constitutive soil model.

Penetration (in)

Figure 43 - Standardized CBR Curves (Source: Frank 2006)

Frank and Whitney (2005, 5) concluded that the approximate range of soil moduli 

for the Buckshot clay at CBR of 6 would fall between 1,500 and 4,500 psi. To be 

conservative, they employed a linear elastic modulus of 1,500 psi to describe the 

soil response characteristics in the initial airfield matting finite element analyses. 

In addition, Frank and Whitney concluded that the subgrade soils would be 

subject to strains of up to eight percent. An eight percent strain for the CBR 

curve, which represents a soil column five inches in height, is equal to 0.4 inches. 

Accordingly, it is the soil model response from 0.0 to 0.4 inches which is most
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important in the airfield matting finite element analysis. Figure 44 shows the 

stress-strain response of these two linear elastic moduli in comparison to the 

CBR 6 curve. The 4,500 psi line more accurately reflects the initial trends of the 

CBR 6 curve, but over-predicts the actual plastic stiffness at penetration greater 

than 0.05 inches. The 1,500 psi line more accurately reflects the long-term 

trends, but under-predicts the initial elastic soil stiffness. As discussed 

previously, both the elastic and plastic stiffness response is critical to the 

accurate modeling of the airfield matting. Under F-15 tire loads the majority of 

the soil model will experience elastic unloading and reloading, while the area 

very near to the tire footprint will experience plastic strains. A more accurate 

non-linear elastic-plastic model will significantly improve upon these deficiencies.

Penetration (in)

Figure 44 - Stress-Strain Response of Initial Moduli and Standard CBR 6
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Frank (2006) created a finite element model using ABAQUS to represent the 

ASTM D1883 California Bearing Ratio laboratory testing configuration. The finite 

element model included the geometry of a confining mold, surcharge weight, 

piston, and the soil being dimensionally consistent with the standard test. Two 

types of materials were created in the finite element model named Metal and 

Soil. The Metal material model consisted of an isotropic linear elastic function 

where the variables were input as Young’s Modulus of 29,000,000 psi and

Poisson’s ratio of 0.3. The Soil material model was defined via the elastic and

plastic components of the ABAQUS Extended Modified Cam Clay (MCC) Model 

discussed previously. This finite element model was able to simulate the piston 

penetration as prescribed by the ASTM Standard and produce tabular 

incremental records of the penetration resistance and penetration depth.

Using this model, various configurations of the input parameters were iterated to 

produce individual CBR plots for each increment. By systematically iterating and 

observing the resulting graphical trends the model was able to be calibrated to 

mirror the Standard CBR 6 response curve. A total of 26 calibration iterations 

were required to produce the calibrated parameters and the resulting finite 

element stress-strain plots are reproduced in Table 12 and Figure 45, 

respectively.
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Table 12 - Calibrated Parameters for Modified Cam Clay CBR 6 Soil Model

Variable Initial
Value

Calibrated
Value

Kappa (k) (1/psi) 0.045 0.03
Nu (v) 0.3 0.27

Pt(el) (psi) 0 0
e0 0.92 0.92

Po (psi) -1.0 -3.0
Lambda (A) (1/psi) 0.154 0.19

M 1.02 0.9
ei 1.61 1.61
P 1.0 1.0
Kf 1.0 1.0

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Penetration (in)

Figure 45 - Finite Element Stress-Strain Response Including Modified Cam Clay 
(Modified from Frank 2006)

The calibrated MCC model provides a nonlinear stress-strain response that more 

accurately represents the Standardized CBR 6 curve. It should be noted that the 

MCC finite element model has not been extrapolated to a full penetration of

0.5 inches. This is due to numerical limitations in the ABAQUS CBR finite
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element model file. Additional finite element modeling may be warranted to 

confirm that the MCC model will indeed accurately represent these further 

strains. However, given the general linear trend of the CBR 6 curve beyond 0.15 

inches of penetration and observing the correlating linear trend in the finite 

element model, it can be reasoned that the Modified Cam Clay model will 

continue along a similar trend.

4.4.3 Field Testing of Prototype Composite Airfield Matting Panel

In May 2006, field testing was performed to evaluate the performance of the 

airfield matting system under true aircraft traffic loading conditions. Prototype 

fabricated composite airfield mats were assembled over subgrade soils that had 

been compacted to a CBR of 6. Earth pressure cells were placed within the 

compacted subgrade at depths of 15 and 30 inches below top-of-subgrade 

elevation. Sufficient panels were placed so that the panel being tested could be 

placed at an “interior” location, thus negating the effects of any perimeter panel 

eccentric loading. Figure 46 shows the panel arrangement and finite element 

mesh used in the analysis. A uniaxial cart was attached to the front of a four- 

wheeled construction vehicle. The cart was loaded with 35,235 pounds to 

simulate the weight on a F-15 jet main gear wheel. A single F-15 jet wheel was 

used to support the cart, and was pressurized to 350 psi. The construction 

vehicle pushed the loaded cart back and forth over the instrumented composite 

airfield mat, passing directly over the centerline, 12 inches left of the centerline,
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and 24 inches left of the centerline. The results of the soil pressure cell readings 

as a function of time are presented in Figure 47.

Composite 
Airfield Mats

15” Deep 
Pressure Sensor

Metal
Edge Mats

Soil

30" Deep 
Pressure Sensor

Figure 46 - Panel Arrangement and Finite Element Mesh (Source: Frank 2006)

Soil Pressure 30 passes

------ 15 inches
------30 inches

Figure 47 - Load Cell Output (Source: Frank 2006)
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4.4.4 Evaluation of Model Parameter Performance in Comparison to Field

Test Results

From the load cell data produced in the field tests, the maximum soil stress 

increase at depths of 15 and 30 inches was evaluated for the loading conditions 

of 0, 12, and 24 inches measured from the centerline as approximately 29, 17, 

and 6 psi for the 15 inch deep sensor and 11,9, and 6 psi for the 30 inch deep 

sensor (Frank 2006). These values were used as benchmarks to evaluate the 

performance of the various input soil models, and specifically the calibrated 

ABAQUS Extended Modified Cam Clay finite element model. The finite element 

model of the field testing configuration was processed for each of the finite

element soil models.

Three types of soil models were tested to evaluate their respective performance: 

linear elastic, elastic-plastic, and ABAQUS Extended Modified Cam Clay. The 

linear elastic model is the simplest and represents Hooke’s law. In this model the 

elastic modulus of 1,500 psi and Poisson’s ratio of 0.3 were derived by Frank and 

Whitney (2005) from the literature as described previously. The elastic-plastic 

model is similar to the Mohr-Coulomb model and incorporates a yield stress and 

subsequent plastic deformation. Arbitrary values for the input parameters were 

back calculated by Frank and Whitney from the field testing data. An initial 

elastic modulus of 8,000 psi was selected based on Equation 2, Poisson’s ratio
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was maintained at 0.3, and the yield stress of 7.5 psi was calibrated by iterating 

finite element model solutions to match the field test results. The ABAQUS 

Extended Modified Cam Clay model is by far the most complex, with parameters 

derived as discussed in this study. Figures 49 to 54 provided at the end of this 

section were developed by Frank (2006) to evaluate the input finite element soil 

models. Table 13 as adopted from Frank (2006) summarizes the findings.

Table 13 - Comparative Soil Model Accuracy - First Iteration

Percent Error for Each Load Case (%)
Load Cell Depth - 

Location
Linear Elastic 
E=1,500 psi, 

v=0.3

Elastic-Plastic 
E=8,000 psi, v=0.3, 

Yield Stress=7.5 psi

Modified Cam 
Clay per 

Section 4.4.2
15” - Centerline (CL) -14% -14% -34%
15”- 12” off CL -15% 1% -33%
15”-24” off CL -5% 22% -15%
30” - CL -34% -23% -48%
30”- 12” off CL -31% -18% -44%
30” - 24” off CL -24% -17% -33%
Average Error1 23% 17% 36%
1 Calculated by quadratic mean method.

A review of the table shows that the best correlation was obtained by the elastic- 

plastic soil model utilizing a relatively high initial elastic modulus of 8,000 psi and 

a relatively low yield stress of 7.5 psi. By comparison, the Modified Cam Clay 

model established in Section 4.4.2 of this report shows nearly double the percent 

error as compared to the elastic-plastic model. Figure 48 compares the curves of 

the elastic-plastic soil material model and Modified Cam Clay soil material model 

within the CBR finite element model.
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Figure 48 - Comparison of CBR Curves for Two Soil Material Models

A review of the finite element output reveals that the initial elastic modulus of the 

Modified Cam Clay model calibrated to CBR 6 is approximately 600 psi. As 

mentioned previously, it was anticipated by Whitney and Frank (2005) that much 

of the finite element model response would be in the elastic range, with a plastic 

response found only very near to the applied load. This statement, if assumed 

true, would account for the impact of the significant difference in the initial moduli 

between the elastic-plastic and Modified Cam Clay models. Also, a review of the 

CBR testing performed in this study, while completed at different moisture 

contents, shows a relatively high initial moduli response in both curves. This 

provides insight into the probable curve shape in Figure 48.
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Figure 49 - Linear Elastic Soil Model for Load Cell at 15 Inch Depth, E=1,500 psi, 
v=0.3 (Source: Frank 2006)
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Figure 50 - Linear Elastic Soil Model for Load Cell at 30 Inch Depth, E=1,500 psi,
v=0.3 (Source: Frank 2006)
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Figure 52 - Elastic-Plastic Soil Model for Load Cell at 30 Inch Depth, E=8,000 psi,
v=0.3, Yield Stress = 7.5 psi (Source: Frank 2006)
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The following are a list of considerations for evaluation of the first round of 

calibration of the ABAQUS Extended Modified Cam Clay soil model performance:

• The Modified Cam Clay soil model was calibrated in this iteration using the 

laboratory-derived soil parameters to produce a CBR 6 stress-strain curve 

from a finite element analysis of the CBR testing apparatus. While a 

standard CBR 100 curve is provided in ASTM D1883, this curve does not 

define the required shape of the CBR curve in testing soils. The definition 

of a CBR 6 soil is one that produces a stress resistance of 60 psi at 0.1 

inch penetration within a standardized apparatus. The shape of the curve 

at strains less and/or greater than those that produce the 0.1 inch 

penetration are irrelevant to the soil testing, so long as a consistent soil 

response is obtained over a series of tests. As such, the field testing in 

this study has proven false the assumption that the Vicksburg clay soil at

CBR 6 will mirror a scaled ASTM Standard CBR 100 curve. The CBR

testing performed in this study, while completed at different moisture 

contents, shows a relatively high initial moduli response in both curves.

As described earlier, this provides insight into the probable curve shape.

* A majority of the finite element soil nodal responses for the airfield matting 

simulation were in the elastic region, and thereby governed by the input 

elastic soil modulus within each model. As shown in Figure 48, the initial 

elastic modulus of the elastic-plastic model was over 13 times greater than 

that of the Modified Cam Clay model.
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• Equation 2 calculates an initial elastic modulus of approximately 8,000psi, 

as employed by Frank (2006). This is much greater than the value 

derived by the Modified Cam Clay model, and can likely be attributed to 

pore water pressure effects. Given the highly-impermeable nature of the 

Buckshot clay, as evidenced repeatedly in the laboratory testing 

performed for this study, near-instant loading and unloading as is the 

characteristic of a moving wheel load will be transferred proportionally 

more by the pore fluid than the soil particle matrix.

• The moisture content of the soil subgrade compacted for the field study is 

unknown, but likely to be on the order of 35 to 40 percent to produce a 

CBR of 6. This pore fluid is incompressible, and upon rapid loading is 

unable to move freely within the soil matrix. Strain compatibility will also 

play a role, in that the incompressible water will take a greater proportion 

of the induced stress in comparison to the highly-compressible clay 

particles. As a result of the confinement and strain compatibility 

considerations for the 35 to 40 percent moisture in the matrix, the pore 

fluid pressures will build quickly when loaded and provide an immediate 

apparent higher soil elastic response than expected. If the load duration 

were longer the soil would experience a reduction in elastic response as 

the pore fluid pressures were slowly dissipated.

• All laboratory triaxial shear tests were performed at a shear rate of 0.0004 

to 0.0005 inches per minute, as is required for the determination of the
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shear strength parameters. This strain rate, however, is many orders of 

magnitude less than that imposed during tire loading.

• The soil pressure cells in the field tests were placed at depths of 15 and 

30 inches below grade in the middle of the mat. Conventional 

geotechnical knowledge will intuit that at these depths mainly elastic 

stress states will be induced. The majority of the soil plastic deformation 

responses, namely rutting, will occur away from the locations of surface 

rutting and likely immediately below the matting at the joint locations. The 

Modified Cam Clay model derived in this study is better formulated than 

the others to handle the response characteristics in regions such as these 

where elastic and plastic stress states are occurring close together. 

Should the field testing have been fitted with gauges at more shallow 

depths near the joint locations the stress-strain response of the Modified 

Cam Clay model may have outperformed the others.

4.4.5 Second Calibration to Field Test Results

In light of the considerations presented previously, a second round of calibration 

was undertaken to attempt to more closely align the Modified Cam Clay model to 

the stress-strain responses measured in the field testing. The calibration 

procedure was the same as that outlined in Section 4.4.2. The intent of this 

round of calibration was to more closely align the initial elastic moduli with those 

of the elastic-plastic model that was found to have the least magnitude of error.
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The model was calibrated to the parameters shown in Table 14. Only two 

variables were changed during calibration, kappa (k) and lambda (A).

Table 14 - Calibrated Parameters for Modified Cam Clay CBR 6 Soil Model

Variable Initial
Value

Calibrated
Value

Kappa (k) (1/psi) 0.045 0.005
Nu (v) 0.3 0.27

Pt(el) (psi) 0 0
eo 0.92 0.92

Po (psi) -1.0 -3.0
Lambda (A) (1/psi) 0.154 0.21

M 1.02 0.9
ei 1.61 1.61
0 1.0 1.0
K 1.0 1.0

Lambda was modified very minimally from 0.19 to 0.21. Kappa, however, was 

modified from 0.03 to 0.005, an order of magnitude variation. Kappa is the 

logarithmic bulk modulus, which defines the slope of the elastic unload-reload 

line and governs the elastic response behavior in the Modified Cam Clay model. 

If Equation 7 is reevaluated by multiplying by the natural log of 10, and it is 

assumed that the void ratios will not be affected by the rate of loading, we find 

that the values of the kappa and subsequently Cs are governed by the order of 

magnitude of the pressure difference acting on the specimen for a given slope 

evaluation, i.e. P2~Pi- Thus to produce kappa equals 0.005, which represents 

the second round of calibration, the denominator of Equation 7 will be required to 

be 5.75 times greater than the denominator that produced kappa equals 0.03 in 

the originally-calibrated set of Modified Cam Clay parameters. In terms of true
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physical response, this implies that a greater change in stress is required to 

cause the same change in void ratio. Since a change in soil void ratio can be 

related to a net volume change, the relationship between void ratio and stress

can be described in terms of stiffness. As discussed earlier, the increased

stiffness observed in the field testing is likely due to pore water pressure effects 

whereby the increased stiffness under rapid loading is a function of 

incompressible pore fluids being confined by the impermeability of the soil.

A second set of finite element analyses of the airfield matting field tests were 

performed by Frank (2006) to evaluate the response of the revised Modified Cam 

Clay model parameters. The revised parameters produced the most accurate 

soil response of any soil model produced to date for the project with an averaged 

discrepancy to the field tests results of 15 percent. Table 15 adapted from Frank 

(2006) provides a comparison of the soil model accuracy of the elastic-plastic, 

preliminary Modified Cam Clay, and revised Modified Cam Clay in comparison to 

the field test results. Figure 55 compares the curves of the elastic-plastic soil 

material model and the second iteration Modified Cam Clay soil material model 

within the CBR finite element model. Figures 56 and 57 display the measured 

load cell responses with respect to the finite element model responses for the 

revised Modified Cam Clay parameters.
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Table 15 - Comparative Soil Model Accuracy - Second Iteration

Percent Error for Each Load Case (%)

Load Cell Depth - 
Location

Elastic-Plastic 
E=8,000 psi, v=0.3, 

Yield Stress=7.5 psi

Modified Cam 
Clay per 

Section 4.4.2

Revised 
Modified Cam 

Clay per 
Section 4.4.6

15” - Centerline (CL) -14% -34% -10%
15”- 12” off CL 1% -33% 7%
15”-24” off CL 22% -15% -16%
30” - CL -23% -48% -18%
30”- 12” off CL -18% -44% -17%
30” - 24” off CL -17% -33% -19%
Average Error1 17% 36% 15%
1 Calculated by quadratic mean method.

Penetration (inch)

Figure 55 - Comparison of CBR Curves for Second Iteration Soil Material Models
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CHAPTER 5 - CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary of Findings

The University of Dayton Research Institute (UDRI) has been retained by the 

Structural Materials Branch of the Air Force Research Laboratory’s Materials and 

Manufacturing Directorate (AFRL/MLBC) to employ finite element analysis 

methods to study concept alternatives and systems designs to replace the 

current AM-2 Matting System. This study was performed to establish an effective 

and economical constitutive soil model for use in the matting finite element 

analyses.

The directive of the Air Force was to provide a constitutive model that 

represented clay soil with a California Bearing Ratio of 6. To facilitate correlation 

to field testing results, Vicksburg Buckshot clay was selected as the soil to be 

modeled. A literature review of constitutive soil mechanics was performed to 

establish appropriate modeling criteria and to evaluate several alternative 

constitutive soil models. The Modified Cam Clay constitutive soil model, based 

upon the work of researchers at Cambridge University in the 1960s and extended 

by the ABAQUS finite element analysis software, was selected as the most 

appropriate soil model for this application. The Modified Cam Clay model is a
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work-hardening elastic-plastic model appropriate for applications of near- 

normally consolidated cohesive soils similar to the Buckshot clay soil designated 

for this study.

A series of laboratory tests were performed for the dual purpose of correlating 

the Buckshot clay provided in this study to historical Army Corp of Engineers 

Buckshot clay data and to fill gaps in the existing Buckshot clay material property 

database. Soil classification, consolidation, California Bearing Ratio, and 

consolidated-undrained triaxial testing was performed and the results 

successfully correlated to the existing Buckshot clay data in the literature. The 

findings of the laboratory testing were used to derive initial values of expected 

Modified Cam Clay model input parameters. Using the ABAQUS finite element 

analysis software and the expected initial input parameters as evaluated from the 

laboratory testing, a finite element model of the California Bearing Ratio testing 

apparatus was employed to calibrate the Modified Cam Clay constitutive soil 

model to represent the ASTM Standard CBR 6 curve. The resulting calibrated 

parameters were evaluated by comparing soil load cell response characteristics 

of field testing of prototype airfield matting with CBR 6 Buckshot clay subgrade to 

the numerical results of a finite element model of the field testing setup. It was 

determined that while the calibrated parameters successfully modeled the ASTM 

Standard CBR 6 curve, they did not successfully incorporate the increased initial 

soil stiffness that was a result of the pore pressure response of high-moisture 

and relatively-impermeable cohesive soils like Buckshot clay. To improve model
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accuracy, a second calibration was undertaken to increase the initial elastic 

moduli. It was required to significantly stiffen the elastic response characteristics 

of the model, which resulted in one input parameter being modified by an order of 

magnitude. The remaining model parameters, however, were not required to be 

modified. The findings of this calibration were again evaluated in comparison to 

the airfield matting field testing and were found to most successfully represent 

the CBR 6 Buckshot clay soil response in comparison to all other available

models.

5.2 Avenues of Further Research

This study has successfully defined the parameters for an appropriate finite 

element Modified Cam Clay soil constitutive soil model. In order to complement 

the findings of this study, several proposed avenues of further research are 

presented:

• The pore fluid response was determined to be a key governing factor in 

the performance of the calibrated Modified Cam Clay model. Additional 

triaxial testing at a high rate of strain similar to that imposed by the tire 

loading of the airfield matting system would aid in the evaluation of 

appropriate parameters and calibration of the model, most specifically the

pore pressure response.
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This study was evaluated based upon a comparison of the load cell data 

from field testing to a finite element model of the testing arrangement. 

The load cells were placed at depths of 15 and 30 inches below grade 

along the centerline of the matting and were monitored as the loaded tire 

passed at varying distances from the centerline. It was found that a 

majority of the soil behavior was elastic in nature given the decreasing

stress and strain as the distance from the soil surface increased.

Additional field and laboratory testing of the soil-structure interaction near 

the interface of the soil and mat would show higher stresses and strains, 

likely including rutting behavior at the joints. This study and the airfield 

matting studies to date have provided a global evaluation of the matting 

performance. Upon selection of an appropriate prototype, additional 

study, field testing, and finite element modeling of the soil-structure 

interface and the rutting behavior at the joints would serve to add to the 

depth of analysis of this study.
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