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Abstract

CHARACTERIZATION OF THE TEMPERATURE DEPENDENCE OF THE 
INDEX OF REFRACTION AND THE THERMO-OPTIC COEFFICIENT FOR 
INFRARED MATERIALS

Christopher J. DiRocco
University of Dayton

Advisor: Dr. Peter E. Powers

The effect of temperature changes on the index of refraction of optical 

materials is very important to optical device applications. Without an accurate 

knowledge of a material’s index of refraction and thermo-optic coefficient, thermal 

changes of the material’s physical and optical properties can become the source 

of errors in many applications especially ones dealing with nonlinear light-matter

interactions.

In the past, refractive index measurements have been conducted at room 

and cryogenic temperatures using a modified Michelson interferometer for wafer

shaped infrared materials. Other general methods for index measurements have 

been conducted for various material shapes including the minimum deviation 

method, ellipsometry, immersion, and other interferometric designs.

In this thesis, an angle-dependent Michelson/Fabry-Perot interferometer, a 

temperature-dependent Fabry-Perot interferometer, and a temperature- 

dependent optical micrometer are used to accurately measure the temperature 

dependent index of refraction and thermo-optic coefficient of wafer-shaped
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optical materials. These measurements were validated against known materials 

and then extended to materials where no previous knowledge of the thermal 

properties were known. An advantage of the techniques used in this thesis is 

that they are non-destructive in nature.

Using this technique, the temperature-dependent index of refraction and 

thermo-optic coefficient were measured at a laser wavelength of 10.591 pm for 

the approximate temperature ranges of 100 to 350 K for Ge, Si, InAs, and 100 to 

200 K for InSb. The thermal expansion coefficients and thermo-optic coefficients 

of Ge and Si have been previously well documented for the temperature range 

98-298 K and were used to verify these methods and results. To the best of our 

knowledge these are the first experimentally reported results for InAs and InSb 

across the noted temperature ranges.
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Chapter 1

Introduction

1.1 Background

Knowing the effect of temperature changes on the index of refraction (z?) of 

optical materials is very important for optical applications. Without an accurate 

knowledge of a material’s index of refraction and thermo-optic coefficient (dn/dT), 

thermal changes of the material’s physical and optical properties can become the 

source of errors in many applications especially ones dealing with nonlinear light-

matter interactions.

In the past, refractive index measurements have been conducted at room 

and cryogenic temperatures using a modified Michelson interferometer for wafer

shaped infrared materials1,2. Other general methods for index measurements 

include the minimum deviation method, ellipsometry, immersion, and other 

interferometric designs.

1.2 Problem Statement

The development of an experiment that can measure the index of 

refraction across the entire temperature range of cryogenic to room temperature
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would vastly increase the accuracy of theoretical calculations done in which the 

value of the refractive index is needed. For example, predicting a specific crystal 

cut and temperature for second harmonic generation of an infrared laser is 

critically dependent on the index of refraction. Moreover, it is desirable that this 

experiment measure the index of refraction and thermo-optic coefficient without 

damaging the sample. A major challenge for measuring optical properties of

infrared material is due to their limited size. Semiconductors and infrared

materials are typically grown as thin wafers or in boules where they are 

subsequently sliced into thin flat samples.

Another important requirement is that the measurement can be made 

without any previously known knowledge of the material; i.e., physical thickness 

or thermal expansion coefficient. Having a reliable and accurate technique of 

determining optical properties of unknown materials may also be useful in the

identification of materials.

1.3 Research Objective

The objective of this research is to create an experiment to independently 

measure the index of refraction (n) and thickness (/_) of a material across the 

approximate temperature range of 77-350 K using a wavelength tunable CO2 

laser at wavelength 10.591 pm. As the experiment developed it was decided that 

the focus of the project would be on measuring the temperature dependence of n 

and the thermo-optic coefficient, dn/dT. The results of this data would allow for a 

greater knowledge of the studied materials’ properties and therefore allow for a 

more accurate use of these materials in future experiments and theoretical
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calculations which depend upon temperature. Eventually, this experiment would 

also be integrated with different laser sources such that it could provide a fuller 

and more accurate Sellmeier equation for each material studied as well.

1.4 Methodology

The relationship between the index of refraction, thickness, and 

temperature was obtained using a combination of a temperature-dependent 

Fabry-Perot interferometer, an angle-dependent Michelson and Fabry-Perot 

interferometer, and a temperature-dependent optical micrometer. In all three 

cases, data was collected with a specifically designed data acquisition program 

(Labview) and interpreted and analyzed using specifically designed analysis 

programs (using Igor Pro 4.0). Compiling the data from all three experiments 

provides enough information to create a polynomial function to describe the 

effective index of refraction and thermo-optic coefficient across the studied

temperature range.
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Chapter 2

Background and Refractive Index Measurements

2.1 Refractive Index, A Brief Review

As light transverses a boundary between media of different optical 

properties at a non-normal angle, the speed of the wave and the propagation 

direction change. This is known as refraction. The bending of the wave (Snell’s 

Law) is caused by the difference in wave speed between two materials. The 

refractive properties of light in a material are determined by its refractive index.

The absolute index of refraction of a material is a dimensionless number defined

as

where ^and jli are the permittivity and permeability of the medium, s0 and /z0

are the permittivity and permeability of free space, c is the speed of light in a 

vacuum, and v is the velocity of propagation through the material3. Hence, the 

larger the index of refraction, the slower light propagates through a material.

The wavenumber, k, which describes electromagnetic wave propagation 

is dependent on the refractive index of the medium through the relation
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k = 27m/z . This makes n an important parameter in electromagnetic propagation 

and light-matter interactions. For this reason, it is important to know both the

value of the index of refraction and the effect of different variables on which n is

dependent; for example, the wavelength of the incident radiation and the

material’s temperature.

2.2 Different Methods of Measurement

Various measurement techniques for the index of refraction for optical 

materials have been developed and improved for many years. These methods 

include the minimum deviation method4, ellipsometry5, immersion6, and 

interferometry7. Index values have also been theorized using mathematical 

models based upon other fundamental parameters of the material. Each 

technique and their limitations and applications will be briefly described here.

In the minimum deviation method, or prism method, a prism of sample is 

created. The prism is then rotated until the angular deviation of an incident laser 

beam passing through the prism is minimized. Using Snell’s law and the known 

angle of incidence, the index of refraction can be calculated from the angle of 

minimum deviation and the prism’s apex angle3. Other techniques such as the 

“fixed angle of incidence method” exist as slight variations on this classic 

method8. The technique of minimum deviation is very accurate at room 

temperature and is generally used for measuring the wavelength dependence of 

the refractive index4. For other temperatures, especially cryogenic ones, it can 

become experimentally challenging. A second limitation is that it requires a 

relatively large quantity of the sample for the prism to be manufactured. Overall,
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this is a very good technique for measuring the index of refraction for common 

materials at room temperature.

Ellipsometry exploits the subtle differences in the reflection coefficients

between s and p-polarized light by reflecting light off a thin film (nm-pm thick) of

sample to measure the index of refraction5. Reflecting light off a thin film

produces two sources of light, the reflection off the surface of the film and the

reflection off the back surface of the film. The phase of the second mentioned

beam is dependent on the refractive index of the material. The index is

discerned by measuring the reflectance of the s and p polarizations for both

reflections. This technique is accurate for room temperature, but is difficult to

setup for other temperatures and requires detection equipment capable of

measuring very small changes in the polarization direction of the reflected beam.

It also requires a very small quantity of material, i.e. a thin film. This can be

either an advantage or disadvantage based on the situation. Applications of this »

technique include the accurate thickness and index measurements of thin films 

and the identification of materials and thin layers.

A third technique used for measuring the index of refraction is 

immersion6,9. In this case, a material is immersed in an oil of known 

temperature-dependent refractive index. Light is then passed through the oil and 

the sample material, and the temperature of the oil is varied. If the refractive 

indices of the oil and sample are equal, the light will be unaffected as it passes 

from one to the other and no surface scattering will occur. Multiple oils exist 

having many different refractive index ranges for use with various optical
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materials. This method is also useful for measuring the index of samples that are 

randomly shaped. They do not need to be polished, flat parallel, large, or small. 

The disadvantage to this method is that the range of indices available for 

immersion oils is limited, though new oils are being created all the time9. Another 

disadvantage is in measuring the index as a function of wavelength or 

temperature. It is unlikely that the oil and material under test would have the 

same dispersion properties.

Interferometric techniques are often used to measure the temperature 

dependent index of refraction and thickness of a material. Interferometric studies 

involve analysis of the interference pattern created by temperature variations to 

the change in the optical path length through the material. Specifically, the 

change in temperature between any two constructive or destructive peaks is 

measured to create a relationship between temperature, thickness, and the index 

of refraction7,10,11,12. After these general similarities though, many variations in 

the exact setup design occur due to specific restrictions existent in the system or 

measurement requirements or constraints, such as not destroying the sample. 

Interferometry requires a polished flat parallel sample for study. A wedged 

sample may be used in certain cases, though it provides many added difficulties. 

Based on the design, interferometry can be used for measurements of the 

refractive index, the material’s thickness, the thermal expansion coefficient, or 

the thermo-optic coefficient.

Finally, many mathematical models have been built to theorize the value 

of the refractive index. These models include approaches such as using the
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Penn model to define the electronic contribution13 to the dielectric constant or 

combining the general theory of dispersion and the well-known Kramers-Kronig 

relationship14. In comparison to other techniques, modeling can be less accurate 

but it is useful for collecting rough estimates of n for materials and temperatures 

not previously studied by others.

2.3 Project Goal Restrictions

It is clear that there are many ways to measure the refractive index of a 

material. The choice of experimental design is dependent on the project goals 

and restrictions. The goal of this experiment is to measure n and dn/dT of a 

semiconductor material for all temperatures between room and cryogenic.

One restriction is that this has to be done without causing any damage to 

the samples. The specific samples studied in this project are infrared materials 

typically grown as thin flat parallel wafers. Therefore, flat parallel wafers are the 

only available sample shape.

Measuring the index across a temperature range provides many 

challenges as well. The sample studied must be held in a dewar kept at vacuum 

to prevent condensation as temperature is lowered. This means adjustments to 

the sample itself are limited once under vacuum.

Finally, the temperature dependence of thickness is also a major 

restriction. Both n and L are independently affected by temperature. This project 

is designed such that the change in thickness with temperature can be 

decoupled from the temperature dependent refractive index measurements. It
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also does not require the thickness or thermal expansion coefficient to be 

previously known.

2.4 Method Choice

It was decided that interferometry was the best method for this project. 

This was due to many reasons. First, interferometry had been used previously in 

this lab to measure n values at room and cryogenic temperatures1,2 and the 

experimental setups still existed. Second, this technique is easily adjusted to 

work at a set temperature or to work with varying temperatures. While a second 

experiment is needed to set the absolute value measurements of n at a specific 

temperature, interferometry is still the best choice for this measurement. This is 

because one purpose of this project was to have an experiment ready to 

measure the index of refraction for newly created samples. These new wafer 

shaped materials do not have enough material available for the prism method 

and simultaneously have too much material for ellipsometry. Only one flat 

parallel wafer is needed for all experiments used in this project if interferometry is 

used. Finally, the immersion method could not be used for absolute index 

measurements, as there are no oils available with refractive indices near 4.0, a 

rough index value for many semiconductors.

There are many system variables and choices available when using 

interferometry for measuring temperature dependent n and dn/dT. In comparison 

to other previous studies, this project focused on a couple of specific issues.

One problem with past techniques is that they required the absolute value 

of the index of refraction at some temperature or the thermal expansion

9



coefficient to calculate the n and dn/dT across a temperature range12. The 

interferometric technique used in this project is also not by itself sufficient to 

determine unambiguously n and dn/dT. However, our laboratory contains the 

setups needed to calculate these values as well such that no previous knowledge 

is needed for any sample studied with the project.

A second difference between other past techniques and this project’s is 

that the majority of previous research has been done above room 

temperature7,11’12. The measurement theory used above room temperature is the 

same as below but very few people have studied the effects of cold on materials 

in comparison to the effect of heat. In practice, making cryogenic measurements 

just requires a nitrogen cooled housing for the sample instead of a furnace 

heated housing.

One final issue is that the samples used could not be harmed or destroyed 

in any way. One previous technique used the interference of the beam reflected 

off the front and back surface of a flat polished sample in a heater to measure the 

thermal expansion and thermo-optic coefficients above room temperature7. To 

measure both dn/dT and a with one experiment, this design involved cutting a 

hole in the sample to add a third set of data by also recording the reflection off 

the location of the back surface of the sample (through the hole). While this was 

a valid way to measure both values, it involved damaging the sample.

10



Chapter 3

Experimental Theory

With all the goals and restrictions existent in this project, it was decided 

that no one experiment would produce all the data needed to calculate the 

temperature dependent n and dn/dT. This conclusion led to the creation of three 

separate goals with three separate experiments. These goals are the 

measurement of the slope of an optical path length (n/_) versus temperature plot,

the measurement of the absolute value of the index of refraction and thickness,

and the measurement of the temperature-dependent thermal expansion 

coefficient and temperature dependent thickness. This chapter describes the 

general theory for each.

3.1 Slope of the nL versus Temperature Theory

The temperature-dependent nL is measured using the output signal 

versus temperature plot of a temperature-dependent Fabry-Perot interferometer. 

The relationship to nL is derived from the common equation for the phase 

change in a Fabry-Perot interferometer,
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^/(7’) = 2(t£cos6», =1^ cos Qt, (3.1)

where 2 is the wavelength of the input laser beam, 3t is the angle of refraction, k 

is the wave number, and ^z(r) is the temperature dependent phase change

between the first and second transmitted beams through the sample where one 

path has traversed the sample two or more times due to internal reflections15. 

Figure 3.1 show the first two beam paths that interfere in this setup.

L

▼

\

Figure 3.1: 1st and 2nd transmitted beams through a flat parallel sample.

The phase difference between the first and second transmitted beams can

be found using Equation (3.1). Each successive transmission path (having two 

more internal reflections) will have the same phase difference with respect to the 

previous transmission path. The output of the etalon is the interference of an 

infinite number of beams with integer multiples of the same phase difference.

If the setup is created such that the angle of incidence is approximately 

zero, then the equation can be simplified to

12



^(r) = MrW) (32)

This is also the equation for a Michelson interferometer in which the angle of 

incidence is approximately zero. The phase difference between an arbitrary 

number of constructive to destructive peak changes is rrm where m is the 

number of changes. The change in the optical path length A(nL) between m 

peak to valley changes can then be calculated as

am = 4;rA(w£-)j-, (3.3)
A

or

A(nL)m=m^. (3.4)

The change between m+1 peak to valley changes is therefore

=('« + 1)T (3.5)

Finally, the change in optical path length between an adjacent constructive and 

destructive peak is

A(nL) - (m +1)-^ - , (3.6)

or

A(»£) = ^. (3.7)

A combination of this simple equation and the output signal versus temperature 

plot yields an nL versus temperature plot. This plot is created by noting the 

temperature in which every constructive peak and destructive peak occurs and 

then setting the change in nL between every peak to be a quarter of the incident

13



laser wavelength, as denoted by Equation (3.7). In truth, this is not truly an nL 

versus temperature plot though. Equation (3.7) above only dictates the change 

in the optical path length between a constructive and destructive peak. It 

provides no information about the absolute value of nL at any location. For this 

reason, a second experiment is conducted to find the absolute value.

3.2 Absolute Value of Optical Path Length Theory

The absolute value of nL is an exact value of the optical path length at one 

specific temperature. To measure nL at some temperature, both n and L are 

calculated independently. This is done using angle-dependent Michelson and 

Fabry-Perot interferometers.

The theory behind this measurement is derived from two basic equations, 

the angle dependent phase difference for a Fabry-Perot interferometer1,

(tf) = a/zi2 -sin26>, (3.8)

and the angle dependent phase difference for a Michelson interferometer1,

(/)m (^) - ~~ - sin2 9 +1 - cos 6>), (3.9)
A

where 3 is the angle of incidence on the sample. Both equations are dependent 

on thickness and index of refraction. By subtracting Equation (3.8) from Equation

(3.9),

^(^)-^(^) = ^(l-cos0), (3.10)
A

an equation independent of index of refraction is obtained. With the sample

thickness measured, the index of refraction can be determined from either

14



Equation (3.8) or Equation (3.9). In cases where the fringe visibility of the Fabry- 

Perot interferometer is too weak, Equation (3.9) may be used to solve for the 

index of refraction if the absolute thickness at room temperature has been 

measured using some other approach such as a LaserMike optical micrometer.

3.3 Temperature Dependent Thickness Measurements Theory

The final goal is to measure the temperature dependence of a material’s 

thickness. This is accomplished using an optical micrometer to measure the 

thickness of a material at different temperatures. The general equation for 

thickness as a function of temperature is

Z(r) = iM8[l + a(r-298)], (3.11)

where Z298 is the thickness at 298 K, T is the sample temperature, and a is the

linear thermal expansion coefficient. If two sets of data are taken, cryogenic and 

room temperature, Z298 can be removed using substitution. This yields an

equation for the linear thermal expansion coefficient in terms of the thickness and

temperatures at the two measurements,

[£(r2)-Z(7])]
[i(7] )* - 298) -/.ft)* ft- 298)]'

(3.12)

where T2>7]. Collecting multiple sets of data at both room and cryogenic

temperatures provides a number of thermal expansion coefficient measurements 

to decrease experimental error. Once a has been accurately measured, the 

Z298 can be calculated using the absolute thickness and temperature readings

taken for one set temperature.
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3.4 Final Calculations using Three Experiments

Once the optical path length and thickness versus temperature sets of 

data have been collected, the temperature dependent refractive index is easily 

calculated. This is done using the equation,

„(r)=wr) (3.13)
l(t)

The thermo-optic coefficient may be calculated from n(T) since it is simply

its derivative.
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Chapter 4

Slope of the Optical Path Length vs. Temperature 
Measurement

4.1 Experimental Design

The first goal in this project was to record the temperature dependence of 

the optical path length, nL. This could be done using an interferometer. Hence, 

the first step was to consider which interferometric design would best provide the 

information needed. This led to trying three different designs, a Michelson 

interferometer, a Michelson-designed interferometer used as a Fabry-Perot, and 

a Fabry-Perot interferometer.

4.1.1 Michelson interferometer

A Michelson interferometer was originally chosen as the design for this 

part of the experiment. The experimental setup consisted of a Michelson 

interferometer similar to the diagram in Figure 4.1. The sample is placed in a 

temperature controlled dewar in the path of one of the two beam arms. The 

effect of this setup is that the only changing variable in the path difference 

between the two arms is the effect of temperature on the sample. Hence, the
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interference pattern created by the two arms of the Michelson is completely 

temperature dependent. This assumes the sample beam hits the sample at 

normal incidence and the sample surfaces are perfectly flat and parallel such that

refraction has no effect.

M2
Sample

i
D

Figure 4.1: Temperature-dependent Michelson interferometer.

Figure 4.2 shows a plot of the temperature-dependent output of the

Michelson setup. It was decided that due to a lack of clarity in the peak and 

valley locations in this plot, the Fabry-Perot interferometer should indeed be 

tested as well. Specifically, the exact location of the destructive interference 

peaks was unclear. It should be noted that the problems with the Michelson 

setup could have been fixed with alignment. The choice to try a Fabry-Perot 

setup was primarily due to the simplicity of alignment for a system that would be 

heavily used for this project.

18



h—i—|—i—i—i—i—|—i—i—r“n—|—i—i—i—i—|—i—i—i—r
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Figure 4.2: Output signal vs. temperature for Ge using Michelson interferometer.

4.1.2 Fabry-Perot Interferometer using Michelson Design

Before we assembled the Fabry-Perot interferometer, the Michelson was 

adjusted to act like a Fabry-Perot. This was done to be sure the contrast of the 

interfering beams would be large enough to be measured with the available 

detectors. By blocking the reference arm (the beam path which does not pass 

through the sample), the sample is used as a double-pass etalon. As the 

temperature changes, the optical path difference between multiple internal 

reflection changes and the total transmission of the sample becomes 

temperature-dependent. The interference pattern is created by using the sample 

as an etalon and interfering the transmitted beams that pass through the sample 

during both passes. As seen in Figure 4.3, the output signal of the beam was still 

strong enough to create clear constructive and destructive peaks. The rapid 

change in period between peaks also indicates that the Michelson setup was
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problematic with alignment. Specifically, previous studies on the effects of 

temperature on thickness and index indicated that the change in period between 

peaks was slow.

Figure 4.3: Output signal vs. temperature for Ge using Michelson interferometer as Fabry- 
Perot.

4.1.3 Fabry-Perot Interferometer

A Fabry-Perot interferometer was the final technique used for this aspect 

of the project. Figure 4.4 shows the general design used for this setup. The lens 

is placed in the path of the beam to keep the beam from expanding too much and 

to decrease the spot size through the sample. A large focal length such as 1.5 

meters is used to also keep the beam from focusing too fast. This caused the 

beam to stay a similar size throughout the system. The sample was placed near 

the beam waist so that in this region the beam was collimated, approximating a 

plane wave. The two mirrors are used for alignment of the system. The Fabry- 

Perot resonator is formed by the Fresnel reflections described in Section 3.1. 

The chopper (ThorLabs MC1000) and pyroelectric detector (Boston Electronics
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P.D.-10.6.3) are connected to a lock-in amplifier (Stanford Research Systems 

SR830 DSP) so the transmitted intensity may be recorded with respect to a set 

zero value created by the chopper blades. The output of the detector is analyzed 

the lock-in amplifier. The laser is a wavelength tunable 400mW CO2 laser tuned 

to 10.591 pm, a high gain wavelength for this laser.

Figure 4.4: Temperature-dependent Fabry-Perot interferometer design.

The sample is held in the temperature controlled dewar (Cryo Industries 

110-637-DND) as shown in Figure 4.4. The dewar contains a tank to hold liquid 

nitrogen for cooling and an integrated heater for heating. It can maintain 

temperatures between 100-350 K. The dewar windows are AR-coated ZnSe. 

For infrared wavelengths, these are highly transmissive and therefore don’t affect 

the beam intensity.

To properly record the temperature of the sample, a dewar independent 

thermocouple is connected to the sample mount. The dewar’s integrated 

thermocouple is not used because it is positioned an inch above the sample next 

to the heater and nitrogen tank. The distance between the sample and the
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thermocouple has two effects: (1) it changes temperature more rapidly than the 

sample itself can respond to the temperature changes and (2) a temperature 

gradient exists between the liquid N2 cell and the sample. Both the difference in 

thermal response and the absolute temperature were observed experimentally 

between the integrated thermocouple and the dewar-independent thermocouple.

Thermal paste is placed between the sample, thermocouple, and sample 

mount. It increases the thermal conductivity between the three and helps the 

sample and thermocouple maintain the same temperature as the rest of the 

dewar. Also, it provides flexibility for the sample to expand and contract with 

temperature while minimizing thermal stress on the sample itself. Every thermal 

paste is built for a temperature range in which it does not melt or harden. It was 

decided that to be safe, the Apiezon brand low temperature thermal paste (N) 

would be used for the collection of data below 300 K. A second high temperature 

Apiezon brand thermal paste (H) was used for temperatures above 300 K.

The output signal versus temperature data collected using this setup was 

far clearer than the Michelson interferometer. The overall amplitude changes 

were also much less than for the data taken with the single arm Michelson setup. 

Figure 4.5 is a plot of output signal versus temperature using this new setup.
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Temperature (K)
Figure 4.5: Output signal vs. temperature for Ge using Fabry-Perot interferometer.

Using the theory described in Section 3.1, a temperature dependent nL 

can be calculated as seen in Figure 4.6. As previously mentioned, this 

experiment provides no information about the absolute value of nL at any 

location. Hence, the lowest point in Figure 4.6 is set to zero at present.

Figure 4.6: Uncorrected nL vs. temperature for Ge using Fabry-Perot interferometer.
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4.2 Testing System Accuracy

To test whether or not the system was accurate, the collected nL versus 

temperature data had to be compared with data collected in previously published 

works. During the early stages of this project, all data was taken with 

germanium. This is a very common material which has been well documented 

and studied in the past. A plot of nL versus temperature was created using the 

widely used Sellmeier equations from Barnes and Piltch16, the raw data used to 

create the Sellmeier equation17, and a compilation of thickness measurements at 

different temperatures resulting in a thickness versus temperature equation for 

Ge18. Since neither of the absolute value experiments had been created at this 

early stage in the project, all experimental data was assumed to have the same 

optical path length at room temperature.

The nL versus temperature plot using the temperature-dependent Fabry- 

Perot interferometer compared perfectly to the previously recorded data from 

Icenogle, Platt, and Wolfe17. Figure 4.7 shows the nL versus temperature plots 

using two sets of data mentioned and a plot using the Barnes and Piltch 

Sellmeier equation16 as a source for the index.
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Figure 4.7: nL vs. temperature compared to two other studies.

From Figure 4.7 it is clear that the Ge Sellmeier equation notably deviates

for temperatures below 200 K. The Ge Sellmeier equation has been commonly 

used for the index of refraction since its publication in 1979. The problem with it 

is that it was modeled using data from three temperatures16. These were 204 K, 

275 K, and 297 K. Hence, it does not accurately depict index values below 204 

K. While the original paper itself does not claim to be valid below this 

temperature, many newer publications consider this equation to be valid between 

100 and 295 K19. The miscommunication was probably due to two problems. 

First, being a Sellmeier, the equation primarily focuses on the effect of 

wavelength not temperature. The effect of temperature is negligible when 

dealing with large wavelength changes. Secondly, while only three temperatures 

were used in the creation of this Sellmeier equation, the data in which these 

three temperatures were taken was collected across the range, 100-300 K17.
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noted that while the thickness is not necessarily an unknown, collecting the data 

this way provides a check on the absolute thickness measurement as well. Also, 

since the sample is probably not perfectly flat parallel, the sample thickness 

measured in one data run may not be the same thickness measured in another.

Figure 5.1: Design for Michelson/Fabry-Perot interferometer.

Before the beginning of this project, the angle-dependent

Michelson/Fabry-Perot was the experiment used for index measurements in this 

laboratory1,2. For that reason, it was an easy and obvious addition to the project. 

Figure 5.1 shows the design used for the interferometer. The focal length of the 

lens in the system is long such that it has a large Rayleigh range. The optimal 

location for focus is at the sample mirror, M1 above. This minimizes the size of 

the beam and therefore maximizes the intensity as it passes through the sample 

both times. Focusing elsewhere might increase the intensity in the first pass but 

decrease the intensity in the second pass. The sample is rotated using a rotation
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stage which is controlled with an ESP300 Newport Universal Motion Controller. 

The intensity of the beam is measured using a pyroelectric detector (Boston 

Electronics P.D.-10.6.3) with the zero value for intensity collected using a lock-in 

amplifier (Stanford Research Systems SR830 DSP) and a chopper (ThorLabs 

MC-1000). The same CO2 laser used for the temperature-dependent Fabry- 

Perot interferometer is used for this system.

5.2 Experimental Method

Measuring the room temperature index of refraction is fairly simple using 

this method. Once the Michelson interferometer is setup and aligned, the sample 

wafer is placed in the system. It is important to have the sample aligned such 

that the incident beam passes through the sample in the axis of rotation. If this is

not the case, the data will be skewed and inaccurate.

With the sample aligned, the sample angle must be measured. The 

easiest way to do this is to find the angle of normal incidence. At normal 

incidence, the reflected component of the laser on the sample will pass into the 

detector and cause a notable peak. Figures 5.2 and 5.3 in this chapter provide 

good examples of back reflection from normal incidence on the sample.

Data collection consists of ten measurements with the Michelson and

Fabry-Perot setups collected without any changes to the system. Specifically, no 

changes may be made during any set of data, one Michelson and one Fabry- 

Perot recording, since the data from the two will be combined using the above 

theory. Changes between sets of data would be acceptable (though unneeded). 

An example of an acceptable change to the system is the case where the system
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is knocked out of alignment in some way and has to be fixed. Each set of data is 

collected across as large an angular range as possible. This is simply because 

larger angular ranges yield more data to work with which reduces the amount of 

uncertainty in the measured values. Generally, the sample is rotated a total of 

40-50 degrees centered at normal incidence. After 25 degrees rotation in either 

direction, the output signal of the Fabry-Perot decreases too much to be usable. 

Figures 5.2 and 5.3 depict the output signal versus angle for Michelson and 

Fabry-Perot setups, respectively, using InAs. The angle dependent 

Michelson/Fabry-Perot was tested using InAs and later checked with Ge and Si.

Angle (degrees)

Figure 5.2: Output signal vs. angle for Michelson interferometer using InAs.
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Similar to the temperature-dependent Fabry-Perot interferometer, the 

angle dependent phase change is created using the constructive and destructive 

peaks. In this case, a program is used to set an average height across the 

above plots. It then fits a sine wave to the space between every two points that 

intersect the horizontal line. This is just a more accurate way to evaluate the 

locations of the peaks and valleys in the data in comparison to general estimates. 

The program ignores a given angular range in the center of the plot, for example 

-5 to 5 degrees, because this data is affected by back reflection off the sample 

surface. Using the locations of the constructive and destructive peaks, a phase 

versus angle plot can be created for both the Michelson and Fabry-Perot data. 

These plots are depicted below in Figures 5.4 and 5.5. The Fabry-Perot phase 

change is negative because the phase is a decreasing function with respect to 

increasing angular orientations, as seen in Equation (3.8). Generally, the 

program used for creating the phase versus angle plots is accurate. In cases
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where the data is too weak or noisy though, the program also contains a manual 

control which allows the “average” value to be chosen.
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Figure 5.4: Phase vs. angle for Michelson interferometer using InAs.
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Figure 5.5: Phase vs. angle for Fabry-Perot interferometer using InAs.

Once the phase versus angle plots are created, a final program is used to 

fit a curve to each and then subtract the Fabry-Perot from the Michelson data as 

seen in Figure 5.6. The phase difference versus angle plot is then used to
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discern the thickness and index of refraction values using Equations (3.10) and 

(3.8) or (3.9).

Figure 5.6: Phase difference and Michelson and Fabry-Perot phases vs. angle using InAs.

5.3 Cryogenic Temperature Index of Refraction Measurement

Originally, when well documented materials such as germanium were 

being studied, only one absolute value was needed. This was because it was 

known that the index of refraction decreased with temperature. While this is true 

for most elements and compounds, it is not always true. The sign of the change 

of n with respect to temperature is also not known from the temperature 

dependent Fabry-Perot interferometer because that only indicates the magnitude 

of the change in the optical path length. Whether or not the change is positive or 

negative is unknown.

For this reason, a second angle-dependent Michelson/Fabry-Perot was 

built in which the sample was kept inside a temperature controlled dewar as seen
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in Figure 5.7. The only reason both setups were built was that the need for two 

temperatures was not realized until after the temperature independent 

experiment had been built. The second setup is usable for both measurements, 

making the first obsolete for further experiments. Also, unlike the commercial 

dewar in the temperature-dependent Fabry-Perot from the last chapter, this 

dewar is home-built and has no heater and therefore is only useful for room and 

cryogenic temperatures. The setup for this system is identical to the room 

temperature version except for the dewar which now contains a vacuum-sealed 

rotation feed through which the sample can be rotated within a stationary 

housing.

M2
imihiiiiiiiiiiiiii

Sample

D

Figure 5.7: Temperature and angle-dependent Michelson/Fabry-Perot interferometer.
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Chapter 6

Thermal Expansion Coefficient and Absolute Thickness 
Measurements

6.1 LaserMike Optical Micrometer

The LaserMike optical micrometer is a thickness measuring device. The 

device contains a HeNe laser which is spanned out into a scanning planar 

output. The laser plane then passes across an area where a sample may be 

placed. The sample blocks some of the plane leaving a shadow. The HeNe is 

then collected on the other side of the sample area and the thickness of the 

sample is calculated using the size of the shadow cast. By scanning the laser 

across the sample and observing the transmitted light signal, the LaserMike 

converts a physical thickness measurement into a time measurement, which can 

be very accurate. This device, when calibrated is accurate to ±.127 pm and 

therefore the best source of absolute thickness measurements for any samples

used.

6.2 Absolute Thickness Measurements

Many measurements are required for measuring the thickness of a 

sample. If the sample were perfectly flat parallel, then only one measurement
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would be needed. Unfortunately, few samples are ever perfectly designed so an 

array of alignments must be made to fully document a sample’s thickness.

The first step in taking thickness measurements is to add an adjustable 

table to the system. The sample is then placed on the table. This table allows 

the sample to lay at the height needed to intercept the beam path. The table also 

contains an adjustable slit down the middle such that the beam is only affected 

by the sample. Finally, the table has an adjustable tilt controlled by two knobs 

much like an adjustable mirror. This allows the sample to be tilted slightly to find 

the minimum thickness of the sample across any plane. Figure 6.1 shows a 

general exterior design of the LaserMike optical micrometer when setup to 

measure the absolute thickness at room temperature.

Side View Front View

Figure 6.1: LaserMike optical Micrometer Setup for Room Temperature Measurements.

Once the table is aligned and the sample is placed in the path of the beam

it is time to take measurements. The first set of measurements is used to discern

the minimum thickness through the center of the sample (or whatever location on 

the sample that the laser will pass through) in the interferometric experiments. 

This is done by placing the center of the sample in the beam plane. After
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adjusting the tilt to find the minimum shadow cast by the sample, the sample is 

rotated approximately 22.5 degrees and the process is repeated until the sample 

is rotated 180 degrees. At this point, the same plane is being measured and 

therefore provides no new information. Once all eight measurements are taken, 

the minimum value is kept as the absolute sample thickness. By measuring the 

thickness from many angles, the error due to thicker aspects of the sample is

decreased.

Once the minimum thickness is measured, a second set of data is 

collected. This set involves measuring the thickness across the sample for many 

parallel cross-sections. This is done for one or two axes of the sample. The 

purpose of this is only to discern the basic shape of the sample. In general, all 

this would indicate is that the sample is cut such that it is slightly larger on one 

side in comparison to the other. This measurement has no effect on this project 

as a whole. It only provides some information on the shape of the sample which 

if very notably not flat-parallel can be a problem.

6.3 Temperature Dependent Thickness Measurements

The LaserMike is also used to measure the temperature dependence of a 

material’s thickness. To accomplish this, the temperature controlled dewar used 

for the measurement of the optical path length versus temperature was placed in 

the path of the HeNe plane. Figure 6.2 provides a general diagram of the design 

used for this measurement. Similar to the temperature independent experiment, 

the system was built such that only the sample affects the path of the HeNe. 

Many specific adjustments had to be made such that this was the case.
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Figure 6.2: LaserMike optical Micrometer Design for Room and Cryogenic Temperature 
Measurements.

The first important issue was the sample mount. The new mount seen in 

the front view in Figure 6.2 was built for just this experiment. It is a cup shaped 

holder in which the sample may be placed flat along its bottom. A slit is carved 

through the mount such that it does not affect the path of the beam. The mount 

may then be attached the dewar. The dewar independent thermocouple used in 

the temperature-dependent Fabry-Perot interferometer attaches to the bottom of 

the new mount. No thermal paste is used between the sample and the mount. 

During testing of the system, it was determined that the thermal paste caused the 

sample to change positions as the paste itself expands or contracts with

temperature.

The second issue was the effect of vibration. Originally, the dewar 

housing was placed on a pedestal so that is was kept at the right height for the 

beam path. The problem with this was that the sample is mechanically coupled 

to the internal portion of the dewar. The internal portion of the dewar lay atop the

Side View Front View
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dewar housing with an o-ring placed in between to hold the interior in vacuum. 

The o-ring connection between the two dewar pieces can allow one to move or 

vibrate with respect to the other. For the accuracy of these measurements, it 

was decided that mechanically coupling the dewar housing to the LaserMike 

would still allow vibrations to change the position of the sample during 

measurements. To alleviate this problem, a new dewar mount was built such 

that the portion of the dewar directly connected to the sample was held solid at 

all times. This mount suspended the dewar in the air as seen in the side view in 

Figure 2.

The final issue with this system was the effect of back reflection from the 

dewar windows. For the LaserMike to work, the HeNe must not reflect back into

itself. This causes major errors in the system. Normally, this would be solved 

with AR coated windows and tilting the dewar slightly off normal incidence. 

Unfortunately, the dewar windows had to be near normal incidence so that 

temperature changes do not affect the angle of refraction through the windows

and therefore cause the beam to measure across different cross-sections of the

sample. Also, there were no available AR coated windows in the lab for a HeNe 

wavelength, 632.8 nm. To minimize this error, the ZnSe windows were switched 

to CaF2, a highly transmissive material for red light. The dewar was then tilted 

very slightly off normal incidence. The angle of change was very negligible so a 

beam block had to be placed alongside the output of the beam. The dewar was 

adjusted such that the block did not affect the HeNe output but did block the

reflection off the dewar window.
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The combination of all these specific setup details allows for accurate 

measurements of the thickness to be taken at both room and cryogenic 

temperatures. Temperatures between room and cryogenic were not measured 

because the dewar can maintain only these two temperatures for an extended 

period. Due to the lack of thermal paste between sample and mount, this 

extended period of time is needed to be certain the sample and thermocouple 

are kept at the same temperature.

Using this design, a linear thermal expansion coefficient can be measured 

using the theory derived in Section 3.3. Once a has been accurately measured,

the thickness at room temperature can be measured using the absolute 

thickness and temperature readings taken in section 5.2. The measurements

taken with the dewar can not be used for an absolute number because the

sample is not adjusted to minimize the shadow cast in the LaserMike, which can 

result in a larger than actual measurement. The thermal expansion coefficient is 

the same across any cross-section of a uniform material. The material may even 

be on edge such that the temperature’s effect on height, width, and length affect 

the thickness measurements. This is why the coefficient may be measured in 

one setup and then used for another. We are also assuming the thermal 

expansion coefficient is uniform in all directions, which is a good assumption for

semiconductors which have cubic structures.
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Chapter 7

Results

Using the data collected from all three experiments, the temperature- 

dependent index of refraction and thermo-optic coefficient can be calculated. 

Presently, these values have been measured for four samples. Germanium and 

Silicon were measured to show that the techniques used were accurate and 

reproducible since these values have been well documented for both materials 

by previous publications17. The temperature dependent refractive index and 

thermo-optic coefficients of indium arsenide and indium antimonide were then 

measured. To the best of our knowledge, neither of these materials has had 

these values previously published. In both cases though, the index of refraction 

at room temperature and a linear thermal expansion coefficient had been 

previously published.

For the case of indium antimonide, data was collected from 100-200 K.

This was because the transmission of InSb is dependent on temperature. At 

10.591 pm, the transmission is approximately 90% between 77-175 K. It then 

decreases rapidly as the temperature increases. This is due to the small
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bandgap in InSb where at room temperature significant numbers of carriers are 

thermally excited. Due to such a drastic change, the temperature-dependent 

Fabry-Perot interferometer could not be used to provide an optical path length 

versus temperature plot above approximately 200K.

7.1 Angle Dependent Michelson/Fabry Interferometer Data

Two sets of data were collected using both Ge and Si to test the accuracy 

of the angle-dependent Michelson/Fabry-Perot interferometer. Table 7.1 

compares this data with the absolute thickness measurements from the 

LaserMike optical micrometer and published index of refraction measurements at 

room temperature. More trials may have been completed if not for the fact that 

this aspect of the project was already built and used for previous publications on 

these very materials1,2. The index of refraction at cryogenic temperatures were 

not measured in this study for germanium and silicon because these 

measurements had previously been made using this setup and method1,2.

Table7.1: Index and thickness measurements for Ge and Si using Michelson/Fabry-Perot.

Ge (296 K) Si (296 K)
Trial n L(m) n L(m)

1 3.9945 0.0029705 3.4058 0.0029836
2 4.0023 0.0029637 3.4097 0.0029838

Average 3.9984 0.0029671 3.40775 .0029837
Expected 4.0 [20] 0.0029710 3.42 [20] .0029781

With the system properly aligned and tested, index measurements were 

taken for indium antimonide and indium arsenide for room and cryogenic 

temperatures as seen in Tables 7.2 and 7.3. In the case of indium antimonide, 

room temperature data could not be taken due to the weak transmission.
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Similarly, accurate cryogenic temperature data could not be collected for the 

Fabry-Perot design since proper alignment changes could not be made at room 

temperature. For this reason, only a Michelson design was used for Indium 

antimonide at cryogenic temperature. The refractive index was measured by 

considering the thickness to be a constant dictated by the LaserMike optical 

micrometer measurements. The sign of the temperature dependence on the 

refractive index was found by comparing known values of InSb at room 

temperature (3.94 at 3OOK20) and comparing them to the newly measured value 

at cryogenic.

Table 7.2: Index and thickness measurements for InAs using Michelson/Fabry-Perot.

InAs (294 K) InAs (102.15 K)
Trial n L(m) n L(m)

1 3.4787 0.0018623 3.4190 0.0018476
2 3.4919 0.0018589 3.4291 0.0018528
3 3.4781 0.0018537 3.4283 0.0018546
4 3.4975 0.0018507 3.4430 0.0018520
5 3.4853 0.0018568 3.4285 0.0018554
6 3.4905 0.0018541 — —
7 3.5253 0.0018462 — —
8 3.4603 0.0018589 — —
9 3.4885 0.0018508 — —
10 3.4712 0.0018532 — —

Average 3.485 ± .009 0.001855 ± 4E-6 3.430 ± .009 0.001852 ± 3E-6
Expected 3.51 [20] 0.0018459 — 0.0018448
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Table 7.3: Index and thickness measurements for InSb using Michelson/Fabry-Perot.

InSb (95.85 K)
Trial n L(m)

1 3.8346 0.0020992
2 3.8664 0.0020992
3 3.7542 0.0020992
4 3.8372 0.0020992
5 3.9143 0.0020992
6 3.8230 0.0020992
7 3.7740 0.0020992
8 3.8983 0.0020992
9 3.7323 0.0020992

Average 3.83 ±0.06 0.0020992 ± 0
Expected —

7.2 LaserMike Optical Micrometer Data

For each material studied, two to three sets of data were taken at room 

and cryogenic temperature to measure the value of the linear thermal expansion 

coefficient. As mentioned in Section 5.3, these were the only two temperatures 

that could be measured accurately due to the system design. Table 7.4 contains 

the data for each trial and the consequent calculated average a values using 

Equation (3.12).

Table 7.4: Linear thermal expansion coefficient data.

Trial t2 (K) L(T2) (mm) T, (K) L(Ti) (mm) a (10'6K’1)
Ge 1 349.7 2.9774 349.7 2.9781 6.262
Ge 2 296.5 2.9774 103.8 2.9743 5.333
Si 1 299.8 2.9850 99.4 2.9841 1.505
Si 2 299.8 2.9870 99.9 2.9844 4.438

InAs 1 297.9 1.8410 113.2 1.8382 8.235
InAs 2 296.4 1.8395 112.5 1.8367 8.277
InSb 1 298.1 2.1097 113.0 2.1062 8.456
InSb 2 297.2 2.0195 115.0 2.1057 9.913
InSb 3 297.6 2.1090 113.5 2.1062 7.196

Averaging the values of the linear thermal expansion coefficients from 

Table 7.4 provides a final value for this coefficient. Table 7.5 lists the final linear
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thermal expansion coefficients, previously published linear thermal expansion

coefficients and the error between them. It is clear from the results that this

experiment is the region of largest error in this project. This is acceptable though 

because the change in thickness is approximately an order of magnitude smaller 

than the change in index with temperature. The thickness could be held constant 

with temperature and the index measurements would still be reasonably 

accurate. Measuring a general linear thermal expansion coefficient just 

decreases the already small error in the index measurements caused by 

thickness changes. It should also be noted that there is a lot of variation in 

previous measurements of a as well. The two referenced InSb values of a are 

different by approximately 3O%20,21.

Table 7.5: Accuracy of linear thermal expansion calculations.

Material a experimental (10 6K'1) a Published at 300 K
(1Cr6K‘1)

Error (%)

Ge 5.798 5.9 [20] 1.7
Si 2.971 2.6 [20] 14.3

InAs 8.256 4.52 [20]
5.238 [21]

82.7
57.6

InSb 8.522 5.37 [20]
7.017 [21]

58.7
21.44

The thermal expansion coefficient and the absolute thickness

measurements at 298 K made with the LaserMike can then be used to create a

full temperature dependent thickness equation. Table 7.6 provides the full 

temperature dependent thickness equations for each material.
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Table 7.6: Temperature dependent thickness equations.

Material L(T)
Ge 2.9678(1 + 5.798 • 1 (r6 (7' - 298))
Si 2.9780(1 + 2.971 -10“6(7 - 298))

In As 1.8460(1 + 8.256 ■ 1 O’6 (7 - 298))
InSb 2.1029(1 + 8.522-10'6 (T - 298))

7.3 Temperature Dependent Fabry-Perot Data

With absolute thickness and index of refraction measurements from the

other two experiments, the absolute height of the nL versus temperature plots for 

each material could be set by increasing the value of every point in an 

uncorrected plot; i.e. Figure 4.6, by the difference between its present value and 

the absolute value of nL at the measured temperature. Figures 7.1-7.4 display 

the corrected temperature dependent nL plots for all studied materials. For each 

sample, multiple sets of data were collected for both cold temperature scans, 

100-300 K, and hot temperature scans, 280-350 K. This data was then compiled 

to create the following plots.
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7.4 Final Results and Discussion

To calculate the temperature dependent index of refraction, the 

temperature dependent optical path length must be divided by the temperature 

dependent thickness as expressed in Equation (3.13). This is done by dividing
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the value of every point in Figures 7.1-7.4 by the thickness for that material and 

temperature dictated by the temperature functions in Table 7.6. Similarly, the 

thermo-optic coefficient may be calculated by measuring the slope between any 

two values of n and setting that as the value of dn/dT at the average temperature 

of the two points used in the calculation. This calculation is done independently 

for each set of collected data and then compiled for fitting. Figures 7.5-7.12 are 

the collected data for the index of refraction and thermo-optic coefficient for all 

four samples studied. Tables 7.7 and 7.8 provide the coefficients of the 

polynomial fits for each set of data. Figure 7.13 shows both the calculated dn/dT

fit from Table 7.8 and the derivative of the n fit from Table 7.7 for Ge. As

expected, they overlap. While the thermo-optic coefficient is simply the 

derivative of the temperature-dependent refractive index and may easily be 

measured accurately in this way, the above mentioned calculation was used for 

the purpose of considering the effect of error in the system on both n and dn/dT. 

These effects are described in the following paragraphs.

All three experiments were susceptible to many errors. The temperature- 

dependent Fabry-Perot interferometer error is caused by inaccuracies in 

temperature readings, problems with system alignment, and assumptions made 

about how flat-parallel a sample actually is. Similarly, the angle-dependent 

Michelson/Fabry-Perot interferometer error is caused by the same issues except 

that it is temperature independent. System alignment is much more important for 

removing error in this setup. The temperature-dependent optical micrometer was 

by far the most inaccurate experimental design used in this project. As seen in
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Table 7.5, issues such as back-reflection from dewar windows and dependence 

on the angle of incidence of the HeNe on the dewar windows affected the 

thickness measurements. Also, due to vibrations and temperature issues in the 

system, only a linear thermal expansion coefficient could be measured.

While the thermal expansion coefficient measurements contain the 

greatest error of the three experiments used in this project, it has almost no affect 

on the overall error in the n and dn/dT measurements because it only represents 

the error in the almost negligible change in thickness as temperature changes. 

The errors from the absolute value and slope of nL measurements have a much 

greater affect on the final measurements since they relate directly to errors in the 

final calculations. The error in the thermo-optic coefficient calculations is 

specifically caused by errors or problems in the temperature-dependent Fabry-

Perot interferometer. Small errors in the actual location of the constructive and

destructive peaks of the output signal versus temperature plot can create a large 

error in the calculation of dn/dT using the process described above. In addition, 

since the value of each point in the dn/dT plots is the slope between two specific 

points in the n versus T data, small point to point errors and fluctuations in the n 

versus T data results in much larger spreads and point to point variations in the 

final dn/dT versus T graphs. To decrease this error, more data sets are collected 

for this aspect of the project than any other.
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Figure 7.6: n vs. temperature for Si.
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Figure 7.7: n vs. temperature for InAs.
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Table 7.7: n vs. temperature function coefficients

Material n = A+BT+CT2+DTj
A B C D

Ge 3.9135 ± 
0.00031

9.2077e-05 ± 
4.14e-06

8.7754e-07 ± 
1.72e-08

-7.4801e-10±
2.26e-11

Si 3.3825 ± 
0.000294

-5.0112e-05±
3.74e-06

6.2357e-07 ± 
1.5e-08

-5.6706e-10 ± 
1.92e-11

In As 3.4165 ± 
0.000507

9.0409e-05 ± 
7.4e-06

7.0525e-07 ± 
3.39e-08

-7.4603e-10 ± 
4.94e-11

InSb 3.7618 ± 
0.0183

0.00085209 ± 
0.000352

-2.8328e-06 ± 
2.22e-06

7.0672e-09 ± 
4.57e-09
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Table 7.8: dn/dT vs. temperature function coefficients.

Material dn/dT = E+FT+GT2+HT"
E F G H

Ge 2.975e-05 ± 
3.01e-05

2.6222e-06 ± 
3.98e-07

-6.033e-09 ± 
1.64e-09

5.1953e-12
±2.14e-12

Si -8.729e-05 ± 
2.43e-05

1.8175e-06±
3.06e-07

-4.4084e-09 ± 
1.22e-09

3.962e-12 ± 
1.56e-12

In As 4.5167e-06 ± 
5.92e-05

2.6904e-06 ± 
8.63e-07

-8.1426e-09 ± 
3.96e-09

8.3093e-12
±5.77e-12

InSb 5.1128e-05±
9.85e-05

4.5521e-06 ± 
1.25e-06

-1.1075e-08 ± 
3.88e-09

0±0

dn
/d

T 
(x

10
 K )
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Chapter 8

Conclusions

8.1 Accomplishments

The goal of this project was to build an experiment that could accurately 

measure the temperature-dependent index of refraction and thermo-optic 

coefficient of semiconductor materials for temperatures between room and 

cryogenic. This was accomplished for germanium, silicon, indium arsenide, and

indium antimonide.

In all four cases, it was shown that the index of refraction and thermo-optic 

coefficient decreases as temperature decreases. For both sets of data, a 

polynomial was decided to be the best fitting function to be used to describe 

these relationships along with the actual graphical data collected. The project 

also provided a linear thermal expansion coefficient for each of these materials.

This calculation is not as accurate as the index measurements but it is a decent

rough estimate of the effect of temperature on thickness for any material in which 

greater studies on the subject have not yet been done.

In comparison to other experiments created for the measurement of index 

and thermo-optic measurements, this project had many advantages. This project
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required a minimum amount of sample. All that was needed was a thin flat 

parallel wafer. While all the samples used at the point of this paper were 

approximately 1-2 mm thick, a sample as thin as a few hundred micron would 

have worked just as well though less interferometric peaks would occur across a 

set temperature range. The value of this is that newly created or just simply rare 

sample materials could be studied without collecting a large quantity. Along with 

that, a second advantage is that the sample can be studied using this method 

without causing any harm to the material itself. Therefore, no material is lost in 

this process either.

The experiment is also reasonably quick. Assuming the sample studied is 

flat-parallel, is not too lossy, and has a fairly temperature-independent 

transmission function at the studied wavelength, a calculation of the index and 

thermo-optic values could be accomplished in a week. Once aligned with one 

sample, the interferometers are aligned for any sample short of some quick and 

minor adjustments. The LaserMike requires a bit more alignment to be sure 

there is no back reflection in the system. This involves taking some data at a few 

different dewar positions and can take a few hours.

Finally, the experiment provides data for cryogenic temperatures. In 

comparison to previous works on this subject, very few have worked across this 

temperature range. For this reason, the experiment can be useful for not only 

newly created materials, but possibly many common materials that have not 

been studied below room temperature.
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8.2 Future Goals

There are two major goals for the future of this project. The first is to 

study more materials. This project provides valuable information for any material 

that has not yet been studied. Specifically, ternary semiconductors such as 

InAsSb, MCTs, and InGaSb are of interest, as well as the effects of mixture 

concentrations on each material. Since this project provides a way to discern 

information about a newly created material without needing a large sample or 

having to cause any damage to it, it is essential for these kinds of materials.

The second goal is to measure and calculate the temperature-dependent 

index of refraction and thermo-optic coefficients for different materials using 

multiple wavelengths. Presently, information collected is valid for 10.591 pm. By 

taking data with multiple systems, a temperature and wavelength dependent 

index of refraction could be measured. This would provide the information 

needed to fit a material’s Sellmeier equation. Specifically, a 1.34 pm Nd:YVO4 

laser and a 4.6-5.4 pm frequency-doubled CO2 laser are planned to be added to 

the system in the near future.

To keep the project capable of moving quickly and easily, multiple lasers 

would have to be aligned to both the temperature-dependent Fabry-Perot 

interferometer and the angle-dependent Michelson/Fabry-Perot. Using a 

combination of flipper mirrors and beam blocks would make this possible. Figure 

8.1 depicts the general setup used for this project at present with one other laser 

added to the system. M1 and M2 are flipper mirrors. In this present design, four 

experimental setups are possible. Table 8.1 describes each.
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Figure 8.1: Future setup for both interferometers.

Table 8.1: Possible setups using two laser design for Project.

Cases M1 M2
Temperature Dependent Fabry-Perot using Laser 1 Down Up
Temperature Dependent Fabry-Perot using Laser 2 Up Up

Angle Dependent Michelson/Fabry-Perot using Laser 1 Down Down
Angle Dependent Michelson/Fabry-Perot using Laser 2 Up Down
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