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Abstract 
A reverse total shoulder arthroplasty (RTSA) is a common treatment used to stabilize the shoulder and 
improve range of motion in patients with torn rotator cuff muscles. Shoulder stability relies on the shoulder 
muscles. With rotator cuff tears, the RTSA enables the deltoid muscle to become the primary stabilizer of 
the shoulder joint. To improve stability, RTSAs increase the deltoid muscle moment arm and decrease the 
required torque about the shoulder joint for movement. Currently, there is not standardized, objective 
method for a surgeon to position an implant on a specific patient. This study is part of a larger, ongoing 
project to optimize the deltoid muscle force for a population of RTSA patients and create a tool to 
determine the ideal placement of the implant based on the optimal deltoid force. The current study was a 
step towards the overall goal by investigating patient-specific muscle model parameters and establishing a 
framework for understanding deltoid muscle function in RTSA patients. This goal was achieved through a 
parameter sensitivity study and optimization studies.  
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1. Introduction 

1.1 TSA vs. RTSA 

Total shoulder arthroplasty (TSA) is a shoulder joint replacement surgery 

recommended for patients with severe shoulder injuries including rotator cuff muscle 

tears and/or severe arthritis 1. In a TSA surgery, the surgeon replaces the patient’s 

shoulder (glenohumeral) joint with an artificial shoulder joint. Anatomically, the 

glenohumeral joint is a ball and socket joint that typically allows for six degrees of 

freedom. In a normal shoulder, the humeral head is the ball component of the joint and 

the glenoid fossa, a concave section of the scapula, is the socket. The purposes of the 

TSA procedure are to relieve pain, increase the patient’s range of motion (ROM), and 

improve the patient’s ability to complete upper extremity functional tasks 2. Since its 

approval in the United States in 2004, surgeons have performed a modification of the 

TSA called a reverse total shoulder arthroplasty (RTSA) 3. In a RTSA, the orientation of 

the ball-and-socket components of the glenohumeral joint are reversed; a glenosphere 

(ball) is implanted on the glenoid cavity of the scapula and a stem is drilled into the 

humerus with a concave articulation (socket) on the head of the humerus 4. The ball and 

socket in the normal shoulder joint allows for large ROM of the arm. However, because 

the socket is shallow rather than deep it has limited bony stability. The stability of the 

glenohumeral joint is derived from strong rotator cuff muscles. When someone with a 

normal shoulder joint reaches upwards the humeral head translates upwards in the socket. 

Individuals with weak shoulder muscles, common in this patient population, may 

experience excessive upward translation and, overtime, this could lead to impingement of 

the common tendon of the rotator cuff muscles and to rotator cuff muscle tears 1. The 

RTSA implant is designed to reduce stress on the shoulder joint and its musculature by 

increasing stability of the joint by enabling the deltoid muscle to become the primary 

stabilizer and eliminating upward translation of the head of the humerus 5. 
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1.2 Deltoid Muscle Function, Force, and Moment Arm  

Muscles in the body move limbs by contracting and producing a torque about a 

joint, which is equivalent to the cross product of the moment arm and the muscle force 

vectors. The torque produced by the muscle is given by Equation (1). 

In Equation (1), 𝑟 represents the muscle moment arm and 𝐹⃑ is the force produced 

by the muscle. A RTSA increases the stability of the shoulder by increasing the moment 

arm of the deltoid. The increased leverage enables the deltoid to compensate for torn 

rotator cuff muscles without exerting an extremely high amount of force to lift the arm 6. 

This is important because the high compensatory deltoid muscle forces could 

deleteriously contribute to notching of the scapula 7. The amount of force a muscle 

produces is also related to its length via the force-length curve (Figure 1). Optimal 

isometric force (fMo) for a muscle is produced at the muscle optimal fiber length (lMo). 

The ideal range of the lMo values is between 0.5-1 where the muscle will produce only 

active force; from 1*lMo to 1.5*lMo the muscle produces passive force which can 

overstretch the muscle and lead to injury 8. 

 

Anatomically, the deltoid is divided into three subregions: anterior, lateral, and 

posterior deltoid. These three components have different origins and insertion points and 

control different shoulder movements. In a normal shoulder, the anterior and lateral 

deltoid regions have positive abduction moment arms, meaning that they contribute to an 

abduction moment in the shoulder, while the posterior deltoid has a negative abduction 

 𝜏 = 𝑟  ×  𝐹⃑ (1) 

 

Figure 1. Force-length curve 
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moment arm, indicating that it contributes to and adduction moment in the shoulder 9,10. 

In a previous cadaveric RTSA study conducted by Ackland et al., researchers concluded 

that all three subregions of the deltoid, including the posterior deltoid, had positive 

abduction moment arms; meaning all three deltoid subregions contributed to an abduction 

moment in the shoulder. However, while these studies are beneficial there are many 

limitations to cadaveric studies. A recent study by Walker et al, used in vivo motion 

capture and fluoroscopy data to create scaled OpenSim models for 14 RTSA subjects and 

calculated the moment arms for all three deltoid subregions. This study determined that 

the subregions of the deltoid, post RTSA, function the same as in a normal shoulder 11. 

Proper placement of the RTSA implant is complex due to the three translation and 

three rotation variables, i.e., six degrees of freedom, for both the glenoid and the 

humerus. There are functional consequences to the deltoid muscle if the RTSA implant is 

placed such that the moment arm of the deltoid is too short or too long 12. Previous 

research suggests that a more medial and inferior placement of the center of rotation 

(COR) for the RTSA implant will cause the moment arm of the deltoid muscle to be 

longer and as a result the muscle will produce less force to generate the required torque 

for shoulder activities 4. However, even with medial and inferior placement of the 

implant, many RTSA patients do not regain full ROM and some experience scapular 

notching leading to bone loss 7. It is not clear why these negative outcomes occur. One 

possible reason may be implant positioning. Determination of the optimal placement of 

RTSA implants is complex given the multiple degrees of freedom of the glenohumeral 

joint. In addition, implants come in various sizes and shapes to fit the patient’s body and 

there is no standardized or objective assessment surgeons use to fit an implant to a 

specific patient 4,7,12.  

1.3 Simulation and Optimization 

There is a need to provide surgeons with an objective method to consistently 

position RTSA implants in their patients. During surgery, it is possible for a surgeon to 

test for scapular notching and ROM; however, it is difficult to measure muscle function 

and forces. Simulation and optimization methods have been used to understand the 

relationships between the moment arm and functionality of a muscle, to predict muscle 

forces, and to analyze the impact a surgery may have on a muscle moment arm 13. 
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Computationally predicted joint contact forces can also be applied to a model to 

determine the optimal joint implant positioning. A study conducted by Serrancoli et al. 

used patient-specific muscle parameters to directly validated knee joint contact forces. By 

doing so Serrancoli et al. also indirectly validated muscle forces because muscle forces 

are the primary contributors to joint contact forces14. 

The effect of patient-specific muscle parameters on modeling realistic muscle 

function in the RTSA population is unknown. Calibration of patient-specific muscle 

parameters via optimization is feasible, but can be time consuming. Due to the fast 

workplace environment, surgeons cannot afford to wait a long time for optimizations to 

converge. In order to decrease convergence time and apply these tools clinically, muscle 

parameter optimizations must be provided a realistic initial guess that is representative of 

the patient’s muscle function. To our knowledge, previous studies have not established 

guidelines for adjusting muscle parameter values from literature, especially across a 

group of subjects. Reduction of passive force produced by muscles may be a mechanism 

for adjusting parameter values and obtaining a reasonable initial guess for future 

parameter calibration.  

This thesis is a first step in a larger, ongoing research study with the goal to 

optimize the deltoid muscle force for a population of RTSA patients and create a tool that 

predicts the ideal patient-specific placement of the implant based on the optimal deltoid 

muscle force. This tool would give orthopedic surgeons the ability to objectively 

determine the optimal implant placement prior to surgery, decreasing surgery time and 

increasing the likelihood of success for the procedure. The purpose of this thesis was to 

investigate patient-specific muscle model parameters and establish a framework to 

understand deltoid muscle function in RTSA patients. The goal was achieved through 

two studies. First, a parameter sensitivity study, in which the parameters were adjusted to 

reduce passive force and the resulting muscle function was analyzed. Second, an 

optimization study that used a framework to further calibrate the muscle parameters for 

each subject and then predict the deltoid muscle force for RTSA subjects performing a 

dynamic arm abduction.  
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2. Methods 

2.1 Experimental Data 

Electromyographic (EMG) muscle activity, motion capture, and fluoroscopic data 

of a group of RTSA patients were previously collected and provided by Rehoboth 

Innovations, LLC 15,16. A combination of the fluoroscopic images and the motion capture 

data were used to define the motion in a musculoskeletal shoulder model for each subject. 

The models were modified from Holzbaur et al 17 to include the RTSA implant and were 

scaled to the subject specific dimensions.  Each model included two degrees of freedom 

at the shoulder (abduction/adduction and flexion/extension) and 15 major shoulder 

muscles (anterior, lateral, and posterior deltoid; four rotator cuff muscles; thoracic, 

lumbar, and iliac latissimus dorsi; clavicular, sternal, and costal pectoralis major; upper 

trapezius; and teres major). OpenSim 18, an open-source software, was used to perform 

biomechanical modeling and to calculate musculotendon lengths, muscle moment arms, 

and joint moments for the three deltoid muscles that are the focus of this study. These 

values were calculated for the three subregions of the deltoid for each subject as the 

subject performed isometric muscle contractions at arm elevation angles of 0, 45, and 90 

degrees and dynamic abduction trials. 

2.2 Parameter Sensitivity Study 

Data from eight RTSA subjects with two different implants were used in a 

parameter sensitivity study (Table 1). The optimal muscle fiber length (lMo) and tendon 

slack length (lTs) values of the three subregions of the deltoid were modified from the 

literature values 19 using scaling factors. Scaling factors were chosen manually with the 

goal of determining common factors for each deltoid muscle across all of the subjects so 

that the muscle tendon length (lMtilda) values were within the active force range, 0.5-

1.0*lMo, on the force length curve. In addition to the manually chosen scaling factors for 

the lMo and lTs parameters, the fMo literature values were multiplied by a scaling factor 

of 2.5 as per common practice 20. A custom MATLAB code was used to generate plots of 

the lMtilda values, predicted muscle activation as compared to the normalized 

experimental EMG data from isometric trials, and force contribution from each of the 

three deltoid muscles before and after the literature parameter values were modified.  
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Table 1. Subject demographic information for parameter sensitivity study 

Subject Gender Age at testing Implant type Height [in] Weight [lbs] 

1 M 63 Encore 68 150 

2 F 73 Exactech 62 194 

3 F 73 Exactech 67 160 

4 M 66 Encore 66 144 

5 F 76 Encore 62 174 

6 F 82 Encore 65 155 

7 F 76 Exactech 61 200 

8 M 75 Encore 68 186 

 

2.3 Optimization 

Data from the models from four of the eight RTSA subjects from the parameter 

sensitivity study and a custom MATLAB optimization framework created by Rehoboth 

Innovations LLC. were used to further calibrate the muscle model parameters generated 

from the parameter sensitivity study and predict the anterior, lateral, and posterior deltoid 

muscle forces during abduction. A calibration phase and dynamic prediction phase were 

performed. The calibration phase used a two-level optimization (outer and inner level) 14 

to calibrate the muscle model parameters to match the experimental data while the 

subjects performed isometric contractions of their shoulder muscles at 0°, 45°, and 90° of 

arm elevation. The experimental data matched was the flexion-extension and abduction-

adduction moments of the shoulder. The optimization used a nonlinear least squares outer 

level optimization and a quadratic programming inner level optimization to reduce the 

time to convergence. The cost function included terms to minimize muscle activation, 

reserve actuator contributions, passive muscle forces, and to ensure that the lMtilda 

values were within the desired range (0.5-1.0*lMo) of the force-length curve. The 

weights of each of the cost function terms were adjusted until the following conditions 

were satisfied: the activations were mostly realistic, the force contributions were less than 

2.5*fMo, the reserve actuator contributions were minimal, and the lMtilda values were all 

between 0.5-1*lMo. The outer-level optimized the muscle model parameters and the 

inner-level optimization used the parameters from the outer-level optimization to 
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optimize the muscle activations needed to match the experimental isometric joint moment 

data. This occurred in a cyclic pattern until the optimization converged.  

 

Table 2. Subject demographic information for optimization study 

Subject Gender Age at testing Implant type Height [in] Weight [lbs] 

1 F 76 Exactech 61 200 

2 F 73 Exactech 62 194 

3 M 75 Encore 68 186 

4 F 82 Encore 65 155 

 

Following the parameter calibration, the dynamic abduction motion data were 

used to predict the muscle forces needed to match the joint moments during a dynamic 

motion. Muscle activations, force contributions, and lMtilda values for all three 

subregions of the deltoid were predicted using the subject-specific muscle lMo and lTs 

parameter values from the calibration phase. Matching of the joint moment data was 

evaluated by comparing the experimentally measured joint moment, the predicted joint 

moment contributions from the muscles only, the reserve actuators only, and the sum of 

the contributions from the muscles and the reserve actuators. Predictions were made 

under two conditions: 1) matching the predicted joint moment contributions and the 

experimental joint moments about both the flexion-extension and abduction-adduction 

axes 2) matching the predicted joint moment contributions and the experimental joint 

moment about only the abduction-adduction axis. RMSE values were calculated for 

dynamic simulations to compare the muscle contributions to the experimental joint 

moment for dynamic abduction motion for the four subjects for the two matching 

conditions. Finally, the results from both conditions were analyzed to determine if the 

models and optimization were capable of accurately predicting and optimizing the deltoid 

muscle behavior for all four subjects.  
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3. Results 

3.1 Parameter Sensitivity Study  

Common scaling factors were found for the lateral and posterior deltoid muscles, 

but not for the anterior deltoid (Table 3). The anterior deltoid scaling factor for six of the 

eight subjects was 1.5, but was 1.79 and 2.22 for the other two subjects. The scaling 

factors for the lateral and posterior deltoids were 1.13 and 1.25 respectively. 

 

Table 3. Scaling factors for each subject and deltoid muscle component 

 Deltoid Component 

Subject Anterior Lateral Posterior 

1 1.79 1.13 1.25 

2 1.5 1.13 1.25 

3 1.5 1.13 1.25 

4 1.5 1.13 1.25 

5 1.5 1.13 1.25 

6 1.5 1.13 1.25 

7 2.2 1.13 1.25 

8 1.5 1.13 1.25 

 

The ranges for the average lMtilda values across all eight subjects for each of the 

three deltoid components prior to adjusting the literature parameters were mostly out of 

the desired range of 0.5-1. Some of the subjects had lMtilda values for one or more 

deltoid muscle components within the desired range prior to adjustment, but others, as 

depicted by the ranges, produced large passive forces. There was an inconsistency among 

the subjects as to which deltoid component required the most parameter adjustment. 

Table 4 shows the average lMtilda values before and after parameter adjustment for all 

three deltoid components. 
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Table 4. Average lMtilda values for deltoid components across all  

eight subjects before and after parameter adjustment 

 Average lMtilda 

Deltoid Literature Parameters Adjusted Parameters 

Anterior 1.4-3.05 0.7-0.91 

Lateral 0.85-1.05 0.625-0.82 

Posterior 0.84-1.08 0.675-0.84 

 

3.2 Optimization  

Following the parameter sensitivity study, the lMo and lTs values were further 

calibrated via the two-level isometric calibration optimization. For all subjects, additional 

adjustment of the lMo and lTs values were needed in comparison to the original literature 

parameter values and to the parameter sensitivity study values (Tables 5 and 6). 

Following the isometric calibration optimization, the lMo and lTs values varied across all 

four subjects and three subregions of the deltoid. Overall, following the isometric 

calibration, the lMtilda values were all within the desired range between 0.5-1*lMo and 

there was general agreement between the experimentally measured EMG data for the 

three deltoid muscles at 0, 45, and 90 degrees of isometric shoulder abduction. The 

predicted contribution of the muscles to the flexion-extension and abduction-adduction- 

joint moment matched the experimental joint moments with small root-mean-square error 

(RMSE) of 2.0 or less for three of the four subjects. Subject 1 had a larger reserve 

actuator contribution to the moment at 90 degrees abduction and therefore, the RMSE 

value was 4.5 for the flexion-extension moment and 5.8 for the abduction-adduction 

moment.  
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Table 5. Optimal muscle fiber length values from the literature, following the parameter sensitivity study, 

and following the optimization study. Literature lMo values were the same for all four subjects across each 

of the three subregions of the deltoid and were the original input parameters into the parameter sensitivity 

study. After the parameter sensitivity study the lMo values were the same across all four subjects for the 

lateral and posterior deltoid muscles, but not for the anterior deltoid due to the different scaling factor used 

for subject 1. The lMo values varied across all four subjects after the isometric calibration optimization. 

Optimal fiber length (lMo) 

Muscle Subject Literature  

(cm) 

Parameter 

sensitivity  

(cm) 

Calibrated  

(cm) 

A
n

te
ri

o
r 

D
el

to
id

 

1 

9.8 

21.8 35.1 

2 14.7 15.2 

3 14.7 3.1 

4 14.7 12.6 

 

L
a
te

ra
l 

D
el

to
id

 

1 

10.8 

12.2 23.5 

2 12.2 13.7 

3 12.2 22.4 

4 12.2 11.4 

 

P
o
st

er
io

r 

D
el

to
id

 

1 

13.7 

17.1 13.9 

2 17.1 15.0 

3 17.1 15.4 

4 17.1 13.1 

 

  



P a g e  | 11 

 

Table 6. Tendon slack length values from the literature, following the parameter sensitivity study, and 

following the optimization study. Literature lTs values were the same for all four subjects across each of 

the three subregions of the deltoid and were the original input parameters into the parameter sensitivity 

study. After the parameter sensitivity study the lTs values were the same across all four subjects for the 

lateral and posterior deltoid muscles, but not for the anterior deltoid due to the different scaling factor used 

for subject 1. The lTs values varied across all four subjects after the isometric calibration optimization. 

Tendon slack length (lTs) 

Muscle Subject Literature  

(cm) 

Parameter 

sensitivity  

(cm) 

Calibrated  

(cm) 

A
n

te
ri

o
r 

D
el

to
id

 

1 

9.7 

21.5 39.7 

2 14.6 8.8 

3 14.6 15.7 

4 14.6 10.2 

 

L
a
te

ra
l 

D
el

to
id

 

1 

11.0 

12.4 4.0 

2 12.4 7.5 

3 12.4 3.1 

4 12.4 9.2 

 

P
o
st

er
io

r 

D
el

to
id

 

1 

3.8 

4.8 3.8 

2 4.8 4.5 

3 4.8 3.3 

4 4.8 4.1 
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 When matching both the flexion-extension and abduction-adduction moments, the 

RMSE values for the flexion-extension moment were higher for all four subjects than the 

abduction-adduction moments (Table 7). Subject four had the smallest RMSE values for 

this condition with 0.10 for the flexion-extension moment and 0.07 for the abduction-

adduction moment. The predicted muscle activations for all four subjects when matching 

both the flexion-extension and abduction-adduction moments showed all three subregions 

of the deltoid activated at various time points during the duration of the dynamic 

abduction motion.  

 

Table 7. Root-mean-square error for each of the four subjects when matching both the flexion-extension 

and abduction-adduction joint moments. A smaller RMSE value means the predicted muscle contribution 

and experimental data of the muscle contribution to the moment is matched. 

Root-mean-square error (RMSE) 

Subject Flexion-Extension Moment Abduction-Adduction Moment 

1 4.48 3.40 

2 6.10 1.74 

3 4.87 3.34 

4 0.10 0.07 

 

 For all four subjects, when only the abduction-adduction moment was matched, 

the RMSE values for the abduction-adduction moment decreased (Table 8) in comparison 

to the RMSE values shown in Table 7. Subject 3 had the lowest RMSE value of 0.02 and 

subject 2 had the highest, 0.04. When matching the abduction-adduction moment only, 

the predicted muscle activations for the anterior and posterior deltoid were minimal 

during the duration of the motion, while the lateral deltoid activation was larger than 

expected. 
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Table 8. Root-mean-square error for each of the four subjects when matching only the abduction-adduction 

joint moments. A smaller RMSE value means the predicted muscle contribution and experimental data of 

the muscle contribution to the moment is matched. 

Root-mean-square error (RMSE) 

Subject Abduction-Adduction Moment 

1 0.03 

2 0.04 

3 0.02 

4 0.04 

 

4. Discussion 
 This study is part of a larger, ongoing project aiming to optimize the deltoid 

muscle force for a population of RTSA patients and generate a tool that orthopedic 

surgeons could use to determine the optimal patient-specific placement of the implant. 

With this tool, a surgeon would have the ability to determine the implant placement prior 

to surgery, making the procedure more efficient and improving surgical outcomes. The 

current study was a step towards that overall goal by investigating patient-specific 

parameters and establishing the framework for understanding deltoid muscle function in 

RTSA patients. This goal was achieved through the parameter sensitivity and 

optimization studies. 

4.1 Parameter Sensitivity Study  

The purpose of the parameter sensitivity study was to determine if reduction of 

passive force was a mechanism to calibrate muscle model parameters for the RTSA 

patient population. The goal was to find a method for adjusting parameters that was 

standardized for as many subjects as possible. We aimed to find common scaling factors 

for the lMo and lTs parameters to adjust the parameters away from the literature values 

for all RTSA subjects. Then the isometric calibration optimization used the inputs from 

the parameters sensitivity study to further calibrate the lMo and lTs values for each 

subject. Common scaling factors across all subjects were found for the lateral and 

posterior deltoid, but not for the anterior deltoid. This is not surprising as the range for 

the lMtilda values of the anterior deltoid using the literature parameter values was very 
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wide. Larger scaling factors for the anterior deltoid were required for two of the eight 

subjects. It is likely that these two subjects were acting in the extreme passive end of the 

force length curve. Therefore, these subjects required larger scaling factors to cause the 

muscle to function on the active force region of the force-length curve.  

The parameter sensitivity study was successful in improving the muscle activation 

and force predictions to align with expected physiological behavior. Using the literature 

parameter values, many subjects displayed a trend in which the muscle activation was 

minimal, but the predicted muscle forces in the magnitude of 104 N, which is very high 

(see Figure 2 for a representative subject). As the muscles were not activated, the 

excessive muscle forces were primarily due to passive force production. High passive 

force production is not consistent with expected physiological behavior of muscles as 

previous studies have shown that muscles tend to operate on the active region of the 

force-length curve 21,22. Following the parameter adjustment, the muscles operated 

primarily in the active region of the force-length curve and the muscle activation and 

force contributions became more realistic for all three deltoid muscles for all eight 

subjects.  

 

 

Figure 2. Anterior Deltoid activation, force, and lMtilda for literature and  

adjusted muscle parameters for a representative subject 
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With the literature parameter values, the anterior deltoid for a representative 

subject was not active, 0% activation, at all arm elevation angles but produced up to 

20,000 N of primarily passive force (Figure 2). It is not physiologically realistic for a 

muscle to be inactive and to produce such a large amount of force. In addition, the 

lMtilda values for this subject reached as high as 2.4*lMo at 45˚ of arm elevation. This 

lMtilda value is in the extreme passive-force region of the force-length curve (Figure 1) 

and is not typically represented on the curve, as physiologically, muscles do not produce 

this much passive force. By adjusting the parameters to reduce passive force production 

and shift the lMtilda value for each of the three arm elevations into the desired range of 

0.5-1*lMo, the anterior deltoid muscle activation and force became more physiologically 

realistic. When the muscle was inactive it did not produce force, and when the muscle 

was around 30% active it produced approximately 250 N of force, a reasonable 

magnitude for the anterior deltoid muscle. The resulting muscle activation after parameter 

adjustment mimicked the trend observed in the normalized experimental EMG data from 

the isometric trials. Similar results were observed in all eight subjects in the parameter 

sensitivity study. 

By scaling the lMo and lTs parameters to cause the subregions of the deltoid to 

operate in the active force region of the force-length curve, the muscle activations and 

force predictions were improved to align with expected physiological behavior for all 

eight subjects. However, while the parameter sensitivity study should provide the 

calibration optimization with a more realistic initial guess to speed up the time to 

convergence, additional adjustments to the lMo and lTs parameters were necessary. The 

purpose of these adjustments were to further calibrate the lMo and lTs parameters to the 

individual subjects, but the results of the parameter sensitivity study should provide the 

calibration optimization with a more realistic initial guess to speed up the time to 

convergence. This will facilitate the application of simulation methods in a clinical 

setting.  

4.2 Optimization  

 The goal of the optimization study was to predict deltoid muscle forces for four 

RTSA subjects performing a dynamic arm abduction motion. To achieve this goal, an 

isometric calibration optimization was used to further calibrate the muscle model 
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parameters for all three deltoid muscles and all four subjects individually. Then, the 

dynamic abduction simulations were performed using the calibrated parameters to 

determine the deltoid muscle behavior for all four RTSA subjects.  

 The calibrated lMo and lTs values were adjusted so that the contribution of the 

reserve actuators was minimized for the isometric trials, the deltoid muscle activation 

reasonably agreed with the experimental EMG data, and the deltoid muscle force 

contributions were less than the maximum isometric strength literature values 19. For 

three of the four subjects, lMo and lTs parameters were found such that the reserve 

actuator contributions at all three arm elevations was minimized. Figure 3 shows the 

flexion-extension and abduction-adduction joint moments for Subject 4. This subject had 

the lowest RMSE values after the isometric calibration of all of the subjects. This is 

represented by this plot indicating that the reserve actuator contribution to the joint 

moment (green line) is approximately zero at all three arm elevation angles and the 

prediction of muscle contributions (red dashed line) matched closely with the 

experimental ID moment data (black line). Subject 3 displayed similar reduction of 

reserve contribution to Subject 4. Subject 1 followed this trend except for at 90˚ arm 

elevation and Subject 2 was unable to turn off the reserve actuator contribution to the 

flexion-extension joint moment at 45˚ arm elevation.  

The predicted muscle activations did not perfectly match up with the normalized, 

experimental surface EMG data recorded for the three deltoids. Although this is a 

limitation of our results, EMG data is very noisy and surface EMG has the tendency to 

pick up signals from different muscles which can generate interaction of signals 23. 

Because the optimization in this study focuses on the three subregions of the deltoid only 

and not the muscle activity of nearby shoulder muscles such as the upper trapezius this is 

most likely the cause of the error. Despite this limitation, for all four subjects the lateral 

deltoid had the highest predicted force contribution at each of the three isometric arm 

elevations. This is consistent with what has been reported in the literature for reverse total 

shoulder subjects6,11,12. Therefore, we have confidence that the calibration optimization 

was able to predict realistic muscle forces in the RTSA subjects.  
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Figure 3. Flexion-extension and abduction-adduction joint moments for the isometric abduction motion at 

0, 45, and 90˚ for Subject 4. The goal of the isometric calibration optimization was to determine values for 

the lMo and lTs muscle parameters to minimize the reserve actuator contribution (green) and match the 

predicted muscle contribution (red dashed) with the experimental joint moments (black). 

 

With the dynamic simulations, the RMSE values for all four subjects when 

matching only the abduction-adduction joint moment were all very small (≤0.04). This 

indicates that the shoulder models, optimization framework, and muscle parameters were 

sufficient to match the predicted muscle contribution to the experimental joint moment 

data when matching only the abduction-adduction moment (Figure 4). However, the 

activations for the anterior and posterior deltoid muscles were minimal (Figure 5), which 

is known not to be physiologically accurate16.   
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Figure 4. Abduction-adduction joint moments for Subject 1 (top) and Subject 4 (bottom) after the dynamic 

simulation only matching the abduction-adduction moment. The reserve contribution (green) was close to 

zero and the muscle contribution (red) matched with the experimental joint moment (black). The x-axis 

represents normalized arm motion for each subject’s range of arm abduction. 
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Figure 5. Deltoid muscle activation for Subject 1 (top) and Subject 4 (bottom) from the dynamic 

simulations when matching the abduction-adduction moment only. Activation is a unitless quantity in 

which 0 represents 0% activation when the muscle is not contracting and 1 represents 100% activation 

when the muscle is fully active and contracting. During abduction, it makes sense that the lateral deltoid 

would be the most active for these subjects, but the anterior and posterior deltoids should also be 

contributing to the motion to be consistent with previous results 16. The x-axis represents normalized arm 

motion for each subject’s range of arm abduction. 

 

 Agreement between the predicted muscle contributions and the experimental joint 

moments was not as strong when matching both the flexion-extension and abduction-

adduction moments as indicated by the higher RMSE values for this condition (Table 7). 

However, subjects had varying levels of agreement. Subject 4 had very close agreement 

between the simulation predictions and the experimental data while the reserve actuators 

were opposing the muscle contribution for the flexion-extension joint moment for the 

three other subjects, including Subject 1 (Figure 6). The further illustrates the need for 

patient-specific modelling, optimization framework, and muscle parameters. The lack of 

agreement observed is most likely due to the simplicity of the model. The subregions of 

the deltoid are not the primary shoulder flexors/extensors and the results of the dynamic 

simulations showed that the deltoid muscles alone were not sufficient to match the 

predicted and experimental flexion-extension joint moment. Despite the lack of 
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agreement in the joint moment data, the muscle activations predicted in this condition 

were more realistic with the anterior and posterior deltoids activating for longer periods 

throughout the dynamic arm abduction simulation (Figure 7).  

 It is likely that the ideal solution lies somewhere in between the results from 

matching only the abduction-adduction joint moment and the results from matching both 

the flexion-extension and abduction-adduction joint moments. The subregions of the 

deltoid contribute to both flexion-extension and abduction-adduction and therefore it 

would be beneficial to generate a model that is robust enough to match both moments. 

The results of this study indicate that additional shoulder muscles may be necessary to 

add to the model and optimization to more accurately represent muscle function in RTSA 

subjects. 
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Figure 6. Flexion-extension and abduction-adduction joint moments for Subject 1 (top) and Subject 4 

(bottom) after the dynamic simulation when matching the flexion-extension and abduction-adduction joint 

moments. The reserve contributions were not minimized as successfully as they were when only the 

abduction-adduction moment was matched. The x-axis represents normalized arm motion for each subject’s 

range of arm abduction. 
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Figure 7. Deltoid muscle activation for Subject 1 (top) and Subject 4 (bottom) from the dynamic arm 

abduction simulations when matching both the flexion-extension and abduction-adduction joint moments. 

The x-axis represents normalized arm motion for each subject’s range of arm abduction. 

 

5. Conclusion 

RTSA patients have varying height, weight, and muscle force capacity. Therefore, 

it is important that RTSA implants be placed in patient-specific locations to have optimal 

deltoid muscle function after surgery. To determine patient-specific implant placement, 

patient-specific models are needed. The purpose of this study was to develop a model and 

optimization framework to calibrate patient specific muscle model parameters for reverse 

total shoulder patients. The ultimate goal is to use the models and simulations to 

determine trends that may aid surgeons in identifying the exact location to place an 

RTSA implant to optimize the deltoid muscle forces thereby improving shoulder 

function.  

Due to the fast workplace environment, surgeons do not have a great deal of time 

for optimizations to converge. Reduction of passive force appears to be a feasible process 

to adjust muscle model parameter values and improve patient-specific calibration of 

models. However, a more robust model including more shoulder muscles beyond the 
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three deltoid components must be created to match both the flexion-extension and 

abduction-adduction moments. Future research should focus on collecting data of 

shoulder flexors and extensors and incorporating those muscles into the model and 

simulation to match the flexion-extension joint moment.  
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