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ABSTRACT

FABRICATION AND CHARACTERIZATION OF EPOXY RESIN AND 
CARBON/EPOXY COMPOSITE LAMINATES CONTAINING CARBON 
NANOFIBERS AND NANOTUBES

Name: Donaldson, Regina Estee
University of Dayton

Research Advisor: Dr. Donald Klosterman

Vapor grown carbon nanofibers (VGCF) and Single and Multi-walled 

carbon nanotubes (CNTs) were dispersed into a model epoxy/amine resin at a 

level of 8 wt% and 0.15 wt% respectively, using a high shear, solvent-free 

process. Four batches of VGCF which differed in the amount of surface 

oxidation were used in this study, in addition to two control batches of non-

oxidized VGCF. One batch each of non-oxidized and oxidized CNTs were used

to prepare several epoxy samples with varying viscosity. The resulting resin 

mixtures were evaluated for dispersion quality, and then cured under heat and 

pressure to form solid plaques. Samples were then evaluated for glass 

transition temperature (Tg), flexure strength, and Izod impact strength. The Izod 

impact fracture surfaces were examined with Scanning Electron Microscopy 

(SEM). The dispersion quality varied from batch to batch, with batches 

containing oxidized VGCFs generally containing fewer and smaller
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agglomerated nanofibers than those containing non-oxidized VGCFs. The Tg 

values of the nanofiber-epoxy composites were the same or up to 7°C higher 

than a neat resin sample. Flexure modulus and strength varied from batch to

batch, but one batch showed a 237% increase in modulus and 29% increase in 

flexure strength over neat resin. This same batch also exhibited a 24% increase 

in Izod impact strength compared to neat resin, although other batches 

performed more poorly than neat resin. The CNT samples resulted in higher (up 

to 11%) impact strength than the neat resin, but data scatter was too high (40%) 

to make the differences statistically significant. Additional nanofiber/resin 

mixtures were prepared and used to demonstrate the production of carbon fiber 

composite laminates using a resin film interleaving technique. The impact 

strength of the carbon fiber laminates containing VGCFs was about 73% higher 

than those containing no VGCF, and the data scatter was lower (-10%). This 

result demonstrates that out-of-plane mechanical properties of composite 

laminates can be improved by incorporating a nano-modified matrix.
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CHAPTER I

INTRODUCTION

Several researchers have performed extensive investigations of carbon 

nanotubes (CNTs) since their discovery by Sumio lijima in 1991 [1]. Their 

inherently high mechanical, electrical and thermal properties have made them 

ideal candidates to improve the properties of other materials with which they can 

be mixed [2,3]. Their low density, fiber-like structure, and high aspect ratio 

(length/diameter) have fueled development of nanotube-reinforced composite 

materials, where the extraordinary stiffness, strength, and elasticity of the 

nanotube may lead to a new class of engineering materials [4]. Previous 

researchers have reported that CNTs possess a tensile modulus and strength as 

high as 1 TPa and 200 GPa, respectively[5]. Applications that could use these 

materials include devices in nanoelectronics, field emitters, and structural 

components. The types of CNTs used in these applications are Single-walled 

Carbon Nanotubes (SWNTs), Double-walled Carbon Nanotubes (DWNTs) or 

Multi-walled Carbon Nanotubes (MWNTs). The availability and cost of CNTs 

depend on the type used. DWNTs and MWNTs are more readily available and 

less expensive than SWNTs generally[6].

Despite the distinctive properties of CNTs, the weak interface between 

nanotubes and the host phase, or “matrix,” as well as the difficulty in uniformly
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dispersing the CNTs, results in composites that are frequently not as useful as 

expected. The compatibility of the CNTs and matrix is important. This 

compatibility is dependent on the bonding between the CNTs and matrix.

Another issue that has taken interest is the surface functionalization of CNTs.

This approach involves the addition of polar molecules to the surface of CNTs, 

with the goal of enhancing chemical bonding with the matrix at the interface.

One of the first methodical experimental works that focused on the interfacial 

interaction of SWNT/epoxy-nanocomposites was performed by Cooper et al.[7].

It was reported that the high values of interfacial and breaking strengths were a 

result of the substantial adhesion between the SWNTs and the epoxy resin

matrix.

The effect of particle size has been studied, concluding that composite 

tensile strength and modulus can be enhanced with decreasing particle sizes at 

the nanoscale [8]. However, due to the difficulty of obtaining uniform dispersion of 

nanoparticles at higher particle loading, composites with higher nanoparticle 

volume percent often result in lower tensile strength than composites fabricated 

with well dispersed microparticles. This chapter focuses on the background of

CNTs and interactions at the interface.

1.1 Carbon Nanotubes

The synthesis of carbon nanotubes evolved from the research on 

fullerenes [3]. Fullerenes are geometric cage-like structures of carbon atoms that 

are composed of hexagonal and pentagonal faces. The C6o molecule, also
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known as Buckminsterfullerene or a Buckyball, was the first closed convex

structure form of carbon. The Buckminsterfullerene can be visualized as a

soccer ball with 60 carbon atoms arranged where each vertex of a pentagon 

meets the vertex on the adjacent hexagon. This cage-like structure is 

symmetrical which results in exceptional material properties such as high elastic 

modulus and strengths. Fig. 1 illustrates the structure of a C6o molecule.

Buckyballs are roughly spherical in shape, while nanotubes are cylindrical 

where each end is capped. Carbon nanotubes can be envisioned as a sheet of 

graphite (graphene) that has been rolled into a tube as shown in Fig. 2.

Graphene is a 2-D sheet of carbon atoms arranged in hexagonal arrays. In this 

arrangement, each carbon atom has three neighbors. Rolling sheets of 

graphene into cylinders form carbon nanotubes. The atomic arrangement (how 

the graphite sheets are rolled) affects the nanotube properties and nano 

structure, such as the morphology, diameter, and length of the tubesI3].

Fig. 1: Fullerene, C6o buckyball [9]
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Fig. 2: Illustration of carbon nanotube [10].

There are generally two classes of carbon nanotubes: Single-walled 

nanotubes (SWNTs) and Multi-walled nanotubes (MWNTs). SWNTs have a 

diameter close to 1 nm with a tube length that can be many thousands of times 

longer[11]. SWNTs have larger aspect ratios compared to MWNTs[12]. The 

specific surface area (SSA) of CNTs is dependent on the diameter and number 

of sidewalls, where a maximum is achieved with SWNTs. However, SWNTs 

have a tendency to minimize SSA by forming “ropes” of aligned CNT bundles 

that are bonded by van der Waals forces[3,14]. These ropes consist of ten to 

hundreds of individual tubes that are difficult to separate and infiltrate with a 

matrix[12]. Furthermore, the ropes can entangle with each other like a ball of 

string, making it even more difficult to separate and disperse into a polymer
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matrix. Fig. 3 shows an example of a SWNT bundle and cross section. The 

SWNTs can be observed as having the same orientation within a bundle.

a b

Fig. 3: a) Typical nanotube bundle; b) nanotube bundle cross section [10J.

MWNTs consist of multiple layers of graphite rolled in on themselves to 

form a concentric tube shape. A MWNT can be regarded as nested SWNTs as 

shown in Fig. 4[151.
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A

Fig. 4: A multi-walled carbon nanotube.

Because MWNTs have larger diameters than SWNTs and consist of numerous 

concentric walls, they provide a specific surface area (SSA) of 200 m2/g or less. 

Therefore, MWNTs demonstrate better dispersibility, but provide a smaller 

interface for stress transfer and a lower aspect ratio. The stress transfer 

between the concentric layers must occur through interlayer shearing to be 

transferred by van der Waals forces, an attraction force or a repulsion force, all of 

which are relatively weak[12,15]. In epoxy matrix composites, MWNTs are 

considered to be less effective as mechanical reinforcements than SWNTs.

The atomic structure of nanotubes can be described in terms of the tube

chirality or helicity that is characterized by the chiral vector, Ch, and the chiral 

angle, 9. Fig. 5 illustrates cutting the graphite sheet along the dotted lines and 

rolling the tube so that the tip of the chiral vector touches its tail.
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1 X

Fig. 5: Schematic diagram of a hexagonal sheet of graphite rolled to form a 
carbon nanotube [3].

Equation 1 describes the chiral vector, Ch, also known as the roll-up vector where 

the integers (n, m) are the number of steps along the zig-zag carbon bonds of the 

hexagonal lattice and ai and a2 are unit vectors [3,15].

Ch=na1 + ma2 (1)

The chiral angle determines the amount of twist in the tube. There are two 

limiting cases: at 0° and 30°. These cases are the zig-zag (0°) and armchair 

(30°). The geometry orientation describes the carbon bonds around the 

circumference of the nanotube. The index (n, 0) indicates zig-zag type 

nanotubes and (n, n) for armchair type nanotubes. Fig. 6 illustrates the atomic 

structure of an armchair and a zig-zag nanotube. Since the nested layers are
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structurally independent of one another, the chirality of the layers may be 

different in MWNTs. The nanotube diameter is also determined by the roll-up 

vector since the inter-atomic spacing of the carbon atoms is known.
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Fig. 6: Illustrations of the atomic structure of a) an armchair and b) a zig-zag 
nanotube.

The influence of chirality on nanotube mechanical properties has been 

reported [3]. CNTs instability beyond linear response was analyzed. It was 

shown that CNTs exhibit outstanding elasticity, sustaining extreme strain without 

showing any evidence of plasticity or brittleness. The chirality has little influence 

on the elastic stiffness. A Stone-Wales transformation plays a key role in the 

nanotube plastic deformation under tension. A set of four hexagonal units is
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converted to a structure of two pentagons and two heptagons in pairs (see Fig. 

7). This transformation can happen when an armchair nanotube is stressed in 

the axial direction, which results in ductile fracture for armchair nanotubes.

Fig. 7: Stone-Wales transformation occurring in an armchair nanotube under 
axial tension [3].

The heptagon in the Stone-Wales transformation creates a new defect in the 

nanotube structure. Heptagons allow for concave areas within the nanotubes[3]. 

Because of these defects in the nanotubes, countless equilibrium shapes are 

formed thus leading to plastic deformation.
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1.2 Carbon Nanofibers

Another type of carbon nanotube is referred to as a carbon nanofiber 

(CNF) because its characteristics are different from SWNTs and MWNTs in the 

following respects: CNFs have a larger diameter (60-150 nm), are longer in 

length (30-100 micrometers), and have a different wall structure [24,25]. These 

materials were developed by Applied Sciences Inc. (Cedarville, Ohio) and are 

currently manufactured by Pyrograf Products Inc. (Cedarville, Ohio) under the 

commercial name Pyrograf®-! 11. They are manufactured in a continuous, vapor 

phase growth process that contributes to a significantly lower cost (~ $100/lb) 

than SWNTs and MWNTs, and they are readily available in large quantities. 

Currently there is capacity to produce 70,000 pounds of CNFs per year. They 

are also referred to as Vapor-Grown Carbon Nanofibers (VGCF).

Although their intrinsic mechanical properties are not quite as impressive 

as SWNTs, they provide potential low cost alternatives for achieving 

considerable improvements in the modulus and strength characteristics of 

polymer composites, and allowing for easy fabrication of nanocomposite 

structures by various conventional molding processes. The microstructure of as- 

received Pyrograf III is comprised of nanofiber agglomerates of 20-100 pm in 

diameter as well as some de-nested material. Closer examination using TEM 

indicates that there are several different nanofiber structures possible, such as 

straight, bamboo, stacked cup, helical, and spherical[26]. A good review of the 

fabrication and properties of polymer nanocomposites fabricated from CNFs is 

given elsewhere [6].
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1.3 Nanoparticle Dispersion Methods

The fabrication of nanocomposites involves dispersing either single-walled 

nanotubes (SWNT), multi-walled nanotubes (MWNT), or nanofibers into various 

polymer matrices in order to take advantage of their superior mechanical and/or 

electrical properties[2,3’6’12,16]. With proper dispersion, carbon nanotubes and 

nanofibers are predicted to provide exceptional material performance 

improvements. Nanoscale-level dispersion is one of the key challenges in 

achieving the full potential of these nanoparticles [8]. Examples of techniques 

used to disperse nanotubes/fibers in polymer resins include one, or a 

combination of the following: magnetic stir bar mixing, shear mixing, sonication, 

calendering, use of aqueous ionic surfactants such as sodium dodecyl sulfate, 

nonionic surfactants, polyelectrolyte “wraps,” solvents such as ethanol, acetone, 

and dimethyl formamide, acids such as hot nitric acid, and dispersion via surface 

treatments that functionalize the nanotubes [13]. Most of these methods are either 

not powerful enough to separate agglomerates into individual nanotubes or 

limited in capacity.

Despite the progress made in this area over the past several years, it is 

still difficult to ensure the uniform dispersion of carbon nanotubes in a polymer 

matrix[16]. Five challenges must be overcome in order for CNTs to be effectively 

distributed: maintaining length of the tubes, reducing or eliminating 

entanglement, overcoming tube/tube attraction, high CNT loading, and dealing 

with high matrix viscosity that results from nanotube addition. Other critical
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barriers to the wide-spread use of nanotubes are poor nanotube-matrix adhesion, 

high cost, and short supply of nanotubes, especially SWNTs.

Three dispersion methods are further described in this chapter: sonication, 

mechanical agitation and calendering.

1.3.1 Sonication

Ultrasonic devices (baths or horn-type probes) are ideal for preparing 

small batches of low viscosity matrix materials. Due to the tremendous reduction 

of the vibrational energy with increasing distance from the sonotrode, large 

batches are not practical[12]. Agglomerates and individual CNTs experience 

rupture and damage as well as reduced aspect ratio as a consequence of the 

local energy input. In order to produce CNT-nanocomposites, the sonication 

technique is best applied by first dispersing CNTs into an appropriate solvent 

(e.g. ethanol, acetone)[16]. The solvent permits the agglomerates to be 

separated due to the vibrational energy at the micron level. The suspension can 

then be combined with the epoxy, followed by solvent removal via evaporation. 

Fig. 8 illustrates agglomerates remaining after MWCNT/epoxy resin was 

sonicated. Overall, this is not the most efficient dispersion process.
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Fig. 8: Typical TEM micrograph of sonicated MWCNT/epoxy composite [16].

1.3.2 Mechanical Agitation

The effectiveness of dispersing nanotubes by stirring is dependent on the 

size and shape of the propeller and mixing speed [16]. High shear rotor-stator 

emulsifying units are often used [26]. Some reports claim that MWNTs were 

satisfactory dispersed in epoxy resin as a result of intensive stirring. MWNTs are 

generally easier to disperse in epoxy than SWNTs but often tend to re­

agglomerate. Frictional contacts and elastic interlocking mechanisms cause this 

flocculation behavior[16]. Additional parameters such as weak attractive forces 

and sliding forces minimally contribute to flocculation during stirring.

1.3.3 Calendering

Calendering is another method to achieve particle dispersion. It also has

the potential to scale-up batches to satisfy industrial demands, especially in
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thermoset and elastomer applications. Calendering was historically used to 

disperse micro-particles in different matrixes, (e.g. color pigments for paints and 

cosmetics). Shearing is the main mechanism that contributes to efficient 

dispersion and manufacturing of large batches of nanocomposites using this 

technique. Fig. 9a illustrates the configuration of a three roll mill that consists of 

three adjacent cylindrical rolls, where each turns at a different velocity. The first 

and third rolls (feed and apron) rotate in the same direction while the center 

rotates in the opposite direction. High shear rates in the fluid form due to the 

narrow gap between the rolls, 6g, combined with the mismatch in angular velocity 

of the neighboring rolls, < w2 < W3- Fig. 9b shows the area of intense shear 

mixing between the adjacent cylinders. The gap setting (5g), can be adjusted as 

low as 5 pm to 100 pm.



15

Material
(a) Feed

a

Collection

Fig. 9: a) Schematic diagram showing the general configuration of a three roll 
mill; b) region of high shear mixing between the feed and center rolls [2].

Because calendering uses high shear forces in a short residence time, the 

breakage of individual CNTs is limited, while nanotube agglomerates are broken 

and untangled.
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Fig. 10 illustrates the progressive development of nanocomposite structure 

during the calendering process. Fig. 10a displays a highly agglomerated 

CNT/epoxy mixture at a gap setting of 50 pm. Many agglomerated CNTs were 

observed, and only a minute fraction of individual CNTs actually dispersed in the 

matrix. Fig. 10b shows the structure of the nanocomposite after processing at 

20 pm gap. The majority of the agglomerates are on the order of a few microns 

diameter. In Fig. 10c, the agglomerate size is in the micron or submicron range 

after milling with a gap setting of 10 pm. Fig. 10d illustrates that at a gap setting 

of 5 pm a highly dispersed nanocomposite with little or no agglomerates is 

observed. It was concluded that after processing at increasingly smaller gap 

settings, a greater quantity of CNTs are dispersed in the matrix with smaller 

agglomerate sizes.
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Fig. 10: CNT/epoxy nanocomposite structure development after processing at 
different gap settings: a) 50 pm; b) 20 pm; c) 10 pm; d) 5 pm [2].

1.4 Interfacial Adhesion

A critical issue when processing nanocomposites is interfacial adhesion 

between the matrix polymer and nanotube. The interface must be strong enough 

to transmit the stress due to a mechanical load from one phase to the other[17]. 

Without this bond, the dispersed phase (CNTs) fails to connect with the matrix. 

This defect undermines the purpose of adding CNTs as a structural
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reinforcement. Because nanotubes tend to slip when assembled in ropes or 

agglomerates, thus reducing the interfacial bonding to the matrix, ropes and 

aggregates reduce the effective aspect ratio of the reinforcement. With an 

absence of a chemical bond between the matrix and CNT, an interfacial shear 

stress can separate the matrix from the reinforcement[18]. Fig. 11 illustrates the 

contrasting microstructures of poorly bonded and well-bonded interfaces in a 

fiberglass composite. In Fig. 11a, the fibers are clearly separated from the 

surrounding matrix, while in Fig. 11b the matrix is clearly bonded to the fiber, and 

the matrix fracture is more pronounced near the fiber surface.
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Fig. 11: SEM image of fracture surface of epoxy-fiberglass laminate illustrating a) 
poor bonding interface; b) well-bonded interface t18].
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Potential methods to improve the interfacial bonding include physical and 

chemical surface treatment. Research has shown that the interfacial bonding 

between the CNTs and matrix can be improved by chemically functionalizing the 

CNT surface [12]. The introduction of customized chemical groups (e.g. amino-, 

carboxyl-, or glycidyl-groups for epoxies) enables covalent bonding between 

CNTs and epoxy, improves the interfacial stress transfer, and positively affects 

the dispersibility of the nanofiller.

1.5 Problem Statement

The goal of the present study is to document the mechanical, physical, 

impact, and morphological properties of epoxy nanocomposites formed from a 

variety of functionalized and nonfunctionalized carbon nanofibers and carbon 

nanotubes, and determine their effect on improving resin properties. A simple 

dispersion process was used to disperse this wide variety of nanoparticles into a 

model epoxy-amine resin system. Furthermore, a simple approach for forming 

films of the uncured nano-modified resin, and producing composite laminates 

through Resin Film Interleaving was demonstrated, and composite impact 

properties evaluated. Relative to previous related thesis work at the University of 

Dayton, this thesis involves several new developments, including use of a 

solventless dispersion process, oxidized nanofibers and nanotubes, a new mixed 

SWNT/MWNT raw material referred to as “XD”, new analytical techniques, and 

the use of impact strength tests.



CHAPTER 2

LITERATURE REVIEW

Carbon Nanotube Functionalization 
and Composite Characterization

The approach of treating carbon nanotubes (CNTs) to enhance their 

compatibility with a polymeric matrix has been previously explored. The goal of

chemical modification or functionalization of SWNTs and MWNTs is to bond 

nanotubes directly to the matrix[1,19]. This linkage can be achieved by a reaction 

of functional groups on the nanotubes with those of the matrix, which enables a 

stress transfer between the nanotubes and the polymer. The result should be 

improved mechanical properties. It was predicted and confirmed by calculations 

that functionalization of less than 1% would improve interactions between 

nanotubes and the polymer without considerably decreasing CNTs strength [1]. 

Two methods for functionalizing a CNT surface have been developed: direct 

addition to the graphitic nanotube wall, and functionalization at defect sites [19]. 

The latter takes advantage of organic groups such as carboxylic acids at the

defect sites.

The most logical approach to develop polymeric carbon nanocomposites 

is to functionalize CNTs with organic groups or polymers that are structurally 

similar to the matrix polymer. Otherwise the species used in the functionalization

21
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of CNTs become “impurities” in the final nanocomposite. A few examples that 

have been tried are as follows: Octadecylamine-functionalized SWNTs were 

dispersed into a polypropylene matrix via a solution-based technique that took 

advantage of the shared solubility of the functionalized nanotube and the matrix 

polymer in the same select solvent[19]. Another example involved functionalizing 

CNTs through the covalent attachment of polystyrene copolymers, and then 

dispersing the polystyrene copolymer-functionalized CNTs into the polystyrene 

matrix to fabricate nanocomposite thin films. Fig. 12 illustrates a plausible 

functionalization process of CNTs, from oxidation to the composite 

manufacturing.

2. Functionalisation

3. Composite

Fig. 12: Functionalization process of CNTs: 1) nanotube ends are oxidized;
2) functionalized to form an end group; 3) finally processed to the nanocomposite 
and reacted with the matrix[16].
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Another method to integrate CNTs into the matrix is the use of surfactants, 

[16] which coat the individual nanotubes and form a physical bridge to the matrix. 

The benefit of this procedure is that physical adhesion does not degrade the 

structural quality of CNTs, whereas a covalent attachment of functional groups 

always disrupts the graphene layers of the nanotube.

2.1 Types of CNTs Functionalized End Groups

Several approaches have been employed to control the optimum amount 

and type of functionality on CNTs. These techniques involve various parameters 

such as: solvent selection, sonication, filtration, and vacuum drying. Four types

of CNT functionalization methods will be discussed.

2.1.1 Esterification of Poly(vinyi alcohol) (PVA)and Oxidized CNTs

Covalent attachment of PVA to nanotubes has been used to enhance the

wet-casting of nanocomposite thin films. The process involves reacting PVA with 

carboxylic acid groups that are attached to the surface of the nanotubes. The 

reaction is activated by the addition of carbodiimide, which is a functional group 

consisting of the formula N=C=N. Both SWNTs and MWNTs can be 

functionalized using this method. Fig. 13 shows this scheme. Purified SWNTs 

were added to a mixture of N,N-Dicyclo- hexylcarbodiimide, 4-

(dimethylamino)pyridine, 1-hydroxybenzotriazole, and dimethyl sulfoxide (DMSO) 

and sonicated. Next, a solution of PVA in DMSO was added, sonicated and 

centrifuged at high speed. The results showed that functionalized CNTs
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improved the optical quality of the PVA-CNTs nanocomposite thin films without 

any observable phase separation [19].

Fig. 13: Functionalization of SWNTs and MWNTs via PVA in carbodiimide- 
activated esterification reactions [19].

2.1.2 Oxidation with Nitric Acid

Researchers have demonstrated that Vapor Grown Carbon Nanofibers 

(VGCF) oxidized to low oxygen concentrations by soaking in nitric acid improves 

tensile strengths of a wide variety of polymers such as polypropylene and epoxy 

[6]. In one study, VGCF were etched in air near 400°C, and then soaked in 

sulfuric/nitric acid mixtures. This treatment covered one fourth of the fiber’s 

surface with oxygen atoms [6]. In another study, the fibers were more dispersible 

in water due to the fiber surface covered with micropores, which resulted up to 

22% surface oxygen coverage [6].

In the case of polypropylene composites, only modest surface oxidations 

(up to 4% surface oxygen atoms) produced composites with the optimum tensile 

strengths. Composite tensile strength decreased with increased oxygen
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concentration. Conversely, epoxy composite tensile properties improved with 

highly oxidized nanofiber surfaces. It was reported that a 35% strength 

improvement and a 140% modulus improvement was observed with a 4 wt% 

loading of highly oxidized VGCF[12].

2.1.3 Oxo-fluorination of CNTs

The effects of oxo-fluorination of CNTs have been investigated for SWNTs 

and MWNTs. This process involves epoxy-based nanocomposites containing 

fluorinated SWNTs experienced an increase in the modulus, but a linear 

decrease in the glass transition temperature with increasing filler content[12]. It 

was concluded that fluorination of SWNTs should not be considered for

substantially improving the interfacial adhesion. In another study, however, the 

fracture toughness of epoxy nanocomposites containing oxo-fluorinated MWNTs 

was improved [12]. It was concluded in this study that the bonding to the matrix 

was improved by polar interactions as a result of the modified surface polarity of 

the CNTs. This fluorination produces additional hydroxyl groups on the CNT 

surface enabling hydrogen bonds to the matrix.

2.1.4 Alkylamino-functionalized SWNTs

Carboxylic groups can be added to the surface of a carbon nanotube via 

an oxidative treatment. This functional group results in an opening of the CNT 

end cap [16]. This can permit direct bonding of the tube ends via the carboxylic 

groups to the matrix. The next step involves reacting carboxylic groups with
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multifunctional amines. When the amino-functionalized nanotubes are added to

epoxy, the free amino groups on the surface of the CNTs will react with the 

epoxy molecules forming covalent bonds that are equivalent to the normal epoxy­

amine polymer bond. Epoxy nanocomposites experienced increased glass 

transition temperature and improvement in strength and modulus when 

alkylamino-functionalized SWNTs were used. These functionalized CNTs also 

enhanced dispersion and adhesion to the matrix at loadings as little as 1 wt%.

As a result of covalent bonding generated, SWNTs were incorporated directly 

into the epoxy network.

2.2 Composite Characterization

There have been significant challenges in the micromechanical 

characterization of nanotubes, as well as the modeling of elastic and fracture 

behavior at the nanoscale [3]. The challenges in the characterization of 

nanotubes and their composites include a lack of micromechanical 

characterization techniques for direct property measurement, uncertainty in data 

obtained from indirect measurements, insufficient test specimen preparation 

techniques, and lack of control in nanotube alignment and distribution.

The elastic modulus of nanotubes has been measured with an atomic

force microscope. This direct measurement of the stiffness and strength 

quantifies the bending force as a function of displacement along the unpinned 

length of the nanotube [3]. In contrast, several techniques have been used 

successfully to characterize the bulk mechanical properties of nanocomposites.
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For example, methods to determine fracture toughness include Single-edge- 

notch bending (SENB), IZOD impact strength, three point flexure testing, and 

compact tension [2,12]. In addition, thermal conductivity (k) can be measured by 

the flash diffusivity technique. The following equation describes this relation:

k = apCp (2)

where a is the measured thermal diffusivity, p is the density, and Cp is the 

specific heat[2]. Electron microscopy (EM) has been used to analyze nanotubes 

and nanocomposite morphology at higher magnifications than possible with 

optical microscopy. The most used EM methods are Scanning Electron 

Microscopy (SEM) and Transmission Electron Microscopy (TEM).

The two mechanical properties that will be further discussed are fracture 

toughness and nanotube buckling.

2.2.1 Fracture Toughness

Epoxy resins are the most widely used thermoset matrix for various 

composite and adhesive applications[12]. They possess high strength and 

stiffness, good thermal and thermo-mechanical stability, excellent chemical 

resistance, but relatively low toughness. The fracture strength or “toughness” of 

materials correlates with increased resistivity against initiation and propagation of 

microscopic cracks that could ultimately lead to failure. Since fracture strength is 

a direct measurement of damage tolerance, it is essential for the design of
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structural components, especially with respect to the long-term fatigue behavior. 

The most essential micro-mechanical mechanisms leading to an increase in 

fracture toughness of composites are: (i) localized plastic deformation and void 

nucleation, (ii) particle or fiber debonding from the matrix, (iii) crack deflection,

(iv) crack pinning, (v) fiber pull-out, (vi) crack tip deformation, and (vii) 

particle/fiber deformation or breaking at the crack tip t12,16]. The overall size of 

the plastic deformation zone is also a factor. These mechanisms are affected by 

numerous factors such as reinforcement particle size and shape, particle-matrix 

interfacial adhesion values, volume fraction of particles, and others, which are 

frequently complicated to differentiate.

Debonding initiation usually occurs at one pole of the particle that lies in 

the axis of the applied tension t8]. The debonded area and the number of 

debonded particles multiply as the applied stress increases.

Thermosetting polymers have a superior resistance to plastic deformation 

because of their crosslinked molecular network. Rigid particles can stimulate 

shear yielding in epoxy by aiding a change in stress state, e.g. from plane strain 

to plane stress conditions[20]. This may be a consequence of voids, cavities, and 

debonding effects in the crack tip’s process zone. The size of this zone can be 

defined as a plastic zone. Equation 3 calculates the zone’s radius, rp, and 

diameter (2rp), which depends on the static fracture toughness, K|C, and the yield 

strength, ay, of the polymer matrix[20]:

(Tv
(3)
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Overall, the size of the plastic zone of brittle epoxy is relatively small. For 

example, in a composite with microparticles, only a negligible amount occupies 

the plastic zone deformation process [16]. However, when nanoparticles are 

incorporated in the resin, a substantial amount of particles can occupy the plastic

zone.

Composites that contain nanoparticles have been observed to experience 

substantial improvement in fracture toughness [16]. Even nonfunctionalized 

nanoparticles have been observed to increase the fracture toughness of the 

epoxy matrix at low levels [12]. All nanocomposites contain at least a small 

fraction of partially agglomerated CNTs. Interestingly, void nucleation, crack 

deflection, and localized inelastic matrix deformation were observed at these 

agglomerates[12,161 Tail-like structures form on the fracture surface, which show 

the CNTs interacting with the crack path and therefore results in crack deflection. 

Improvement of fracture toughness is dependent on a large interfacial area of 

reinforcement. However, the fracture toughness decreased at higher filler 

contents, which was attributed to excessive agglomeration.

Amino-functionalized CNTs have been confirmed to outperform 

nonfunctionalized CNTs when dispersed in epoxy resin [16]. This was attributed 

to increased interfacial adhesion and the superior dispersibility that gives a more 

homogeneous distribution in the matrix and reduced agglomerates. However, if 

the interfacial adhesion is excessively strong, generally the composite toughness 

can be decreased by suppressing interfacial failure [12).
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2.2.2 CNT Buckling

Buckling and compressive deformation of CNTs have been the subject of 

several experimental and computational studies. Buckling is reported to be 

influenced by the forces exerted in the fiber-matrix interfacial region as well as 

the elastic properties of the matrix immediately surrounding the fiber[21]. The 

Brazier effect, nonlinear flattening of elastic tubes under bending, has been used 

to describe the cause of CNTs’ circular cross-section becoming more uniformly 

‘ovalized’ along the entire tube length as the bending curvature increases [22,23]. 

In compression, CNTs have demonstrated tremendous mechanical flexibility. It 

has been shown that kinking and bending of CNTs are reversible up to large 

bend angles (e.g. -180°) without experiencing catastrophic fracture [4,22].

The buckling behavior of MWNTs in a nanocomposite material varies with 

the nanotube diameter. It has been reported that smaller diameter CNTs deform 

through global bending of the nanotube in a manner analogous to Euler-type 

bucking modes where the overall nanotube is curved when deformed in 

compression [4]. Bending of MWNTs requires displacement of all the nanotube 

walls. Therefore, the additional nanotube walls and larger tube diameters will 

produce higher flexural stiffness, which leads to increased resistance to buckling.

When the nanocomposite deforms in compression, the polymer matrix 

supports the nanotube and the overall buckling of the CNT is constrained. 

Without the matrix restriction, the CNT may develop local kinks in the sidewalls 

that will enable large-scale bending of CNTs[4]. Continuum-based shell and 

beam theory have been used to explain this phenomenon. Buckling of fibers in
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an elastic medium has been studied for both nonfunctionalized and

functionalized interfaces. The critical stress can be calculated to determine the

maximum load applied before catastrophic failure. Equation 4 expresses the 

critical stress (acr) of an unfunctionalized SVt/NT embedded in an elastic medium, 

where Pcr is the critical load, and R and h are the outer diameter and wall 

thickness of the CNT respectively[21J:

O'er = (4)
2nRh

Since the force between the fiber and matrix is subject to van der Waals 

interactions, the lateral displacement due to buckling is small and there is 

basically no effect on the matrix[21]. The deformation of the matrix as a result of 

fiber displacement only takes place during the post-buckling phase and does not 

influence the critical stress for buckling. This continuum model predicts a higher 

critical stress than that calculated using molecular dynamics simulation. 

Therefore, molecular scale interactions must be cautiously investigated before 

using this continuum model.

The critical stress for buckling of functionalized nanotubes is expected to 

be different than neat nanotubes because of the changes in curvature introduced 

by chemical bonding. By attaching a hydrocarbon molecule to the sidewall of a 

nanotube, the graphite bond structure transforms from sp2 to sp3. The CNT 

radius curvature increases when chemical attachments are present. Chemical 

attachment effectively reduces the total CNT length into smaller subsections,



32

which increases the critical load for buckling. For this case, continuum theory 

model is a column subdivided by n uniformly spaced inflexible restraints [21]. 

Equation 5 applies to this system:

(5)

where A is the area for the spaced restraints, L is the total length of the CNT, E is 

the elastic modulus, and r is the radius of the CNT. As n increases, the 

continuum theory predicts that the critical stress will increase by n21211. 

Conversely, atomistic simulations show that the critical stress for buckling is 

reduced due to modified CNT surface. However, because the CNTs and matrix 

are bonded, stress is transferred efficiently to counter failure due to buckling.

It has been observed that chemical attachments between the matrix and

CNTs can debond and re-attach with adjoining atoms of nanotubes before 

complete failure [21]. This behavior is more common in tensile loading, but also 

occurs in compression loading. At the atomic level, individual bonds in the matrix 

rotate and realign themselves until the bonds are stretched. Bonding with new 

sites on the carbon nanotube is a way of reestablishing equilibrium. The CNTs 

on the other hand are only deformed significantly during the post-buckling stage 

of loading. The extending of the bonds in chemical attachments and load 

transfer depends on the density of the chemical attachment, distance between 

the fiber and matrix, length and type of chemical attachments, etc. At nanoscale



33

interfaces, all these factors affect the load transfer mechanism and need to be

accounted for in continuum or atomistic simulations.



CHAPTER 3

EXPERIMENTAL PROCEDURES

3.1 Sample Fabrication

3.1.1 Raw Materials

The epoxy resin system used in this study was EPON 862/W (Hexion), 

see Figure 14. This system is comprised of DiGlycidyl Ether of Bisphenol F 

(DGEBF) at 100 phr and diethylenetoluenediamine (DETDA) at 26.4 phr. The 

mixed system is a liquid with a viscosity of approximately 4200 cP at room 

temperature and is widely used in resin transfer molding (RTM) and vacuum 

assisted RTM (VARTM) processes. It was used in this study because of its low 

viscosity which makes it easy to process with nanoparticles compared to higher 

viscosity, toughened aerospace resins. EPON 862/W has been used in 

numerous studies as a baseline resin for nanocomposite fabrication, therefore a 

large data base exists in the literature [2,26,271.

34
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Fig. 14: a) EPON 862 structure (DGEBF), b) Epikure W structure [13].

ch2ch3

a

Pyrograf III vapor phase grown carbon nanofibers (VGCF) were obtained 

from Applied Sciences Inc. (Cedarville, Ohio). This relatively low cost material 

(~$220/kg) was used early in the research to help debug the various processing 

steps. Several grades were available, but one was deemed the most suitable for 

mechanical property improvements. The grade PR-24-LHT-XT has an average 

diameter of 100 nm and has been heat treated in an inert atmosphere by the 

manufacturer. The heat treatment helps to clean the nanofiber surface of 

poiyaromatic hydrocarbons and increase the degree of graphitization compared 

to non-heat treated versions. The microstructure of as-received Pyrograf III 

material can be seen in Figure 15. It is comprised of nanofiber agglomerates as
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well as some de-nested material. Closer examination using TEM (not shown) 

indicates that there are several different nanofiber structures present, such as 

straight, bamboo, stacked cup, etc.[26].

Two separate batches of PR-24-L4T-XT were obtained and were labeled 

in this study as UDRI batch #71 and batch #94. Two samples from each batch 

were further treated using a scaleable oxidation process at UDRI. Although the 

details of this process are not presented here, the end result was the covalent 

attachment of oxygen onto the VGCF surface. A total of 4 batches of oxidized 

VGCF were produced as illustrated below. Each of these batches, in addition to 

the two control batches (#71 and #94) were dispersed in EPON 862/W at a 

loading of 8 wt%.

Oxidized

Oxidized
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a

b

Fig. 15: Typical as-received VGCF sample at a) low magnification, showing 
tightly nested nanofiber agglomerates and some separated nanofibers; b) high 
magnification, showing distribution of nanofiber diameters.
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Single and multiwall CNTs were obtained from CNI (Houston, TX). Since 

this particular material is experimental, it was provided to this research program 

at no cost. The grade used, XD3365A, ranged in diameter from 5 nm to 

approximately 50 pm and was used in the as received state. A sample of XD 

was also oxidized at UDRI to provide a functionalized material. The CNTs were 

dispersed in EPON 862/W at loading of 0.15 wt%.

Carbon fiber laminates were produced using unidirectional carbon fiber 

knitted fabrics. Approximately 1.1 square meters of unidirectional carbon fabric 

(Hexcel, 290 g/m2) made from IM7 12k tows unitized with a hot melt yarn was 

obtained. The material was manually cut with a razor blade into 15 cm x 15 cm

squares.

3.1.2 Fabrication of Epoxy Nanocomposites

A solvent-free, high shear melt compounding process was used to 

disperse the carbon nanofibers and nanotubes in the resin (see Fig. 16). The 

process, also known as calendering as described in Chapter 2, involves shearing 

the resin in a small gap between two metal cylinders counter rotating at different 

speeds[2,16]. The material is briefly exposed to a zone of high shear rate at the 

nip between the rollers. This is essentially a batch process, and the equipment, 

a 4” x 8” calendering roll mill by Keith Machinery Corporation, was suitable for 

processing 50-500 g of material in this study. Roll speeds were approximately 

40, 105, and 270 RPM. A batch size of 200 g (resin + VGCF) for each VGCF 

type was used, with four passes per batch. Carbon nanofiber loading was
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8 wt%. A batch size of 150 g (resin + CNT) for each CNT type was used, and 

four passes per batch were used as well. The carbon nanotube loading was

0.15 wt%.

The dispersion process first involved hand premixing the nanofibers or 

nanotubes into the freshly mixed resin system in the proper proportion. For the 

XD material, some of the batches were mixed into a “chem-staged” epoxy resin 

system in order to increase the viscosity to provide a higher shear stress during 

dispersion. Chem-staging is a method of advancing the degree of cure of a 

thermoset resin to a level between 0% and the gel point. It involves adding only 

a small fraction (5, 10, or 15% in this study) of the curing agent to the epoxy, 

heating the mixture through a normal cure cycle to fully react the curing agent, 

cooling, and then adding the balance of the curing agent for full stoichiometry.

This is different than the more well known thermal B-staging approach, in which 

the full stoichiometric amount of curing agent is added, and the mixture is subject 

to heating at a temperature lower than the gel temperature. The advantages of 

chem-staging are more precise control over the advancement of cure and 

avoiding the over-curing due to an exothermic runaway. In the current study, the 

nanotubes were added after the chem-staging cycle was complete and the 

balance of the curing agent was added.

After dispersion, the resulting mixtures were degassed in a Fisher 

Scientific Isotemp® Vacuum oven at 55°C under a vacuum of absolute pressure 

of ~ 4.0 in Hg for 10 minutes. The material was then packed into a multicavity 

silicone rubber mold (Fig. 16b), covered with a rubber sheet, and compressed
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and cured into solid plaques using a Tetrahedron programmable flat platen 

press. The cure cycle was 2 hours at 121 °C and 2 hours at 177°C, and pressure 

0.687 MPa (100 psi) at all times. Plaques were made with thickness of 6.35 mm 

(1/4 inch) for flexure testing and 3.175 mm (1/8 inch) for impact testing (Fig. 16).

Both rubber molding and a glass molding technique were used for the XD 

nanocomposites. In the glass molding method, the nanotube mixture was 

degassed and cured between two glass plates. This system was comprised of 

two borosilicate glass plates separated by a silicon rubber gasket of 1/8 or 3/16 

of an inch (Fig. 17). The glass plates were prepared by coating the surfaces 

with 5 coats of a releasing agent, Frekote 44NC, and allowing 10 minutes of 

drying time between each coat. The glass plates were rotated 90° before 

applying the next coat. After applying the final coat, the glass plates were placed 

in an oven for 30 minutes at 55°C to evaporate any remaining solvent. Next, the 

glass plates were assembled together with the rubber sheet gasket separating 

them, and secured with binder clips. After curing the nanotube/epoxy mixture, 

plates were easily separated, and then the release coat was reapplied. The 

glass plates were offset vertically by ~ 1/2 inch to allow easy pouring into the 

cavity. The mold was placed standing up in a Blue M programmable oven and

cured for 2 hours at 121 °C and 2 hours at 177°C.
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a

b

Fig. 16: Fabrication process of epoxy nanocomposites: a) calendering; b) rubber 
molds; c) final molded plaque.
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Fig. 17: Glass plate molding system used for epoxy CNT samples.

3.1.3 Fabrication of Advanced Composites

Two additional nanocomposite batches were produced using VGCF batch

#94 at 5 wt% and 7.6 wt% in EPON 862/W. This material was formed into

approximately 150-micron-thick films using a 3-roll horizontal sheet stack located 

at UDRI (see Fig. 18). This process involved passing two release films (wax 

paper type) over and between two heated (60°C), polished, counter-rotating 

rollers. The resin was placed in a trough between the rollers (Fig. 18a, b), which 

held the material as it was gradually squeezed out through the bottom in a film of 

constant thickness. The film sandwiched between the two release plies was then 

brought over a third roller maintained at room temperature to cool it, and then the 

film was guided down-stream to a cutting station (Fig. 18c). The resulting film 

was cut into 15 cm x 15 cm squares and B-staged in an oven at 100°C for about 

1 hour. This resulted in a leathery, slightly tacky film (Fig. 18d) with rheology 

similar to a standard aerospace adhesive film. Total film weight was
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approximately 210 g/m2, with VGCF loading of 10 g/m2 (5 wt% loading of VGCF) 

or 15 g/m2 (7.6 wt% loading of VGCF). A film containing neat EPON 862/W (no 

VGCF) was also produced.

The resin films were manually interleaved with dry carbon fabric layers 

using the following lay-up sequence (where “f” indicates a resin film).

[ f / 07 f / 907 f / 07 f / 907 f 1907 f / 07 f / 90° / f / 0° / f ]

See Figure 19 for photographs. A hand iron was used to help position

each resin layer in the fabric before removing the release ply. The lay-ups for all 

three composites were vacuum bagged and cured in an oven using the 

recommended cure cycle for EPON 862/W (2 hrs. at 121 °C, 2 hrs. at 177°C).
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a b

c d

Fig. 18: Film forming process: a) loading the resin trough; b) overall view showing 
three rollers and release films; c) exit-end of equipment, cutting station; 
d) peeling back a release ply to show the final film (after B-staging).
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c d

Fig. 19: Composite lay-up, film interleave process, a) Resin film between two 
white release plies (left) and one layer of dry carbon fabric (right), b) remove 
bottom release ply and apply to top of carbon fabric, c) remove top release ply 
from resin film, and d) apply next carbon fabric layer.

3.2 Characterization

The nanocomposites fabricated in this study were analyzed with various 

methods (e.g. quality analysis, rheology analysis, impact strength test, etc.) to 

better understand the physical, mechanical, impact and morphological properties. 

Six techniques were used to describe an overall picture of how nanomaterials 

affected the properties of the epoxy resin matrix. These modified properties can 

aid in the decision for composite applications.
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3.2.1 Nanofiber/Nanotube Quality Analysis

The first task in this project involved characterizing the incoming raw 

nanofibers/nanotubes. The bulk density of the as-received dry carbon nanofiber/ 

nanotube samples was measured as a first step. This procedure involved 

placing material in a container of known volume and determining the weight. At 

least two measurements were made for each sample.

For the carbon nanofibers used in this study, residual catalyst level had 

been previously analyzed by University of Dayton Research Institute via furnace 

ashing as part of their normal quality control protocol. This involved placing a 

1-2 g sample of nanofiber in a ceramic crucible, heating in a furnace to 1000°C in 

air overnight, and weighing the residue. The residue is comprised fully of 

oxidized metal catalyst, since carbon oxidizes completely in air around 600°C.

For XD carbon nanotubes, we did not want to expend 1-2 g of material, 

since our entire stock was 30 g or less. Therefore, Thermogravimetric Analysis 

(TGA) was used to measure weight loss (20°C/min, air, 3 mg sample).

The morphology of carbon nanofiber materials has been extensively 

reviewed in other references [26] and so was not included as part of this study. 

However, the XD carbon nanotube materials were new to this research group, so 

some time was spent characterizing the morphology via High Resolution SEM. 

Nanotube samples were deposited on carbon tape and analyzed without sputter 

coating at 8-10 kV.
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3.2.2 Nanotube/fiber Functionalization

The surface oxygen content of nanofiber/tubes was measured with X-ray 

Photoelectron Spectroscopy (XPS) analysis. Samples were submitted to 

University of Dayton Research Institute personnel to perform this measurement.

A Surface Science Labs SSX-100 XPS spectrometer was used with a base 

pressure in the analysis chamber of 6 x 1O'10 Torr, and an X-ray source with a 

600 pm spot size. Samples were prepared by first drying the nanofibers/tubes in 

a vacuum oven overnight at 100°C or higher, then distributing a small amount of 

material on copper adhesive tape. Two areas were analyzed on each sample. 

Results are reported in terms of atom% oxygen in the form of single bonded 

oxygen (O-C), double bonded oxygen (O=C), and water (H2O). The signals for 

single and double bonded oxygen are caused by groups that are covalently 

bonded to the nanofiber/tube wall, for example in the form or phenolic groups 

(-OH), aldehyde (-CHO), or carboxylic acid (-COOH).

3.2.3 Nanotube/fiber Gross Dispersion

As a measure of gross dispersion, nanofiber and nanotube dispersion in 

the matrix was analyzed using microscopy. Uncured resin-nanofiber mixtures 

were prepared by smearing a thin coat on a glass microscope slide and covering 

with a cover slip. The goal was to observe the size and concentration of 

microscopic agglomerates of undispersed nanofibers, which is obvious at 

magnifications of 50 - 200X. A Nikon microscope fitted with a digital camera was 

used to acquire images. A graticule with 100 pm divisions was used to calibrate
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the field of view for absolute dimensions. All photomicrographs were taken at 

50X magnification.

3.2.4 Rheology

The viscosity of the resin system with and without nanotubes and with or 

without chem-staging was evaluated before and after calendering using a 

Brookfield Model DV-III Programmable Rheometer. Each sample was tested at 

25°C using either spindle 5 or 6 at a speed of 10 - 20 RPM. The testing time 

was two minutes per sample. Fig. 20 illustrates the rheometer and spindles. 

Samples were contained in a 110 mL glass container and degassed before 

measurement. The instrument accuracy was previously verified with fluid 

calibration standards of 4950 cP and 28,200 cP.

Fig. 20: Brookfield Programmable Rheometer, spindle set, and calibration 
standards.
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3.2.5 Glass Transition Temperature

Cured samples were analyzed for glass transition temperature (Tg) using a 

TA Instruments Q400 Thermomechanical Analyzer (TMA). Samples were tested 

in macroscopic expansion mode from 25 to 200°C at a heating rate of 5°C/min in 

argon. Two specimens were taken from each cured plaque by cutting using a 

Streus Accutom 5 diamond blade precision wet saw. The typical sample 

thickness was 3.175 mm (1/8 inch). Each specimen was heated and tested 

through two heating cycles in the TMA, since the signal from first cycle often 

contained artifacts from stress relaxation. Fig. 21 shows the TMA device that 

was used in this study.

Fig. 21: a) TMA Q400 system; b) sample stage; c) macroscopic expansion probe 
(drawn courtesy TA Instruments).
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3.2.6 Flexure Properties of Resin Nanocomposites

Nanofiber/resin and nanotube/resin samples were tested according to 

ASTM D790, “Test Methods for Flexural Properties of Unreinforced and 

Reinforced Plastics and Electrical Insulating Materials,” using an Instron 4486 

test machine with a 1000 N load cell, strain rate of 0.127 mm/min (0.05 inch/min.) 

three point bend fixture, and load span of 5 cm (see Fig. 22). Each cured resin 

plaque was cut into five 10 cm x 1.25 cm x 0.625 cm bars using a Streus 

Accutom 5 diamond blade precision wet saw. Once each specimen was placed 

on the test fixture, an initial contacting force of approximately 9 N (2 Ibf) was 

applied. Bluehill data acquisition software was used to collect the load vs. 

extension data. The system was previously calibrated to correct for system 

compliance. The sample fixture was surrounded with a plastic bag to catch any 

fragments that became airborne upon failure. Data was exported to a 

spreadsheet, and modulus was calculated between 0.005 and 0.010 strain units.
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Fig. 22: Flexure testing apparatus: a) load frame and computer system; b) 3- 
point flex fixture on side frame; c) close-up of loaded specimen; d) specimen 
wrapped during testing to catch debris.

3.2.7 Impact Properties

Izod impact testing according to ASTM D4812, "Unnotched Cantilever 

Beam Impact Resistance of Plastics" was performed on the epoxy plaques 

containing nanofibers and nanotubes, as well as composite laminates containing 

carbon nanofibers. The Izod Impact apparatus was comprised of a pendulum 

with striker bar, specimen vise, and dial scale to record pendulum travel (Fig.
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23a). Fig. 23b shows the device and testing arrangement for epoxy resin (amber 

colored) and VGCF-filled resin samples, with an inherent pendulum weight of 

454 g (1 lbm). Specimens 6.35 cm x 1.25 cm x 0.3175 cm were placed in the 

vise and secured. The pendulum was released to strike the specimen on the 

narrow side (Fig. 23c). The impact strength was recorded on the dial in the unit 

of ft-lbf (where 1 J = 0.7376 ft-lbf).

The startup procedure for this instrument involved free swinging of the 

pendulum for 5 minutes. The pendulum was then cocked and swung through 

one cycle again (with no sample) to record the total travel with no sample 

resistance. This result was used to determine the wind friction correction factor,

which was read from a correction chart. This factor was subtracted from the

actual dial reading of the fractured sample to give the corrected impact strength. 

The results were normalized with the specimen thickness in units of inches 

(where 1 ft-lbf/inch = 53.4 J/m).

Composite laminates of similar dimensions were also tested, but their 

orientation was rotated by 90° along their long axis so that the pendulum 

impacted the face of the laminate, causing a delamination (Fig. 23d, e). 

Composite laminates required additional weights to be added to the pendulum 

such that the total weight was 3632 g (8 lbm) in order to produce a fracture.



53

a b

c

d e

Fig. 23: Izod impact apparatus: a) pendulum at bottom of stroke; b) resin sample 
in specimen vice; c) resin sample immediately prior to impact from pendulum 
down stroke; d) orientation of composite laminate sample; e) composite sample 
after down stroke of pendulum and after snapping back.
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3.2.8 Fracture Surface Analysis via Scanning Electron Microscopy

The IZOD impact fracture surfaces of the samples were analyzed using 

scanning electron microscopy (SEM). Samples were sputter coated with gold for 

35 sec at 50 mTorr or platinum/gold for 20 sec at 20 mTorr. A Hitatchi S-4800 

High Resolution Scanning Electron Microscope (HRSEM) was used to analyze 

the coated fracture surface. Fig. 24 illustrates the SEM instrument and sample 

orientation. Beam energy was 10 or 15 kV and magnification ranged from 200 to 

50.000X.

b

Fig. 24: a) SEM apparatus; b) specimen preparation.



CHAPTER 4

RESULTS AND DISCUSSION

4.1 Carbon Nanofiber and Nanotube Characterization

4.1.1 Nanotube/fiber Quality and Morphology

The bulk density of the dry nanofibers/tubes is as follows:

• VGCF batches #71, 104A, and 105B: 0.058 g/cm3 (3.6 lb/ft3)

• VGCF batch #94, 106B, and 107B: 0.040 g/cm3 (2.5 lb/ft3)

• XD nanotubes as-received: 0.059 g/cm3 (3.7 lb/ft3).

Bulk density is indicative of how tightly agglomerated a nanofiber/tube sample is 

at the micron level. Higher bulk density correlates with tighter agglomeration and 

increased difficulty of dispersion. However, the presence of residual catalyst will 

also increase the bulk density, since catalysts used in the nanofiber/tube 

manufacturing process are typically metallic compounds (usually containing iron).

The residual ash of the nanofiber samples was 1.25 wt%, which implies 

that the original catalyst was less than 1 wt%. For XD nanotubes, the TGA 

results (Fig. 25) shows a minimum weight of 8.6% at 660°C. At higher 

temperatures, the residue (catalyst) gained weight due to oxidation. Thus, the 

residual catalyst was estimated to be 8.6%, which is higher than that indicated by 

the certificate of analysis that CNI sent with the XD material (4 wt% residuals).

55
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Since this time, additional information from Rice University has been 

received indicating methods for removing catalyst and difficult-to-disperse 

agglomerates. These methods, referred to as “sorting”, involve solvent washing 

and centrifuging. We attempted to implement these techniques (sonicate in 

acetone or methanol, shear mixing, centrifuge) without success. Specifically, all 

the material settled to the bottom of the container upon centrifuging. As a result, 

we abandoned these methods in the interest of moving on with dispersion and 

sample fabrication. Further study and implementation of these purification

methods is recommended. However, the as-received XD material was deemed 

to be sufficiently pure to continue with the overall study plan, which was originally 

intended to be an initial effort to gain experience with nanotube materials.

Fig. 25: TGA result for as-received XD nanotubes, 20°C/min, air, 3 mg specimen 
weight.
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The XD material was described by the manufacturer as a combination of 

single wall, double wall, and higher order carbon nanotubes. The SEM images 

support this, where a large range of tube diameters were observed, from a few 

nanometers to 30 nm (see Fig. 26a, b). Some non-tube materials, perhaps 

catalyst particles, were also observed. At lower magnifications, the tightly nested 

character of the agglomerates is apparent (Fig. 26c, d). No apparent differences 

were observed in morphology between as-received and XD, which is consistent

with as-received and oxidized nanofiber batches.

a b

c d

Fig. 26: SEM images of XD carbon nanotube samples, a-c) as-received; d) 
oxidized.
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4.1.2 XPS Results

XPS analysis was used to characterize the degree of functionalization on 

the nanofiber/tube surface, which in this study was in the form of oxygen. One of 

the baseline nanofiber samples (batch #71) had a very low amount of oxygen 

(<1 atom%), as expected because it was unfunctionalized. The oxidized 

versions of this batch (batches #104A and 105B) exhibited higher oxygen content 

about 3-4 atom% total. In both cases, the amount of single bonded oxygen was 

greater than double bonded oxygen, but the ratio changed, especially for batch 

105B. The trend in total oxygen was consistent with oxidizing time, where 105B 

experienced the highest oxidizing time.

Carbon nanofiber batch #94 exhibited a surprisingly high oxygen level, 

especially for a nonfunctionalized batch. We speculate that this may have been 

caused during the nanofiber manufacturing process, for example if air had been 

intentionally or accidentally bled into the reactor. In any case, oxidation of batch 

#94 led to an apparent decrease in oxygen level. We cannot determine with 

certainty the cause for these results, but we suspect that the margin of error for 

this measurement is high enough to render the differences in these three batches 

insignificant. The high level of oxygen in the parent batch (94) may have 

prevented further addition during oxidation at UDRI.

The as-received carbon nanotube samples had a very low oxygen level, 

owing to the highly graphitic single and multiwall carbon nanotube surfaces. 

Oxidation of the XD nanotube (by the same process used for the nanofibers) 

resulted in a significant increase in surface oxygen: from about 1 atom% total to



59

over 5 atom%. Interestingly, the ratio of O-C to O=C was opposite that of the 

nanofiber samples. The amount of surface water was also verified to be 

negligible, as it was below the detection limits. Table 1 outlines the XPS results

for both carbon nanofiber and nanotube materials.
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Table 1: XPS results for carbon nanofiber and nanotube raw materials used in 
this study.

Sample Oxygen content (atom%)
H2O O-C O=C

VGCF #71
-1 1.02 <0.2
-2 1.33 <0.2

Average 1.18 <0.2

VGCF#104A (#71 oxidized)
-1 1.95 1.18
-2 1.55 1.24

Average 1.75 1.21

VGCF#105B (#71 oxidized)
-1 2.74 1.01
-2 3.12 1.15

Average 2.93 1.08

VGCF #94
- 1 1.08 0.29
-2 1.09 0.29

Average 1.09 0.29

VGCF #106B (#94 oxidized)
-1 1.53 0.74
-2 1.92 0.91

Averaae 1.73 0.83

VGCF #107B (#94 oxidized)
-1 1.89 0.64
-2 1.94 0.51

Average 1.92 0.58

XD3365A, As-received
-1 bdl' 0.56 0.26
-2 bdl' 0.70 0.34

Averaae 0.63 0.30

XD3365A, Oxidized
-1 bdT" 2.27 1.77
-2 bdl1 2.39 1.86

Averaae 2.33 2.82
1 bdl = below detection limits
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4.2 Resin-Nanofiber/tube Nanocomposites

4.2.1 Rheology and Molding Technique

The rheology of the epoxy-VGCF samples was not examined in this study, 

as it has been examined in more detail in previous studies[26]. In all nanofiber 

batches (#71, 104A, 105B, #94, 106B, 107B), the nanofibers were dispersed into 

freshly mixed EPON 862/W, which has a viscosity of about 4200 cP. The 

addition of nanofibers at 8 wt% increased the bulk viscosity to over 100,000 cP, 

giving the material a paste-like rheology, consistent with previous work at UDRI. 

Although there may have been slight differences in viscosity depending on 

nanofiber bulk density and oxygen content, all batches were highly viscous and 

were not suitable for casting. This is the reason for using a silicone rubber mold 

and press for curing and consolidating these nanocomposite dispersions.

XD carbon nanotubes, on the other hand, were added to EPON 862/W at 

a loading of only 0.15 wt%. This had much less impact on the resin bulk 

viscosity, and thus created new problems. The first concern was considered to 

be favorable: epoxy-nanotube dispersions were of sufficiently low viscosity to be 

easily degassed and cast into void-free plaques (potentially), like the neat resin 

system. However, the low viscosity is counter to the development of high shear 

stress during the dispersion process. It was found that low resin viscosity also 

exacerbated the potential for the XD nanotubes to flocculate during the curing 

process, especially during the initial heat ramp when viscosity dropped to a 

minimum. For this reason, an approach of increasing the resin viscosity prior to



nanotube dispersion was adopted. The goal was to determine a viscosity that 

produced a balance of adequate shear stress during dispersion, easy degassing 

and casting, and low flocculation during curing. Chem-staging was chosen over 

thermal B-staging because of the more precise control in final viscosity.

The rheology analysis illustrated that chem-staging increased the viscosity 

of the EPON 862/W in a reasonably even manner (see Table 2). The room 

temperature viscosity for EPON 862/W, without chem-staging, is 4200 cP. The 

higher the chem-stage percentage, the more the mixture viscosity increased. 

Prior to testing each sample, the temperature was checked with an Omega 

Microprocessor Thermometer, and the Brookfield rheometer was calibrated, to 

ensure uniform measurements. Table 2 details how the viscosity of the final 

mixture was affected by curing EPON 862 with a portion Epikure W chem-staging 

and nanotube dispersion.

Table 2: Matrix viscosity measurements for EPON 862/W chem-staged at 
different levels, taken at 25°C.

Resin state Chem-stage level Spindle no. RPM Viscosity (cP)

Immediately 
after chem- 
staging (No 
CNT added)

0% 5 20.0 4,200

5% 5 10.0 6,000

10% 6 20.0 15,000

15% 6 10.0 82,000

After addition 
and dispersion 

of XD @
0.15 wt%

5% 5 15.0 10,500

10% 5 15.0 22,400

15% 6 15.0 32,000
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The 5% and 10% chem-stage mixtures with addition of CNTs increased in 

viscosity modestly, while the 15% chem-stage viscosity decreased. This result is 

unexplained.

The viscosity of the chem-staged epoxy-XD dispersions was sufficiently 

low to enable casting between two glass plates. This was desired in order to 

provide plaques with more uniform thickness compared to the rubber molding 

technique. The neat resin sample (no nano) was easily poured into the mold 

(both preheated to 60°C) and was cured without voids. The chem-staged/CNT 

samples were more difficult to pour as a result of higher viscosity, but the mold 

was able to be filled. However, numerous bubbles were observed, even after 

degassing the resin at 60°C for 10-20 minutes prior to pouring, which caused 

voids during curing. An epoxy-XD sample with 0% chem-staging flowed easily, 

but experienced flocculation during cure. Interestingly, the 0% chem-stage 

sample containing oxidized XD did not flocculate during curing. However, there 

were still some voids in the final sample. For this reason, we resorted to the 

rubber molding technique. In the future, it is recommended that the glass plate 

technique be tried again, using longer degassing cycles at room temperature so 

as not to advance the cure any further.

4.2.2 Dispersion Results via Microscopy

Moderate sized agglomerates (20-50 pm in diameter) were apparent in the 

uncured resin when viewed at 50X magnification. A representative image from 

each batch is given in Fig. 27. Additional passes beyond four in the dispersion
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process did not lead to any apparent improvement in the results. Dispersion 

quality varied among the nanofiber batches, possibly related to the level of 

surface oxidation, where increased surface oxidation led to higher dispersion 

uniformity. However, dispersion quality was also believed to be related to the 

degree of initial agglomeration in the raw material, which varied somewhat 

among the batches. Batch #94 was better dispersed than #71, as predicted by 

the bulk density results. Oxidation generally improved the dispersion quality, 

although there was no specific correlation with XPS results.

The XD-epoxy dispersions also contained agglomerates of approximately 

the same size distribution as the nanofiber samples (see Figure 28). It was 

difficult to discern any difference between the chem-stage levels with 

confidence, but we may have detected a decrease in the number of small 

agglomerates with increasing chem-staging although large agglomerates are still 

present (Figure 28 a-c). The oxidized XD nanotubes appear to have even fewer 

small agglomerates, although again the large agglomerates are still present. It 

may not be possible to disperse these larger agglomerates with the current 

process, and therefore it is recommended that future research be conducted 

towards implementing “sorting” techniques to help condition the raw material 

prior to dispersion. Also, further studies should employ quantitative particle size 

distribution analysis techniques that are coming on-line. This would provide a 

non-subjective measure of dispersion quality.
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Fig. 2.T. Photomicrographs of VGCF @ 8 wt% in EPON 862/W after calendaring 
(50X magnification): A) batch #71; B) batch #104A; C) batch #105B; D) batch 
#94; E) batch #106B; F) batch #107B. Black spots are the remaining 
agglomerated nanofibers.
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Fig. 28: Dispersion results for XD carbon nanotubes: a-c) 5%, 10% 15% chem- 
staged in EPON 862/W with as-received XD at 0.15 wt%, and oxidized 
nanotubes in EPON 862/W (0% chem-stage) at 0.15 wt%.

4.2.3 Glass Transition Temperature and Flexure Strength

The plaques containing carbon nanofibers were analyzed for both Tg and 

flexure strength (Table 3). The Tg values were essentially the same or slightly 

higher than the neat resin, indicating that epoxy network formation was not 

affected negatively by the presence of functionalized nanofibers. The 

unfunctionalized nanofiber degraded flexure strength compared to neat resin, but 

two of the functionalized nanofiber batches demonstrated a significantly higher
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modulus with similar or improved strength (VGCF batches 106B, 107B). Further 

study is needed to explain why certain functionalized nanofiber batches 

outperformed the others. No trend in properties with surface oxidation level was 

detected. Perhaps more specific information is needed about which types of 

oxidized chemical groups (hydroxyl, carboxylic acid, carbonyl, anhydride, etc.) 

are required before a deeper understanding can be established.

Table 3: Glass transition temperature and flexure results for VCGF-epoxy 
samples.

VGCF hatch #

Nanofiber
XPS

results

TMA results'
(o shown in 

parentheses)

Flexure Test Results “

(ashown in parentheses)

surface 
oxygen 
(atom%) 

O-C o=c

Tg (°C) Modulus
(GPa)

Strength
(MPa)

Strain to 
failure (%)

None (neat 862/W) N/A 147 (6.7) 3.34
(0.16)

143 (2.9) 7.0 (2.5)

#71 0.55 0.40 154 (2.3) 3.85
(0.45)

109 (2.4) 4.1 (1.0)

#104A (#71, oxidized) 1.75 1.11 149 (3.4) 2.51
(0.12)

97 (3.5) 5.8 (1.6)

#105B (#71, oxidized) 2.93 1.08 152 (2.1) 2.96
(0.91)

99 (3.3) 5.7 (0.7)

#94 2.30 0.55 146 (3.1) 3.00
(0.09)

118 (0.9) 5.7 (0.3)

#106B (#94, oxidized) 1.73 0.83 153 (1.9) 7.94
(0.32)

184 (3.0) 4.9 (1.5)

#107B (#94, oxidized) 1.92 0.58 149 (8.7) 5.29
(0.12)

133 (1.9) 3.5 (0.6)

1 four specimens per cured panel (2 locations, heat and reheat each location)
2 five specimens per cured panel
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4.2.4 Impact Strength

Izod impact results for carbon nanofibers, given in Table 4, show a fairly 

large variability within each plaque (typical 25% coefficient of variation). This 

variability may be partly due to the sample to sample variation in specimen 

thickness caused by the rubber molding technique. However, two separate 

plaques made of the same batch of resin exhibited very similar average results. 

It is suspected that the overall variability would narrow if notched specimens 

would be used (ASTM D256), although this would require more time and effort 

for sample preparation. The results for the nanofiber-reinforced resin samples 

were generally lower than that measured for neat resin. However, VGCF Batch 

#106B exhibited an increased impact strength compared to neat resin. This is 

interesting since VGCF batch #106B had the highest flexure strength (Table 3).

Table 4: Izod impact results for VGCF-epoxy samples (5 specimens per plaque)

VGCF batch #

Impact Strength, J/m

(C.O.V.)1

plaque #1 plaque #2

None (neat 862/W) 486 (18%) N/A

#71 406 (28%) 368 (25%)

#104A (#71, oxidized) 438 (43%) 470 (22%)

#105B (#71, oxidized) 342 (87%) N/A

#94 443 (22%) N/A

#106B (#94, oxidized) 603 (7%) N/A

#107B (#94, oxidized) 401 (26%) 454 (23%)

Coefficient of variation (C.O.V) = standard deviation / average
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Table 5 illustrates that the carbon nanotubes Izod impact results also 

show a sizeable variation. The impact strength was higher in the nanotube 

reinforced specimens compared to the neat resin indicating that even at a low 

weight percent, 0.15 wt%, the impact strength can be increased significantly.

The test also showed that chem-stage processing led to more uniform dispersion 

and therefore produced more consistent properties. Overall, the chem-stage 

samples trended toward higher resistance than neat resin. However, because of 

high coefficient of variation, these improvements are not statistically significant. 

The molding process, as well as the dispersion process, must be improved to 

provide uniform sample thickness.

Table 5: Izod impact data for XD nanotube-epoxy samples (5 specimens per 
plaque)

CNT batch #

Impact Strength, J/m

(C.O.V.)

plaque #1 plaque #2

None (neat 862/W) 486 (18%) N/A

0% Chem-stage 540 (42%) 469 (43%)

5% Chem-stage 524 (24%) 494 (30%)

15% Chem-stage 478 (24%) 502 (37%)
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4.2.5 Fracture Surface - SEM

Figure 29 shows the fracture surface after impact of sample #106B. At 

30X magnification, one can observe the surface has various elevations and that 

the specimen was extremely rigid as is indicating the fracture “river” patterns, 

which appeared coarse (Figure 29a). At 2000X, the distribution of the carbon 

nanofibers is detected. The nanofibers in this specimen appear evenly 

dispersed; a typical example is given in Figure 29b. This feature could contribute 

to the sample’s high impact strength. Magnifications of 10.000X and 50.000X 

(Fig. 29c and d) illustrate the nanofibers pulled from the resin. The holes 

represent the area where carbon nanofibers were located before impact. A few 

nanofibers can be seen to be broken off, which indicates the tight bond with the 

resin matrix. The other samples had similar morphology, so it was impossible to 

make a conclusion as to why sample #106B exhibited higher impact and flexure 

strength. None of the samples had obvious agglomerates on the fracture

surface.
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Figure 29; Impact fracture surface of epoxy resin sample containing 8 wt% VGCF 
#106B: a) 30X; b) 2000X; c) 10.000X; d) 50,000X.

The Izod impact fracture surface for neat resin is given in Figure 30. 

Although there are some features, the surface is generally smooth. All the XD 

nanotube samples exhibited a more featured fracture surface. A common 

feature covering part of the surface resembles “hills and valleys” (Figure 31 a-b). 

Upon closer examination the hills and valleys were usually associated with the 

presence of fibers of approximate diameter 1-5 pm. Furthermore, the fibers were 

largely aligned in the direction of the valleys. The size range of the fiber-like
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particles is too large for a nanotube, but too small for a human hair. This result 

was puzzling and not obtained previously with neat resin or nanofiber samples. 

The orientation of the fibers may have contributed to good quality bonding at the 

interface. At higher magnification the MWNTs can be seen (Fig. 31 e-f). 

Nanotube distribution was light and did not appear to be uniform, and 

agglomerates were observed. This heterogeneity explains the large variation in 

impact strength data. Additional work is needed to improve dispersion, and 

additional study is needed to determine the nature of the large fibers present.

An example of an excessively large fiber is given in Figure 30 g-h. It is not 

certain whether this is a contamination (e.g. a hair) or an extremely large 

example of the micron-sized fibers described above.

A complete set of fracture surface SEM images are located in the 

Appendices for neat resin, 0%, 5%, and 15% chem-stage.

a b

Fig. 30: Izod impact fracture surface of neat resin samples.
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g h
Fig. 31: Izod impact fracture surface of epoxy-XD samples.
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4.3 Composite Laminate Characterization

4.3.1 Microscopy, Fiber Volume Fraction

The cured composite laminates were cut, polished, and examined with 

microscopy (Figure 32). The results indicated some intralaminar dryness and

interlaminare resin-rich conditions. The fiber volume fracture of the laminates

was estimated to range from 41-45% based on thickness measurements, fiber 

theoretical density, and carbon fabric weight. These problems can be resolved in 

the future by adjusting the cure cycle and/or using an autoclave to apply higher 

pressure during cure. However, the panels were of sufficient quality to test. 

These panels are referred to as “nano-fiber reinforced composite laminates.”

Figure 32: Photomicrograph of cured nano-fiber reinforced composite laminate.
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4.3.2 Impact Strength

The laminated composite samples were tested only for Izod impact 

strength. The load on the pendulum was increased from 1 pound to 8 pounds in 

order to allow the pendulum to swing through the laminates, causing 

delamination, fracture of 90° plies, and even tensile fracture of some of the 0° 

plies. The specimens snapped back into position in some cases. The composite 

values given in Table 6, are about the same as those of the neat resin. This is 

because the apparatus is calibrated for specimens with a linear distance of 1.25 

cm parallel to the pendulum swing direction, and a pendulum weight of 8 lbs. 

Because of these differences in the way the neat resin specimens were tested, 

the results for the composite laminates therefore represent relative values. The 

laminates containing carbon nanofibers exhibited significantly greater impact

resistance than the laminate without nanofibers.

Table 6: Izod impact data for Nanofiber-Reinforced composite laminates.

Nanoparticle (loading)

Impact Strength,

ft-lbs/inch

(C.O.V.)

No nanofiber (carbon

fiber / epoxy only)
5.2 (12.7%)

VGCF #94 (10g/m2/ply) 9.0 (8.8%)

VGCF #94 (15g/m2/ply) 9.1 (8.5%)
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4.3.3 Fracture Surface - SEM

SEM images of the composite fracture surface are given in Fig. 33. At 

30X magnification (Figure 33a) the fracture surface is observed to be covered 

mostly with resin, although some bare carbon fibers are visible. The direction of 

the carbon fibers in the top ply is clearly aligned from top to bottom in this image. 

Magnification of 2000X (Figure 33b) illustrates the nanofibers surrounding carbon 

fiber. In other images (not shown here), empty troughs could be seen where the 

carbon fiber had once been located. Closer analysis shows pull-out of individual 

nanofibers from the matrix (Figure 33c). These images indicate good dispersion 

of the carbon nanofibers between each ply of the laminate and close contact 

between the nanofibers and the carbon fabric (Figure 33d). Toughening the area 

in between plies is crucial to improving overall composite toughness because it 

usually is the weak link where cracks can propagate.
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a b

c d

Figure 33: Izod impact fracture surface of composite laminate containing 15 
g/m2/ply, VGCF #94 at a) 30X; b) 2000X; c) 10.000X; d) 20.000X.



CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The research performed during this program demonstrated straightforward 

and scaleable methods for fabricating, analyzing, and testing polymer 

nanocomposites, as well as continuous fiber laminates containing a nano-

modified matrix. The results from this research varied with the nanomaterial, 

nanomaterial loading, and processing steps. Overall, the work served to identify 

issues in each area that need to be addressed before further progress can be 

made in fabricating high quality nanocomposite materials. The most critical of 

these is obtaining uniform nanotube distribution, and removal of difficult to 

disperse agglomerates.

5.1 Carbon Nanofibers

The major accomplishment was demonstrating a simple and scaleable 

process to produce a modest, although not perfect, dispersion of carbon 

nanofibers. Although most of the nanofibers were de-nested, a number of 

agglomerated nanofibers about 10-50 micrometers in diameter remained. The 

batches containing oxidized nanofibers appeared to have fewer and smaller 

undispersed agglomerates than those with non-oxidized nanofibers. The

oxidized nanofibers
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improved the Tg of the epoxy resin by 0-7°C, indicating that the epoxy network 

formation was not negatively affected by the presence of the functional groups on 

the nanofibers. The flexure strength and Izod impact strength was generally 

degraded by the nanofibers, but one batch of oxidized nanofibers exhibited a 

significant improvement in each. Additional study is required to repeat these 

results and determine what it was about that batch that created the improved 

results. The level of oxygen detected by XPS did not correlate with any of the 

results. In any case, the sample molding quality needs to be improved before 

further progress can be demonstrated. Also, newer grades of Pyrograf III are 

available on an experimental basis (PR-25) that are generally easier to disperse

which should be examined in future studies.

5.2 Carbon Nanotubes

The major accomplishment was producing acceptable nanotube epoxy 

composites for initial property screening. The epoxy-XD nanotube dispersions 

were not homogeneous. This was especially apparent due to the low loading. A 

process for conditioning the raw material and “sorting” nanotubes must be 

implemented before further progress can be made. Oxidizing the XD nanotubes 

increased their compatibility with the matrix, enhanced dispersion, and minimized 

flocculation. Nanotube-reinforced matrix impact strengths were higher compared 

to the non-reinforced epoxy matrix for all chem-stage levels. Because the 

nanotubes were not functionalized, the interfacial bonding between the matrix 

and nanotubes was not optimized. Therefore, further research using
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functionalized nanotubes should be conducted. Additional work is needed to

optimize the chem-staging process and degas cycle so that the glass plate 

molding technique can be used, in order to provide uniform thickness samples.

5.3 Carbon Fiber Laminates

The major accomplishment was demonstrating that out-of-plane 

mechanical properties of composite laminates can be improved with 

incorporation of a nano-modified matrix. Impact results were significantly 

improved with the use of a nanofiber-reinforced matrix compared to composites 

with only an epoxy matrix. However, these composites represent an initial trial, 

and the quality was not optimized. Factors such as void content and fiber 

volume fraction may have influenced the results. Some additional development 

is required to optimize the cure cycle for the nano-modified composites, taking 

into account the increase in bulk resin viscosity and B-staged state of the resin 

films. In addition, other issues such as debulk cycle and use of an autoclave

should be considered.



APPENDIX A

NEAT RESIN FRACTURE SURFACES - SEM

Fig. A.1: Neat resin fracture surface at 200X 
magnification.
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Fig. A.2: Neat resin fracture surface at 800X 
magnification.

Fig. A.3: Neat resin fracture surface at 2000X 
magnification.
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Fig. A.4: Neat resin fracture surface at 10.000X 
magnification.

Fig. A.5: Neat resin fracture surface at 10,000X 
magnification.



APPENDIX B

0% CHEM-STAGE FRACTURE SURFACES - SEM

Fig. B.1: 0% Chem-stage fracture surface at 200X 
magnification.
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Fig. B.2: 0% Chem-stage fracture surface at 800X 
magnification.

Fig. B.3: 0% Chem-stage fracture surface at 2000X 
magnification.
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Fig. B.4: 0% Chem-stage fracture surface at 10,000X 
magnification.

Fig. B.5: 0% Chem-stage fracture surface at 20,000X 
magnification.



APPENDIX C

5% CHEM-STAGE FRACTURE SURFACES - SEM

Fig. C.1: 5% Chem-stage fracture surface at 200X 
magnification.
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Fig. C.2: 5% Chem-stage fracture surface at 800X 
magnification.

Fig. C.3: 5% Chem-stage fracture surface at 2000X 
magnification.
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Fig. C.4: 5% Chem-stage fracture surface at 10.000X 
magnification.

5%C-S#2 10.0kV 5.0mm x50.0k 1 OOum

Fig. C.5: 5% Chem-stage fracture surface at 50,000X 
magnification.



APPENDIX D

15% CHEM-STAGE FRACTURE SURFACES - SEM

15%C-S1 15.0kV 8.0mm x200 200um

Fig. D.1: 15% Chem-stage fracture surface at 200X 
magnification.
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Fig. D.2: 15% Chem-stage fracture surface at 800X 
magnification.

Fig. D.3: 15% Chem-stage fracture surface at 2000X 
magnification.
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Fig. D.4: 15% Chem-stage fracture surface at 10,000X 
magnification.

Fig. D.5: 15% Chem-stage fracture surface at 20.000X 
magnification.
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