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Abstract 
Traditional ankle-foot prostheses often replicate the physiological change in shape of the foot during gait 
via compliant mechanisms. In comparison, rigid-body feet tend to be simplistic and largely incapable of 
accurately representing the geometry of the human foot. Multi-segment rigid-body devices offer certain 
advantages over compliant mechanisms which may be desirable in the design of ankle-foot devices, 
including the ability to withstand greater loading, the ability to achieve more drastic shape-change, and the 
ability to be synthesized from their kinematics, allowing for realistic functionality without prior accounting 
of the complex internal kinetics of the foot. This work focuses on applying methodology of shape-changing 
kinematic synthesis to design and prototype a multi-segment rigid-body foot device capable of matching 
the dynamic change in shape of a human foot in gait. Included are discussions of an actuation strategy, 
mechanical design considerations, limitations, and potential prosthetic design implications of such a foot. 
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1 INTRODUCTION 

The foot is an incredibly intricate part of the human body, and plays an integral role in 

bipedal locomotion. The unique musculoskeletal structure of the foot provides basic 

stability, mechanical leverage, shock absorption, and balance during gait [1-3]. 

Traditional ankle-foot prostheses seek to replicate this same functionality for lower limb 

amputees, but in doing so, often oversimplify the geometry of the foot, limiting both the 

anatomical and biomechanical accuracy of these devices. Research driving modern 

prosthetic design has largely focused on increasing the energetic efficiency of prosthetic 

gait using roll-over geometry as a functionality metric, while comparatively little focus 

has been given to design approaches based on actual foot geometry. 

This thesis describes the design process resulting in the creation of a shape-changing 

rigid-body foot mechanism capable of accurately portraying the dynamic change in shape 

of the foot during walking. The thesis document is organized as follows. The remainder 

of Chapter 1 will be dedicated to providing an overview of the roll-over shape in current 

prosthetic design and its limitations, as well as justification for the use of rigid-bodies to 

achieve shape-change in a foot device. Chapter 2 summarizes previous work developing 

a method of kinematic synthesis of shape-changing mechanisms. Chapter 3 describes the 

application of this method in the design and rapid prototyping of a shape-changing foot, 

while Chapter 4 discusses the potential benefits and limitations of this design, as well as 

recommendations for further development. Conclusions are presented in Chapter 5.  

Throughout this document, various anatomical terms are used to describe features of the 

human foot. The reader is encouraged to consult Figure A1 in the Appendix, which 

provides a diagram of major bones and joints in the foot, as needed. 

1.1  Roll-over Shape in Prosthetic Ankle-foot Design 

The roll-over shape (ROS) consists of the set of coordinate points describing the location 

of the center of pressure on the plantar surface of the foot relative to the knee during the 

stance phase of gait [4]. When plotted on a shank-based coordinate plane (i.e. a 2D 

coordinate system defined by a vertical axis which passes through both the knee and 
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ankle joints), the points constituting the ROS align in an approximate rocker curve. 

Rocker curves have long been used in both computational and physical models of human 

locomotion [5-8]. Such models are appealing for their simplicity and relative accuracy 

[4], but the ROS is especially useful for clinical applications due to its invariance. Hansen 

and Childress have demonstrated that the ROS does not vary as a result of walking speed 

[9], carried torso weight [10], shoe heel height [11], or shoe rocker radius [12], and 

suggest that this invariance is due to a tendency for humans to actively adjust to level 

ground conditions to maintain the same roll-over geometry.  

Data suggests that a ROS is unique to an individual [13], and is at least partially 

influenced by the individual’s stature. Although the exact curvature of the foot has no 

significant effect on the rolling motion of walking [14], evidence exists suggesting that 

the arc length of the foot and its effective rocker radius have a noticeable effect on the 

rolling mechanics and energy costs of walking. Adamczyk and Kuo found that foot 

length influences the amount of work dissipated in foot collision with the ground during 

the rolling motion of step-to-step transition, while the foot arc radius determines the rate 

of advancement of the center of pressure and the resulting compensatory muscle forces 

[15, 16]. Empirical roll-over data from multiple studies [9, 15, 16] has shown to closely 

match modeling predictions of a metabolically optimal rocker radius approximately equal 

to 30% of leg length [6]. This proportion also closely matches the average ratio of human 

foot length to leg length [9, 15-17]. The recurrence of these proportions throughout the 

literature suggests the existence of an ideal foot geometry that would produce an 

invariant, energetically optimal ROS.  

For the reasons listed above, the ROS has been adopted by many prosthetists as an ideal 

metric of walking functionality, leading to the design goal of matching the ROS of a 

natural, unimpaired foot [4, 18, 19]. This design goal was the inspiration for a relatively 

novel prosthesis developed in 2004 by researchers at the Northwestern University 

Prosthetics-Orthotics Center called the ‘Shape&Roll’ (S&R) foot [20]. Designed as an 

alternative to cheaply manufactured but cumbersome conventional foot prostheses such 

as the SACH (solid-ankle cushion-heel) foot and various SACH derivatives commonly 

used in low income regions [20-22], the S&R foot consists of a flexible, molded 
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copolymer core (shown in Figure 1) with a series of cuts spaced along a tapered forefoot 

ridge. The width and spacing of the cuts is determined by measurement of the user’s 

stature. The cuts are designed to facilitate flexion of the thinner, wider sole portion of the 

core in response to ground reaction forces (GRFs), while prohibiting flexion beyond the 

degree specified by the ROS. Flexion of the hindfoot is limited by a contoured cutout 

above the sole at the heel. The cutout additionally provides space for a compressible 

wedge to be inserted at the heel to provide shock absorption in a manner similar to 

conventional SACH prostheses.  

Initial comparative roll-over testing of the S&R foot against traditional prosthetic designs 

(Figure 2) including a SACH foot and an Össur Flex-walk foot (a type of energy-storage-

and-return, or ESAR, foot more commonly used in industrialized nations) showed that 

the S&R foot produced a consistent ROS that matched the biological ROS with an 

accuracy comparable to or greater than the Flex-walk foot, and far more accurately than 

the SACH foot [20]. Field test participants displayed a greater preference for the S&R  

Figure 1. Sagittal plane diagrams of the core of a S&R prosthesis. Image adapted from Ref. [20]. 
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foot, stating that gait felt more natural as a result of the closer adherence to the biological 

ROS [21]. In addition to the cuts which facilitate flexion of the core into a rocker shape, 

the ability of the S&R to more closely replicate the natural ROS is aided by the extended 

arc length of the core, which closely matches the optimal foot proportions propounded by 

Adamczyk and Kuo and others [9, 15-17]. In comparison, the SACH foot and its 

derivatives have a short effective arc length, as the rigid keel which provides the rolling 

mechanical leverage during gait does not extend the full length of the foot. As a result, 

roll-over analysis of conventional feet shows a pronounced “drop-off” of the ROS during 

the latter stages of stance due to a lack of forefoot support [22, 25]. 

While the success of the S&R foot provides some validation for the use of the ROS as a 

primary design metric for ankle-foot prostheses, there are limitations associated with the 

ROS. Curtze et al. note that for prosthetic users, there exists an inherent asymmetry 

between the ROS of a prosthetic foot and the nondisabled foot due to the inescapable 

physical and geometric differences between the two, as opposed to nondisabled walking, 

which is reasonably symmetric [13]. As a result, there is a natural tendency to favor the 

nondisabled foot, which can lead to further asymmetry and gait complications as a result 

of overcompensation. Additionally, Olesnavage and Winter demonstrated that it is 

possible for a prosthetic foot to match the physiological ROS, but exhibit vastly different 

lower leg kinematics in response to the same GRFs [26], suggesting that the ROS alone is 

unable to fully characterize the motion of the ankle-foot system. Klodd and Hansen also 

found through experimentation using S&R feet with different effective rocker radii that 

Figure 2. Typical constructions of (a) a conventional SACH foot and (b) an Össur Flex-Foot 

Assure, a common example of an ESAR foot. Images adapted from Refs. [23] and [24], 

respectively. 

 

foot module 

foam wedge 

cosmesis 

pyramid adapter 
(a) (b) 
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feet with ROSs of significantly smaller 

radii than the optimal proportions 

suggested by Adamczyk and Kuo and 

others (the F1 variant shown in Figure 3) 

exhibit the same drop-off effect seen in 

SACH feet as a consequence of the 

decreased stiffness in the forefoot region 

required to achieve the tighter rocker radii 

[25]. This implies that for individuals 

with a disproportionate foot size, 

concessions in the design of a prostheses 

required to match the ROS may have 

undesirable consequences on comfort and 

energy use [16]. 

One of the potential pitfalls of using the 

ROS as a catch-all metric of functional 

design is the tendency to sacrifice foot 

geometries that do not affect the ROS but 

that nonetheless provide an important role in gait, such as the geometry of the plantar 

surface in contact with the ground. The curvatures of the plantar arches of the foot have a 

large influence on balance, stability, and the distribution of weight during gait [1, 2], and 

it is well documented that the plantar surface deforms when subjected to varying loads 

during walking [27, 28]. Conventional foot designs including the S&R foot have 

relegated this geometry to cosmeses, where it serves as more of a cosmetic feature (as the 

name would imply) than a functional one. The mechanical leverage required for forward 

propulsion (which ultimately relies on the GRFs and their distribution across the bottom 

surface of the foot), however, is dependent on the shape and stiffness of the core. For this 

reason, more current ESAR foot designs have attempted to incorporate plantar curvature 

into the core of the prostheses, and have in some designs eliminated the cosmesis entirely 

[29]. The cores of these feet are typically a single body made of a compliant composite 

material (such as carbon fiber) capable of relatively small deformations that behaves 

Figure 3. Five S&R variants used to test the 

effects of prosthetic forefoot flexibility on gait. 

The ROS produced by each is determined by the 

width and spacing of the cuts placed in the 

forefoot region of each variant. Image adapted 

from Ref. [25]. 

 



P a g e  | 6 

  

much like a leaf spring, which provides the primary mechanism for energy storage and 

release, reducing the amount of work required of the user [29, 30]. Because of the 

varying stiffness requirements for different regions of the foot, however, a single body 

core is limited in the deformation it is able to achieve. While it has been shown that 

ESAR feet are capable of matching a physiological ROS with relative accuracy 

comparable to the S&R foot [20], focus groups consisting of both ESAR and 

conventional foot users consistently identify a general lack of mobility and frequent loss 

of balance due to limited range of motion as one of the most prevalent challenges 

encountered by lower limb amputees [31, 32]. 

The limitations associated with the ROS, as well as the restricted motion of current 

prosthetic designs may be addressed by closer replication of the change in plantar shape 

of the foot during walking. A prosthesis capable of achieving realistic shape-change may 

help address the asymmetry in gait noted by Curtze et al. [13], as an adherence to actual 

foot geometry will theoretically provide a physiologically accurate ROS while 

maintaining the curvature required for proper balance and weight distribution, potentially 

increasing user confidence in the disabled limb and reducing compensation with the 

nondisabled limb. Furthermore, a prostheses able to deform in the same manner as the 

biological foot would offer more versatility than current designs, increasing user comfort 

and mobility while reducing lifestyle restrictions imposed by the difficulty of performing 

basic occupational tasks. 

1.2  Shape-change Mechanisms & Potential Advantages of Rigid-body Shape-

change in Prosthetic Design 

Shape-change refers to the ability of a mechanical system to dynamically alter its 

physical geometry to achieve a specific function or to enhance performance. Shape-

change can be achieved through the use of a chain of rigid-bodies, compliant materials, or 

a combination of both. Conventional prosthetic feet, like the SACH foot, typically consist 

of both a rigid keel and a compliant cosmesis, but the shift toward more energetically 

efficient ESAR feet during recent decades has led to a proclivity toward the use of 

compliant composite materials to achieve shape-change due to their generally higher 
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elasticity. There is indeed an elastic character to the physiology of the foot: the elasticity 

of the skin and muscular tissue in the foot helps provide shock absorption during gait, 

storing energy through elastic deformation and releasing the stored energy to aid in 

forward propulsion during toe-off. Ruina et al. have demonstrated that the metabolic cost 

of gait is minimized for walking modeled as a sequence of pseudo-elastic collisions, 

while a comparatively large amount of energy is lost through collisions in rigid-body 

locomotion [14]. In general, compliant materials also have a high surface accuracy and 

can thus achieve smooth contours, which resemble the curved structure of the foot and 

are thus cosmetically appealing. 

While compliant materials can offer more elasticity than rigid-bodies, the high-strength 

composite materials generally used in the manufacture of prosthetic feet are still an 

emerging technology, and are often expensive as a result. The kinematics and kinetics of 

compliant materials can also be challenging to characterize mathematically, whereas 

analysis of rigid-body systems is comparatively simple. Furthermore, advances in 

additive manufacturing have allowed rigid materials to take on more exotic and complex 

geometries than possible with traditional machining processes. As a result, rigid materials 

can be more easily shaped to match irregular contours, lending them a greater 

competitive edge against compliant materials for precision applications. 

There are multiple advantages offered by rigid-bodies that may be beneficial in the 

design of a prosthetic foot. Due to their inelastic character, rigid materials often have a 

higher yield strength than more ductile compliant materials, making them less susceptible 

to static failure as a result of overloading. Prosthetic users have noted poor material 

strength and durability as a prevalent problem with current prostheses, with multiple 

focus group participants identifying frequent failure in response to relatively small 

increases in carry weight [31]. Due to their stiffness, rigid materials also offer greater 

mechanical leverage. While some elasticity is required to absorb energy and later release 

energy that would otherwise be lost in collision during initial heel strike, sufficient 

structural rigidity is also required to provide enough mechanical leverage to facilitate 

forward propulsion. While careful balancing of a rigid-body foot would be required to 

avoid premature advancement of the center of pressure during gait [16], a greater 
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mechanical leverage would potentially amplify the component of forward momentum 

imparted by horizontal GRFs, reducing the metabolic contribution to propulsion. In 

addition, rigid-body mechanisms are capable of achieving comparatively large 

displacements, resulting in more drastic shape-change. A larger range of motion would 

allow a foot device to reach a greater number of configurations, potentially increasing the 

utility and variety of postures that can be achieved. Such versatility may go a long way in 

addressing the lack of mobility and restriction of freedoms experienced by many 

prosthetic users [31, 32]. 

Unlike compliant shape-change mechanisms, multiple rigid-bodies arranged in a chain 

are required to achieve a change in geometry. Rigid-body chains (such as the ones in the 

array shown in Figure 4) are composed of inflexible links connected by mechanical 

joints. For planar mechanisms, these joints can include: revolute joints, which allow one 

link to rotate relative to the next; prismatic joints, which allow a link to translate along a 

path dictated by the geometry of the joint; and fixed connections, or fused joints, which 

keep one link fixed relative to the next, effectively “fusing” multiple links into a single 

member. Each link and joint provides a degree of freedom (DOF), an independent 

parameter defining the mobility of the chain. The mobility of nonstructural planar 

kinematic chains can be expressed using the Gruebler equation: 

 𝐷 = 3(𝑛 − 1) − 2𝐽1 − 𝐽2 (1) 

where D is the total DOF of the chain, n is the number of links in the chain, J1 is the 

Figure 4. A prototype of an automobile spoiler frame in two different configurations, 

demonstrating shape-change via an array of rigid-body chains. Image adapted from [33].  
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number of 1 DOF joints (such as revolute or prismatic joints), and J2 is the number of 

higher-order joints (such as cam or gear joints) [34]. It is highly desirable to keep the 

number of DOF a system has low in order to reduce the number of inputs to the system 

required to achieve the desired configurations. This is typically done by arranging links in 

dyads, thus tying the motion of multiple links to a single actuator.  

The motion of multiple DOF rigid-body linkages is difficult and in many cases 

impossible to achieve passively. The requirement of active elements, ample space to 

place said elements, and a power source presents a large obstacle for prosthetic 

applications of such systems. Conventional feet and traditional ESAR feet move 

passively during walking. Their motion is entirely dependent upon the changes in 

position of the leg and the corresponding GRFs during stance. While single segment 

compliant bodies are conducive to the passivity of the foot in such a model of walking, 

they bear little physiological accuracy. The foot is not a singular body; it is composed of 

multiple joints, muscles, and ligaments that expand and contract to control positioning of 

the foot. The limited effectiveness of conventional and passive ESAR feet has in recent 

years led to the development of more robust ‘bionic’ feet; that is, feet containing one or 

more active elements, often neuroelectrically controlled [29]. While bionics is still an 

emerging technology, the promising energetic efficiency of bionic prostheses has helped 

establish a precedent for the inclusion of active elements in prosthetic design, an almost 

certain requirement of any multi-segment rigid-body foot. 

Perhaps the most significant benefit offered by a multi-segment rigid-body foot is the 

ability of a chain of rigid links to be synthesized directly from the kinematics, achieving 

realistic functionality without the need for a priori knowledge of the complex internal 

kinetics of the human foot, which are often difficult to characterize. Thus, based upon 

positional data, it is possible to design a rigid-body mechanism that approximates the 

motion and change in shape of an actual foot. The procedure originally introduced by 

Murray, Schmiedeler, and Korte [35], and later expanded upon by Persinger [36] and 

Shamsudin [37] provides a method of synthesis for shape-changing rigid-body 

mechanisms based on positional inputs referred to as design profiles that describe the set 

of shapes for which a configurational match is desired. From positional configurations of 
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a shape-changing mechanism, other useful characteristics of the motion represented by 

design profiles, such as velocities and accelerations, can be derived. An understanding of 

the kinematics of certain points on the foot is vital to effectively model human gait (e.g. 

the trajectory and rate of advancement of the center of pressure is required to characterize 

the ROS). To the extent of the author’s knowledge, the design of a rigid-body ankle-foot 

prosthesis based primarily on the structural geometry of the foot and its change during 

gait as characterized by the kinematics has never been attempted. 

As a final statement on the applicability of rigid-body synthesis to prosthetic design, it is 

important to note that the best design solution may not be attainable by the independent 

usage of rigid-body or complaint mechanisms of shape-change, but rather by a 

combination of the advantages provided by both. The two are not mutually exclusive, and 

while this project primarily focuses on the use of rigid-body synthesis techniques to 

produce a viable foot device (as there seems to be a dearth of exclusively rigid-body 

prosthetics in the literature), it is possible that such a device can only exist with the 

inclusion of compliant components. The author encourages future work stemming from 

this project to explore the potential applicability of both rigid and compliant additions to 

the design developed in the following chapters. 

 

2 SHAPE-CHANGING RIGID-BODY SYNTHESIS 

The following section provides a summary of the methodology for synthesis of a shape-

changing chain of rigid links as described in Refs. [35-37]. Practical devices synthesized 

using this methodology have thus far largely been limited to non-biological applications, 

such as morphing aircraft wings [38], automobile spoilers [33], and polymer extrusion 

dies [39]. It has previously been demonstrated, however, that the technique can be 

applied successfully to a variety of morphometric problems with biologically generated 

inputs [40]. 

The synthesis process originates with a set of p curves called design profiles that describe 

the shapes for which a match is desired. Design profiles can be open or closed and can 

have fixed or variable endpoint positions. The design profiles generated in this work are 
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open, with the curves beginning at a point near the tip of the hallux (first toe) to a point at 

the base of the heel. Figure 5a provides an example of three different open design 

profiles. Design profiles are approximated as target profiles, piecewise linear curves of 

virtually equal piece length. Target profiles are generated by spacing Nj points (where j is 

the profile number) equidistantly along the design profile. Each point (with the exception 

of the first and last endpoints) describes the location of the shared endpoint between two 

contiguous linear pieces, meaning that a design profile j approximated using Nj points 

will have a corresponding j
th

 target profile consisting of Nj - 1 pieces. The arc length of 

the j
th

 target profile is thus quantified by the number of pieces it contains. For example, 

the target profiles j=1, j=2, and j=3 in Figure 5b have arc lengths of 1012, 1152, and 1000 

pieces, respectively, based on a specified minimum profile length of 1000 pieces. The 

average piece length is 0.0522. The greater the number of pieces in each target profile, 

the better the approximation of the corresponding design profile, and the smaller the 

average piece length. While the minimum number of pieces used to generate each target 

profile is determined at the discretion of the designer, a smaller number of pieces will 

require less time to compute. 

Following generation of the target profiles, the rigid-body chain approximating these 

profiles is specified through an operation referred to as segmentation. The desired chain 

is defined by a pair of design vectors that describe the types of segments (rigid links) 

j=1 

j=2 

j=3 

Figure 5. An example set of (a) open design profiles and (b) a corresponding set of target 

profiles approximated by a single chain of links. 

 

j=1 

j=2 

j=3 

M-segment 

C-segment Revolute joint 

Fused connection 

Design profile 

Target profile 

(a) (b) 
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constituting the chain and the types of connections (joints) between each segment. These 

vectors are the segment type vector V and the connection type vector W, respectively. 

The segment type vector V is comprised of q elements, where q is the desired number of 

segments. Each element in the vector is one of two segment types, M or C. M-segments 

have a fixed shape approximating a portion of each target profile containing the same 

number of pieces in all profiles. Thus, an M-segment may be embodied by a single rigid 

link in a physical chain. C-segments have a constant curvature, but a variable arc length, 

thus approximating a different number of pieces for each target profile. Mechanically, a 

C-segment may be embodied by a pair of links connected by a prismatic joint which 

slides along the path of curvature, thus allowing the segment to expand or contract (this 

construction is typically referred to as a revolute-prismatic-revolute , or RPR, chain). 

While a set of target profiles with similar arc length can be approximated by a segment 

type vector consisting of only M-segments, profiles with significant difference in arc 

length require at least one C-segment in the segment type vector in order for the chain to 

achieve an adequate match [37]. The connection type vector W contains q - 1 elements of 

type R or type F. R type connections represent a revolute joint connecting two adjacent 

segments, allowing one segment to rotationally position itself at a unique angle relative to 

the other segment for each target profile. F type connections represent a fused connection 

between two adjacent segments, joining the segments at the same fixed angle for all 

profiles. The segment and connection type vectors for the example chain shown in Fig. 

5b are V = [M C C C M] and W = [F R R R], respectively. 

After specifying V and W vectors, an initial population of p x q segment matrices is 

randomly generated. Each element m
e
j of a segment matrix (SM) describes the number of 

pieces approximated by the e
th

 segment of the segment type vector for the j
th

 profile. If 

the e
th

 element of the segment type vector is specified as an M-segment, the shape of the 

segment is defined by the average shape of the corresponding portions of each target 

profile. If the e
th

 element of the segment type vector is specified as a C-segment, the 

curvature of the segment is defined by the average curvature of the points constituting the 

corresponding portions of each target profile, with the length of each piece constituting 

the segment equal to the average length of each piece in the corresponding portions of the 



P a g e  | 13 

  

target profiles. The generated segments are then positioned along each target profile so as 

to minimize the point-to-point matching error associated with each profile. 

The segments are joined according to the connection type vector. Segments connected by 

an F type connection are joined first by aligning the endpoints of the connecting 

segments, and fusing the segments together at a fixed angle equal to the average angle 

between the segments for each target profile. R type connections are joined in a similar 

manner, but instead of being joined at the same fixed angle for all profiles, segments are 

joined at the unique angle resulting in the lowest matching error for each profile. Note 

that the joining of R type connections need not be performed at this stage of the synthesis 

process. It is advisable to join segments connected by R type connections after SMs have 

been optimized, as doing so beforehand has been demonstrated to significantly increase 

computation time without significantly affecting post-optimization results [40]. 

After segments have been joined, all segments are repositioned along each profile to 

reevaluate the matching error. The matching error associated with a SM is defined by a 

corresponding p x q error matrix EM, where each element E
e
j describes the maximum 

matching error of the e
th

 segment of the segment type vector for the j
th

 profile. SMs are 

then optimized using an iterative, gradient-based method. In each step of iteration, 

segments are regenerated and rejoined based on the segment type and connection type 

vectors and the SM generated in the previous step, which yields a new EM with each 

iteration. The number of pieces constituting each segment is then adjusted to reduce the 

matching error based on the EM generated in the previous step. An optimal SM is 

achieved once no decrease in the overall matching error (defined as the average value of 

the corresponding EM) occurs after ten steps of iteration. Note that, typically, only the 

initial SM or SMs which produce the lowest average matching error are optimized in 

order to increase computational efficiency. Segments connected by R -type connections 

are now joined if they have not already been so prior to optimization. 

As an example, the optimized SM describing the target profiles in Fig. 5b with the 

previously specified design vectors is: 
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𝑆𝑀 = [
147 180 196 108 381
147 165 312 147 381
147 57 123 292 381

] 

Note that all entries in the 1
st
 and 5

th
 columns of the above SM are identical. These 

columns correspond to the M-segments in the segment type vector, which contain an 

equal number of pieces for each profile. The final rigid-body chain is shown in Fig. 5b. 

Also note that the sum of the values in each row of the SM is equal to the total number of 

pieces in the corresponding profile (1012, 1152, and 1000 as previously stated). The 

corresponding EM is: 

𝐸𝑀 = [
0.0236 0.0685 0.4790 0.4790 0.4806
0.6804 0.6017 1.3143 0.5928 0.7287
0.3064 0.4384 0.4871 0.4871 1.3280

] 

which has an average point-to-point matching error of 0.5664. 

A more in-depth development of the synthesis process described above can be found in 

Ref. [37]. All relevant calculations in this work were performed using a suite of routines 

in MATLAB developed and compiled by the University of Dayton’s Design of Innovative 

Machines Laboratory (DIMLab). The suite allows the designer to input an existing set of 

design profiles, or create a new set, and generate an initial population of SMs from the 

resulting target profiles based on a specified segment type and connection type vector. 

Use of this suite allows for rapid calculation of optimal SMs, allowing the designer to 

more efficiently explore different combinations of design vectors. 

 

3 DESIGN OF A SHAPE-CHANGING, RIGID-BODY FOOT 

The following sections detail the design process resulting in a multi-segment, shape-

changing, rigid-body prototype of a mechanical foot capable of matching the change in 

profile of the foot during walking. It should be emphasized that the design detailed in the 

following sections is not itself a prosthetic device. While the foot’s design was heavily 

inspired by principles of prosthetic design, the primary design objective of this foot was 
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to demonstrate realistic shape-change based on methods of kinematic synthesis. As a 

result, emphasis was placed in many regards on form more so than function. 

Recommended future work on this project is guided toward adapting the design for 

biomechanical use and introducing additional functionality to increase its viability as a 

prosthetic device (see Section 4.3). Novel prosthetic design implications resulting from 

this work are discussed in Section 4.2. Section 3.1 outlines the procedure used to generate 

geometric profile data from biological gait. Section 3.2 details the kinematic synthesis of 

the chain of rigid-links constituting the foot. Section 3.3 describes the construction of a 

solid model of the foot, while Section 3.4 justifies the design choices made in the 

modeling process. Progress to date on development of an actuation strategy is presented 

in Section 3.5. Section 3.6 introduces the physical prototype of the foot and discusses its 

current state, as well as suggested improvements.  

3.1  Generation of Design Profiles  

In this work, 2D profiles derived from digital imagery of a human foot walking on level 

ground were used to generate design profiles. Ideally, profiles of the entire plantar 

surface of the foot would be used to best characterize foot geometry, as the topography of 

the bottom of the foot varies transversally. Traditional methods of obtaining digitized, 3D 

profiles of the plantar surface such as 3D scanning or pedobarographic pressure mapping 

are typically only capable of capturing one profile of the foot in a static position such as 

midstance. While methods of capturing multiple plantar profiles during dynamic activity 

such as walking exist [41-44], these methods were not employed in this work due to a 

lack of access to required technology. Additionally, the methods of kinematic synthesis 

described in Chapter 2 have thus far only been extended to planar mechanisms. While an 

array of planar rigid-body chains could in theory be used to recreate the transversal 

variance of the plantar profile, the resulting DOF and the complexity of the required 

synchronization between chains would result in a highly unwieldy and impractical foot. 

For these reasons, only 2D profiles taken from the medial view of the foot were used as 

design profiles.  

The foot of a healthy, young adult male with no gait abnormalities was used to generate a 

set of design profiles from digital photographic images taken at 33 millisecond intervals 
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from the initiation of the stance phase of gait (initial heel strike) to the termination of the 

stance phase (toe-off). The subject walked on a level, elevated platform in front of a 

camera placed approximately 8 feet away on a stand level with the platform. Prior to 

capturing the images, the subject was asked to stand upright, and the inside medial edge 

of the subject’s right foot was marked with a dashed ink line where it contacted the 

ground. An additional ink marking was placed at the ankle for reference. As the subject 

walked, the ink line would deform as the foot transitioned through the various stages of 

stance, providing an approximate contour of the bottom of the foot. Starting at the 

instance of initial heel strike, a total of 26 images were taken over a duration of 834 

milliseconds before the foot lifted completely from the ground.  

In order to reduce the total number of design profiles and thus reduce potential error 

during synthesis of the rigid-body chain, 16 non-sequential images containing 

insignificant change in profile from the previous image were discarded. The remaining 10 

images, consisting of at least one image taken at each of the major stance stages, were 

used to generate 10 corresponding design profiles (Figure 6). The design profiles 

identified from these images were digitized using a MATLAB script allowing the user to 

draw a curve overtop an imported image. To draw the curve, the user would specify a set 

of points located on a coordinate plane originating at a reference pixel common to each 

image. A natural cubic spline was then fit to the set of user-specified points, interpolating 

the curvature from one point to the next. In order to obtain an accurate profile curve, 

points lying along the ink line marker were chosen to define the spline. 

  



P a g e  | 17 

    

 

Pre-contact 

Initial heel strike 

Loading response 

Midstance 

Terminal stance 

Terminal stance 

Terminal stance 

Terminal stance 

Toe-off 

Post-contact 

Figure 6. Images taken of a foot during the stance phase of gait (middle) used to generate design 

profiles (right). Each image corresponds to a different stage of stance (left). 
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3.2  Segmentation and Chain Generation  

Before employing the kinematic synthesis methods outlined in Chapter 2, the 10 design 

profiles were carefully examined in order to guide the selection of user-specified 

parameters. Because of the relatively large potential for error associated with visual 

approximation of the profile of the edge of the foot in contact with the ground, as well as 

the large number of design profiles to match, a minimum profile length of 1000 pieces 

was specified for the 10 design profiles. While selection of a greater minimum limit 

would result in more accurate target profiles, the increase in computation time required 

for a comparatively small increase in the accuracy of an already approximate set of data 

yields diminishing returns. In addition, it was desirable to keep the length of the design 

vector small in order to produce a chain with a feasibly controllable number of rigid 

segments. Through repeated calculation, it was observed that at six or more segments, 

optimal SMs contained at least one element in each row of significantly lesser value than 

the other elements in the same row, resulting in impractically small segment sizes. Too 

few segments, however, resulted in poor matching of target profiles. A total number of 

five segments was chosen in order to balance segment size with match accuracy. It 

should be noted that because the optimization process relies on an initial population of 

randomly generated SMs, it may be possible to generate a chain of comparable accuracy 

containing a lower number of segments. However, given the myriad possible 

combinations of segment and connection type vectors, this is virtually impossible to 

predict without extensive trial and error. 

Given the tight manufacturing tolerances and the generous amount of space required to 

implement a curved, sliding prismatic joint, it was desirable to specify a segment type 

vector V with as few C-segments as possible, noting again that at least one C-segment is 

required to match the shape of profiles with significantly different arc lengths. For this 

reason, careful consideration of the design profiles was necessary in order to choose a 

segment type vector that would result in an appropriate placement of the C-segment. It 

was observed that the largest difference in curvature between the profiles corresponded to 

a portion of each profile representing the ball of the foot, where the metatarsophalangeal 

joints are located. In comparison, the change in geometry of the portions of the profiles 
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corresponding to the hallux and the heel 

was relatively minor. Therefore, logical 

placement of the C-segment was assigned 

to one of the three middle elements of the 

segment type vector.  In determining the 

connection type vector W, it was desirable 

to use R-type connections (revolute joints) 

in order to facilitate a greater degree of 

shape-change. While the use of F-type 

connections would serve to reduce the 

required number of links by fusing two 

segments together at a fixed angle 

(effectively creating a single segment), the 

matching error associated with this 

combined segment would likely increase, 

given the inconsistencies in the curvatures 

of corresponding portions of the profiles 

resulting from the unavoidable positional 

error prompted by visual identification of 

the design profile splines. 

A final optimal SM was achieved after repeated calculation using different possible V 

and W vectors as inputs. The inputs used to generate this SM were V = [M M C M M] 

and W = [R R R R] (Figure 7). The resulting SM was: 

𝑆𝑀 = 

[
 
 
 
 
 
 
 
 
 
121 164 113 334 321
121 164 102 334 321
121 164 123 334 321
121 164 118 334 321
121 164 126 334 321
121 164 134 334 321
121 164 122 334 321
121 164 89 334 321
121 164 82 334 321
121 164 60 334 321]

 
 
 
 
 
 
 
 
 

 

Figure 7. The chain defined by V = [M M C 

M M] and W = [R R R R] matching the 

shape of the 10 target profiles. The red 

curves represent M-segments, the blue 

curves represent C-segments, and the white 

dots represent the revolute joints connecting 

adjacent segments. 
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with an associated EM: 

𝐸𝑀 = 

[
 
 
 
 
 
 
 
 
 
0.4696 0.8610 0.8483 1.6620 2.1942
0.5749 0.5517 0.7036 0.7841 1.1676
0.6979 1.7560 2.0338 1.9482 1.7391
0.3662 0.7922 0.7922 1.3429 1.0508
0.4815 0.4345 0.4345 0.8161 1.8597
0.3040 0.4449 1.2080 1.4076 1.4076
0.2575 0.9715 0.4944 1.1542 1.1247
0.3736 0.8582 1.2201 1.2908 2.6364
1.1389 1.7650 0.5225 1.5277 1.9876
1.9159 1.0888 1.1604 2.1882 3.8294]

 
 
 
 
 
 
 
 
 

 

which has a mean error value of 1.1728. The length of the 10 target profiles were defined 

by 1053, 1042, 1063, 1058, 1066, 1074, 1062, 1029, 1022, and 1000 pieces, respectively, 

with an average piece length of 0.1847. 

Following generation of the SM, the linear pieces constituting each segment of the chain 

were then scaled about the origin of the pixel-based coordinate system in which they 

were defined to the size of the test subject’s foot. This was accomplished by measuring 

the horizontal distance in inches between the two endpoint markers located respectively 

at the tip of the subject’s hallux and the back of the subject’s heel. This same distance 

was then measured in pixels from the design profile images. The ratio of the distance in 

inches and the distance in pixels yielded a scale multiplier (calculated to be 0.0479 inches 

per pixel) which was applied to the coordinate locations of the endpoints defining each 

piece, enlarging the segments to the proper size.  

3.3  Solid Modeling of Links 

Segment geometries were imported into Solidworks CAD modeling software and used to 

define 10 different curves (Figure 8), each corresponding to a configuration of the chain 

matching one of the target profiles. These curves were used to define the sectional profile 

of the bottom portion of each link. Note that for each of the curves in Fig. 8, only the 

positions and orientation of each segment, the angles between segments, and the arc 

length of the third segment (the C-segment) differ. 
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The fourth curve (light green in Fig. 8) was chosen as a reference configuration from 

which the rest of the geometry of each link would be constructed. While any of the 

configuration curves could have been chosen, the fourth curve corresponds to the 

midstance configuration, in which the bottom of the foot is in full contact with the 

ground, resulting in a nearly horizontal configuration in which the curve is approximately 

tangent to horizontal near both ends, providing a convenient reference axis. 

Figure 9 shows the model of the foot in the nine configurations specified by the first 9 

profiles. Note that the tenth configuration (defined by the pink curve in Fig. 8) was 

eliminated as a design objective for reasons discussed in Subsection 3.4.3. As a result, 

there is no configuration of the foot corresponding to this curve. 

 

Figure 8. 10 configurations of the 5-segment geometry corresponding to each of the target 

profiles, beginning with the instant prior to initial heel strike (red) and ending with the instant 

just after toe-off (pink). The black curve represents the trajectory of the ankle measured from the 

design profile images.  

 



P a g e  | 22 

  

 

 

  

Figure 9. Solid model of the foot in each of the nine configurations specified by the segment 

curves generated during segmentation. 

Config. 1 

Config. 2 

Config. 3 

Config. 4 

Config. 5 

Config. 6 

Config. 7 

Config. 8 

Config. 9 



P a g e  | 23 

  

Figure 10 shows the five constructed regions of the foot, each corresponding to one of the 

segments in the rigid-body chain. Each region is comprised of one or more rigid links. 

Note that while the synthesized chain contains five segments, more than five links are 

required to achieve the shape of the profiles (a single C-segment, for example, generally 

consists of a two-link RPR chain). If the shank connection is considered a fixed frame, 

the foot consists of a total of 7 rigid links: one link in Region 1 (Links 1A and 1B shown 

in Figure 11 are counted as one, since they are designed to move interdependently); one 

link in Region 2; two links in Region 3 (Links 3A and 3B are also counted as one link); 

one link in Region 4; one link in Region 5; and one link constituting the fixed frame. The 

chain comprising the foot contains a total of 6 revolute joints and no higher order joints. 

Thus, by Equation 1, the design has 6 independent DOF. 

 

Figure 10. Medial view of the solid model of the foot in the reference configuration showing 

the regions of the foot model corresponding to the calculated segment curves. 

 

Region 1 

Region 2 

1 
Region 3 

Region 4 

Profile 4 Joint 4 Joint 3 

Joint 2 

Joint 1 

C Joint Region 5 

Ankle Joint  
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Link 6 Body 

Link 5 Body 
Link 2 

Lateral Cap 

Alignment Brace 

Shank Connection 

Routing Bar 

Link 5 Lateral Cap 

Link 3B Cap 

Link 3B Body 

Link 1B 

Body 

Link 1A Cap 

Link 6 Cap 

Ankle Rod 

Link 1A Body 

Link 5 Medial Cap 

Link 3A Cap 

Link 3A Body 

Link 2 Body 

Link 2     

Medial Cap 

Link 4  

Figure 11. Components of the foot. 
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As can be seen in Fig. 11, each link of the foot except for Link 4 can be subdivided into 

two or more separate components. In general, each link consists of a main “body” 

component, and one or more “cap” components that retain the rod in each joint. Each cap 

component has two or more octagonal pegs on its inside face designed to be friction fit 

into corresponding holes on the body component. The fit is tight enough such that the 

body and cap components do not separate during use of the foot, yet loose enough to 

allow for removal of the cap components by hand if access to the joints is required. 

Henceforth, unless otherwise noted, “link” will refer to the combination of both a body 

component and its associated cap components. 

3.4  Mechanical Design Considerations 

The following subsections will each be dedicated to an aspect of the design of the links 

constituting the foot. Subsection 3.4.1 discusses the approximation of non-critical 

geometries. Subsection 3.4.2 details the design of the joints with consideration of 

actuation. Subsection 3.4.3 describes the strategy used to approximate the curvature 

specified by the C-segment. Note that the reader may find it helpful to consult Figure A2 

in the Appendix for a visual depiction of the anatomical planes and axes of the foot 

referred to throughout these subsections. 

3.4.1  Approximation of Non-plantar Geometries 

The geometry of the plantar surface of the foot is of great importance in prosthetic foot 

design because of its influence on balance and weight distribution during stance. Less 

critical to these basic walking functionalities are the geometries of the dorsal, medial, and 

lateral surfaces, the reproductions of which in artificial feet are mainly for cosmetic 

purposes. Because functionality (i.e. adherence to the ROS) can be achieved without 

exactly conforming to these surfaces, the geometries defining these surfaces on the foot 

model were approximated.  

A profile of the test subject’s foot taken from the dorsal view was digitally identified 

from photographic data using the same MATLAB script employed in Section 3.1 to 

extract design profiles. This profile was similarly scaled and imported into Solidworks as 

a set of curves used to define non-critical link geometry. Small alterations to this profile, 
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however, were necessary in order to ensure practical partitioning of the foot into the five 

regions specified by the segment geometry obtained in Section 3.2. 

Perhaps the most obvious of these alterations is the approximation of the geometries of 

the second through fifth toes. As can be seen in Figure 12, the second, third, and fourth 

toes all have the same width and have a uniform tip radius, while the fifth toe is absent 

entirely. The approximation of the toes is due in part to unclarity of the images from 

which the dorsal profile was extracted, 

as the presence of shadows between 

each toe made their exact shapes 

difficult to discern. Measurements 

taken of the subject’s toes, however, 

revealed insignificant differences in the 

widths of the middle three toes. The 

length of each toe (exempting the 

hallux) was not measured, nor was the 

exact curvature of the tips of the toes. It 

was observed from the dorsal profile 

curves, however, that the tip of each of 

the three middle toes was arc-shaped, 

and that the relative decrease in length 

of the toes could be approximated by 

constraining the tip arcs to a straight 

line 157˚ counterclockwise from the 

frontal axis in the transverse plane. The 

geometries of the three middle toes 

were combined to form Link 1B instead 

of creating a separate link for each toe, 

which would have further increased the complexity of the foot mechanism. As a result, 

differences in the amount of pressure born by each of the middle toes due to their 

bifurcation were neglected. 

Figure 12. Construction geometry and angles 

used to approximate toe shape in a dorsal profile 

of the foot. 
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The omission of the fifth toe was dictated by a lack of available space. Because the 

locations of the joints along the target profiles were generated from data taken with 

respect to only one view of the foot, determination of the corresponding locations of 

these joints along a lateral profile of the foot could not be achieved without unwarranted 

speculation. In order to simplify joint structure, each joint was centered along an axis 

running straight across the foot parallel to the frontal axis. As a result of this 

simplification, however, it was observed that Joint 1 connecting Links 1A and 1B to Link 

2 would run diagonally across the middle three toes (as can be visualized from Fig. 12), 

and would end at a location past the tip of the fifth toe. Due to the awkward design of the 

resulting frontal link, Region 1 was split into two separate links: Link 1A approximating 

the shape of the hallux, with a joint running across its width frontally, and Link 1B 

approximating the geometry of the three middle toes, with a joint running at an angle of 

13˚ clockwise from frontal in order to better approximate the actual locations of the 

metatarsophalangeal joints about which these toes rotate when bent. A joint located along 

this secondary axis, however, would inevitably split the fifth toe, requiring yet a third link 

to capture the geometry of the tip of this toe. Because this toe bears comparatively little 

weight during stance, it was simply omitted, with a small portion of its outer geometry 

provided by the Link 2 lateral cap, which retains Link 1B. 

The contours of the dorsal surface of the foot from the medial perspective were also 

approximated using non-plantar curves extracted from the design profile images. More 

creative liberty was taken with these contours than with those from the dorsal profiles, as 

a greater emphasis was placed on providing enough space to house internal components 

than on biological accuracy. 

3.4.2  Joint Construction 

A unique feature of a rigid-body foot design based on kinematic analysis is the method 

by which joints are located. Other segmented rigid-body foot prostheses containing 

revolute joints have traditionally placed joints at locations corresponding to biological 

joints in the foot. Rifkin, for example, developed a multi-segment foot device with joints 

located at positions corresponding to the metatarsophalangeal and talocalcaneal joints to 

achieve improved ambulatory function [45]. The positioning of joints in this work, 
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however, is completely independent of foot anatomy, and is instead determined during 

the segmentation process based on a single curved profile removed from the 

musculoskeletal geometry of the foot. 

In order to determine the ranges of motion of the four synthesized joints, the relative 

angles between each segment in the optimized chain were measured in each configuration 

and used to determine a maximum angular deflection at each joint. Table 1 provides a 

summary of these measurements for the first nine configurations. 

Joint 1 2 3 4 

Config 1 15.96 12.53 19.10 11.76 

Config 2 11.63 17.89 15.60 11.60 

Config 3 19.00 14.15 33.24 8.79 

Config 4 16.18 27.23 36.20 1.51 

Config 5 22.97 27.45 32.63 0.00 

Config 6 21.65 17.67 36.44 0.03 

Config 7 14.83 0.00 6.27 15.31 

Config 8 0.00 14.51 0.00 17.62 

Config 9 8.75 22.56 9.43 16.96 

Each of the four joints was modeled as a crescent joint with a positional stop to prevent 

the joint from deflecting beyond the rotational limits specified in Table 1. The structure 

of a crescent joint is shown in Figure 13. It is important to note that the center of each 

joint about which the connected links rotate does not lie directly along the plantar curve 

defined by the configuration curves as was assumed during segmentation. Rather, the 

center of each joint is vertically offset 0.12 in. above its calculated position along the 

configuration curves. This is because it is problematic to create the structure for a 

crescent joint directly on the surface of the foot in contact with the ground, as the bottom 

portion of the central hub would extend past this surface. 

The purpose of splitting each link into separate body and cap components is to retain the 

alignment rod concentrically aligning the central hubs of the anterior and posterior links 

associated with each joint. Each joint was constructed such that, to assemble the 

Table 1. Relative angular deflection (in degrees) at each 

joint in the first nines configurations. Values in bold denote 

the maximum angular deflection achieved at each joint. 
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prototype, the crescent arm of the posterior body could be aligned with the cavity on the 

anterior body (such as shown in Fig. 13), allowing the posterior body to “slide into” the 

open cavity until hitting a stop at the far end of the joint. The stop on the opposite end of 

the foot is another central hub located either on the posterior body component (as is the 

case with the Joint 1 connecting Links 1A and 1B to Link 2) or on the lateral side cap 

component of the posterior link (as is the case with Joints 2, 3, and 4). The joints are 

aligned by inserting the alignment rod through the central hubs on both anterior and 

posterior bodies. The rod is retained within the joint by finally attaching the medial side 

cap components to their respective body components. 

In anticipating of actuation elements, each joint contains one or more spaces cut through 

the central hub, crescent cavity, and crescent arm to accommodate one or more torsional 

springs. These spaces are most clearly visible from the plantar view of the foot in Fig. 11. 

Small torsion springs can be compressed and inserted into these spaces before insertion 

of the alignment rod, which passes through the centers of the torsion springs as it passes 

through the central hub. The incorporation of torsion springs is discussed in more depth 

in Section 3.5. 

 

Figure 13. Structure of a crescent joint. 
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3.4.3  Approximation of C-segment Curvature 

As mentioned previously, curved prismatic joints are often avoided when possible in 

practical design due to the requirement of tight manufacturing tolerances and surface 

finishes. In addition, there is a relatively high chance of the joint binding due to 

accumulation of debris within the joint, as a portion of the sliding surface is exposed 

when the joint extends, and experience reveals that passively driven prismatic joints are 

often difficult to control. Perhaps the greatest detriment of the use of passive prismatic 

joints for prosthetic applications, however, are the large size requirements of a sliding 

linkage, particularly if there is a significant difference in arc length between the fully 

extended and fully contracted configurations. 

Measurement of the target profiles revealed that the C-segment had a minimum arc length 

of 60 pieces (0.5513 in.) in the tenth configuration (corresponding to the instant just after 

toe-off) and a maximum arc length of 134 pieces (1.2313 in.) in the sixth configuration 

(corresponding to the portion of terminal stance during which weight is transferred from 

the ball of the foot toward the toes). Thus, an RPR chain embodying the C-segment 

would have to contract to a length less than half the length of one of its links while 

confined to a relatively short region of the foot. For this reason, as well as the fact that 

plantar geometry directly after toe-off is irrelevant for characterizing walking during the 

stance phase, the tenth configuration was eliminated as a design objective. 

A different embodiment of a C-segment than an RPR chain was employed to further save 

space. This embodiment was a chain comprised of two links with an equal radius of 

curvature joined by a revolute joint at the common center of curvature. However, this 

embodiment also proved to be problematic, as the C-segment had an average radius of 

curvature of 4.9585 in. (corresponding to the red curve in Figure 14), meaning that the 

center of curvature needed to locate the revolute joint lay approximately 3 in. above the 

dorsal surface of the foot. To reduce this distance in order to achieve a centerpoint 

located within the contours defining the dorsal surface, the radius of curvature of the two 

links constituting the C-segment was reduced to 1.62 in. (corresponding to the blue curve 

in Fig. 14) In order to approximate the shallower arc specified during segmentation, the 
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C-segment links were constructed such that the bottom surfaces of these links remained 

tangent to the unoffset segment curve in each configuration (Figure 14). 

The final embodiment of the C-segment 

(Region 3) consists of two links: an inner link 

(Link 4) and an outer pair of links (Links 3A 

and 3B) located to either side of Link 4 (refer 

to Fig. 11 for clarity). Link 4 is connected to 

Link 5 at Joint 3, and Links 3A and 3B are 

connected to Link 2 at Joint 2. Links 3A, 3B, 

and 4 are joined at the common centerpoint of 

curvature located at the C Joint (the blue dot 

in Fig. 14). The C joint is similar in 

construction to Joints 2-4 in that it contains an 

alignment rod which keeps Link 4 aligned 

concentrically at the point of rotation with 

Links 3A and 3B. Links 3A and 3B each 

contain a small cap piece at their shoulders which retains the rod. Like each of the 

crescent joints along the bottom of the foot, the C Joint contains positional stops which 

keep Links 3A and 3B and Link 4 from extending past the angle of deflection which 

produces the maximum arc length achieved at full extension in the fifth configuration.  

Links 3A, 3B, and 4 were designed such that the bottom surface of at least one of the 

links is in contact with the ground in configurations 2-6. Thus in the former 

configurations when the forefoot is unflexed, weight at the ball of the foot would be born 

by Link 4, and in the latter configurations when the forefoot is dorsiflexed, weight at the 

ball of the foot would be distributed amongst Links 3A and 3B. 

3.5  Development of a Tendon-based Actuation Scheme 

Perhaps the greatest challenge offered by this design is how to actuate and synchronize 6 

independent DOF. Examination of the configuration-to-configuration angles for the joints 

contained in Table 1 reveals that each joint moves in an independent sequence of 

Figure 14. Approximation of C-segment 

curvature (red) using a reduced radius of 

curvature (blue) to define link geometry. 

Joint 2 Joint 3 
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clockwise and counterclockwise rotations, often changing direction rapidly between 

configurations. While it is possible that with adequately stiff joints the foot may be 

functional without active elements, the resulting rotation in each of the joints defining the 

change in shape of the foot would almost certainly fail to produce the configurations 

specified by the design profiles, rendering the exercise of synthesizing the rigid-body 

chain irrelevant. Thus, in order to ensure the foot achieves each configuration, each joint 

must be actuated independently. 

Tendon-based actuation schemes for prosthetic and robotic limbs have risen in popularity 

in recent years, particularly in the design of artifical hands [46-48]. Despite the 

physiological similarities between the function of the tendons in the hand and those in the 

foot, tendon-driven foot devices appear scarce by comparison. Still, there is some 

precedent for tendon-driven feet. The joints in Rifkin’s foot [45] are driven by tensegrity 

structures comprised of small wire ropes in tension, which facilitate tendon-like motion. 

Ficanha, Rastgaar, and Kaufman also developed a cable-driven foot mechanism capable 

of achieving plantarflexion and dorsiflexion, as well as inversion and eversion using 

tendon-like cables [49].  

As mentioned in Subsection 3.4.2, Joints 1-4 were designed to accommodate the insertion 

of torsion springs in order to provide the foot with appropriate stiffness to provide basic 

energy storage and return. Inclusion of an energy storage and return mechanism was 

desired in consideration toward future adaptation of this design for prosthetic use. The 

inclusion of springs at each joint keeps the foot 

in a neutral position of plantarflexion, as shown 

in Figure 15. A series of tendon-like cables in 

tension could then be attached to each of the 

links to overcome the spring force, and by 

adjusting the amount of tension in each cable, 

the necessary degree of dorsiflexion required to 

match each configuration could be achieved. 

Choosing the plantarflexed configuration as the 

neutral configuration simplifies the actuation 

Figure 15. Solid model of the foot in the 

plantarflexed configuration. 
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scheme by eliminating the need for an antagonistic set of tendons to achieve 

plantarflexion, reducing the overall number of tendons required for actuation.  

Figure 16 shows the routing scheme of 

the cables. Each cable is connected to a 

link and is routed through a series of 

channels built into the subsequent links 

that guide the cables upward and around 

the routing bar. The routing bar is fixed 

to the shank connection such that each 

cable moves relative to the same fixed 

frame. Cables of the same color 

correspond to a common DOF and are 

meant to be coupled such that the motion 

of each pair of cables can be achieved 

with a single actuator. Note that with the 

exception of the single cable at the heel 

(magenta in Fig. 16), there is at least one 

pair of cables dedicated to each region of 

the foot. A pair of cables is used for each 

region in order to more evenly distribute 

the tension force imparted by each set of 

cables on their corresponding links, as 

well as to reduce the total amount of 

tension required of each individual cable. 

Note that due to its position, the cable 

pair controlling Link 6 passes under and around the routing bar from the opposite 

direction as the other cables. Also note that the two red cables in Fig. 16 each connect to 

separate links (1A and 1B). Since it is desired the motions of Links 1A and 1B be 

independent, these cables are to be controlled in such a way as to synchronize the motion 

of the two links, effectively accounting for one DOF. Similarly, the yellow pair of cables 

controls the interdependent motion of Links 3A and 3B, with one cable connecting to 

Figure 16. Routing scheme for the tendon-like 

cables acting in tension on each link of the foot. 
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each of the two links, accounting for the rotational DOF at the C joint. The rotation of 

Link 4 about Joint 3 is controlled via the single magenta cable at the heel, which attaches 

to a bell crank mechanism that connects Link 4 via a coupler (Figure 17). 

 

The design of the bell crank mechanism is inspired by two different ankle-foot devices. 

The first is an artificial foot developed by Collins and Kuo [50] designed to restore a 

portion of the energy lost due to collision via a clutch mechanism which releases energy 

stored in a compression spring during ankle push-off, reducing ankle work. The second 

device is an orthosis developed by Collins, Wiggin, and Sawicki [51] based on a similar 

principle. A ratchet and pawl clutch mechanism attached to a band worn on the calf 

provides tension to an extension spring at the back of the heel while the foot is in contact 

with the ground, and then disengages during push-off, releasing the stored energy in the 

spring. Both of these designs are displayed in Figures 18a and 18b, respectively.  

Coupler Link 

Bell crank 

Spring Retention Rod 

Routing Bar 

Shank Connection 

Alignment Brace 

Figure 17. Cross-sectional view of the foot interior showing the bell crank mechanism used in 

the actuation of Link 4. 
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Table 1 reveals a large change of angle in 

Joint 3 between the sixth and seventh 

configurations as weight is shifted to the 

forefoot. The resulting motion would force 

Links 3A and 3B and Link 4 to contract, 

pushing the coupler link back toward the 

heel, rotating the bell crank at the ankle 

counterclockwise. An extension spring 

connected to the opposite side of the bell 

crank anchored to the heel by the spring 

retention rod would then be forced to 

extend, absorbing energy otherwise lost 

during the contraction of the forefoot. The 

magenta cable attached to the same end of 

the lever as the spring could be timed to 

release tension abruptly during the push-off 

period between configurations 8 and 9, 

releasing the energy stored in the spring, 

rapidly forcing the coupler forward and 

causing Link 4 to snap back clockwise to 

account for the change in angle between 

the eighth and ninth configurations. Thus, 

the bell crank mechanism would store 

energy in the same fashion as the orthosis 

in Fig. 18b, and release it during push-off 

in a manner similar to Collins and Kuo’s 

artificial foot in Fig. 18a. 

Full realization of the conceptualized actuation scheme for this foot ultimately lay beyond 

the focus of the project objective. After redirection at the routing bar, it was envisioned 

that the cables would run up the shank to a winch-like mechanism driving a series of 

cams that would wind and unwind the cables to increase and release tension in each cable 

Figure 18. Images and diagrams of an energy 

restoring (a) artificial foot and (b) orthosis 

used as inspiration for the design of the bell 

crank mechanism. Images adapted from Refs. 

[46] and [47], respectively. 

(a) 

(b) 
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pair as dictated by the required degree of dorsiflexion opposing the spring-driven 

plantarflexion specified by the joint angles. The rotation of each cam would be driven by 

one or more small motors, the speed of which could be determined through the use of a 

robust controller capable of adapting the speed of the motor based on the speed of the 

user’s walk. The design of such a controller, however, is currently outside the scope of 

this project. At present, the tension in each cable must be adjusted manually. 

It should be noted that the bell crank mechanism was also not fully implemented. An 

extension spring was installed at the heel that allows the motion of Link 4 to be actuated 

by pushing upward on the arm of the bell crank as envisioned. A mechanism similar to 

the clutch used in the above orthosis to facilitate the rapid release of the cable at the heel, 

however, has not yet been created. As a result, the prototype in its current state does not 

have an energy storage and return mechanism to assist in push-off other than the innate 

stiffness provided by the torsion springs in Joints 1-4. 

3.6  Development of Prototype and Recommended Modifications 

A physical model of the design detailed in the above sections was rapid prototyped 

(Figure 19). The cap and body components constituting each link were 3D printed using 

ABS thermoplastic. ABS is a common material used in 3D printing, which offers 

acceptable rigidity, is easily thermoformed, and possesses a good strength-to-weight 

ratio. While ABS has successfully been used to create 3D printed prostheses, there is a 

concern regarding the suitability of ABS to this design in terms of strength given the 

material thinness in certain weight bearing structures, particularly in the crescent joints. 

Given that this project emphasized shape-change over prosthetic functionality, material 

selection was guided more by cost and availability than by consideration of potential 

biomechanical loading. As a result, the author recommends a stronger material be 

considered in future iterations of this design, such a polypropolene-based copolymer, as 

was recommended by Sam et al. in the design of the S&R foot [20]. 

In addition to the foot itself, a benchtop support stand that allows the foot to achieve each 

of the nine target configurations was fabricated. The support stand features an adjustable 

height cross member to which the foot can be mounted via the threaded shank 
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connection. Thus the foot is suspended with the shank fixed and is rotated about the ankle 

to achieve each configuration. A thin cantilevered plate anchored perpendicular to the 

center of the cross member sits above the foot. The plate has slots cut out from the side 

leading to a row of ten small holes drilled in the center of the plate at 0.25 in. intervals. 

Each of the five pairs of cables controlling one region of the foot can be slid through one 

of the ten slots into the corresponding hole. A terminal at the end of the cable keeps the 

cable from sliding down through the hole, keeping the foot suspended. The tension in 

each pair of cables can be adjusted by attaching the terminals at different lengths along 

the cable, making it shorter or longer. Once all cables are adjusted such that the foot is 

suspended in the neutral configuration, the tension in the cables can be refined to provide 

the appropriate degree of dorsiflexion in each joint specified by the desired configuration 

by manually pulling the correponding cables, relocating a cable to a more distant hole, or 

a combination of both. 

The cables initially used in the prototype were nylon monofilament wire rated at a test 

load of 30 lbs, well under the maximum tension induced by the light weight of the links 

and enough to overcome the spring force imposed by the torsion springs. While these 

cables were suitable for the purpose of actuating the suspended foot into the target 

Figure 19. Prototype of the foot and support stand. 
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configurations, it was noted that the cables had a tendency to stretch after repeated use, 

thus requiring periodic relocation of the terminals along the cables. In addition, some 

relative motion between links was observed. For example, when pulling the pair of cables 

connected to Link 2, which route through Links 3A, 3B, 4, and 5, these links also 

displayed a tendency to move along with Link 2. In order to combat this unwanted 

motion, Joints 1-4 were each equipped with an increasing number of torsion springs 

acting in parallel such that Joint 1 had the lowest stiffness, while Joint 4 had the highest. 

The springs were arranged in this fashion such that by applying tension to the pair of 

cables connected to a specific link or set of links, the intended links would begin to rotate 

before reaching the tension required to overcome the larger spring forces in the 

subsequent regions, resulting only in motion of the intended links. Despite this 

progressive stiffening of joints, some relative motion hindering the foot’s ability to 

smoothly achieve each configuration was still observed. For this reason, it is 

recommended that the current nylon cables be replaced with stranded, sheathed pull 

cables. The presence of a sheath around the cable would eliminate friction between the 

routing channel surfaces and the moving cable, thus helping prevent undesired motion of 

neighboring regions. 

A final observation on the prototype is that the plantarflexed configuration chosen as the 

neutral configuration does not provide the proper degree of resistance required to oppose 

cable tension as was originally assumed. In order to mimic true plantarflexion, Links 3A 

and 3B and Link 4 would need to contract to their smallest effective arc length. However, 

in order to oppose cable tension in the neutral configuration, these links would need to be 

extended to their maximum effective arc length such that when additional tension is 

applied to the cables, these links contract. In the current plantarflexed position, these 

links are already fully contracted. Due to greater limitations in space at the C joint, 

torsion springs could not be implemented at this joint in the same fashion as Joints 1-4., 

leaving the cable force currently unopposed. The design can more easily be adapted to 

accommodate a pair of compression springs mounted to the anterior surfaces of Link 5 

that push against the opposite surfaces on Links 3A and 3B, keeping these links 

maximally extended in the neutral configuration. It is recommended that such springs be 

incorporated in future iterations of the design. 
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4 DISCUSSION 

This chapter provides a discussion-based analysis of the final prototype and its potential 

for use as a prosthesis. Section 4.1 addresses the functional limitations of the current 

design and presents an overview of the requirements needed to repurpose the design for 

prosthetic use. Section 4.2 presents some novel ankle-foot design implications stemming 

from this work. Recommendations for future work toward addressing the requirements 

enumerated in Section 4.1 are presented in Section 4.3. 

4.1  Limitations 

As previously stated, the primary purpose of this work was the embodiment of a 

mechanical foot design capable of replicating the change in shape of the foot during 

walking. The limitations of the prototype in regard to accomplishing this goal have 

already been discussed in Section 3.6. However, there are further limitations to the 

functionality of the device as a practical foot mechanism. The device was not originally 

conceived as a prosthesis, but given the natural application of such an artificial foot, as 

well as the heavy usage of prosthetic design principles as inspiration for the design, there 

is a potential that the current prototype could be modified to fulfill the purpose of a 

prosthesis. In order to achieve minimum functionality as a prosthesis, a number of factors 

must first be addressed. 

First and perhaps foremost is the fulfillment of the actuation scheme presented in Section 

3.5. In order to properly attune such a complex actuation mechanism, further research on 

the biomechanical behavior of the foot is required, particularly in regards to 

characterizing the stiffness of the foot. The torsion springs currently implemented in the 

design are incapable of accurately representing the stiffness of the physiological foot and 

were chosen primarily for their small size. The use of photographic data alone is not 

enough to infer a proper stiffness. Traditionally, stiffness is characterized experimentally 

utilizing center of pressure and GRF data. No such data exists, however, for the foot used 

to generate the design profiles in this work. A further complication is that stiffness 

elements in the current design are limited to implementation at the joints, which do not 

necessarily correspond to locations of physiological joints in the foot for which biological 
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data already exists. While methods of characterizing the stiffness of a prosthetic foot at 

off-joint locations utilizing mathematical models or previously generated data exist [52, 

53], these methods are generally better suited for design of single-body compliant feet. 

Olesnavage and Winter developed a method [54] for optimizing stiffness of the 

metatarsal and ankle joints of a rigid-body foot using pre-published gait data [55]. The 

methods outlined in Olesnavage and Winter’s work could potentially be extended to this 

project if the GRFs and locations of center of pressure could be synchronized with the 

times at which design profiles were extracted. From there, basic static force analysis 

could be employed to determine an approximate local stiffness for each joint. Further 

investigation into the work presented in Ref. [54] is required to assess its applicability as 

a basis for spring selection. 

A second requirement is quantitative test data characterizing the gait produced by the 

prototype, as well as its ability to withstand realistic biomechanical loading. It was 

postulated in Chapter 1 that a closer replication of the actual geometry of the foot would 

produce an ROS approximately symmetric to that of the physiological foot. While the 

literature seems to support this idea, center of pressure data from the prototype is needed 

to assess the validity of this claim. In addition to functional achievement of the ROS, the 

foot must also be able to safely support the weight of a user. Towards this end, selection 

of a stronger material may be required for the reasons enumerated in Section 3.6. 

Consideration must also be given toward the experience of the prosthetic user. A 

biomechanically accurate prosthesis is ultimately unavailing if said prosthesis is not 

comfortable and convenient for the user. Aesthetically, the prototype may be improved 

by the inclusion of a cosmesis, which in addition to enhancing the appearance of the 

design, may also provide the advantages associated with elastic, skin-like compliant 

materials typically used in the molding of cosmeses such as silicone or polyurethane 

rubbers, which include increased abrasion resistance and shock absorption [56]. 

4.2  Implications for Design of Ankle-foot Devices 

While the prototype in its current state may not be suitable as a prosthesis, the use of 

shape-changing kinematic synthesis to achieve biologically generated inputs presents 
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some novel implications for the design of ankle-foot devices. The use of methods of 

kinematic synthesis circumvent the need for prior characterization of the exact loading 

the device will be subjected to, instead relying on foreknowledge of the required 

positional configurations, which are often known in advance and are simpler to 

characterize, theoretically accelerating the design process and widening the design space. 

While the design space in this project was limited to ten design profiles (later reduced to 

nine), the methods employed to generate a suitable rigid-body chain are applicable to any 

number of profiles of any curvature or arc length. This implies a potential to match 

additional shapes resulting from other foot functions beyond gait, such as running or 

kicking, all with a single rigid-body chain. Provided the challenges of actuating the 

resulting chain are met, employment of this design strategy could produce drastically 

more versatile and multifunctional ankle-foot devices. The ability to match multiple 

unique design profiles also suggests that a rigid-body chain possesses the ability to match 

design profiles generated by multiple individuals. As it applies to prosthetics, this 

signifies the potential existence of a single, mass reproducible prosthesis able to 

accommodate multiple users with similar effective foot geometries. Such a prosthesis 

could help alleviate the high costs associated with custom fabrication of more 

sophisticated designs. 

4.3  Future Work 

It is strongly recommended that future work focus on addressing the limitations identified 

in Section 4.1, and following through with the identified suggestions for further 

investigation. While the issues associated with the current prototype outlined in Section 

3.6 should be addressed, immediate redesign of the foot beyond these relatively simple 

modifications is not recommended at this time, as it is anticipated that findings stemming 

from investigation into the literature recommended above may result in further alterations 

to the design. 

Realization of a viable actuation scheme is of top priority, be it the one proposed in 

Section 3.5 and partially implemented in the current prototype or an alternative 

mechanism. Toward this end, preliminary steps in applying the Winter data [55] to a 
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static analysis of the foot in order to characterize the required stiffness of joints have 

already been taken. Following identification and implementation of suitable stiffness 

elements at each joint, evaluative testing will be conducted to assess the ability of the 

design to produce a physiologically accurate ROS.  

5 CONCLUSION 

This work outlined a design process based on methods of shape-changing kinematic 

synthesis resulting in the prototyping of a multi-segment rigid-body foot mechanism 

capable of matching the change in shape of the foot during walking. Design profiles 

representing the configurations of the foot to be matched by the mechanism were 

extracted from digital imagery of a test subject in gait. These profiles were approximated 

as a series of piecewise linear curves used to define the geometries of segments of a 

single, optimized mechanical chain able to approximate the shapes of the design profiles. 

The generated geometry of the chain was then used to define curvatures of the plantar 

surfaces of each rigid-link embodying the chain in a solid model of the design. A tendon-

driven actuation scheme capable of driving the model into each of the design 

configurations was conceptualized. The model was rapid prototyped and a benchtop 

frame used to suspend the prototype was fabricated. The tendon-driven actuation scheme 

was partially realized using monofilament nylon cables in tension to oppose the force of 

torsional springs in the joints keeping the foot in a neutral, plantarflexed position. 

The potential adaptation of the foot mechanism for prosthetic use was discussed, 

limitations of the prototype were identified, and suggestions for potential modifications to 

the current design towards addressing these limitations were presented. Implications for 

the design of ankle-foot devices using the methods of shape-changing kinematic 

synthesis employed in this work were also mentioned. Finally, recommendations for 

future work stemming from this project were made, including implementation of a full 

actuation scheme, a potential method of evaluating local stiffnesses for each joint, and 

biomechanical evaluation of the prototype based on the roll-over shape. 
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Figure A1. Major bones and joints in the human foot. Image adapted from Ref. [57]. 
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Figure A2. Anatomical planes, axes, and views of the foot. 
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