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Abstract 

By utilizing an extreme physiological adaptation known as freeze-tolerance, Cope’s gray 

tree frog, Dryophytes chrysoscelis, freezes and then subsequently thaws up to 65% of its 

extracellular fluid to survive the winter. During these periods of freezing and thawing, 

erythrocytes (RBCs) of D. chrysoscelis utilize a protein, aquaglyceroporin HC-3, that 

facilitates transmembrane flux of both water and cryoprotective glycerol to mediate 

osmotic adjustments. RBCs from cold-acclimated tree frogs up-regulate HC-3 protein 

expression, which coincides with more abundant membrane localization and higher levels 

of glycosylation. However, the functional significance of HC-3 glycosylation on 

membrane localization and cellular freeze tolerance is currently not known. We 

hypothesize that anticipatory glycerol accumulation observed in cold-acclimated tree 

frogs contributes to enhanced post-translational modification of HC-3 via N-linked and 

O-linked glycosylation, and that HC-3 glycosylation is important in subcellular

trafficking of HC-3 from the Golgi to the membrane. RBCs from warm-acclimated D.

chrysoscelis were separated into three categories: freshly isolated RBCs (FI), RBCs

cultured in complete cell culture media for 48 hours (CCCM), and RBCs cultured in

CCCM containing 0.156M glycerol for 48 hours (CCCM+G). Densitometric analyses of
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immunoblots specific for HC-3 showed a 3.5-fold and 1.9-fold average increase in 

glycosylated HC-3 (60-120 kDa) from RBCs cultured in CCCM+G as compared to FI  

RBCs and RBCs cultured in CCCM, respectively. Western blots of RBC proteins treated 

with PNGase F resulted in a 1.3-fold average decrease in glycosylated HC-3 compared to 

control proteins. However, protein treatment with the O-Glycosidase and Neuraminidase 

mix did not appear to change the abundance of glycosylated HC-3, indicating that HC-3 

is post-translationally modified via N-linked glycosylation but not O-linked. Additional 

results were collected using scanning laser confocal microscopy and HC-3 localization 

was measured in mean fluorescent intensity (arbitrary units) using ImageJ software (N=4-

6 cells per experiment). For RBCs cultured in CCCM+G, immunofluorescence intensity 

of HC-3 in the plasma membrane was 21.7 times greater than HC-3 immunofluorescence 

in the cytosol (P<0.05). In contrast, immunofluorescence intensity of HC-3 in the cytosol 

was 3.2 times greater than HC-3 immunofluorescence in the membrane for FI RBCs 

(P<0.01). There was no difference in HC-3 immunofluorescence intensity between the 

membrane and cytosol in RBCs cultured in CCCM (P>0.05). Using an in vitro cell 

culture system, we have successfully recapitulated cold-acclimated in vivo HC-3 

expression patterns by focusing solely on the influence of a glycerol-induced 

hyperosmotic environment on RBCs of D. chrysoscelis. Thus, a potential correlation 

between cryoprotective glycerol, increased HC-3 N-linked glycosylation, and enhanced 

HC-3 membrane localization has been identified.  
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Chapter I: Introduction and Literature Review 

Physiological Homeostasis and Osmoregulation 

The coordinated adjustments of body temperature, water content, pH and other 

physiological variables within an organism that maintain the relatively steady conditions 

in the body are collectively referred to as “physiological homeostasis” (Anderson, 1977; 

Cannon, 1929). Homeostasis suggests that the living being is stable, and it must be stable 

to endure the changing environmental forces that surround it. The environmental factors 

under homeostatic control that affect cells include osmolality, temperature, and pH, while 

the materials that cells need that are kept under homeostatic control include nutrients, 

water, sodium, calcium, other inorganic ions, oxygen, and hormones (Cannon, 1929).  

 In multicellular organisms, the term osmoregulation refers more specifically to the 

regulation of the osmolality of an organism’s body fluids through the adjustment of water 

and solute concentrations in the extracellular fluid (ECF) and intracellular fluid (ICF) 

(Danziger and Zeidel, 2014). If there are alterations in the osmolality of the ECF that 

disrupt physiological homeostasis within an organism, this can impact the physical 

structure of cells and tissues and the function of biological molecules (Bourque, 2008). 

Similarly, in unicellular organisms, alterations between the intracellular fluid and the 

external environment can affect the proper execution of critical cellular functions. 

Therefore, osmoregulation is an important physiological process that protects all 

organisms (Johnson, 2009).  

 There exist two well-established mechanisms through which osmoregulation is 

facilitated. Osmoconformers—such as jellyfish, mussels, and some insects—exert 

minimal effort to resist osmotic changes and instead adopt ICF osmolality values that 
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reflect those of their surrounding conditions. In contrast, osmoregulators—such as 

humans and some species of freshwater fish—have developed biological processes that 

help facilitate the maintenance of the internal environment osmolality near a particular set 

value in the face of opposing osmotic forces (Bourque, 2008).  

 One of the main mechanisms present within all organisms that helps to facilitate 

osmoregulation is osmosis—the passive diffusion of water from a solution of lower 

concentration to a solution of higher concentration. The diffusion of water occurs through 

the semi-permeable biological membrane of cells (Lodish et al., 2000). Biological 

membranes are composed of a double layer of lipid molecules that normally consists of a 

polar head group and two hydrocarbon tails in which membrane proteins are embedded. 

This bilayer is fluid and its individual lipid molecules are amphipathic, containing both 

hydrophilic and hydrophobic ends. Hydrophilic species form more favorable hydrogen 

bonds with water because they contain charged groups or uncharged polar groups 

(Alberts et al., 2002). Thus, because of this amphipathic nature, water is able to passively 

diffuse through biological membranes via osmosis from a solution of a lower non-

penetrating solute concentration to one of a higher non-penetrating solute concentration 

(Lodish et al., 2000).  

    Another mechanism through which cells regulate internal volume in response to 

osmotic stress is through facilitated diffusion, which uses membrane channel proteins that 

are embedded within the lipid bilayer (Preston et al., 1992). It is thought that through 

osmosis water moves at a slower rate of diffusion across cell membranes as compared to 

when water travels through membrane channel proteins that are selective for water 

(Lodish et al., 2000). However, a membrane channel protein specific for osmotically 
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driven transmembrane water flux—now known as an aquaporin—was not discovered 

until 1992 by Dr. Peter Agre and his team of scientists. 

The Discovery of Aquaporins  

In 1985, Gheorghe Benga and his coworkers discovered the first signs of a water channel 

protein in the human (RBC) membrane (Benga et al., 1986, Kuchel, 2006). The 

experiment that suggested the presence of a membrane protein specific for water 

movement used p-chloromercuribenzenesulfonate (pCMBS), a known inhibitor of water 

transport across the membranes of human red blood cells. Additionally, the experiment 

was designed so that pCMBS could react only with surface accessible sulfhydryl groups. 

Based on the results of the experiment, Benga and his team deduced that because pCMBS 

inhibits water transport, and it is bound to proteins in the RBC membrane, the existence 

of channel proteins specific for water was likely (Benga et al., 1986; Benga, 2012).  

 However, it was not until 1992 that the first water channel protein was definitively 

defined, characterized and expressed by Dr. Peter Agre and his team of scientists at Johns 

Hopkins University (Preston and Agre, 1991; Preston et al., 1993). In 1988, Dr. Agre and 

his co-workers, while working on the Rhesus blood group antigens, unexpectedly 

discovered a unique membrane protein they referred to as CHIP28 (channel integral 

membrane protein of molecular weight 28kDa). At the time, they hypothesized that this 

protein played a role in the connection of the skeleton of the membrane to the lipid 

bilayer (Denker et al. 1988). After searching through the literature for possible clues into 

the function of this “orphan” protein, Dr. Agre and his team decided to clone the 

complementary DNA of CHIP28 and compare its amino acid sequence to other proteins 

within the DNA database (Preston and Agre, 1991). Following much debate and 



P a g e  | 

 

4 

discussion with his team about the possible function of CHIP28, Dr. Agre and his team 

finally hypothesized that this protein was the long sought after water channel protein. 

  To test this hypothesis, the team injected the complementary RNA of CHIP28 into 

Xenopus laevis oocytes, which are known to be fairly water impermeable, and compared 

the injected oocytes to control oocytes. An incredibly exciting difference was observed: 

when dropped in distilled water, the control oocyte remained the same size, but the 

oocyte injected with CHIP28 complementary RNA had swollen and lysed (Preston et al., 

1992). Therefore, it was concluded that CHIP28 was indeed a water channel protein and 

was named Aquaporin 1 (AQP1) (Preston et al., 1993). It would later be established as a 

member of the major intrinsic protein (MIP) family of integral membrane proteins. Dr. 

Peter Agre was a recipient of the Nobel Prize in Chemistry in 2003 for his landmark 

discovery of the aquaporins (Agre, 2003). 

The Molecular Structure of Aquaporins 

Aquaporins are considered relatively simple proteins in terms of their structure and 

function when compared to other ion channels and solute transporters. Most of the 

structural features of AQPs have been identified through the use of high-resolution X-ray 

crystallography (Verkman, 2013; Verkman and Mitra, 2000). Each of the four ~30kDa 

AQP monomers that make up a tetramer consists of six membrane-spanning helical 

domains, referred to as H1-H6, and two short helical segment loops (Figures 1 and 2). 

HB surrounds cytoplasmic vestibules while HE surrounds extracellular vestibules and 

these vestibules are joined through a central and tight aqueous pore (reviewed in 

Verkman, 2011). There exists a special motif consisting of Asn-Pro-Ala (NPA) in both 

HB and HE that overlaps in the center of the pore (reviewed in Agre, 2006).  
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Figure 1. Aquaporin 1 Two-Dimensional Structure. Pictured 

is the two-dimensional structure of an AQP1 monomer. The two 

NPA motifs in the first intracellular loop (left) and third 

extracellular loop (right) fold into the membrane to form the 

functional water pore (Krane et al., 2007).  

Figure 2. Three-Dimensional Structure of the Aquaporin 1 

Tetramer. Pictured is the three-dimensional structure of the 

AQP1 tetramer. Four visible water pores can be viewed in this 

complex. This image was generated using SWISS-MODEL.  
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Evolution of Aquaporins 

Because water is vital for life, a vast assortment of membrane integral protein channels 

(MIPs), or AQPs, of 26-35 kDa have evolved within living organisms to facilitate the 

movement of water into and out of cells (Abascal et al., 2014). As mentioned previously, 

Dr. Peter Agre and his team discovered the first MIP: AQP1. However, since this 

discovery, over 450 members of the ancient MIP family have been characterized and 

various biological and physiological roles are continuously being identified for them. It 

seems that since MIPs play an important role in osmoregulation, they are ubiquitously 

expressed throughout the living kingdoms and indirectly impact a number of critical 

cellular processes.  

              MIPs are comprised of six transmembrane helical segments per monomer. 

Interestingly, these two helical segments present two remarkably similar halves, 

suggesting that these water channels arose by the internal duplication of a three-

membrane segment (Pao et al., 1991). Furthermore, studies of the MIP family indicate 

that there are two major phylogenetic subfamilies of MIPs: AQPs, which facilitate the 

passage of water, and aquaglyceroporins (GLPs), which facilitate the passage of water 

and small solutes such as glycerol and urea. After researchers identified the first 

prokaryotic aquaporins, it became evident that aquaporins within eukaryotes had also 

evolved from archaeal and bacterial domains (Finn and Cerdà, 2015).  

             Aquaporins are in many microbial organisms but show the most numerous and 

diverse amounts in plants and vertebrates. In contrast, GLPs are absent in plants, but exist 

as a single copy in microbes and up to four paralogs in vertebrates. In plants, AQPs are 

divided into five subfamilies: plasma membrane intrinsic proteins (PIPs), tonoplast 
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intrinsic proteins (TIPs), nodulin26-like intrinsic proteins (NIPs), small basic intrinsic 

proteins (SIPs), and uncategorized X intrinsic proteins (XIPs) (Shivaraj et al., 2017). 

Since plants do not contain GLPs, NIPs are considered a water and glycerol channel co-

option to the GLPs found in microbes and vertebrates (Chaumont and Tyerman, 2014). In 

fact, a phylogenetic analysis indicated that NIPs evolved through a separate path different 

from GLPs in mammals, indicating a horizontal gene transfer from microbes to plants 

resulting in the emergence of the NIP subfamily (Zardoya et al., 2002; Zardoya, 2005). 

Aquaglyceroporins, Their Molecular Structure, and Their Function 

The transmembrane flux of glycerol across cell membrane has been well established and 

includes simple diffusion as the primary route (Laforenza et al., 2016; Lages and Lucas 

1995; Lucas et al. 1990). However, another well-known route through which glycerol 

movement occurs across the membrane is via a subfamily of proteins within the 

aquaporin family: the aquaglyceroporins (Hara-Chikuma and Verkman, 2006). 

Aquaglyceroporins, or GLPs, are members of the MIP family and are known to facilitate 

the transmembrane flux of both water and organic compounds such as glycerol, urea, and 

other small molecules such as NH3 and NH4
+ (reviewed in Krane and Goldstein, 2007; 

Engel and Stahlberg, 2002).  

 The structural differences between AQPs and GLPs can be best described by 

examining GlpF, one of the most widely known GLPs isolated from E. coli (Hénin et al., 

2008). Like AQPs, GlpF, when crystallized, appears organized into tetramers with only 

subtle structural differences within the selectivity filter (SF) for water (Jensen et al., 

2001; Thomas et al., 2002). Five amino acid positions between AQPs and GLPs located 

in transmembrane helix 3, extracellular loop E, and transmembrane helix 6 are different 
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(reviewed in Krane and Goldstein, 2007). As mentioned earlier, for AQP1, the SF is 

located in the center of the pore and is gated by a narrow constriction region of 2.8Å in 

diameter defined by hydrophilic residues. However, for GlpF, the constriction region is 

3.5Å wide and defined by more hydrophobic residues (Nollert et al., 2001; Thomas et al., 

2002). Therefore, the main barriers opposing glycerol permeation through AQPs but not 

GLPs are steric in nature, mainly due to the more constricted pore size in AQPs at the SF. 

Furthermore, a key arginine residue that backs the SF of AQPs, but not GLPs, has been 

found in a conformational state that acts as a gate and blocks substrate flow through the 

channel. Combined, these structural differences contribute to AQPs specificity for water 

and GLPs specificity for water, glycerol, urea, and other small solutes (Wang et al, 2005).  

AQPs & GLPs in Mammals 

There are thirteen known water channels in mammals (AQP0-AQP12). An evolutionary 

comparison of these mammalian MIP sequences reveal that AQP0, AQP1, AQP2, AQP4, 

AQP5, AQP6, and AQP8 are members of the water specific aquaporin subfamily, while 

AQP3, AQP7, AQP9, and AQP10 are classified as the water and glycerol specific 

subfamily—aquaglyceroporins (Gomes et al., 2009; reviewed in Krane and Goldstein, 

2007). The expression and localization amongst mammalian AQPs differs vastly. Some 

AQPs, such as AQP1 and AQP4, are expressed in a variety of tissues and exhibit diverse 

physiological roles. For example, AQP1 is expressed in the proximal tubule, choroid 

plexus and corneal epithelium, and AQP4 is expressed in the retina and glial cells at the 

blood brain barrier. Other AQPs, such as AQP12, are expressed in predominantly the 

same locations. For example, AQP12 is expressed predominantly in pancreatic acinar 

cells (Kitchen et al., 2015).  
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 Aquaporins are involved in a diverse set of physiological roles within mammals 

(Hoffert et al., 2000, Jeyaseelan et al., 2006). For example, AQP2 acts as a water channel 

for water reabsorption as part of the vasopressin dependent urinary concentration 

mechanism, demonstrating that AQPs play a major role in the transport of fluid across 

epithelial cells (Day et al., 2014, Nielson et al., 2000, Tamarappoo and Verkman, 1998). 

Aquaporin 4 is involved in the facilitation of brain water accumulation in patients with 

cytotoxic edema, and is therefore targeted for expression knock-down in patients with 

this condition (reviewed in Verkman, 2011). In contrast, AQP4 is involved in the 

clearance of excess brain water in patients with vasogenic edema, and is therefore a target 

for upregulation in patients with this condition (Verkman, 2011). Additionally, it has also 

been shown that impaired vision, hearing, and olfaction occurred in mice lacking AQP4, 

indicating that AQP4 is involved in networks of neural signaling (Lu et al., 2008). 

Aquaporins are also suspected to be involved in cell migration following the observation 

that an AQP1 deletion in mice reduced the growth and vascularity of implanted tumors 

(Saadoun et al., 2005).  

Post-translational Modifications and Intracellular Trafficking of 

AQPs/GLPs 

Most AQP/GLP gene expression is controlled by temporal and tissue-selective expression 

via mechanisms within transcription and translation, and most AQP/GLP proteins 

function, structure, and stability are affected by post-translational modifications 

(reviewed in Krane and Goldstein, 2007). Post-translational modifications (PTMs) occur 

following the completion of translation and aid in cellular mechanisms such as the 

mediation of proper protein folding and the direction of the newly translated protein to a 
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distinct cellular location such as the nucleus or the plasma membrane (Prabakaran et al., 

2012). Aquaporin 2 is most widely studied in terms of PTM influences on AQP/GLP 

function and localization (Vagin et al., 2009).  

 Aquaporin 2 has been shown to be modified via two of the most common PTMs: 

phosphorylation and glycosylation. Phosphorylation is the reversible bonding of a 

phosphate group to a protein that is catalyzed by a kinase and, in AQP2, it has been 

shown that phosphorylation at serine 256 may be required for regulatory exocytosis of 

AQP2 (Fushimi et al., 1997; Prak et al., 2008). In addition to phosphorylation, AQP2 has 

been shown to be modified via glycosylation. Glycosylation is defined by various types 

of glyosidic linkages to protein structures. The two main types of glycosylation are N-

linked and O-linked glycosylation (Moeller et al., 2011; Öberg et al., 2011). The bonding 

of a glycan to the amino group of an asparagine on a protein is referred to as N-linked 

glycosylation, while O-linked glycosylation is the bonding of monosaccharides to the 

hydroxyl group of serine or threonine residue (Figure 3; Wang et al., 2013).  
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 The role of N-linked glycosylation has been well-documented for the AQP2 

protein. In fact, it has been demonstrated that when the covalent bonding of N-glycans to 

AQP2 is inhibited, the AQP2 protein travels to the Golgi complex but fails to insert into 

the plasma membrane. These results indicate that the covalent attachment of an N-glycan 

to AQP2 protein influences AQP2 localization and as a result, AQP2 function (Hendricks 

et al., 2003; Potter, 2003; Potter et al., 2005). Additionally, the removal of N-glycans 

from many apical proteins, similar to the inhibition of N-glycosylation in AQP2, has been 

shown to decrease their abundance in the apical membrane (Vagin et al., 2004; Vagin et 

al., 2009). This again suggests that N-linked glycosylation is required for apical 

Figure 3. Membrane Proteins with N- and O-Linked Glycans Attached to 

their Extracellular Surfaces. O-linked glycans are attached at a serine or 

threonine residue. N-linked glycans are attached at an asparagine residue (Öberg 

et al., 2011).  
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distribution of many other membrane proteins in absorptive and secretory polarized 

epithelia (Helenius and Aebi, 2004; Molinari, 2007).   

 One explanation for these findings is that N-glycosylation is required for apical 

sorting of these glycoproteins. However, the mechanisms for apical sorting remain poorly 

undefined and understood. Alternatively, another explanation for the significance of N-

glycosylation on membrane localization is since N-glycosylation is necessary for proper 

folding of proteins for them to exit the ER, the lack of N-glycans could result in ER 

retention. Among the many studies that support the relationship between N-glycan 

attachment and membrane localization, it is important to note that apical localization of a 

number of membrane glycoproteins is not affected by changes in N-glycosylation (Vagin 

et al., 2009). 

AQPs & GLPs in Anurans 

Both semi-aquatic and terrestrial anuran amphibians experience evaporative water loss 

across their thin skin while traveling away from the water and have therefore developed 

osmoregulatory systems for maintaining fluid homeostasis (Suzuki et al., 2007). One 

such system that the majority of mature anuran amphibians have evolved is the 

employment AQPs/GLPs to absorb water across the ventral pelvic skin and reabsorb it 

from urine in the urinary bladder, termed the water balance response or antidiuretic 

response (Ogushi et al. 2010; Suzuki et al., 2015; Uchiyama et al., 2006). Except for 

AQP6 and AQP12, anuran orthologs for all of the other mammalian AQPs have been 

identified. Additionally, there have evolved two anuran-specific AQPs—AQPa1 and 

AQPa2 (Suzuki and Tanaka, 2009). Orthologs of AQPa1 include the X. laevis AQP and 
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the AQPxlo from X laevis oocytes, while AQPa2 orthologs include AQP-h2, AQP-h3, 

AQP-t2, and AQP-t3 (Hasegawa et al., 2003, Tanii et al., 2002, Virkki et al., 2002). 

 Aquaporin HC-1 and AQP HC-2 from Dryophytes chrysoscelis, a freeze tolerant 

anuran, are orthologs of mammalian AQP1 and AQP2, while Aquaglyceroporin HC-3 is 

a GLP and is an ortholog with AQP3 (Zimmerman et al., 2007). Expression and 

regulation of HC-1 was shown to be temperature-sensitive (cold vs. warm) in the brain, 

liver, and kidney tissue. Aquaporin HC-2 was isolated from the urinary bladder and HC-2 

mRNA was detected primarily in organs of osmoregulation such as the skin and kidney 

(Zimmerman et al., 2007). Furthermore, frogs that were acclimated to cold conditions had 

high levels of HC-2 expression in the skin, whereas no HC-2 expression was observed 

from the ventral skin of warm-acclimated frogs.  

Freeze Tolerance 

The majority of vertebrate animals seek refuge from the cold by migrating or hibernating 

during the winter, thereby avoiding the freezing temperatures all together. Other 

organisms utilize a strategy known as supercooling, which is the ability to remain 

unfrozen even when temperatures fall below the freezing point in their bodily fluids. 

However, a more extreme adaptation exists for organisms to survive the winter: freeze 

tolerance, which refers to the ability to endure the freezing of up to 50-65% of total body 

water into extracellular ice, the interruption of vital processes such as heart beat and 

breathing, cell shrinkage, elevated osmolality, anoxia/ischemia, and potential physical 

damage from ice (Storey and Storey, 2017). Despite the fact that hibernation, migration, 

and supercooling are far less physiologically demanding and stressful events for living 

organisms, freeze tolerance has evolved within a variety of diverse groups of life such as 



P a g e  | 

 

14 

insects, microbes, plants, reptiles, amphibians, and small soil invertebrates, all of which 

tolerate freezing to survive seasonal sub-freezing temperatures (Storey and Storey, 2017; 

Voituron et al., 2009; Ali and Wharton, 2014).  

 There are a few principal requirements for success in natural freeze tolerance: 1.) 

ice formation must be formed exclusively in the extracellular compartments and the 

damage from ice crystals must be kept at a minimum, 2.) the progression of freezing must 

occur gradually, 3.) cell volume decrease and loss of water must be held to a certain 

threshold, and 4.) cells must survive and maintain homeostasis (Storey and Storey, 1988). 

Several molecular adaptations exist that support freeze tolerance, including a lower 

metabolic rate (1-30% of normal resting rate), an optimization of anaerobic ATP 

production, ice binding proteins and freeze-specific gene/protein/enzyme controls, and 

the use of carbohydrate cryoprotectants to help maintain fluid homeostasis (Storey and 

Storey, 2017).  

Freeze Tolerance in Anurans 

There currently exist seven known species of anurans that are freeze tolerant: Hyla 

versicolor, Dryophytes chrysosclies, Rana sylvatica, Hyla crucifer, Pseudcris triseriata, 

Pseudacris maculate, and Rana arvalis (Shearman and Maglia, 2014; Storey and Storey, 

2017). These amphibians choose humid, well-protected sites for the freezing process 

because if their water permeable skin comes in direct contact with the air, deadly 

dehydration can occur (Storey and Storey, 1988). The use of cryoprotectants in freeze 

tolerance is ubiquitous among these seven species of amphibians—H. versicolor and D. 

chrysoscelis accumulate and distribute glycerol as a cryoprotectant, whereas the other 

five species use glucose as a cryoprotectant. The general consensus is that the northern 
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populations of H. versicolor and D. chrysoscelis undergo a seasonal accumulation of 

glycerol to begin preparing for freezing, but they have also been observed to rapidly 

synthesize glycerol and or glucose on demand as needed (Pittman et al., 2008; Storey and 

Storey, 2017). However, species such as R. sylvatica and H. crucifer have been 

predominantly observed to rapidly synthesize glucose during the onset of freezing.  

As mentioned previously, Dryophytes chrysoscelis, an amphibian found 

throughout the eastern United States, uses mainly glycerol as a cryoprotectant. Glycerol 

helps to avoid damage from extracellular ice crystals my helping to maintain fluid 

homeostasis. Glycerol and water permeates the cellular membranes of D. chyrososcelis 

through the GLP HC-3, and this ultimately contributes to the success of natural freeze 

tolerance (Figure 4; Goldstein et al., 2010, Pandey et al., 2010). 
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 Aquaglyceroporin HC-3 mRNA is expressed in several tissues, some of which 

show an upregulation of HC-3 expression in various tissues of cold-acclimated frogs as 

compared to warm-acclimated frogs (Zimmerman et. al, 2007; Goldstein et al., 2010). 

Furthermore, HC-3 protein has also been shown to be highly expressed in erythrocytes 

Figure 4. Schematic of Glycerol Mediated Freeze Tolerance in D. 

chrysoscelis. An unfrozen cell from D. chrysoscelis is shown (A). As 

extracellular ice crystals form, excessive water loss occurs (B). Without the 

distribution of glycerol both intracellularly and extracellulary, cells of D. 

chrysoscelis shrink because of osmotic pressures forcing water to rush out of 

the cell (C). Additionally, ice crystals grow large and physically damage the 

cells (C). However, with the protection of cryoprotective glycerol, there is 

minimal cell volume loss and ice crystal formation (D).  
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from D. chrysoscelis, where it is more profuse in cold-acclimated erythrocytes as 

compared with warm-acclimated erythrocytes (Mutyam et al., 2011).  

 To better understand the mechanisms that influence HC-3 expression and its 

possible functional roles in glycerol transport in D. chrysoscelis, an in vitro erythrocyte 

cell culture system in which HC-3 protein expression could be dynamically regulated was 

developed and utilized (Mutyam et al., 2011). The initial experiments completed using 

this in vitro cell culture system demonstrated that HC-3 is differentially expressed in the 

membrane vs. the cytosol in cold-acclimated frogs as compared to warm-acclimated 

frogs. Additionally, it was shown that there was a greater amount of glycosylated HC-3 in 

the cold-acclimated tree frogs as compared to the warm acclimated tree frogs. Combined, 

the above findings concerning HC-3 regulation and expression led to the hypothesis that 

HC-3 could be involved in some of the mechanisms that contribute to natural freeze 

tolerance in this organism through facilitating the transmembrane flux of water, glycerol, 

urea, and other small solutes during periods of freezing and thawing (Mutyam et al., 

2011).  

Hypothesis 

Freeze tolerance, although a remarkable evolutionary adaptation, leads to the rapid 

formation of extracellular ice crystals and induces immense osmotic disturbance between 

the ECF and ICF for cells. It is hypothesized that AQPs/GLPs are differentially regulated 

and expressed within freeze tolerant organisms to facilitate the transmembrane flux of 

both water and small solutes (cryoprotectants), contributing to the maintenance of fluid 

homeostasis during periods of freezing/thawing (Goldstein et al., 2010; Mutyam, 2013). 

More specifically, it is likely that in erythrocytes (RBCs) of D. chrysoscelis, GLP HC-3 
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mediates the transmembrane flux of both water and cryoprotective glycerol (Mutyam et 

al., 2011). The previous findings of Mutyam et al. 2011 showing enhanced HC-3 

expression in the membrane vs. the cytosol in RBCs from cold-acclimated tree frogs, 

combined with increased amounts of glycosylated HC-3 in cold-acclimated frogs 

compared to warm-acclimated frogs, have led to the hypothesis that the accumulation of 

glycerol and the post-translational glycosylation of HC-3 may both be important in the 

trafficking and insertion of HC-3 into the membrane of RBCs from D. chrysoscelis. Thus, 

the focus of this thesis is to further explore these potential regulating factors—

cryoprotective glycerol and HC-3 post-translational glycosylation—on HC-3 expression 

in RBCs of D. chrysoscelis using a previously established in vitro cell culture system. 

The famous comparative physiologist, August Krogh, once stated, “For a large 

number of problems there will be some animal of choice or a few such animals on which 

it can be most conveniently studied” (Krogh, 1929). Thus, the comparative analysis of 

AQPs/GLPs in the natural freeze tolerant anuran, Dryophytes chrysoscelis, provides an 

excellent model for gaining insights into how multicellular organisms survive freezing 

and may yield important information for the cryopreservation of larger tissues and organs 

in humans in the future.  
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Chapter II: Characterization of the Glycosylation of 

Aquaglyceroporin HC-3 in Erythrocytes from the Freeze-

Tolerant Anuran, Dryophytes chrysoscelis 

Abstract 

By utilizing an extreme physiological adaptation known as freeze-tolerance, Cope’s gray 

tree frog, Dryophytes chrysoscelis, freezes and then subsequently thaws up to 65% of its 

extracellular fluid to survive the winter. During these periods of freezing and thawing, 

erythrocytes (RBCs) of D. chrysoscelis utilize a protein, aquaglyceroporin HC-3, that 

facilitates transmembrane flux of both water and cryoprotective glycerol to mediate 

osmotic adjustments. RBCs from cold-acclimated tree frogs up-regulate HC-3 protein 

expression, which coincides with more abundant membrane localization and higher levels 

of glycosylation. However, the functional significance of HC-3 glycosylation on 

membrane localization and cellular freeze tolerance is currently not known. We 

hypothesize that anticipatory glycerol accumulation observed in cold-acclimated tree 

frogs contributes to enhanced post-translational modification of HC-3 via N-linked and 

O-linked glycosylation, and that HC-3 glycosylation is important in subcellular 

trafficking of HC-3 from the Golgi to the membrane. RBCs from warm-acclimated D. 

chrysoscelis were separated into three categories: freshly isolated RBCs (FI), RBCs 

cultured in complete cell culture media for 48 hours (CCCM), and RBCs cultured in 

CCCM containing 0.156M glycerol for 48 hours (CCCM+G). Densitometric analyses of 

immunoblots specific for HC-3 showed a 3.5-fold and 1.9-fold average increase in 

glycosylated HC-3 (60-120 kDa) from RBCs cultured in CCCM+G as compared to FI 

RBCs and RBCs cultured in CCCM, respectively. Western blots of RBC proteins treated 
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with PNGase F resulted in a 1.3-fold average decrease in glycosylated HC-3 compared to 

control proteins. However, protein treatment with the O-Glycosidase and Neuraminidase 

mix did not appear to change the abundance of glycosylated HC-3, indicating that HC-3 

is post-translationally modified via N-linked glycosylation but not O-linked. Additional 

results were collected using scanning laser confocal microscopy and HC-3 localization 

was measured in mean fluorescent intensity (arbitrary units) using ImageJ software (N=4-

6 cells per experiment). For RBCs cultured in CCCM+G, immunofluorescence intensity 

of HC-3 in the plasma membrane was 21.7 times greater than HC-3 immunofluorescence 

in the cytosol (P<0.05). In contrast, immunofluorescence intensity of HC-3 in the cytosol 

was 3.2 times greater than HC-3 immunofluorescence in the membrane for FI RBCs 

(P<0.01). There was no difference in HC-3 immunofluorescence intensity between the 

membrane and cytosol in RBCs cultured in CCCM (P>0.05). Using an in vitro cell 

culture system, we have successfully recapitulated cold-acclimated in vivo HC-3 

expression patterns by focusing solely on the influence of a glycerol-induced 

hyperosmotic environment on RBCs of D. chrysoscelis. Thus, a potential correlation 

between cryoprotective glycerol, increased HC-3 N-linked glycosylation, and enhanced 

HC-3 membrane localization has been identified.  

Introduction 

In contrast to other physiological adaptations that avoid the numerous stresses generated 

by exposure to sub-freezing temperatures—such as super- cooling and freeze 

avoidance—organisms adopting freeze tolerance are able to regulate the formation of ice 

crystals within the body (Storey et. al, 1988). Dryophytes chrysoscelis, commonly known 

as Cope’s gray tree frog, is a freeze tolerant organism that undergoes a period of thermal 
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acclimation before the winter in preparation for the process of whole body freezing and 

thawing. In part, the physiological mechanisms that contribute to this remarkable freeze-

tolerant adaptation is the accumulation of high concentration of extracellular glycerol, 

which is mainly mobilized from hepatocytes in the liver (Zimmerman et al., 2007). 

During cold-acclimation, glycerol that is accumulated traverses cellular plasma 

membranes and is thus present in both the intracellular and extracellular fluid. Here, it 

serves as a cryoprotectant to moderate osmotic shifts in water that develop during the 

rapid formation of extracellular ice crystals. Additionally, glycerol also functions to slow 

the formation of extracellular ice crystals through interrupting hydrogen bonding between 

adjacent water molecules and is also thought to stabilize the structures of a variety of 

biomolecules during the freezing and thawing process (Storey and Storey, 2017). 

One pathway that glycerol can cross plasma membranes in bulk supply is through 

the facilitation via aquaporin/aquaglyceroporin (AQP/GLP) members of the Major 

Intrinsic Protein Family (MIP) (Thomas et al., 2002). Aquaporins/Aquaglyceroporins are 

transmembrane channels that facilitate osmotically driven water and/or water and small 

solutes such as glycerol and urea into and out of cells. Many amphibian orthologs to 

mammalian AQPs/GLPs have been discovered and, in addition, two anuran-specific 

aquaporins seem to have evolved to mediate physiological adjustments to variations in 

the surrounding environment, which often changes from aquatic to terrestrial for 

amphibians (Tanii et al., 2002; Virkki et al., 2007, Zimmerman et al., 2007; Suzuki and 

Tanaka, 2009; Ogushi et al., 2010).  

 Four AQP/GLPs (HC-1, HC-2, HC-3, and HC-9) have been discovered, isolated, 

and characterized from D. chrysoscelis. HC-1 and HC-2 are known to be aquaporins, 



P a g e  | 

 

35 

while HC-3 and HC-9, orthologs of mammalian AQP3 and AQP9, are known to function 

as aquaglyceroporins (Stogsdill et al, 2017; Zimmerman et al., 2007). It has previously 

been demonstrated that HC-3 mRNA and protein is expressed and dynamically regulated 

depending on thermal acclimation conditions in a variety of tissues within D. chrysoscelis 

(Mutyam et al., 2011; Zimmerman et al., 2007; Goldstein et al., 2010). Furthermore, HC-

3 protein is more highly expressed in erythrocytes from cold-acclimated tree frogs as 

compared to warm-acclimated tree frogs, suggesting that HC-3 may play an integral role 

in transmembrane water and solute flow during freeze tolerant periods (Mutyam et al, 

2011; Goldstein et al., 2010). The previous establishment of an in vitro erythrocyte cell 

culture system presents an opportunity to explore how RBCs from D. chrysoscelis 

function with varying expression patterns of HC-3 and to understand the physiological 

mechanisms regulating that expression (Mutyam et al., 2011).  

Findings from initial experiments performed using this erythrocyte cell culture 

system indicated that RBCs cultured with the addition of glycerol—the main 

cryoprotectant accumulated and distributed throughout freezing and thawing—express an 

increased abundance of N-linked glycosylated HC-3 protein. Additionally, these 

experiments indicated qualitatively that HC-3 membrane localization was enhanced in 

RBCs cultured with the addition of glycerol. In the current study, we sought to 

accomplish the following: further characterize HC-3 glycosylation, quantitatively assess 

the influence that a glycerol-induced hyperosmotic environment has on HC-3 membrane 

localization, and begin to examine the effects of glycerol on the total glycoprotein profile 

of erythrocytes from Dryophytes chrysoscelis. The results from this investigation 

contribute to the understanding of the overall regulatory elements involved in 
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aquaglyceroporin HC-3 expression and localization, and ultimately aid in human 

understanding of the mechanisms involved in freeze tolerance. 

Materials and Methods 

Animals 

Male gray tree frogs of the freeze-tolerant anuran species, Dryophytes chrysoscelis, were 

identified and collected from ponds in southwestern Ohio. Species identification was 

based on trill frequency. The animals were then transferred to constant-temperature 

rooms at Wright State University in Dayton, Ohio. During the summer months, animals 

were kept in lighting conditions that correlated with the natural light cycle—16 hours 

light, 8 hours dark—and were moved to climate controlled rooms with the onset of 

winter. Warm-acclimated frogs were used in these experiments and were singly housed, 

maintained at 21°C with a 12:12-hour light cycle, and fed crickets three times per week. 

They received water ad libitum. The methods of collection, housing procedures, and 

experimental protocols for the care and use of D. chrysoscelis were approved by the 

Institutional Animal Care and Use Committee (IACUC) at Wright State University.  

Erythrocyte Cell Culture System 

Erythrocytes were selected as an appropriate in-vitro cell culture model based on their 

nucleation, metabolic activity, and because they were able to be repetitively harvested 

from the same organism in a non-lethal manner. Approximately 100 µl of blood was 

collected from warm-acclimated D. chrysoscelis through an axillary puncture and 

collected in heparinized capillary tubes. Blood was added to a 15 ml conical tube 

containing 10 ml of complete cell culture media (CCCM, 250 mOsM: RPMI 1640 

medium supplemented with L-glutamine, 100 µg/ml of streptomycin and 0.25 µg/ml of 

amphotericin B, and 5% fetal bovine serum) and placed in a styrofoam cooler to control 
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for temperature fluctuations. This styrofoam cooler was then transferred from Wright 

State University to the University of Dayton for further experimentation. Conical tubes 

were centrifuged at 1000 x g for 15 minutes and the supernatant was removed removed. 

Pelleted erythrocytes were re-suspended in 10 ml of CCCM and a total cell count was 

performed using a hemocytometer. The cells were then re-suspended at one million cells 

per milliliter in CCCM or CCCM containing 0.156 M glycerol and these volumes were 

added to a 25 cm2 Corning flask. This glycerol concentration was chosen for two reasons: 

1.) the plasma glycerol concentration in cold-acclimated gray tree frogs reaches greater 

than 100 mM, which further increases to greater than 400mM upon freezing (Storey and 

Storey, 1985; Layne and Jones, 2001); and 2.) the addition of 0.156 M glycerol raises the 

osmolarity of the cell culture media to 400 mOsM, roughly the plasma osmolarity in 

cold-acclimated tree frogs. Suspension cultures were kept at a 45° angle on a plate shaker 

at 190 rpm at 22-25°C and the media was replenished every 24 hours throughout the 48 

hours of the experiment. Viability was quantified by trypan blue exclusion dye staining at 

0, 24, and 48 hours.  

Deglycosylation 

Total cellular proteins were isolated from cultured erythrocytes in a RIPA buffer at 0 

hours and 48 hours. Twenty micrograms of protein were used and the protocols for 

Peptide-N-glycosidase F, O-glycosidase and Neuraminidase, or Protein Deglycosylation 

Mix II were followed per the manufacturer’s instruction (New England Biolabs). These 

enzymes and enzyme mixes were chosen because they are specific for catalyzing the 

release of N-glycans, O-glycans, and N- and O-glycans, respectively. Control and 

enzyme-treated proteins were size fractionated using SDS-PAGE and immunoblotted as 

described below.  
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Western Blotting 

HC-3 protein expression was analyzed by Western blotting using previously established 

methods (Mutyam et al., 2011). Roughly 1x106 erythrocytes were collected from cultures 

at 0 hours and 48 hours and centrifuged at 1000 x g for 10 minutes. Pelleted cells were re-

suspended in RIPA buffer and lysed by three consecutive freeze-thaw cycles (1 min on 

dry ice and 1 min at 37°C). Total protein concentration in each of the three samples was 

quantified using the Pierce BCA Protein Assay Reagent Kit according to the 

manufacturer’s instruction (ThermoScientific). Twenty-five µg of protein was size 

fractionated by SDS-PAGE on a 12% denaturing polyacrylamide gel and electro-

transferred to polyvinylidene difluoride membranes (SequiBlot; Bio-Rad). Western 

hybridization was carried out overnight at 4°C using a peptide-derived, monospecific 

rabbit polyclonal antibody raised against HC-3 (0. 44mg/mL; Goldstein et al., 2010), or 

mouse-anti-β-actin antibody (Sigma-Aldrich) followed by incubation with horseradish 

peroxidase-conjugated goat anti-rabbit secondary antibody (Santa Cruz Biotech) or goat 

anti-mouse secondary antibody (Santa Cruz Biotech), respectively. Immunoreactive 

signals were detected using chemiluminescence substrate (West Pico SuperSignal) and 

visualized on X-ray film (Kodak Film) with multiple exposures in a dark-room.  

Immunocytochemistry 

For freshly isolated erythrocytes, erythrocytes cultured in CCCM for 48 hours, and 

erythrocytes cultured in CCCM+G for 48 hours, 20 µl of the cell suspension was applied 

to a gelatin-coated slide and dried at room temperature. Immunocytochemistry was 

performed as described (Mutyam et al., 2011). Slides were washed and labeled with goat 

anti-rabbit fluorescein- conjugated secondary antibody specific for HC-3 (Vector 

Laboratories) diluted 1:1,000 in 1% blocking serum. Cells were treated with RNase 
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(4mg/mL; Promega) for 5 minutes and stained with propidium iodide as per the 

manufacturer’s instruction (Sigma-Aldrich). Immunofluorescence was analyzed using the 

Olympus Fluoview 1000 Laser Scanning Confocal Microscope.  

Total Glycosylation Stain 

The impact of glycerol on the total glycoprotein profile of erythrocytes was assessed via 

the Molecular Probes® Pro-Q® Emerald 300 Glycoprotein Gel and Blot Stain Kit. This 

kit provides a powerful method for staining glycoproteins on gels through reacting with 

periodate-oxidized carbohydrate groups. This stain was used on an SDS-PAGE gel 

following RBC protein size fractionation, and control proteins used were the 

CandyCane™ molecular weight standards, which contain a mixture of glycosylated and 

non-glycosylated proteins. The manufacturer’s protocol was followed to carry out this 

method (ThermoFisher Scientific). 

Statistics 

The abundance of glycosylated HC-3 protein expression (normalized to b-actin) in 

erythrocytes from warm-acclimated frogs cultured in CCCM+G for 48 hours is 

represented as a percentage of normalized glycosylated HC-3 expression in freshly 

isolated erythrocytes from warm-acclimated frogs and in erythrocytes from warm-

acclimated frogs cultured in CCCM alone for 48 hours. The analysis of the quantification 

of glycosylated HC-3 was done using densitometry on UVP software and an average 

value was calculated for each of the three conditions—Freshly Isolated (FI), erythrocytes 

cultured in CCCM for 48 hours (M), and erythrocytes cultured in CCCM+G for 48 hours 

(G)—where n=2 observations.  

 The abundance of glycosylated HC-3 protein expression (normalized to -actin) 

in erythrocytes from warm-acclimated frogs in each condition that were treated with 
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PNGase F is represented as a percentage of normalized glycosylated HC-3 expression in 

erythrocytes from warm-acclimated frogs in each conditions that were not treated with 

PNGase F. The analysis of the quantification of glycosylated HC-3 was done using 

densitometry, through which we calculated two average values for the amount of 

glycosylated HC-3; one value for all three conditions with PNGase F, one value for all 

three conditions without PNGase F—where n=2 observations.  

To determine whether HC-3 protein was localized in the membrane of RBCs or 

the cytosol of RBCs, Image J software was used. A line generated using Image J was 

drawn across each of the RBCs from each condition (FI, n=4; M, n=5; G, n=6), and the 

data points were graphed. A standard membrane was determined across all RBCs (10% 

of the non-zero data points, 5% from each side of the cell). Statistics were performed 

using a one-way Anova with post-hoc Tukey HSD test through the R program and 

average values of HC-3 immunofluorescence intensity from the cytoplasm and membrane 

were inputted into the program. 

Results 

Increased abundance of Glycosylated HC-3 in Erythrocytes Cultured in 

Media Containing Glycerol 

Prior experiments have demonstrated differential regulation of HC-3 expression in 

multiple tissues depending upon the thermal acclimation state of Dryophytes chrysoscelis 

(Mutyam et al., 2011; Zimmerman et al., 2007; Goldstein et al., 2010; Pandey et al., 

2010). Additionally, through the establishment of an erythrocyte cell culture system, 

Mutyam and colleagues (2011) showed differential HC-3 express patterns depending on 

time and media composition of cell cultures. In the present study, Western blotting of 

RBC proteins from freshly isolated (FI) warm-acclimated frogs, proteins from RBCs 
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cultured in Complete Cell Culture Media for 48 hours (CCCM), and proteins from RBCs 

cultured in Complete Cell Culture Media with the addition of 0.156M glycerol for 48 

hours (CCCM+G) showed 3.5-fold and 1.9-fold average increase in the abundance of 

glycosylated HC-3 (60-120 kDa) from RBCs cultured in glycerol containing media 

compared to FI RBCs and RBCs cultured in CCCM alone (Figures 5, 6).  
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Figure 5. RBCs cultured with the addition of glycerol show an increased 

abundance of glycosylated HC-3. Proteins were isolated from Freshly Isolated 

RBCs (FI), RBCs cultured in CCCM for 48 hours (M), and RBCs cultured in CCCM 

for 48 hours with the addition of 0.156M glycerol (G) and immunoblotting was 

directed towards HC-3. -actin (42 kDa) expression served as a gel loading control. 
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Evidence for HC-3 N-linked Glycosylation, but Not O-linked 

Glycosylation 

Results from experiments conducted on AQP3, the mammalian orthologue of HC-3, 

showed deglycosylation of AQP3 with PNGase F, resulting in increased electrophoretic 

mobility of AQP3 on SDS PAGE (Roudier et al., 2001). These findings contributed to the 

hypothesis that HC-3 may be N-linked or O-linked glycosylated and it was indeed shown 

that the treatment of RBC protein lysates with PNGase F, an enzyme that catalyzes the 

release of N-linked glycan moieties from glycoproteins, subsequently resulted in the 

Figure 6. HC-3 glycosylation is enhanced with the addition of glycerol to cell 

cultures. Densitometric analyses of immunoblots specific for HC-3 showed a 3.5-

fold and 1.9-fold average increase in glycosylated HC-3 (60-120 kDa) from RBCs 

cultured in CCCM with 0.156M glycerol for 48 hours (G) as compared to Freshly 

Isolated RBCs (FI) or RBCs cultured in CCCM alone for 48 hours (M), respectively. 
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collapse of the high molecular weight “smear” into discrete immunospecific bands at 23 

kDa, 31.5 kDa, and 35 kDa (Mutyam et al., 2011). However, to further characterize the 

glycosylation of HC-3, treatment of protein lysates with O-glycosidase and 

Neuraminidase, a pair of enzymes that catalyzes the release of O-linked glycan moieties 

from glycoproteins, was executed.  

 RBC protein lysates were treated with Protein Deglycosylation Mix II, a set of 

enzymes specific for catalyzing the release of both N- and O-linked glycans. Results from 

this experiment showed a decreased amount of glycosylated HC-3 from protein lysates 

treated with the enzymes as compared to control proteins, indicating that HC-3 could be 

N- or O-linked glycosylated (Figure 7). 
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Figure 7. Enzymatic Digestion of HC-3 with the Protein Deglycosylation Mix II 

resulted in the disappearance of high molecular weight species. RBC proteins from 

FI RBCs, RBCs cultured in CCCM for 48 hours (M), and RBCs cultured in  

CCCM with the addition of 0.156M glycerol for 48 hours were treated with and 

without the Protein Deglycosylation Mix II, a mix of enzymes that cleave both N- and 

O-linked glycans. 
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Next, the results attained through the deglycosylation experiments executed by 

Mutyam and colleagues (2011) were recapitulated, showing that treatment of protein 

lysates from RBCs with PNGase F resulted in a 1.3-fold average decrease in glycosylated 

HC-3 in RBC proteins compared to control proteins (Figures 8, 9). 
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Figure 8. Enzymatic Digestion of HC-3 with PNGase F resulted in the 

disappearance of high molecular weight species. RBC proteins from FI RBCs, 

RBCs cultured in CCCM for 48 hours (M), and RBCs cultured in CCCM with the 

addition of 0.156M glycerol for 48 hours were treated with and without PNGase F, 

an enzyme that cleaves N-linked glycans. 
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Treatment of protein lysates with O-glycosidase and Neuramindase, however, did not 

appear to affect the abundance of glycosylated HC-3, indicating that HC-3 is N-linked 

glycosylated but not O-linked (Figure 10). 
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Figure 9. Enzymatic digestion with PNGase F resulted in a decreased amount 

of glycosylated HC-3. Densitometric analyses of immunoblots specific for HC-3 

resulted in a 1.3-fold average decrease in glycosylated HC-3 in RBC proteins 

treated with PNGase F compared to RBC proteins that were not treated with 

PNGase F. 
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Enhanced HC-3 Membrane Localization in Erythrocytes Cultured in 

Media Containing Glycerol 

As previously stated, it is known that HC-3 is differentially regulated depending on the 

thermal acclimation state of D. chrysoscelis (Mutyam et al., 2011; Zimmerman et al., 

2007; Goldstein et al., 2010; Pandey et al., 2010). Aquaglyceroporin HC-3 was found to 

be significantly more robust in the plasma membrane vs. the cytosol in cold-acclimated 

tree frogs as compared to warm-acclimated tree frogs (Mutyam et al., 2011). Because 

glycerol naturally accumulates intracellularly and extracellularly in D. chrysoscelis 
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Figure 10. Enzymatic digestion with O-glycosidase and Neuraminidase did not 

result in the disappearance of high molecular weight species. RBC proteins from 

FI RBCs, RBCs cultured in CCCM for 48 hours (M), and RBCs cultured in CCCM  

with the addition of 0.156M glycerol for 48 hours were treated with and without O-

glycosidase and Neuraminidase, enzymes that that cleaves O-linked glycans. 
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during cold acclimation periods as part of its freeze tolerance strategy, and the 

distribution of glycerol into and out of cells is likely through aquaglyceroporins, we 

explored whether the addition of glycerol to the media could regulate changes in HC-3 

localization. Immunofluorescence of HC-3 in the cytosol was 3.2 times greater than HC-3 

immunofluorescence in the membrane for Freshly Isolated RBCs (Figures 11, 12, 13; 

P<0.01.) There was no difference in HC-3 immunofluorescence intensity between the 

membrane and cytosol in RBCs cultured in CCCM (M) for 48 hours (Figures 11, 12, 14; 

P>0.05). In contrast, for RBCs cultured in CCCM+G for 48 hours, immunofluorescence 

intensity of HC-3 in the plasma membrane was 21.7 times greater than HC-3 

immunofluorescence in the cytosol (Figures 11, 12, 15; P<0.05). 
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To determine whether HC-3 protein was localized in the membrane of RBCs or 

the cytosol of RBCs, Image J software was used. A line generated using Image J was 

drawn across each of the RBCs from each condition (FI, n=4; M, n=5; G, n=6), and the 

data points were graphed. A standard membrane was determined across all RBCs (10% 

FI 

M 

G 

Composite             HC-3                 Nucleus 

Figure 11. HC-3 membrane localization is enhanced as compared to HC-3 

cytosolic localization in RBCs cultured with the addition of glycerol. RBCs 

were Freshly Isolated (FI), cultured in CCCM for 48 hours (M), or cultured in 

CCCM with the addition of 0.156 M glycerol for 48 hours (G). 

Immunocytochemistry, Scanning Confocal Microscopy, and ImageJ Software 

were used to identify and quantify HC-3 intensity found within the various culture 

conditions. 
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of the non-zero data points, 5% from each side of the cell), and an average value from the 

membrane and cytosol from RBCs in each condition were averaged and inputted into the 

statistical program “R” (Figure 13). 
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Figure 12. Image J Analyses. The membrane was distinguished from the cytosol by 

using Image J software and graphing HC-3 immunofluorescence intensity across each 

of the red blood cells. A standard percentage was determined to be the membrane in all 

cells. For FI RBCs, n=4 cells (A); for RBCs cultured in CCCM for 48 hours, n=5 (B); 

for RBCs cultured in CCCM+G for 48 hours; n=6 (C). 
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Figure 13. Immunofluorescence of HC-3 in the cytosol was 3.2 times greater than 

HC-3 immunofluorescence in the membrane for Freshly Isolated RBCs (FI) 

(P<0.01). RBCs from each culture were analyzed using ImageJ software to quantify 

HC-3 intensity throughout the cell. Statistics were performed using a One-way Anova 

with post-hoc Tukey HSD test through the R program. 
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Figure 14. There was no difference in HC-3 immunofluorescence intensity between 

the membrane and cytosol in RBCs cultured in CCCM (M) for 48 hours (P>0.05). 

RBCs from each culture were analyzed using ImageJ software to quantify HC-3 

intensity throughout the cell. Statistics were performed using a One-way Anova with 

post-hoc Tukey HSD test through the R program. 



P a g e  | 

 

52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total Glycosylation Stain Results 

It was hypothesized that because the addition of glycerol to cell cultures resulted in an 

increased abundance of glycosylated HC-3 protein, the addition of glycerol to cell 

cultures would also upregulate the expression of more glycosylated proteins throughout 

the cells. Further experiments are required to address this hypothesis, however, RBCs 

cultured in media or media with the addition of glycerol show an enhanced expression of 

glycosylated proteins as compared to FI RBCs (Figure 16). This indicates that a variation 

Figure 15. RBCs cultured in CCCM+G for 48 hours (G), immunofluorescence 

intensity of HC-3 in the plasma membrane was 21.7 times greater than HC-3 

immunofluorescence in the cytosol (P<0.05). RBCs cultured in CCCM+G for 48 

hours were analyzed using ImageJ software to quantify HC-3 intensity throughout the 

cell. Statistics were performed using a One-way Anova with post-hoc Tukey HSD test 

through the R program. 
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in the total erythrocyte glycoprotein profile emerges simply by culturing RBCs for 48 

hours.  

                                          

     

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

An understanding of the functional role of aquaglyceroporins in animal physiology has 

only recently begun to emerge, with much of the research to date occurring on 

mammalian models. For example, it is now known that AQP3 plays an important role in 

the hydration of the stratum corneum and would healing, AQP7 and AQP9 are involved 

in obesity, and AQP7 had been shown to regulate triglyceride metabolism (Hara et al., 

2002; Maeda et al., 2008; Maeda et al., 2004). Furthermore, AQP3 is expressed 

mammalian erythrocytes and has been shown to contribute to erythrocyte glycerol 

Figure 16. Freshly Isolated erythrocytes (FI) show differential expression of 

glycoproteins as compared to erythrocytes cultured in CCCM for 48 Hr (M) and 

erythrocytes cultured in CCCM + G for 48 Hr (G). (A) represents the bottom half 

of the gel (15-75 kDa), while be represents the top half of the gel (75-250 kDa). Proteins 

from all RBCs were size fractionated by SDS-PAGE and stained with the Pro Q 

Emerald 488 Glycoprotein Staining Kit (Thermo-Fisher Scientific). 
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permeability (Liu et al., 2007; Beitz et al., 2009). Thus, it is evident that the study of 

aquaglyceroporins function and regulation will inevitably further human understanding of 

basic but important physiological process.   

However, GLP function and regulation are significantly less studied in anurans. 

Investigations over the past fifteen years have led to the understanding the AQPs/GLPs 

are integrated into many essential physiological mechanisms involving fluid regulation 

and solute distribution within amphibians. Here, it is hypothesized that AQPs/GLPs may 

be an important factor in the success of the physiology behind freeze tolerance—a 

process that calls for immense solute and water redistribution—in Cope’s gray tree frog, 

Dryophytes chrysoscelis.  

Aquaglyceroporins in other life forms have previously been shown to be involved 

in freeze tolerance. For example, AQP3 enhances the survivability of cryopreserved 

mouse oocytes, over-expression of aquaporins in yeast leads to enhanced resistance to 

cellular damage from freezing, and in several freeze-tolerant organisms AQPs have been 

shown to be responsible for mediating water and solute flow across membranes during 

freezing (Tanghe et al., 2002; Edashige, et al., 2003; Izumi et al., 2006; Philip et al., 

2008).  

Thus, based on the previously stated evidence, it is hypothesized that the AQP3 

anuran ortholog, GLP HC-3, expressed more abundantly in cold-acclimated D. 

chrysoscelis, is involved in the transmembrane mediated flux of both water and glycerol 

during periods of rapid extracellular ice crystal formation and ultimately contributes to 

this organism’s freeze tolerant nature. This hypothesis was confirmed by Mutyam and 

colleagues (2011) once they discovered that erythrocytes harvested from cold-acclimated 
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frogs showed an increased abundance of native HC-3 protein expression, enhanced HC-3 

membrane localization, and upregulated HC-3 post-translational glycosylation as 

compared to erythrocytes from warm-acclimated frogs.                    

Following this discovery, Mutyam et al. successfully established an in vitro 

erythrocyte cell culture system that allowed for further investigation into the function and 

regulation of GLP HC-3 (2011). Initial experiments resulted in the finding that the 

addition to glycerol to cell cultures led to an increased abundance of glycosylated HC-3 

and enhanced HC-3 membrane localization, similar to the expression patterns found in 

the cold-acclimated frogs. In this study, the previously established in vitro erythrocyte 

cell culture system was used to further characterize the glycosylation of HC-3, quantify 

the effect of glycerol on HC-3 membrane localization, and also begin to examine the 

impact glycerol has on the total glycoprotein profile of erythrocytes from D. chrysoscelis.  

Erythrocytes cultured with the addition of glycerol to the media showed a 3.5-fold 

and 1.9-fold average increase in glycosylated HC-3 as compared to freshly isolated 

erythrocytes and erythrocytes cultured in media alone. These results recapitulate those 

previously reported and further confirm the evidence for a glycerol-dependent post-

translational glycosylation of HC-3 (Mutyam et al., 2011). However, because the 

osmolarity of the media was different between the three culture conditions, it is not 

possible to know whether the resulting effects are specific to glycerol or are the result of 

cellular responses to hyperosmolarity in general. With this held in mind, it is still possible 

these results indicate glycerol-mediated HC-3 membrane localization in erythrocytes 

from D. chrysoscelis. Further studies are needed to confirm this hypothesis.  
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Additionally, it was shown that treatment of erythrocyte protein lysates with 

PNGase F, an enzyme that catalyzes the release of N-glycans, resulted in the 

disappearance of high molecular weight species in immunoblots directed towards HC-3. 

However, treatment of protein lysates with O-glycosidase and Neuraminidase, enzymes 

that catalyze the release of O-glycans, did not appear to result in the disappearance of 

high molecular weight species. These results indicate that HC-3 is modified via N-linked 

glycosylation, but not O-linked.  

Furthermore, the immunocytochemistry experimental results indicate that HC-3 

membrane localization is increased 21.7-fold as compared to HC-3 cytosolic localization 

in RBCs culture with the addition of glycerol (P<0.05), while freshly isolated 

erythrocytes showed an opposite pattern and RBCs cultured in media alone showed no 

difference in HC-3 localization. Combined, these results along with the Western blotting 

results, indicate that a glycerol-induced hyperosmotic environment leads to a higher 

abundance of glycosylated HC-3 and a higher amount of HC-3 in the membrane. It is 

unclear, however, whether the HC-3 located in the membrane is glycosylated or not. 

Further studies are needed to address this question.  

Finally, freshly isolated RBCs and RBCs in culture with or without glycerol 

displayed differential erythrocyte glycoprotein profile, indicating that the addition of 

these cells to a culture of 48 hours upregulates the number of glycoproteins found within 

the cells. Thus, taken together, the data from this study successfully recapitulate in vivo 

HC-3 expression patterns found in cold-acclimated frogs and a potential relationship 

between cryoprotective glycerol, increased HC-3 N-linked glycosylation, and enhanced 

HC-3 membrane localization has been identified.  
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Chapter 3: Future Directions and Broader Implications 

Future Directions 

The establishment of an in vitro erythrocyte cell culture system by Mutyam and colleagues 

(2011) opened up many opportunities to investigate the cellular mechanisms suspected to be 

involved in the mechanisms of freeze tolerance in Cope’s gray tree frog, Dryophytes 

chrysoscelis. From initial experiments, it was found that erythrocytes cultured in media 

containing glycerol—the main cryoprotectant used in D. chrysoscelis—led to an increased 

abundance of N-linked glycosylated HC-3 and enhanced HC-3 membrane localization as 

compared to control cells (Mutyam et al., 2011). These results match similarly to the HC-3 

expression patterns found in the cold-acclimated frogs as compared to warm-acclimated frogs. 

Taken together, these two sets of data suggest a potential relationship between cryoprotective 

glycerol, HC-3 glycosylation, and HC-3 membrane localization that requires further 

investigation. 

    The experiments we set out to conduct in this study were aimed at further 

characterizing the glycosylation of HC-3, quantitatively describing the influence that glycerol 

had on HC-3 membrane localization, and examining the impact that glycerol had on the total 

glycoprotein profile of proteins from RBCs of Cope’s gray tree frog. While our studies 

preliminarily completed these objectives, the role of HC-3 glycosylation in membrane 

trafficking is still unknown. Previous researchers demonstrated that when the covalent bonding 

of N-glycans to AQP2 was inhibited, the AQP2 protein traveled to the Golgi complex but 

failed to insert in the plasma membrane (Hendriks et al., 2004). Based on this experiment and 

other similar experiments, we hypothesize that the addition of sugar moieties to HC-3 via 
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glycosylation also aids in the trafficking and membrane insertion of the HC-3 protein in 

erythrocytes of D. chrysoscelis, and is thus critical for cellular freeze tolerance. 

         One avenue through which future researchers could test this hypothesis is by the use of 

tunicamycin (Figure 17). Tunicamycin belongs to a class of nucleoside antibiotics composed of 

uridine, an 11-carbon disaccharide called tunicamine, and a fatty acid of variable length, 

branching, and saturation. Tunicamycin was initially discovered in Streptomyces 

lysosuperificus, and additional similar compounds were found later on in other 

microorganisms. Its name comes specifically from its antiviral actions, which inhibits viral 

coat (“tunica”) formation (Varki et al., 2017). 

 

Tunicamycin inhibits N-glycosylation in eukaryotes by blocking the transfer of N-

acetylglucosamine-1-phosphate (GlcNAc-1-P) from UDP-GlcNAc to dolichol-P (catalyzed by 

Figure 17. The Molecular Structure of Tunicamycin. Pictured above is the 

molecular structure of the N-linked glycosylation inhibitor, tunicamycin (Esko 

et al., 2017) 
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GlcNAc phosphotransferase; GPT), which limits the formation of dolichol-PP-GlcNAc in the 

lumen of the ER of cells. Tunicamycin has been a popular tool used to study the role of N-

glycans in glycoprotein secretion and function (Varki et al., 2017). Therefore, it is an excellent 

tool that can be used to investigate the role of the N-linked glycosylation of HC-3 in membrane 

trafficking. 

By culturing erythrocytes of D. chrysoscelis using the previously established in vitro 

cell culture system with and without the addition of tunicamycin and conducting downstream 

biochemical experiments with Western blotting and immunocytochemistry, one could address 

the efficacy of tunicamycin in the inhibition of N-linked glycosylation and the impact of the 

inhibition of N-linked glycosylation on HC-3 membrane localization. Following these 

experiments, a functional freeze assay of cells cultured with and without the addition of 

tunicamycin could be executed to directly relate the significance of HC-3 N-linked 

glycosylation with RBC freeze tolerance in Cope’s gray tree frog. It is advisable to test the cell 

type at various concentrations of tunicamycin before choosing a set experimental dose. In 

addition to cell type, the concentration of tunicamycin used likely depends on type of media 

used (Elbein, 1987). 

However, it is important to note that the addition of tunicamycin to cell cultures may 

have a wide range of effects, given that it is inhibiting N-linked glycosylation of proteins 

ubiquitously throughout the cells if administered at the correct concentration. Depending on the 

concentration dose, tunicamycin may have no effect on cellular function, or it may disrupt the 

function of important glycoproteins, leading to cell death. Therefore, it is important to test for 

cellular viability through the cell culturing periods to ensure proper cellular function. 
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Glycosylation in Disease 

Glycans are compounds consisting of a large number of monosaccharides linked 

glycosidically, and are one of the major constituents that make up the cell.  Furthermore, they 

are the most widespread biopolymers, made of saccharides that are bonded to newly translated 

proteins within the cell secretory pathway (Ohtsubo and Marth, 2006). Because of the vast 

amount of diversity in sugar monomer structure and intersaccharide bonding, combined with 

the variation in glycan attachment sites on proteins, the intricacy of the glycome hugely 

surpasses that of the proteome. In fact, almost every mammalian cell membrane protein is post-

translationally modified via glycosylation (Lauc et al., 2016). 

Glycans are involved in a variety of molecular processes, including but not limited to 

protein folding, molecular trafficking, and modulation of receptor activity (Ohtsubo and Marth, 

2006). Furthermore, all human cells are surrounded with a thick layer of glycans bonded to 

proteins and lipids found within the membrane, known as the glycocalyx, which is at least 10-

1000 times the density of the actual cell membrane. The glycocalyx represents a figurative 

cell's fingerprint, or an identifier for the human body to distinguish the “self” from the “non-

self.” In fact, unknown glycan distributions found on tissues that were transplanted or diseased 

cells can be identified by glycan receptors found in the cell membrane, which then initiate 

specific systemic immune responses to protect the cell (Varki, 2015). 

Since glycans are involved in many biological processes, many molecular disruptions 

in glycan synthesis are continuously being identified as causes of human diseases (Freeze, 

2006). For example, endocytosis and trafficking to lysosomes are usually found to be involved 

in the process of breaking down biomolecules such as proteins and glycans. Disruption of this 

catabolic process can stem from malfunctions of glycosidase enzymes, which lead to diseases 
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such as Gaucher’s, Niemann-Pick type C, Sandhoff’s, and Tay-Sachs diseases (Ohtsubo and 

Marth, 2006). Additionally, the hereditary disorders of glycosylation (HDGs) include a number 

of diseases dealing with metabolic defects that are associated with errors in distinct parts of 

glycan synthesis (Carchon, 2004). Currently, at least 20 unique genes involve mutations that 

influence glycosyltransferase and glycosidase enzyme activities, leading to HDGs (Aebi, 

2001). Based on this knowledge, glycan variants found within a cell can now be used as certain 

disease markers and present a diagnostic tool in medicine as well as potential therapeutic 

targets for downstream treatments. 

Looking at the glycoprotein profile of a human shows promising contributions to the 

future of personalized medicine, which aims to individualize diagnosis and treatment down to 

the molecular level (Almeida and Kolarich, 2016). Considerable efforts in research applying to 

the human genome and proteome has begun to improve personalized medicine, however 

protein glycosylation markers have not been fully taken advantage of and much more research 

needs to be conducted. As mentioned previously, changes in the glycan pattern on a protein are 

frequently associated with human diseases (Thaysen-Anderson et al., 2015). Thus, in the 

context of diseases such as cancer or inflammatory conditions, glycoproteins and the glycans 

associated with them are now being used as potential markers and therapeutic targets. 

Furthermore, if associations between glycan patterns on proteins, certain diseases, and their 

respective medical treatments are understood, glycosylation inscriptions specific to proteins 

can provide insights to an individual's health (Figure 18). 
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Immunoglobulin G (IgG) is a crucial and well-known glycoprotein in the human 

immune system. IgG is the most numerous immunoglobulin in the serum of humans and is 

categorized into four subclasses that exhibit variations in their protein sequence, but all four 

subclasses share a very highly conserved N-glycosylation site at Asn297 (Figure 20) (Xue et 

al., 2013). IgG N-glycans have an important role in modulating IgG function and activity, and 

  

  

Figure 18. The Glycosylation of Proteins in Personalized Medicine. 

Glycosylation inscriptions provide a reflection on an individual's health and can aid 

in personalized treatment. Ultimately, the combination of glycomics & 

glycoproteomics will come together to personalize medicine at the molecular level. 

This image demonstrates the necessity of knowing the glycosylation inscription 

tumor within a patient, since the specific treatment done for that individual may be 

different than the treatment of the same kind of tumor from a different patient 

(Almeida and Kolarich, 2016). 
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because of this IgG glycosylation is being studied closely in relation to the development of 

disease (Figure 19). 

 

As biomedical knowledge surrounding glycobiology grows, strategies for 

detecting and understanding glycan production and variation will continually advance. 

Figure 19. N-glycosylation regulates the inflammatory implications of IgG. The 

increased abundance of galactosylated and/or sialylated N-glycans promotes anti 

inflammatory properties, whereas more afucosylated structures increase pro-

inflammatory properties. These N-glycan patters provide tools in diagnosis and 

prognosis for certain diseases. Sialactose (S), Fucose (F) and Galactose (G) are 

labeled in the figure above, indicating the respective number of each of those 

saccharides (Almeida and Kolarich, 2016). 
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The size of the human genome related to protein glycosylation relative to what is 

understood about glycosylation suggests that we have much to discover in the field of 

glycan function (Lauc et al., 2016). 

Cryopreservation of Tissues  

Cryopreservation uses extremely low temperatures to protect structurally intact living 

cells and tissues for an extended amount of time. The type of cell or given cells 

throughout different species, mammalian in particular, influences biological reactions and 

survival during the freezing and thawing cycle. The process of conventional 

cryopreservation goes as follows (1): mixing of cryoprotective agents or cryoprotectants 

(CPAs) with cells or tissues prior to exposure to extremely cold temperatures; (2) cooling 

of the cells or tissues and subsequent storage; (3) warming of the cells or tissues; and (4) 

withdrawal of CPAs from cells or tissues following the thawing process. From these 

major steps, it is evident that the correct use of CPAs is an important aspect of 

cryopreservation and critical in improving the viability of the cell or tissue being 

cryopreserved. Cryoprotectants, as mentioned in Ch. II, reduce the damage of freezing. 

These CPAs are best suited for cryoprotection if they are biologically appropriate, 

membrane permeable, and have minimal cellular toxicity. Various CPAs are used 

currently, including glycerol—the main cyroprotectant used by D. chrysoscelis—DMSO, 

ethylene glycol, and trehalose (Jang et al., 2017).  

       Cryopreservation can be applied to human health and medicine in some of the 

following ways: (1) cryopreservation of cells or organs; (2) cryosurgery; (3) biochemistry 

and molecular biology; and (4) in vitro fertilization (IVF). Benefits of using 

cryopreservation include the widespread banking of cells for human leukocyte antigen 
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typing specific for the process of organ transplantation and also in the increase in time 

available for successful cell and tissue transplantation to the correct medical centers. 

Additionally, the long-term banking of stem cells is the first logical step towards the 

direction of engineering tissues, which can lead to advancements in the regeneration of 

soft tissue function and in the treatment of known diseases that are without a medical 

therapy (Jang et al., 2017).  

       More specifically, the cryopreservation of human oocytes, embryos, sperm, 

testicular tissue, and hepatocytes could greatly influence human health and medicine in 

the future. For example, the very first documented case of embryo cryopreservation for 

fertility preservation occurred in 1996, with the application of an IVF to a woman who 

was diagnosed with breast cancer before she underwent chemotherapy treatment. 

Additionally, the cryopreservation of mature oocytes is an evidence-based technique that 

helps to preserve the reproductive capabilities of a human. A retrospective study of 

11,768 cryopreserved human embryos that had gone through at least one thawing period 

from 1986 to 2007 showed results that suggested that the duration of storage on clinical 

pregnancy had no significant influence on pregnancy or live birth rate. Furthermore, adult 

stem cells have the ability to differentiate into several types of certain cells and can be 

obtained from various locations, and several of these stem cell types have a potential 

application in regenerative medicine (Jang et al., 2017). Thus, it is clear that the fields of 

tissue engineering, regenerative medicine, and cell and tissue transplantation are hugely 

dependent on the capability to preserve and transport these stem cells without changing 

their genetic makeup or cellular structure (Jang et al., 2017) 
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       Although the applications for cryopreservation in the healthcare field are 

numerous, there are some limitations that still exist. For example, the metabolism of cells 

is extremely slow at low temperatures, which leads to changes in lipids and proteins that 

may disrupt proper cellular function and structure (Karlsson et al., 2008). Also, if used in 

too great of concentrations, CPAs themselves can be damaging to cells. For example, 

DMSO could impact the stability of chromosomes, leading to possible tumor formation 

(Pegg, 2010). Finally, the ice crystals themselves can be physically damaging to cells if 

formed in high enough amounts and around or in cells, so control of the size and location 

of ice crystal formation is a challenging problem that needs more research to understand 

properly (Pegg, 2010). 

      Taking into account the applications of cryopreservation in human health and 

disease and our current limitations in the success of this technique, it is clear that research 

in this area is both valuable and necessary to make advancements in tissue engineering, 

stem cell preservation, and cell, tissue, and organ transplantation methods. Returning to 

the “Krogh Principle,” coined by August Krogh, a famous Danish Comparative 

Physiologist who won the Nobel Prize for Physiology or Medicine in 1920: “For many 

problems, there is animal on which it can be most conveniently studied.” These words 

ring true for the problems within cryopreservation discussed above and the potential to 

solve these problems through studying an animal that has evolved successful mechanisms 

to make it naturally freeze tolerant—Dryophytes chrysoscelis.  
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Chapter IV: Personal Reflections 

I began my undergraduate career with one end goal in mind: getting accepted into 

medical school. However, I had no idea what a doctor actually was, what being a “pre-

med” student really meant, and I didn’t understand the amount of work and dedication it 

would take to become a successful medical school applicant. I’ve always valued the 

importance of spending time with friends and living a balanced life, so my initial efforts 

in college were focused on doing well in my coursework and enjoying the social scene at 

the University of Dayton. My first year of college went by in a hurry, but I had fulfilled 

what I set out to do that year: excel in my classes as a top student, become involved in a 

few organizations, and surround myself with friends who shared a similar mindset in 

terms of living a balanced lifestyle full of working hard and having fun. 

Over the summer following freshman year, I chose to shadow few physicians, 

volunteer at a local hospital, work at a few restaurants as a waiter, and catch up with high 

school friends I so desperately missed during the school year. But before I knew it, 

sophomore year had arrived. That year was full of more challenging courses, including 

the course every pre-medicine student hears horror stories about: Organic Chemistry. To 

my surprise, though, I genuinely enjoyed taking O-Chem because it was so challenging, 

requiring me to study much more than I ever had to previously do for any other course. 

Additionally, before that semester started I made it a goal of mine to become more 

involved and I did so through becoming a Supplemental Instruction Leader for General 

Chemistry. Through this job, which required me to hold two sessions per week outside of 

class aimed at helping the students better understand class material, I came to the 

realization that I possessed a passion for teaching and thoroughly enjoyed the process of 
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explaining abstract concepts and helping students reach “aha” moments with difficult 

material.  

As first semester of sophomore year came to an end, I started to more seriously 

contemplate my future and the medical school application process. I had heard in many 

seminars my Pre-Medicine major offered that engaging in research was valuable for 

students wishing to attend medical school. At first, I had no interest in taking on a 

research project because not only was I disinterested in research because of the dread I 

had for laboratory courses in Chemistry, Biology, and Organic Chemistry, but also 

because I didn’t understand the relationship between scientific research and clinical 

medicine. I saw the two fields as mutually exclusive and believed that as a physician, I 

would be taking care of patients, not doing research. However, because I saw many of my 

peers doing research and learned that if I were to attend a competitive medical school, I 

should at least try research out.  

As I scrolled through the University of Dayton Department of Biology Faculty 

Page, I stumbled upon Dr. Carissa Krane and her work with Aquaporin 5 and its 

relationship to asthma. Growing up with asthma my whole life, I thought participating in 

a project that was medically relevant and personally related to my life would be both 

valuable and interesting. So, I emailed Dr. Krane to set up a meeting. My exact words in 

the email I sent to her on December 10th, 2015 were, “Dr. Krane, Hello, my name is 

Dante Pezzutti and I am currently a sophomore Pre-Med major here at the University of 

Dayton. I will be the SI leader for Biology 152 next semester for Dr. Rhoads. After 

speaking with Dr. Rhoads, she recommended that I contact you in regards to a research 

position within your lab. The research you are performing on aquaporins and the etiology 
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of asthma interests me greatly since I personally have been affected by asthma 

throughout the entirety of my life. If it is possible, I would love to meet with you before 

the end of the semester to discuss the possibility of helping out in your lab. Get back to 

me when you can and I look forward to speaking with you!” I can only help but smile at 

my naïve understanding of research at the time and the over-complicated way in which I 

wrote a now seemingly simple email. Little did I know the meeting that would follow 

with Dr. Krane would mark the beginning of a life and career changing experience.   

I arrived back on campus following Christmas break sophomore year and 

immediately set up a meeting with Dr. Krane to discuss the possibility of me doing 

research in her lab. To this day, I can vividly remember walking into her office extremely 

nervous and unsure of my decision to set up this meeting in the first place. I walked 

through the door and saw Dr. Krane sitting at her computer, intently focused on a 

Microsoft Word document. I quietly knocked on the door and she looked over and smiled 

at me and said, “Hi, come on in.” We shook hands, introduced ourselves to each other, 

and I timidly sat down. I began asking about the research in her lab and what kind of 

projects were available for me to work on. To my surprise, the project I was originally 

interested in dealing with asthma was not being worked on in the lab at the time. 

However, other projects dealing with a freeze tolerant frog were available, which 

sounded equally as interesting to me. Up until that point in my life, I never knew that 

there existed organisms that could literally freeze and thaw themselves. It sounded like 

something out a science-fiction movie and I certainly wanted to be involved in some way.  

Then, after we discussed the research behind the frog and I indicated that I was 

interested in working on a project in the lab, something peculiar happened. I asked Dr. 
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Krane how much time she asked of her students to spend in the laboratory so that I could 

get an idea of the time commitment research would be. She responded by essentially 

saying, “What do you want to get out of this experience? Are you looking to be an 

assistant on a project and simply provide technical assistance, or would are you trying to 

win the David Bruce Award?” I was unsure of how to answer this question and quite 

frankly can’t remember how I responded, but the meeting concluded with her telling me 

to meet with Raphael Crum, an Honors thesis student that was working in the lab, to 

discuss his experiences in the lab and the amount of time he dedicates towards research. 

Later on, I would find out that the David Bruce Award is the most prestigious research 

award that The American Physiological Society offers to undergraduate students across 

the country. 

Following the meeting, I emailed Raphael and set up a meeting with him at the 

Kennedy Union Dining Hall. Again, I was extremely nervous to meet with Raphael but I 

conjured up the courage to sit down with him and eat dinner. I could tell immediately that 

Raphael was intelligent and deeply involved in his project. The confidence and charisma 

he carried with him as he spoke about his research was both admirable and inspiring. We 

had a very nice discussion about the work he puts into the lab and the time commitment it 

would be if I were to become independent in my own project. Towards the end of our 

discussion, Raphael emphasized that I should really think deeply about my commitment 

to the lab because if I wanted it to be a valuable experience, I needed to dedicate a big 

chunk of my time to the project I assumed for my Honors thesis. Although it was 

intimidating to hear the actual number of hours that Raphael consistently dedicated to 

working in the lab (40 hours a week sometimes), his enthusiasm and excitement for 
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independent research is ultimately what sold me. The idea that I could possess the ability 

to ask a question and pursue an answer to that question through independent scientific 

investigation was far too attractive to me to turn down. It would be a whole new type of 

learning, far different from the classroom style learning I was used to, and I was excited 

to take on the challenge. I thanked him for taking the time to meet with me and we parted 

ways for the time being.  

Because Raphael was the only one in the lab at the time and was not only working 

on a completely different project but also busy studying for the MCAT that semester, I 

was not able to start working on my project until the fall of my junior year. When I 

returned in the fall of 2016, I began learning techniques necessary for my project from 

Loren, the graduate student in the lab, and Dr. Clara do Amaral, a post-doctoral fellow 

that was working in the lab for the next year. I quickly found out how difficult basic 

science research was. Learning techniques took such a long time, and I found out that 

even when I mastered one technique, there was another technique waiting to be mastered 

after that. The learning never stopped. 

I developed more persistent patience, overcame adversity, and learned the 

importance failing. Failing, in my eyes, was always something to avoid. It’s stigmatized 

in the academic world and so I tried to stay as far away from failing as possible my whole 

life. However, in research, failure is around every corner. I learned to be comfortable 

with it and learn from my mistakes, not regret them. So many times I would encounter a 

problem within a protocol that I could have never foreseen before the start of the 

experiment, and it was only by going through the motions did I figure out the solution. 

Experiential learning was something that textbooks and classrooms never taught me that 
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research did, and I progressively began to understand more and more how an experience 

in research was valuable to an aspiring physician.  

Towards the end of that semester, Dr. Krane suggested that if I were interested in 

staying at UD for the summer to do research, then I should apply for a 2017 American 

Physiological Society Undergraduate Summer Research Fellowship (APS UGSRF). This 

award would be given to 24 students across the country and would provide a $4,000.00 

stipend for a 10-week long research experience, as well as $1,500.00 in travel money to 

attend the annual Experimental Biology meeting in San Diego, California in April of 

2018. I never thought that I would actually receive this award, but I went ahead and 

applied for it hoping that I would be fortunate enough to receive it. Luckily, Raphael 

received this same award in 2015 and agreed to help me write the personal statement and 

project description that went into the application. I submitted the application in mid-

January and found out in April that I had won! I was beyond thrilled and actually 

couldn’t believe it. Up until that point in my life, I had never won any prestigious awards, 

especially at the national level. I can remember running to Dr. Krane’s office and 

celebrating with her. She told me, “You know what this means for your medical school 

application right? This puts you in a different category than the majority of your peers. 

You should be proud of yourself.” I thanked her for all of her support and advice towards 

my application and relished in the fact that I would get to dedicate an entire summer to 

my project.  

That summer is what really solidified my passion and love for research. I 

encountered many more failures than I did successes, but this only made me want to do 

research more. I was constantly working towards the perfect experiment and towards 
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getting the results Dr. Krane and I set out to achieve at the beginning of the summer. I 

continually found research to be difficult but incredibly rewarding. Outside of my time 

spent in the laboratory, the APS UGSRF offered opportunities for the fellows to write a 

blog about their summer research experiences and have that blog published. We also had 

the opportunity to explain our research to one another via videos and read articles that 

discussed the scientific process and developing a hypothesis. Overall, my experiences 

that summer were formative and ultimately contributed to my motivation to pursue a 

career as a physician-scientist faculty member at a medical school. The idea that I can not 

only treat patients in the future, but also engage in bench-to-bedside translational research 

and teach the next generation of physicians, combining a multitude of activities that I 

thoroughly enjoy, seems like the perfect career for me. 

The culmination of my Honors thesis project is the completion of this manuscript, 

something that I never would have thought I could accomplish when I began my 

undergraduate studies. Research under Dr. Krane has taught me so much more than just 

the information about my specific project or how to use certain techniques to answer 

physiologically related questions. It’s taught me how to work independently and 

collaborate with others. It’s given me self-confidence and a deeper appreciation for the 

scientific process. It’s taught me the value in experiential learning and constructive 

criticism. It’s taught me how to balance my time and work under stressful conditions. It’s 

taught me to shoot for the stars and push myself in every aspect of life. And most 

importantly, it’s taught me how to fail. 

 I cannot express how incredibly grateful I am to have had the honor to work 

under Dr. Krane for these past two years. She truly has changed my life and instilled in 
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me a fire that will burn forever. She believed in me when I did not believe in myself, and 

she provided me the opportunity to pursue something I was truly passionate about. Most 

importantly, she taught me how to think independently, something I learned that I was 

not very good at before starting my Honors thesis research project. I could not have asked 

for a better mentor to work under, and I am blessed to have met and worked with Dr. 

Krane. I can only hope to be like her in the future.  

 I am now proud to say that I was recently awarded the Barbara M. Horwitz and 

John M. Horowitz Outstanding Undergraduate Abstract Award given to 30 students by 

the American Physiological Society and am thus eligible to compete for the Barbara M. 

Horwitz and John M. Horowitz Excellence in Undergraduate Research Award (The 

David Bruce Award) at the Experimental Biology meeting on April 22nd, 2018. I get 

chills thinking about when Dr. Krane asked me what my intentions were in research in 

our very first meeting, asking if I wanted to win The David Bruce Award, and now I 

actually have the opportunity to win that same award.  

This fall I will be attending my dream school—The Ohio State University College 

of Medicine—to pursue my M.D. degree. I’m also considering matriculating into the 

M.D./Ph.D. following my first year of medical school because of the impact research has 

had on my life. I look back on my four years at the University of Dayton and could not be 

more proud of what I’ve accomplished, the relationships I’ve formed with friends and 

faculty, and the person I’ve become. But I recognize that this is merely the beginning, 

and I could not be more excited for what lies ahead.  
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