
OF DAYTON ROESCH UPPapV

POSITIVE-NEGATIVE FEATURE INTERACTIONS

IN COMPUTER AIDED PROCESS PLANNING

Thesis

Submitted to

Graduate Engineering & Research
School of Engineering

UNIVERSITY OF DAYTON

In Partial Fulfillment of the Requirements for

The Degree

Master of Science in Mechanical Engineering

by
Robert A. DietrickH

UNIVERSITY OF DAYTON

Dayton, Ohio

April 1992

^'VtHSITY OF DAYTON ROESCH LIBRARY 93 °1434

© Copyright by

Robert A. Dietrick

All rights reserved

1992

POSITIVE-NEGATIVE
PROCESS PLANNING

FEATURE INTERACTIONS IN COMPUTER AIDED

APPROVED BY

JjzShn P. Eimermacher, Ph.D
Advisory Committee, Chairman
Professor, Mechanical and Aerospace
Engineering Department

Efanklin E. Eastep, Ph.D. //
/Interim Associate Dean/Director
Graduate Engineering & Research
School of Engineering

ii

ABSTRACT

POSITIVE-NEGATIVE FEATURE INTERACTIONS IN COMPUTER AIDED
PROCESS PLANNING

Name: Robert A. Dietrick
University of Dayton

Advisor: Dr. John P. Eimermacher

The Rapid Design System (RDS), a United States Air Force

sponsored research project, is an object-oriented system

composed of feature-based design, fabrication, and inspection

sub-systems. The RDS permits a user to design a part using

features and to then automatically generate the process plan

including the Numerical Control (NC) code to machine the part.

In the design sub-system, the user may select from both

positive (i.e. a rib feature) and negative (i.e. a pocket

feature) features to create a part. The research addressed by

this paper concerns the special issues associated with

positive features in the fabrication sub-system. Analysis and

classification is performed on positive features relative to

process planning issues. In particular, a comprehensive

scheme for addressing the case of pocket-island interactions

is presented in detail. The primary issues of these

interactions are tool selection and NC boundary definition

for the negative volume associated with one or more positive

features. The negative volume is mapped into a set of

iii

intersecting sub-features. After performing generative

machining process planning on these sub-features to determine

tooling and speeds and feeds, NC boundaries are defined.

iv

ACKNOWLEDGEMENTS

I would like to express my appreciation to Dr. Fred

Bogner, Dr. Ron Deep, and Dr. John Eimermacher for serving on

my thesis committee. Also I would like to thank David

Domermuth for countless and very productive discussions

specifically concerning this research and Dr. Steven LeClair

for all of his comments about this and other papers. Most of

all, I would like to thank my fiance, Kelly Cassell, for all

of her love and inspiration.

v

VITA

October 30, 1967 Born: Linthicum Heights, MD

December, 1990 B.M.E., University of
Dayton, Dayton, OH

April, 1992 M.S., University of
Dayton, Dayton, OH

Major Field:

FIELDS OF STUDY

Integrated Manufacturing,
University of Dayton

vi

TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGEMENTS V

VITA vi

TABLE OF CONTENTS vii

LIST OF FIGURES ix

LIST OF TABLES xi

CHAPTER
I. INTRODUCTION 1

Design Philosophy 4
Challenge of Positive Features 6
Problem Statement 12
Scope of Investigation 12

II. ANALYSIS OF THE PROBLEM 16

Single Islands 18
Multiple Islands 32

III. THE MECHANICS OF FEATURE ANALYSIS 38

Overview 39
Positive Feature Recognition 41
Building MetCAPP Features 42
Getting the Operations 44
Establishing Tooling 45
The Machining Regions 46

IV. ADDITIONAL ISSUES 53

Miscellaneous Pocket-Island Issues 53
Multi-Sided Pocket Features 59

V. CONCLUSIONS 61

VI. RECOMMENDATIONS 63

vii

BIBLIOGRAPHY 66

APPENDIX

A. PKT-ISLAND-LIST CODE 67

B. MCAPP-FEATURES-LIST CODE 70

C. POSITIVE-OPS CODE 89

D. ROUGH-TOOL-LIST CODE 91

E. FINISH-TOOL-LIST CODE 93

F. MACHINING-REGIONS CODE 95

viii

LIST OF FIGURES

1. The Architecture of the RDS 2

2. Some Design Features of the RDS 5

3. Designing with Positive and Negative Features 7

4. Material to be Removed 9

5. Islands in Pockets 10

6. Relationships between Interacting Features li

7. Positive-Negative Feature Interactions 14

8. Multiple Ribs Composing a Single Island 17

9. Height-Layers of an Interaction 17

10. Width-Layers of an Interaction 19

11. The Current Translation Process 22

12. The Method of Translational Elimination 24

13. Need for Overlapping Pockets 26

14. NC Boundary Definition 28

15. Feature Analysis Translation Process 30

16. MetCAPP Features to NC Boundaries 31

17. Critical Dimensions for Island Arrangements 33

18. Imposing a Non-Uniform Grid 34

19. Multiple Islands in Pockets 36

20. An Overview of Positive Features Code 40

21. The Pkt-Island-List 42

22. An Element of the Rough-Regions Property 47

ix

23. The CM to APT Coordinate Transformation

24. The Sequencing of Machining Reions 50

25. The Tool Entry/Exit Sequence 52

26. The Processing of Intersecting MetCAPP Features 56

27. Multi-Sided Machining Regions 57

28. Non-Aligned Rib Feature in Pocket 58

29. Multi-Sided Convex Pocket Feature 60

48

x

LIST OF TABLES

1. Design Features to Manufacturing Features

2. Composition of MetCAPP Features

3. Composition of NC Machining Regions

4. MetCAPP Properties for a Pocket

20

36

37

43

xi

CHAPTER I

INTRODUCTION

Over the past several years, companies have begun to

realize that conventional Computer Aided Design (CAD) systems

using two dimensional primitives (lines, arcs, circles, etc.)

in either a two or three dimensional workspace, are not

capable of being effectively integrated with manufacturing and

business software to form an integrated company computer

architecture. One of the principle shortcomings of these

conventional CAD systems is their inability to capture

critical information such as design intent, geometric

relationships, material selection criteria, and manufacturing

rules that impact design.

In response, object-oriented systems are being developed

as the next generation of CAD. By object oriented, it is

meant that the computer language (i.e. Lisp) permits the

creation of ’’objects." These objects are advanced data

structures that allow large amounts of information to be

associated with them in the form of properties.

One such research project is the Rapid Design System

(RDS), a United States Air Force sponsored project. The

objective of the RDS project is to develop a software package

that will enable the user to design a machinable part and

1

2

automatically generate the manufacturing and inspection

process plans. Furthermore, by combining the design,

fabrication, and inspection sub-systems with a special memory

(the Episoidal Associative Memory or EAM) that has the ability

to ’’learn" by experience, good and bad practices, the user

will be provided with a knowledge base to assist the design,

fabrication, and inspection processes (See Figure 1).

Figure 1: The Architecture of the RDS

3

One of the several universities involved in the project

is the University of Dayton which is responsible for the

fabrication sub-system. The role of the fabrication sub­

system is to develop the complete machining operations process

plan for a given part. This includes determining which

machine will be used to produce the part, the necessary

machining operations, tool,, selection, speeds and feeds, and

the generation of the NC code to drive the machine.

To accomplish this, the fabrication sub-system is built

around MetCAPP, a generative process planner developed by the

Institute of Advanced Manufacturing Sciences, Inc.,

Cincinnati, Ohio. To provide MetCAPP with the proper

information, there is a feature translation module that

translates design features to manufacturing features. After

MetCAPP is consulted to determine the required tooling, speeds

and feeds, and pass logic for each feature, the operations

sequencing module organizes the operations into an efficient

process plan. With all of this information, the NC generation

module automatically generates the NC code for the part.

Tying everything together and enabling the user to modify the

results of any step, is the user interface module. The

research addressed within this paper is an expansion of the

feature translation module.

4

Design Philosophy

In the RDS, designing is accomplished by the use of

features. These features are basically three dimensional

"building blocks." Primarily, there are two types of features

that a designer can use. They are positive and negative

features. As the names imply, positive features represent

physical material or positive volume whereas negative features

represent an absence of physical material or negative volume.

Figure 2 describes some of the design features available in

the RDS.

Although a designer could design or "build" anything

through the exclusive use of either all positive features or

alternatively, all negative features and some positive

starting block, the RDS has incorporated both positive and

negative features to enhance the system. Primarily, there are

three basic advantages of incorporating positive design

features:

1. to provide the designer with a more flexible
environment,

2. to reduce the amount of time required to design a
given part, and

3. to help further define design intent.

The first two advantages listed above have more to do with

versatility than anything else. The third advantage, however,

is significantly more important. This is because two designs

may be geometrically similar, but still have vastly different

purposes.

Prismatic starting block Cylindrical starting block

Pocket

Figure 2: Some Design Features of the RDS

6

Consider the example in Figure 3 which illustrates an

advantage of providing both positive and negative features.

In part A, the starting block is a plate. By adding a rib

feature to this plate it is implied that the plate thickness

is desirable, but the strength or stiffness of the plate is

not adequate due to the applied loads. In part B, the

starting block is rectangular bar stock. By adding two

shoulder cuts to this bar stock, it is implied that the bar

stock height is preferred but that the weight or space/fit

requirements necessitate the removal of material. So by

including positive and negative features, it is possible to

more accurately represent the intentions of the designer and

as was previously mentioned, this is a primary reason for

developing object-oriented CAD systems.

The Challenge of Positive Features

The philosophy of the object oriented RDS is that each

feature should be capable of "making itself." That is each

feature should be able to determine the necessary tooling,

speeds and feeds, and NC path required to physically produce

that feature. To assist this process, the RDS incorporates

the software package MetCAPP, a generative process planner.

Relative to negative features this involves a reasonably

straightforward, though not trivial approach. This is because

a negative feature represents in and of itself the material

to be removed by a machining process. For example, a 7"L x

7

Block

a Shoulder

a Shoulder

Figure 3: Designing with Positive and Negative Features

8

4”W x 10"D pocket will require the same tooling and the same

NC path independent of whether it is on a 10”L x 10”W x 10"D

starting block or a 30"L x 30"W x 1O’’D starting block provided

that all other things remain constant.

Conversely, a positive feature, such as a rib feature, of

the same dimensions could potentially require two entirely

different sets of operations to produce itself depending on

the size of the starting block or the size of the pocket if

the rib is an island in a pocket. At the very least, the NC

path must be different because of the different amounts of

material to be removed (See Figure 4). This is a result of

the inability of a positive feature to inherently communicate

the necessary information to produce itself. The reason for

this, is that a positive feature is produced by altering the

set of operations required to produce some corresponding

negative feature, thus leaving behind the positive feature.

Figure 5 provides further explanation. In this figure, two

rib features, A and B, have been placed in a pocket feature,

1. The pocket feature contains within itself all of the

information that is required to select appropriate tooling and

determine the NC path. In short, the function f that

determines tooling and NC path is a function of the following

variables:

1. type of feature (description of negative volume) ,
2. length of the volume to be removed,
3. width of the volume to be removed,
4. depth or height of the volume to be removed,
5. center (x, y, z) of the negative volume,

Material to be removed

a) Pockets on Starting Block

b) Ribs on Starting Block

c) Islands in Pockets

Figure 4: Material to be Removed

10

Figure 5: Islands in a Pocket

6. corner radius, and
7. fillet radius.

A positive feature provides the length, width, height,

and center location of the volume to remain, not of the volume

to be removed. In particular, the location of the rib

features relative to each other and relative to the location

of the pocket feature can have a profound impact on the

tooling required to efficiently produce the resulting

geometry. Note that the position of rib A relative to pocket

1 and rib B will require a tool with ci diameter not greater

than 0.25 inches. It is probably undesirable to use such a

small tool, however, to machine the entire geometry. This

results in a need for a more complex tool selection scheme.

11

Figure 5 should also illustrate the need to modify the

corresponding negative feature (in this case pocket 1 for both

rib A and rib B) as opposed to attempting to capture the

length, width, height, and center for function f in the

positive features. As can be seen, the information required

to generate the operations to produce rib A involves features

1 and A. Similarly, the information required to generate the

operations to produce rib B involves features 1 and B.

The information required to generate the operations to

produce both rib A and rib B, however, involves features 1, A,

and B. Therefore, it is more convenient to view features A

and B as impacting feature 1, than to view features 1 and B as

impacting feature A and features 1 and A as impacting feature

B (See Figure 6).

1

A B

OR

A

1 B

AND
B

1 A

Figure 6: Relationships between Interacting Features

12

Problem Statement

Positive features present a two-fold problem to the

fabrication sub-system of the RDS. First, positive features

must be recognized to the extent that it is necessary to

determine the corresponding negative features that they

impact. In the case of a positive feature that exists on a

surface of the starting block, there is no distinct negative

feature that is affected. In the case of a positive feature

on the surface of the starting block, a corresponding negative

feature, such as an open flat rectangular surface, could be

created.

The second part of the problem, is the need to alter the

set of operations associated with the corresponding negative

feature such that the positive feature will be produced. This

involves tool selection and NC boundary definition for the

resulting negative volume. In this context, tool selection

also implies a degree of tooling optimization. Due to the

relative ease of generating NC code for a rectangular region

of removal, rectangular regions are preferred for the defined

boundaries.

The Scope of Investigation

The scope of investigation is defined in two ways.

First, it is necessary to define the final form of output from

the positive features module of the fabrication sub-system.

This final form should include tooling information, vertices,

13

and tool entry and exit information for each of the regions to

be machined. Tooling information refers to the tool diameter,

length, material number of flutes, and other information

required to uniquely define each tool to be used. To

efficiently handle all of this data, each required tool is

represented by its unique MetCAPP identification code. The

information provided to the NC generator by the positive

features module must be sufficient to generate the NC code.

Second, a decision must be made about how many different

kinds of positive-negative feature interactions should be

addressed. There are currently only two types of positive

features—rib features and boss features. Furthermore,

because rib features allow the user to define a corner radius,

a boss feature is nothing more than a rib feature with equal

width and depth dimensions and a corner radius equal to one

half of the width.

Having limited the number of positive features to one,

there are a total of eight positive-negative feature

interactions. This number is arrived at because the rib

feature can interact with any of the negative design features

or a surface of the starting block. Given the negative

feature involved in an interaction, the characteristics of the

rib features involved will characterize the specific class of

interaction (See Figure 7).

The scope of investigation for this paper will be limited

to aligned islands in rectangular pockets. Part of the

14

POSITIVE FEATURES

Quadrilateral Edge Step to a Starting Open Triangular* Pocket Slot *
Pocket Cut Shoulder Block Step Pocket

Multiple Single
Islands Island

Simple
Geometry

Complex
Geometry

Aligned Non-aligned

Figure 7: Positive-Negative Feature Interactions

rationale behind this scope, is that virtually all of the

negative features currently available in the design sub-system

of the RDS can be represented by rectangular pockets. Another

reason for selecting pocket-island interactions is to avoid

any fixturing interferences. A positive feature in a fully

enclosed pocket will not impact the fixturing reguirements for

the part. This prevents any further complication relative to

the need to avoid collisions between the cutting tool or

15

machine spindle and the fixturing devices. Once the cutting

tool is within the pocket area, it is free from possible

collisions. In addition to this, the NC rules for machining

a rectangular pocket are relatively simple and well defined.

As the RDS is used by the machine shop of the 4950th Test

Wing, the feature translation module will have to be further

refined. The next logical expansion should be to include

positive features that exist on a surface of the starting

block. With a relatively minimal amount of new code, this

should be easily accomplished.

CHAPTER II

ANALYSIS OF THE PROBLEM

With an explicit problem statement and a well defined

scope of investigation, the logical approach is to first

establish a means for recognizing rib-pocket interactions and

to then process these interactions to the desired extent.

Since any design pocket feature could potentially be a

corresponding negative feature for one or more design rib

features, the positive feature recognition will examine each

of the design pocket features.

It is important to realize that even a single island may

be composed of multiple rib features (See Figure 8) . The

importance of this fact, is that any given rib, such as rib B

in the example, may impact only a section of a pocket without

being attached to the bottom of the pocket. This leads to the

concept of viewing and analyzing a positive-negative feature

interaction in terms of layers. Each layer of an interaction

must have a constant geometry with respect to the height or y-

direction except for the fillet radius of either the positive

or negative features interacting.

16

17

In Figure 9, an example interaction involving three

islands composed of a total of six ribs is decomposed into six

layers. Each of these six layers may now be processed

independently with the NC code being generated separately for

each layer.

Figure 9: Height-Layers of an Interaction

18

An alternative to the previously mentioned height-layer

is the width-layer. The width-layer is formed by a constant

geometry with respect to the width or x-direction. For an

illustration of the width-layer, please refer to Figure 10.

The principle advantage of using width layers, is that in

some cases, consecutive height layers could be machined in a

single pass but because the NC code is generated separately

for each layer, they will be machined separately which is less

efficient. Overall, however, the marginal benefits gained by

utilizing width-layers is insufficient to offset the increased

complexity of these layers.

Single Islands

Having briefly addressed the issue of positive feature

recognition, the processing of positive-negative feature

interactions can now be addressed. Starting at a simple

level, the analysis begins with a single island in a pocket.

It is important to remember that each height-layer is analyzed

and processed independently. As a result, the figures in the

following sections are top views instead of cross-sections.

To investigate different techniques of altering the set

of operations required to produce the corresponding negative

feature, it is necessary to decompose the problem into its two

sub-problems. As was previously mentioned, these are tool

selection and NC boundary definition.

19

(b) Cross-Section

Figure 10: Width-Layer Alternative

20

The Translation Process

In order to understand how pocket-island interactions are

processed, one must first understand the translation of design

features into manufacturing features. Currently, each design

negative feature is translated to a manufacturing negative

feature on a one to one basis (see Table 1) . The resulting

manufacturing feature can be broken down into the following

three features: the geometry feature, the MetCAPP feature, and

the NC features.

Table 1: Design Features to Manufacturing Features

Desiqn Manufacturinq MetCAPP

Pocket Pocket Enclosed Pocket

Through Slot Through Slot Through Slot

Edge Cut Edge Cut Edge Cut

Open Step Open Step Open Step

Corner Step Corner Step Corner Step

Blind Hole Blind Hole Hole

Through Hole Through Hole Hole

In essence, the geometry feature is nothing more than a

condensed version of the design feature containing the

required information to orient and display the feature in the

fabrication environment. The manufacturing feature, in

general terms, captures the parameters that affect the

21

machining process and places them into a form that MetCAPP

understands. This form is referred to as the MetCAPP feature.

It is important to note that, currently, each manufacturing

feature has only one MetCAPP feature associated with it. The

NC features associated with a given manufacturing feature are

the set of machining operations, returned from the MetCAPP

software, that are required to produce that given

manufacturing feature. Each step of the operation sequence is

an individual NC feature for which NC code will be generated.

For example, a design pocket feature would be translated

into a manufacturing pocket feature. This manufacturing

feature would be composed of the geometry feature, the MetCAPP

pocket feature, and six NC features (See Figure 11).

Together, these six features or operations would produce the

pocket feature.

To provide the NC code generator with sufficient

information, the translation process must be altered in some

manner. Referring to Figure 11, the boxes may be viewed as

results or objects produced by the translation process which

is represented by the connecting lines. From here it should

be apparent that the translation process consists of three

steps. Therefore, the objective could be achieved by altering

any of these three steps of translation. Note that although

the NC features are created using the MetCAPP feature, the NC

features are attached directly to the manufacturing feature in

the same manner as the MetCAPP and geometry features.

22
Design

Negat ive
Feature

First Step

Manufacturing Negative
Feature

Second Step

MetCAPP Feature
DIMENSIONS FOR: Rectangular Pocket - Fully Enclosed

DIMENSION ENTRY
Length of Pocket 10.000
Width of Pocket 3.000
Depth of Pocket 1.000
Corner Radius 0.250
Fillet Radius (0.0313)
Maximum Allowable Cutter Diameter (2.00)
Maximum Height of Obstruction (0.00)
Thin Wall Condition (No)
Thin Floor Condition (No)
Angle Formed Between Floor & Wall (90.000)
Setup Rigidity (5 - 10, bad to good) (10)
Sub Floor Length (0.000)
Sub Floor Width (0.000)
Sub Floor Axial Depth (0.000)
Sub Floor Corner Radius (0.000)
Sub Floor Fillet Radius (0.000)

Third Step

NC Features
STEP OPERATION SEQUENCE TOOLING PASSES TIME

1 Plunge End Mill MLS-0160 1 0.109
2 Slot End Mill MLS-0160 1 0.817
3 Rough End Mill MLS-0152 2 0.534
4 Semi-Finish End Mill Wall MLS-0152 1 0.444
5 Finish End Mill Floor MLS-0090 3 0.711
6 Finish End Mill Wall MLS-0211 1 0.619

Figure 11: The Current Translation Process

23

Altering the third step, however, will not be examined

within this paper because the third step of translation is

accomplished by the MetCAPP software alone. Thus, there are

primarily two methods for accomplishing the objectives of tool

selection and NC boundary definition, translational

elimination and feature analysis.

Translational Elimination

The first method is to replace the original or design

(DI) negative and positive features with a set of negative

manufacturing (D2) features such that the summation of

negative manufacturing features and the starting block is

equal to the summation of design positive and negative

features including the starting block.

For example, consider a rectangular pocket with a single

rectangular island in it (See Figure 12). The set of design

features, pocket-1 and rib-1, is replaced by the set of

manufacturing features, pocket-A, pocket-B, pocket-C, and

pocket-D. The top part of this figure represents the

structure used for associating data. The D2 pocket boxes

refer to the manufacturing pocket features that are created in

the translation process. The features or sub-features

associated with each of these D2 pocket features are

represented by the Geom, MCAPP, and NCI through NC6 boxes.

24

POCKET-C

POCKET
B

POCKET
D

POCKET-A

Figure 12: The Method of Translational Elimination

25

This method is referred to as translational elimination

because in the initial step of the translation process,

positive features are eliminated. As a result, only negative

features exist in the fabrication environment.

By using translational elimination the problem of tool

selection is solved since appropriate tooling can be

determined independently _for each manufacturing pocket

feature. Of course, some or all of the related pockets may be

able to share common tooling. This would still be addressed

by the tooling optimization module that would optimize the

tooling across all of the manufacturing features.

In addition to solving the problem of tool selection,

translational elimination also solves the problem of NC

boundary definition. Since there will not be any positive

features in the fabrication sub-system if this method is used

for tool selection, there is no longer an issue of NC boundary

definition. Each of the newly created manufacturing pockets

would inherently have its own boundary.

As might be expected the ability of translational

elimination to simultaneously solve both problems is the

primary advantage of this method. Unfortunately, there is a

major problem with the simplistic method of translational

elimination. This is the problem of disassociation of the

related manufacturing features. Disassociation would occur

because the only means to determine if two given manufacturing

features are related would be to examine the design feature or

26

features that led to their creation.

This lack of association between features that are

related may impose limitations on the benefits of feature

based CAD systems. Relative to the RDS, disassociation may

impair the ability of the Episoidal Associative Memory to form

design rules based on manufacturing feedback.

Furthermore, additional work would have to be done to

increase the efficiency of the machining plan. Primarily, to

eliminate the extra plunge or drill operation on a pocket that

is adjacent to another pocket. (For example, pocket-A and

pocket-B of Figure 12. These two pocket features could be

machined with only a single plunge operation.)

The other problem that would be encountered is the need

for a smooth transition between adjacent pockets. If

translational elimination is used, the manufacturing pocket

features would have to overlap to eliminate the extra corner

and fillet material (See Figure 13).

Design Features Manufacturing Features

Figure 13: Need for overlapping pockets

27

Feature Analysis

Returning to Figure 11, if the first step of the

translation process is not altered and the third step of the

translation process is not alterable, then only the second

step remains. In general, altering the second step of the

translation process, the creation of the MetCAPP feature, is

referred to as the method of feature analysis.

Primarily, there are two methods for accomplishing

feature analysis. Both of these methods involve, at least

potentially, the creation of multiple MetCAPP features. Since

the first step of the translation process is unaltered, each

corresponding negative design feature is still translated into

a single negative manufacturing feature. This avoids the

problem of disassociation which is encountered in

translational elimination.

Mathematical Analysis, Feature analysis can be performed

mathematically by developing a similarity function, f, which

uses the machining parameters as variables. Then, by

calculating the function at different locations in the

corresponding negative feature, comparisons could be made and

on the basis of these comparisons, a variable number of

MetCAPP features could be created.

For pocket features on the same part, tool selection

depends on five variables: length, width, height, corner

radius, and fillet radius. Since the similarity function

would be operating on the parameters of a single pocket, it is

28

possible to narrow the function to include only the length and

width dimensions because the depth, corner radius, and fillet

radius will be constant for any given pocket in the current

RDS.

Using this function, the regions of a pocket-island

interaction would be similar if the values of the function

were within some hypothetical interval, delta, of each other.

For each set of similar regions, one MetCAPP feature would be

created to determine the tooling and NC features (operations)

required for those similar regions.

Having established which regions are similar and having

determined the tooling for each region, NC boundaries can now

be defined. To define the NC boundaries, the overlap of

regions one through four must be eliminated. If the two

intersecting regions are similar, then the intersection may be

subtracted from either region. Otherwise, the intersection

must be subtracted from the region that will be machined with

the smaller tool diameter (See Figure 14).

r

Figure 14: NC boundary definition

29

The advantage of mathematical feature analysis is that

MetCAPP features would be created only as needed. Most

pocket-single island interactions could probably be handled

with one or two MetCAPP features. This would reduce the

number of calls to the MetCAPP software and significantly

shorten the processing time of positive-negative feature

interactions.

Unfortunately, the entire method depends on developing an

accurate and suitable similarity function. Without the

ability to examine the internal workings of the MetCAPP

software, this would not be an easy task. Furthermore, using

mathematical feature analysis more accurately addresses the

problem of tooling optimization than that of tool selection

for positive-negative feature interactions.

Assuming a genuine need to perform tooling optimization

across all of the manufacturing features of a given part,

using the same similarity function to process the positive­

negative interactions would be somewhat redundant and

inflexible. For these reasons, a different variety of feature

analysis was chosen as the final solution to be implemented

within the RDS. Although still imperfect, it possesses

several strengths.

Mapping Analysis. To perform mapping feature analysis, the

resulting negative volume of a pocket-island interaction is

represented as the union of MetCAPP features. In the case of

a single island in a pocket, this involves a very

30

straightforward, simplistic approach.

For example, the design features in Figure 15 are

replaced by a single manufacturing pocket feature that has

four MetCAPP features associated with it. Note that where the

MetCAPP features intersect, the tooling of either feature may

be selected to remove the material in that intersection. This

is to insure the efficiency of the process plan.

Figure 15: Feature Analysis Translation Process

31

Then, in the same manner as before, the NC boundaries can

be defined (See Figure 16). By specifying which boundaries

can be violated by the milling cutter, a smooth transition

between machining regions will be insured.

vz

V\x\/X

A A

_________ J

NC BoundariesMetCAPP Features

Figure 16: MetCAPP Features to NC Boundaries

One attribute of this method which may appear to be a

disadvantage is the need to create a large number of MetCAPP

features that will probably be very similar. Currently, this

requires many calls to the MetCAPP software and represents a

substantial time loss in the processing of positive features.

However, when a tooling optimization module is integrated with

the fabrication sub-system of the RDS, the MetCAPP features

for the entire part could be checked for similarity, thereby

reducing the number of calls to MetCAPP. This would allow the

tooling optimization to be more accurate because a tool that

might not be justifiable for use in a single region of a

single pocket may now be justified because it will provide a

time savings on other regions of other pockets.

32

For example, consider a pocket feature with an island

that may be machined with two different tools in 20 seconds of

cutting time and another 10 seconds for the tool change. The

feature could also be machined using only one of the tools in

2 5 seconds of cutting time. Obviously, if this is the only

feature being considered, it is more efficient to use the

single tool alternative for a 5 seconds time savings. If,

however, there were six identical features of this kind, it

would be more efficient to use the two-tool alternative for a

time savings of 20 seconds assuming that the tool is already

in the magazine (130 seconds for two tools; 150 seconds for

one tool).

Multiple Islands

The ability of feature analysis to analyze and process

pocket-single island interactions is clearly insufficient to

establish it as a solution. To be considered a solution,

feature analysis must be capable of processing pocket-multiple

island interactions in a logical manner. To say the least,

automating feature analysis to process multiple island

interactions is not trivial.

Tool Selection

The problem is that analyzing a single island in a pocket

is very straightforward, involving only six dimensions,

whereas three or even two islands in a pocket not only

33

(b)

Figure 17: Critical Dimensions for Island Arrangements

34

introduce more dimensions, they introduce an undetermined

number of non-zero dimensions.

This is illustrated with the help of Figure 17 which

depicts two possible arrangements of three islands in a

pocket. With a little time, one should conclude that, indeed,

all of the dimensions of Figure 17b are needed. All of these

dimensions are required to achieve the goal of feature

analysis—to determine the room available, in terms of length

and width, for a cutting tool at every location in a pocket-

island interaction.

Returning to the case of a single island in a pocket,

consider the impact the intersections of the MetCAPP features

have on the problem. The intersections lead to the concept of

imposing a three by three non-uniform grid onto the geometry

of the interaction (See Figure 18).

0 1 2

(-----------------
— 1.125 —

1

~~A

.250

t
J

Figure 18: Imposing a Non-Uniform Grid

35

The center of the grid, rectangle (1, 1), represents the

positive volume of the island and will not be removed in the

machining process. The remaining eight rectangles,

representing the negative volume of the interaction, will be

removed in the machining process.

To determine the maximum amount of room available for a

cutting tool, the rectangles of the grid are combined to form

larger rectangles. This is important because the length and

width of each individual rectangle may not accurately define

the room available for a given tool.

This is certainly the case for rectangle (1, 0) .

Initially, the width of this rectangle restricts the size of

a tool to 0.25 inches. Clearly, however, a 1.0 inch tool

would be acceptable to remove the material between the left

wall of the pocket and the left side of the island.

To consider the more complex case of two islands in a

pocket, again impose a grid on the resulting geometry. After

imposing a grid, create MetCAPP features by combining grid

rectangles to form larger rectangles. The process used to

develop these larger rectangles is not critical provided that

every basic grid rectangle is associated with at least one

MetCAPP feature and the rectangles are expanded to their

maximum rectangular size.

An example of the results produced by applying this

procedure for the interaction depicted in Figure 19, is shown

in Table 2. With the entire negative volume of the interaction

36

mapped into MetCAPP features, the task of tool selection is

accomplished.

Table 2: Composition of MetCAPP Features

MetCAPP Feature Composition

1 (0 0) (0 1) (0 2) (0 3) (0 4)

2 (0 0) 41 o) (2 0) (3 0) (4 0)

3 (2 0) (2 1) (2 2) (3 0) (3 1) (3 2)

(4 0) (4 1) (4 2)

4 (4 0) (4 1) (4 2) (4 3) (4 4)

5 (0 2) (0 3) (0 4) (1 2) (1 3) (1 4)

(2 2) (2 3) (2 4)

6 (0 4) (1 4) (2 4) (3 4) (4 4)

Figure 19: Multiple islands in a pocket

37

NC Boundary Definition

The NC boundaries are established for multiple island

interactions similarly to the way in which they are defined

for single island interactions. When a rectangle is

associated with more than one MetCAPP feature, it is removed

from the MetCAPP feature that produced the tool with a smaller

diameter. This insures that every rectangle of the grid is

actually machined with the largest available tool. If, upon

removing a rectangle from a MetCAPP feature, that MetCAPP

feature becomes non-rectangular, then the feature will be

reduced to form new NC boundaries that are rectangular.

The rectangles associated with each bounded machining

region of the interaction depicted in Figure 19 are listed in

Table 3. Note that machining regions 5a, 5b, and 5c are the

results of reducing MetCAPP feature No. 5.

Table 3: Composition of NC Machining Regions

Machining Region Composition

1 (0 0) (0 1)
2 (1 0)

3 (2 0) (2 1) (2 2) (3 0)

(4 0) (4 1) (4 2)
4 (4 3)
5a (0 2) (1 2)
5b (0 3) (0 4) (1 3) (1 4)
5c (2 3) (2 4)
6 (3 4)

CHAPTER III

FEATURE ANALYSIS

After reviewing the available methods for processing

positive-negative feature interactions and selecting feature

analysis by mapping, the computer code to automatically

process islands in pockets was developed and integrated with

the RDS. In this chapter, the general structure and workings

of this code will be addressed. Not only should this provide

some general knowledge of the code, it should facilitate a

greater understanding of the mechanics involved in the

application of feature analysis.

It should be noted, however, that the code which has been

developed involves two major assumptions. First, it is

assumed that the fillet radius of the pocket feature and the

fillet radii of all interacting rib features are equal.

Second, the corner radii of all interacting rib features are

assumed to be equal to zero.

These assumptions do not overly limit the practical

application of this code. Further, until NC code is generated

from the information produced by this code, it should remain

simple to reduce the amount of any fine tuning that may be

required.

38

39

Overview

The entire RDS, with the exception of the MetCAPP

software package and interface, is written in Lisp on top of

a Concept Modeller Lisp template. To further explain this,

the Concept Modeller, a Wisdom Systems product, is an object-

oriented CAD system designed to be customized by its user.

The RDS is one example, although a highly unique one, of this

customization. The Concept Modeller Lisp template refers to

all of those Lisp functions that are not ordinarily available

in Common Lisp.

In the RDS, a feature such as a pocket is an object with

associated properties such as depth, width, height, etc. To

process islands in pockets, seven additional properties are

added to the D2-pocket-feature. These seven new properties

exist for all pockets in the fabrication sub-system regardless

of whether or not they are impacted by positive features. By

structuring the code in this manner, a consistency is

established to avoid the further complication of those tasks

performed by other modules of the fabrication sub-system.

The end goal of all of this work is to communicate to the

NC code generation module the material to be removed to

produce a given pocket feature. With or without positive

features, there is by definition material to be removed for

every pocket feature in the fabrication sub-system.

40

Figure 20: An Overview of the Positive Features Code

41

The names of these seven new properties as well as an

overview of the code are shown in Figure 20. Note the

dependence of the properties on those that have already been

defined. A definition and explanation of the properties will

be given in the following sections. The code to define each

property is contained in Appendix A through Appendix F. Each

appendix contains all of the functions required to define a

property.

Positive Feature Recognition

The key to the entire process of dealing with positive­

negative feature interactions is to first identify them in a

meaningful fashion. The result of this detection process is

the Pkt-Island-List property of a pocket. This list

identifies the pocket, the ribs impacting it, and the height

of the layer for each layer of the interaction (See Figure

21) .

To compile this list, an extremely thin, three-

dimensional plate geometry is created at the bottom of the

pocket. The AGM solid modeller is then used to check each rib

feature of the part to determine if it intersects the plate.

This establishes the bottom layer of the pocket which will

become the last element of the Pkt-Island-List.

The preceding elements of the list are then determined by

moving the thin plate to the top of the shortest rib of that

layer. Referring to Figure 21, the plate is moved to the top

42

of rib-B, then to the top of rib-A, and finally to the top of

rib-C.

PKT- 1

RIB-C

RIB-A RIB-B

((PKT-1 (NIL) 0.250)
(PKT-1 (RIB-C) 0.375)
(PKT-1 (RIB-A RIB-C) 0. 125)
(PKT-1 (RIB-A RIB-B) 0.250))

Figure 21: The Pkt-Island-List

Building MetCAPP Features

After establishing the Pkt-Island-List, the pocket-island

interaction can be processed one layer at a time. The first

step in processing these layers is to develop the MetCAPP-

Features-List where each element of the list contains the

MetCAPP features of a single layer of the interaction.

To begin building the MetCAPP feature that will compose

this list, a non-uniform grid is imposed on the interaction

such that each rectangle of the grid is either completely

negative or completely positive volume. The negative volume

is then mapped into MetCAPP features with each rectangle being

43

mapped into at least one feature and each feature retaining a

rectangular geometry. This is accomplished by starting with

any rectangle that has not yet been mapped and expanding it in

the smaller of its two dimensions, length and width. The

expansion process stops when the MetCAPP feature is in contact

with positive volume on all four sides.

Referring to Table 4_ for a list of properties of a

MetCAPP feature, the length and width are determined by the

previously described expansion process. The height is

obtained from the height of the layer, contained in the Pkt-

Island-List. The maximum height of obstruction is equal to

the summation of the height of each layer above the given one

plus the maximum height of obstruction associated with the D2-

pocket-feature. Then, with the exception of the sub-floor

properties which are

Table 4: MetCAPP Properties for a Pocket

Length of Pocket
Width of Pocket
Depth of Pocket
Corner Radius
Fillet Radius
Maximum Allowable Cutter Diameter
Maximum Height Obstruction
Thin Wall Condition
Thin Floor Condition
Angle Formed Between the Floor & Wall
Setup Rigidity (5-10, bad to good)
Sub Floor Length
Sub Floor Width
Sub Floor Axial Depth
Sub Floor Corner Radius
Sub Floor Fillet Radius

44

always set equal to zero, the remaining properties of the

MetCAPP feature are set equal to the same properties

associated directly with the D2-pocket-feature being

processed.

Note that the maximum height of obstruction property

prevents MetCAPP from returning a tool to short to mill the

pocket. If this property JLs not properly set, the machine

collet could collide with the part. MetCAPP will also

compensate for a long tool by reducing the feed rate to

prevent excessive tool deflection. In the event that a

suitable tool cannot be found because of the height to width

ratio of the negative volume, MetCAPP returns a warning

message.

In the future when the restrictions requiring the pocket

fillet radius to be equal to the rib fillet radii are removed,

the largest fillet radius of any rib in the pocket or the

fillet radius of the pocket itself will be used for all of the

MetCAPP features of that layer. Then, additional MetCAPP

features are created as needed to determine the required

finishing tools establish the proper fillet radii.

Getting the Operations

To get the machining operations associated with the

MetCAPP features, each feature is sent one at a time through

the interface to MetCAPP. The operations are then received

back through the interface. Each set of operations then

45

becomes a single sub-element of a list. All of the sub­

elements associated with a particular layer form an element of

the positive-ops property. Most of the functions to

accomplish this task are already present in the fabrication

sub-system.

The most important part of this process is that the

operations lists received from MetCAPP most be assembled such

that the elements of the positive-ops list of each pocket

exactly match with their corresponding elements of the

MetCAPP-features-list for that pocket. If their would be a

failure to achieve this, the rest of the processing would

break down.

Establishing Tooling

The set of operations returned from the MetCAPP software

generally consists of six operations or steps to create that

given feature. Currently, there is considerable debate and

uncertainty about the need to completely follow these steps

verbatim. In particular, many of these steps require a

separate tool which typically results in a total of four

different end mills to perform all six steps. As a result,

the positive feature code selects only two tools from each set

of operations in an attempt to simplify the positive features

code and streamline the operations. In the future, after a

more thorough investigation of the MetCAPP process plan, the

46

positive features code can be modified to include more or all

of the tools or operations with a minimal programming effort.

The two tools that are selected are the plunge end mill

and the wall finish end mill. These tools correspond to the

first and last tools of the operations list, respectively, and

will be used for roughing and finishing, respectively. To

facilitate the necessary data handling, two properties are

assigned to the D2-pocket-feature, the rough-tool-list and the

finish-tool-list, to store the tool identification code

associated with each tool.

This is probably not the optimum solution to the problem.

Unfortunately, until the fabrication sub-system is complete

and parts are actually machined with NC code generated by the

RDS, fine tuning of the positive features code is virtually

impossible. With the flexible overall structure of the highly

modular code, however, it will require relatively minimal

programming effort to select more or all of the tools

recommended by MetCAPP.

The Machining Regions

The final step in processing pocket-island interactions

is to transform the MetCAPP features into machining regions

and provide the NC generation module with the tooling, entry

and exit, and side violation information. All of this

information is produced by a single set of Lisp functions that

define the rough-regions and the finish-regions properties

with the rough-tool-list and the finish-tool-list as part of

the input.

To assist in the explanation of the activities performed

to produce either the rough-regions or the finish-regions,

please refer to Figure 22 which depicts a single element of

the rough-regions property of a given D2-pocket-feature. Each

element of the list that composes this property contains all

of the necessary information for a single layer. The top

layer of a pocket-island interaction is represented by the

first element of the list and the bottom layer is represented

by the last element.

("MLS-O169"
((17.0 9.0) (19.0 9.0) (19.0 12.0) (17.0 12.0)
(BACK LEFT FRONT)
({18.0 8.449) (18.0 9.551) (18.0 10.5)))

Figure 22: An Element of the Rough-Regions Property

The first critical step in compiling the information to

be associated with an element of the rough-regions list is to

transform each of the MetCAPP features of a layer into a

machining region. To do this, the intersection of the two

features must be subtracted from one of the intersecting

features. If the tool diameters associated with the two

intersecting features are equal, the choice is considered to

be arbitrary. Otherwise, the intersection is subtracted from

the MetCAPP feature with the smaller tool diameter. Through

48

this procedure amount of material removed by the larger

diameter tools will be effectively maximized.

In some instances, the subtraction of the intersection

from a MetCAPP feature will leave a non-rectangular geometry.

When this happens, the resulting region will be decomposed

into new rectangular regions. By maintaining rectangular

machining regions, additional complexity relative to the

process of generating NC code is avoided.

After determining the machining region, the four vertices

of the region are transformed from the Concept Modeller

coordinates to APT coordinates in a standard coordinate system

transformation (See Figure 23). The APT coordinate vertices

are then placed in a list starting with the front left and

proceeding in a counter-clockwise direction. This vertice

list in conjunction with the depth of cut which is obtained

from the Pkt-Island-List, now defines the volume of material

to be removed.

Figure 23: The CM to APT Coordinate Transformation

49

Also following the determination of the machining region,

the machining regions which are adjacent to each region are

found. By defining which side the adjacent region is in

contact with the region in question, it is possible to define

which sides of each machining region may be violated to move

the tool from one region to the next and which sides must be

violated in order to establish a smooth transition across

regions.

Once this information is organized, the machining regions

can be efficiently sequenced. This is accomplished with the

use of a fairly simple algorithm. The algorithm begins by

grouping the regions according to the tool that will be used

for that region. Then, beginning with the group of regions to

be machined by the largest diameter tool, a region is selected

to be machined. Next, any region adjacent to it that is

within the same group will be selected. This process

continues until none of the remaining regions in the group is

adjacent to any of the previously machined regions. This

process is then repeated for each group of regions in

descending order of tool diameter. Note that in each

successive group of regions, the next region to be machined

may be adjacent to a region of another group that was already

processed. This entire process is illustrated in Figure 24.

Note that the next list is a list of adjacent regions to

be considered for the next region to be machined. This list

includes all of the regions that are adjacent to the current

50

Tool Groups: MLS-0169: 1. 2.
MLS-0165: 5. 6,

CURRENT

Pocket- 1
Pocket-2
Pocket-3
Pocket-4
Pocket-5
Pocket-6
Pocket-7
Pocket-8

NEXT LIST

2. 4. 6. 8
. 4 . 7. 6. 8
4. 7. 6. 8
5. 7. 6. 8

6 . 7. 8
7. 8

8
nil

3. 4
7. 8

GROUP LIST

2. 3. 4
3. 4

4
5. 6. 7. 8

6. 7. 8
7. 8

8
nil

Figure 24: The Sequencing of Machining Regions

region being machined regardless of which tool group they are

in. If, however, the first region in the next list is not an

element of the current tool group list, it will be skipped

51

until all of the regions of the current tool group list are

machined.

At the same time the regions are sequenced, the tool

entry sequence into the region to be machined is determined.

The procedure for generating the tool entry sequence, as shown

in Figure 25, is to first find the midpoint of the line

segment that is common to both machining regions. By adding

the product of the inward normal unit vector and the scalar

tool radius to this point, the exit point of the just machined

region and the entry point of the next region to be machined

are established. The third point in the sequence is the

center of the next region to be machined. With all of this

information, the task of NC code generation for the island-

pocket interaction should now be possible without any

unnecessary complications.

52

r

OF

oE
A C B y

OD

y

A: Point 1

B: Point 2

C: Midpoint of Segment AB

D: Tool Exit Point

E: Tool Entry Point

F: Center of Next Region

Figure 25: The Tool Entry/Exit Sequence

CHAPTER IV

ADDITIONAL ISSUES

In addition to developing the algorithms and Lisp code

that have been described in the preceding sections, the

research involved a certain-amount of speculation relative to

the solutions for items not completely addressed by the

research. The results of this speculation relative to several

closely related issues are addressed in the following

sections.

Miscellaneous Pocket-Island Issues

As has been previously mentioned, the Lisp code developed

to handle rib features interacting with pocket features

requires two assumptions that limit the practical application

of the code. The two assumptions are that the fillet radii of

all interacting ribs are equal to the fillet radius of the

pocket and that the corner radii of all of the rib features

are equal to zero. Although these assumptions place

significant restrictions on the use of the positive features

code, the modifications required to remove these restrictions

are not major.

53

54

Non-Zero Rib Corner Radii

Perhaps the greatest restriction placed on the positive

features processing code is the requirement that the fillet

radius of all interacting rib features be equal to zero. To

eliminate this requirement, it is necessary to communicate to

the NC code generation module the corner radius and the center

of curvature as well as the appropriate tooling.

Relative to the tooling, a decision has to be made as to

whether or not a roughing pass will be needed in addition to

the finishing pass. Probably the most convenient way to make

this determination would be to compare the corner radius to

tool radius ratio to some critical value:

(Corner Radius) / (Tool Radius) ? K

If K, is exceeded, indicating a relatively large amount of

material to be removed by the finishing tool, a roughing pass

is required. The majority of the work required to eliminate

the corner radius restriction involves the NC code generation.

Unequal Fillet Radii

The elimination of the requirement that the fillet radii

of the interacting rib and pocket features be equal involves

some what more work, but is still reasonably simple. The

desired fillet radius of a machining region will impact the

finishing tool and possibly the roughing tool selection.

To account for this, the largest fillet radius of the

layer being processed should be used with all of the MetCAPP

55

features of that layer. This will provide the appropriate

roughing tools for the layer and also the appropriate

finishing tool for the pocket or rib feature associated with

that fillet radius. Then, to select the necessary finishing

tool or tools for the remaining features of that layer, an

additional MetCAPP feature is created with the required fillet

radius for each different fillet radius. Finally, the

machining region for each extra finishing tool can be defined

simply as a rectangle that must be "traced" with tool to

produce the proper fillet radius.

Multi-Sided Convex Machining Regions

Although not necessary, the inclusion of multi-sided,

convex machining regions can in some cases result in

significant time savings. In particular, these regions are

very helpful in the reforming of intersecting regions (See

Figure 26).

Currently, when two MetCAPP features intersect, the

entire intersection is subtracted from one of the two

corresponding machining regions. In some instances, this

results in one of the corresponding machining regions becoming

non-rectangular which requires it to be further decomposed

into a set of rectangular machining regions. The operations

to machine the set of new machining regions will sometimes be

more time consuming then to machine the entire region as it

existed prior to the subtraction of the intersection.

56

(a) Intersecting MetCAPP Features

(b) Resulting Machining Regions

Figure 26: The Processing of Intersecting MetCAPP Features

57

To overcome this inefficiency, the rectangles composing

the intersection could be split between the two intersecting

MetCAPP features to form two five-sided-regions (See Figure

27) . Using this procedure, time savings could be increased

and the multi-sided, convex machining regions should not pose

any major problem to the automated process of generating NC

code.

Figure 27: Multi-Sided Machining Regions

58

Non-Aligned Ribs

Although the RDS does not currently enable a user to

rotate a rib to a position in which it is no longer aligned

within a pocket feature, this capability will certainly be

forthcoming. Another reason for addressing this topic is that

the related issues of machining triangular and quadrilateral

pockets can also be examined.

In examining a non-aligned rib feature interacting with

a rectangular pocket feature, it should be obvious that the

corner location alone will be of little value since it may be

outside of the rectangular pocket feature (See Figure 28) .

Instead it will be necessary to establish a modified corner

location based on the original location and the radius of

curvature of the corner.

Figure 28: Non-Aligned Rib Feature in Pocket

59

The geometry resulting from this interaction would appear

to easily lend itself to the use of triangular pocket MetCAPP

features for mapping. Unfortunately, the MetCAPP software

package does not currently provide such a feature.

Multi-Sided Pocket Features

The last of the related issues to be addressed within

this paper is the issue of multi-sided design pockets in

either a convex or a concave configuration. Again this issue

involves a capability that is not yet available in the feature

based design environment of the RDS. As a result the

specifics of how to provide the necessary information to the

NC code generation module cannot be addressed as they will

depend heavily upon the feature representation of such a

pocket.

Depending on whether or not the pocket is concave or

convex it could be handled in one of two ways. If the pocket

is convex, mathematical analysis may be used to determine the

maximum rectangular region to be used as the MetCAPP feature

within the pocket (See Figure 30). Then, the convex pocket

feature could be used for NC boundary definition. There is no

need to alter the feature because, as was previously

mentioned, there are no major obstacles to be overcome with

regard to automatically generating NC code for a multi-sided

convex machining region.

60

Figure 30: Multi-Sided Convex Pocket Feature

If, however, the multi-sided region is concave, a non-

uniform grid could be imposed on the feature and the same

mapping procedure already described could be used for tool

selection and NC boundary definition. This process could be

further complicated if the feature combined multi-sided

concave and convex regions, but it is still probably the best

alternative.

CHAPTER V

CONCLUSIONS

As the RDS developed, a need was recognized within the

fabrication sub-system to develop and implement a procedure to

accomplish the tasks of tool selection and NC boundary for the

resulting negative volume of a positive-negative feature

interaction. After an initial investigation of the general

problem, the field of research was reduced to include only

pocket-island interactions where the rib features were

restricted to an aligned position relative to the rectangular

pocket.

The investigation shows that the broadly viewed design to

manufacturing translation process is the arena in which to

develop the necessary procedure. Being a three-step process,

the translation process provides three levels at which

modifications can be made to accomplish the desired

objectives.

Since altering the third step of translation would

require the MetCAPP software package itself to be altered,

which is considered to be an alternative beyond the scope of

this investigation, this paper explores only two methods. The

first alternative, translational elimination, is a process in

which the design pocket feature and rib features would be

61

62

replaced by a set of manufacturing pocket features thereby

eliminating the rib feature in the first step of translation.

This process, however, would disrupt the one-to-one

correspondence of design features to manufacturing features

presenting possible problems in disassociation.

Largely for this reason, the second alternative is chosen

as the best process to accomplish the sought after objectives.

By decomposing the pocket-island interaction into layers of

rectangles, the resulting negative volume can be mapped into

MetCAPP features and then into machining regions. The first

of these mappings succeeds in accomplishing the task of tool

selection and the second adequately establishes the required

NC boundaries. Combined, this critical information enables

the automatic generation of NC code.

To date, the Lisp code to perform feature analysis by

mapping has been developed and is currently being evaluated

for single and multiple island interaction.

CHAPTER VI

RECOMMENDATIONS

Despite the tremendous advance in the growing ability of

the fabrication sub-system to effectively process positive­

negative feature interactions, a great deal of work remains.

Foremost among the remaining tasks is the need to adapt the NC

code generation module to produce NC code from the information

provided in the rough-regions and finish-regions properties of

the D2-pocket-feature. To complete this task and fulfill the

remaining validation requirements of the positive features

code, the NC code should be executed (at least through the use

of verification software) and evaluated for a variety of

pocket-island interactions.

In the process of this validation, as well as other

evaluations or validations of results involving the use of

MetCAPP to select tools for multiple features, a tremendous

need for tooling optimization across MetCAPP features should

become evident. The inability of MetCAPP to select tools

based on a set of features instead of on a single feature

basis is one of the obstacles that must be overcome to

successfully integrate MetCAPP with the RDS.

Regardless of whether this problem is to be solved within

MetCAPP itself or merely within the RDS, one of the most

63

64

critical factors influencing tool selection should be the

number of parts to be produced. As the tool setup time is

distributed over an increasing number of parts, the more

significant the time savings, in terms of decreased machining

time, associated with a given tool will become.

In addition to developing the ability to generate NC code

from new properties added to the D2-pocket-feature, there is

a need to update the operations sequencing module and the user

interface. Since the final output of the positive features

code is a description of what material must be removed and how

it should be removed, the rough-regions and the finish-regions

properties of a d2-pocket-feature will always be defined

regardless of whether or not any islands interact with the

given pocket. This being the case, the operation sequencing

module should be updated so that it always processes the newly

defined pocket properties. By doing this, a high level of

consistency will be maintained which will benefit the RDS in

the long term.

Also the user interface should be expanded to work in

conjunction with the positive features code. Cartaya [1]

stated the need for an interactive user interface that would

allow the user to modify the design to manufacturing feature

translation and the tooling and operations produced by

MetCAPP. If anything, this need has been magnified by the

revised translation process. Clearly, the RDS should extend

to the user the ability to modify the actual mapping process

65

used to determine tooling and boundaries.

In addition to the just mentioned integration work, there

is also a need to improve and expand the positive features

code itself. Some of the future work was described to varying

degrees in the chapter about additional issues. Probably the

two most important short term refinements are the need to

eliminate the restrictions £>n the rib corner radii and fillet

radii as well as the need to incorporate the ability to define

multi-sided convex machining regions when advantageous.

As the RDS continues to expand, additional work will be

required in all areas of the fabrication sub-system. The

positive features code is no exception to this rule.

BIBLIOGRAPHY

1. Cartaya, Christine Marie. Computer Aided Process Planning
(CAPP): The User Interface of the RDS, Masters Thesis,
University of Dayton, December 1991.

2. Concept Modeller Reference Manual, Release 1.3, Wisdom
Systems; Cleveland, Ohio: July 1991.

3. Dvorak, Paul., "Keeping Talent with Knowledge Systems.",
Machine Design: August 22, 1991.

4. Hayes, Caroline., Planning in the Machining Domain:
Using Goal Interactions to Guide Search, Masters Thesis,
Carnegie Mellon University, April 1987.

5. Karinthi, Raghu, Dana Nau, and Qiang Yang., Handling
Feature Interactions in Process Planning

6. LeClair, S. R., "The Rapid Design System: Memory-Driven
Feature-Based Design.", Proceedings of the 1991 IEEE
Conference on Systems Engineering; Dayton Ohio: August 3,
1991.

7. MetCAPP User's Guide Release 2., Institute for Advanced
Manufacturing Sciences, Cincinnati, Ohio: September, 1990.

66

APPENDIX A

PKT-ISLAND-LIST COMPUTER CODE

I t I II t ! ! I I t II II / t t t II I / / / / II ! I t > I I I I t I II • t ! • I I t t / t Ill / I I t / t
iiiiiiiiittiitiiiiiiiiitiiiiiitiiiiiiJiiiJJtitiiitiiiiiitit

; FUNCTIONS TO DEFINE PKT-ISLAND-LIST ; ; ; ;
7 7 7 r J till
irritiriiiiirifriitiiriiiiriitiiiiriitriiiiiiiiiittiiiirrii
JtiiJiitiiJiiitiiiiJJiiiiti-iiiitiJiititiiiitiiitiitiiiiiiij

;;; This is the parent function controling the other functions
;;; that are called to create the pkt-island-list for a
;;; d2-pocket-feature. It works by establishing the first
;;; intervals for a thin plate geom created by the agm.
z / /
;;; input: pkt The design pocket feature corresponding to the
;;; d2-pocket-feature being translated.

;;; output: The pkt-island-list is returned.
;;; ((pkt (rib-list) height) (pkt (rib-list) height) ...)
r r r
(defun find-ribs-in-pocket (pkt)

(let* ((alpha (vertex-pt pkt :facel :bottom
:face2 :left

:face3 :front))
(beta (vertex-pt pkt :facel :top

:face2 :right
:face3 :back))

(alpha (vector-to-list alpha))
(beta (vector-to-list beta))
(gamma (list (first alpha) (first beta)))
(delta (list (second alpha) (+ (second alpha) 0.0001)))
(zeta (list (third alpha) (third beta))))

(get-islands (list gamma delta zeta) nil pkt (second beta))))

Given the first interval from find-ribs-in-pocket, this
function creates the pkt-island-list.

input: listl This is a list of the intervals from which the
next geom will be created.

Iist2 This is the pkt-island-list being built,
pkt The design pocket being translated.

67

68The top of the pocket in the y direction.

The completed pkt-island-list.
max

output: list2

(defun get-islands (listl list2 pkt max)
(let* ((pkt-geom (agm::rn-cube-geom listl))

(list3 (find-ribs pkt-geom
(select :type 'rib-feature) nil)))

(cond ((<= max (second (second listl))) list2)
(t (get-islands (list (first listl)

(list (get-next-y max
list3)

(+ (get-next-y max
list3)

0.001))
(third listl))

(append (list
(list pkt

list3
(dietrick-round
(- (get-next-y max

list3)
(first
(second listl))

)))))
list2)

pkt
max)))))

This function will determine which ribs from a given list
intersect the given thin plate geom.

input: feature
listl

output: list2

This is the thin plate geom.
Is a list of ribs to be checked for
intersection.

The list of intersecting ribs.
(defun find-ribs (feature listl list2)

(cond ((null listl) list2)

((agm::intersecting-geoms-p feature
(the geom (:from (car listl)))
0.00001)

(find-ribs feature
(cdr listl)
(append (list (car listl)) list2)))

(t (find-ribs feature (cdr listl) list2))
) ; end of conditional

) ; end of function

69
;;; This function determines the next smallest value of y (CM)
;;; and establishes the next y interval for the next thin plate.
999
;;; input: n This is the maximum value of y corresponding
;;; to the top of the pocket.
;;; listl This is a list of the ribs detected in the last
;;; thin plate investigation.
i i !
jjj output: A list of two numbers which is the y interval for
;;; the next thin plate geom creation (see get-islands).
9 9 9

(defun get-next-y (n listl)
(cond ((null listl) (+ n 0.0001))

((> n
(second (vector-to-list (vertex-pt (car listl)

~ :facel :top
:face2 :left
:face3 :front))))

(get-next-y (second (vector-to-list
(vertex-pt (car listl)

:facel :top
:face2 :left
:face3 :front)))

(cdr listl)))
(t (get-next-y n (cdr listl)))
) ; end of conditional

) ; end of function

APPENDIX B

MCAPP-FEATURES-LIST CODE

! i ! i } ! i ! ! ! 1 ! i i ! i i ! i i i ! i ! ! ! ! r 1 i i i ! ! i ! i ! ! ! i ! 1 ! i ! ! i ! ! ! 1 i ! ! r i ! ! i i ! i i !

; ; ;; ; ; ; ; FUNCTIONS TO DEFINE MCAPP-FEATURES-LIST ; ; ; ;; ; ;
! ! i i ! i i ! //?//?/
i i ! I i 1 r ! i i i i ! i / 1 r i i i r i i i i i i i i ! i i ! r i 1 i i i ! ! ! r ! r ! 1 r r ! ! I ! ! r ! i r i i ! J ! ! 1
i i i i i i r r i i i i i i i i i i i i t i i t i i i i i ft i i i i i i i n i i i i t i t i i i r r t i i i i i ii ! i 111

;;; This function repeatedly processes a single element of the
;;; pkt-island-list to build the mcapp-features-list property.
7 7 7
;;; input: listl The pkt-island-list which describes each
;;; layer with a list.
rtf
;;; output: list2 A list of same layer lists composed of MetCAPP
;;; features describing that layer.
r r r
(defun get-mcapp-features-list (listl list2)

(cond ((null listl) list2) ; output when done

((= (length (second (car listl))) 0) ; no islands
(get-mcapp-features-list
(cdr listl)
(cons (list (get-mcapp-pocket

(first (car listl))
(third (car listl))))

list2)))

((< (length (second (car listl))) 2) ; single island
(get-mcapp-features-list
(cdr listl)
(cons (list (get-mcapp-features

(first (car listl))
(second (car listl))
(third (car listl))))

list2)))

(t (get-mcapp-features-list ; multiple islands
(cdr listl)
(cons (mult-make-mcapp-features

(first (car listl))
(second (car listl))

70

71(third (car listl)))
list2)))

) ; end of conditional
) ; end of function

This function develops the list of MetCAPP properties that
define a MetCAPP pocket feature without any islands.

input: feature This is the design feature being processed
by the positive features code.
height This is the height of the layer which is
currently being processed.

output: The list of MetCAPP properties defining a pocket.

(defun get-mcapp-pocket (feature height)
(list
(append (list (the d2-starting-block material

(:from (the d2-feature (:from feature))))
(the metcapp-name

(:from (the d2-feature (:from feature))))
(the machine

(:from (the d2-feature (:from feature))))
(car (sort (list (the depth (:from feature))

(the width (:from feature)))
’>))

(car (sort (list (the depth (:from feature))
(the width (:from feature)))

'<))
height)

(get-props feature
(the fillet-radius

(:from (the d2-feature
(:from feature)))

))
) /closes append

)) /closes list and function

This function processes a single island interaction layer

input: feature
rib-list

height

design feature being processed.
list of ribs from the layer currently being
processed.
height of layer currently being processed.

output: A list of MetCAPP features defining the layer being
processed.

(defun get-mcapp-features (feature rib-list height)
(let ((frbl-list (get-frbl-list feature (car rib-list)))

(cond ((null listl) list2) 72
(t (mult-make-features

feature
blocks
(cdr listl)
height
(cons
(list
(list (the d2-starting-block material

(:from (the d2-feature (:from feature))))
(the metcapp-name

(:from (the d2-feature (:from feature))))
(the machine

(:from (the d2-feature (:from feature))))
(first (sort (list

(get-x-dimension (car listl)
blocks)

(get-z-dimension (car listl)
blocks)) '>))

(first (sort (list
(get-x-dimension (car listl)

blocks)
(get-z-dimension (car listl)

blocks)) ’<))
height
(the corner-radius

(:from (the d2-feature (:from
(the fillet-radius

(:from (the d2-feature (:from
(the max-allow-cutter-dia

(:from (the d2-feature (:from
(the max-height-obstruction

(:from (the d2-feature (:from
(the thin-wall

(:from (the d2-feature (:from
(the angle-floor-wall

(:from (the d2-feature (:from
(the setup-rigidity

(:from (the d2-feature (:from
nil ;;; sub-floor-length
nil ;;; sub-floor-width
nil ;;; sub-floor-height
nil ;;; sub-floor-corner-radius
nil ;;; sub-floor-fillet-radius
) ; end of metcapp parameters

(car listl)
blocks) ; end of second list
list2)) ; end of list and cons

) ; end of condition
) ; end of conditional
end of function

feature))))

feature))))

feature))))

feature))))

feature))))
feature))))

feature))))

) I

) ; end of declarations 73
(cond ((or (eql (the fillet-radius

(:from (the d2-feature (:from feature))))
(the bottom-fillet-rad

(:from (car rib-list))))
(eql 11)) ; To ensure this condition is followed

; until the additional code is done.

(get-four-regions feature
frbl-list
(the bottom-fillet-radius

(:from feature)) height))
; Code for these conditions not yet complete
((> (the fillet-radius

(:from (the d2-zfeature (:from feature))))
(the bottom-fillet-rad (:from (car rib-list))))

(append
(get-four-regions feature

frbl-list
(the fillet-radius

(:from (the d2-feature
(:from feature))))

height)
(finish-feature feature

(car rib-list)
frbl-list
(the bottom-fillet-rad

(:from (car rib-list)))))
) ; end of condition

(t (append
(get-four-regions feature

frbl-list
(the bottom-fillet-rad

(:from (car rib-list)))
height)

(finish-feature feature
(car rib-list)
frbl-list
(the fillet-radius

(:from (the d2-feature
(:from feature)))))

)) ; closes append and condition
) ; end of conditional

)) ; end of if, let, and function

;; This function determines the front, right, back, and left
;; dimensions when a single island intersects a pocket layer.

input: feature The design feature being processed by the

;;; positive features code. 74
;;; rib The rib feature intersecting the layer of the
;;; feature currently being processed.
999

;;; output: A list of the front, right, back, and left.
9 9 9

(defun get-frbl-list (feature rib)
(list (vector-dot-product

(get-vector 001)
(subtract-points :pointl (vertex-pt feature

:facel :bottom
:face2 :left
:face3 :front)

:point2 (vertex-pt rib
:facel :bottom
:face2 :left
face3 : front)))

(vector-dot-product
(get-vector 100)
(subtract-points :pointl (vertex-pt feature

:facel :bottom
:face2 :right
:face3 :back)

:point2 (vertex-pt rib
:facel :bottom
:face2 :right
:face3 :back)))

(vector-dot-product
(get-vector 001)
(subtract-points :pointl (vertex-pt rib

:facel :bottom
:face2 :right
:face3 :back)

:point2 (vertex-pt feature
:facel :bottom
:face2 :right
:face3 :back)))

(vector-dot-product
(get-vector 100)
(subtract-points :pointl (vertex-pt rib

ifacel :bottom
:face2 :left
:face3 :front)

:point2 (vertex-pt feature
:facel :bottom
:face2 :left
:face3 :front)))

)) ; closes list and function

; This function actually creates the MetCAPP properties that
; define a four MetCAPP features that represent a single layer
; of an interaction with one island.

15
;;; input: feature Feature being processed.
;;; frbl-list List of dimensions.
;;; fillet-radius To be used.
;;; height Of the layer being processed.
9 9 9

;;; output: The MetCAPP properties defining four features.
9 9 9

(defun get-four-regions (feature frbl-list fillet-radius height)
(list (append (list (the d2-starting-block material

(:from (the d2-feature
(:from feature))))

(the metcapp-name
(:from (the d2-feature

(:from feature))))
(the machine

(:from (-the d2-feature
(:from feature))))

(car (sort (list (first frbl-list)
(the width

(:from feature)))
’>))

(car (sort (list (first frbl-list)
(the width

(:from feature)))
*<))

height)
(get-props feature fillet-radius))

(append (list (the d2-starting-block material
(:from (the d2-feature

(:from feature))))
(the metcapp-name

(:from (the d2-feature
(:from feature))))

(the machine
(:from (the d2-feature

(:from feature))))
(car (sort (list (the depth

(:from feature))
(second frbl-list))

’>))
(car (sort (list (the depth

(:from feature))
(second frbl-list))

’<))
height)

(get-props feature fillet-radius))

(append (list (the d2-starting-block material
(:from (the d2-feature

(:from feature))))
(the metcapp-name

76(:from (the d2-feature
(:from feature))))

(the machine
(:from (the d2-feature

(:from feature))))
(car (sort (list (third frbl-list)

(the width
(:from feature)))

’>))
(car (sort (list (third frbl-list)

(the width
(:from feature)))

’<))
height)

(get-props feature fillet-radius))

(append (list (the d^-starting-block material
(:from (the d2-feature

(:from feature))))
(the metcapp-name

(:from (the d2-feature
(:from feature))))

(the machine
(:from (the d2-feature

(:from feature))))
(car (sort (list (the depth

(:from feature))
(fourth frbl-list))

’>))
(car (sort (list (the depth

(:from feature))
(fourth frbl-list))

’<))
height)

(get-props feature fillet-radius))))

;;; Future function referenced by get-mcapp-features but not
;;; yet complete,
z z r
(defun finish-feature (pocket rib frbl-list fillet-radius)

’need-code-here)

This function defines a fraction of the MetCAPP properties.

input: feature Design feature being processed,
fillet-radius To be used.

output: A list of some of the MetCAPP properties.

(defun get-props (feature fillet-radius)

77(list (the corner-radius
(:from (the d2-feature (:from

fillet-radius
(the max-allow-cutter-dia

(:from (the d2-feature (:from
(the max-height-obstruction

(:from (the d2-feature (:from
(the thin-wall

(:from (the d2-feature (:from
(the thin-floor

(:from (the d2-feature (:from
(the angle-floor-wall

(:from (the d2-feature (:from
(the setup-rigidity

(:from (the d2-feature (:from
nil ;;; sub-floor-length
nil ;;; sub-floor-width-
nil ;;; sub-floor-height
nil ;;; sub-floor-corner-radius
nil ;;; sub-floor-fillet-radius
))

feature))))

feature))))

feature))))

feature))))

feature))))

feature))))

feature))))

This function determines the MetCAPP features for a single
layer where multiple islands are involved.

input: feature Negative feature being processed.
rib-list List of ribs at the given layer,
height Of the layer being processed.

output: A list of MetCAPP features for the processed layer,

(defun mult-make-mcapp-features (feature rib-list height)
(let* ((x-values (remove-duplicates

(sort (get-x-values feature
rib-list
nil) '<)))

(z-values (remove-duplicates
(sort (get-z-values feature

rib-list
nil) '<)))

(nodes (make-nodes x-values
z-values
0
0
(length x-values)
(length z-values)
nil))

(grid (make-blocks nodes
0
0
(- (length x-values) 2)
(- (length z-values) 2)

78nil))
(blocks (check-grid grid rib-list nil))
(regions (mult-make-regions blocks nil))
) ; end of variable definitions

(mult-make-features feature blocks regions height nil)

) ; end of let statement
) ; end of function

This function will determine the x coordinates for the nodes
of the non-uniform grid and assemble them in a list.

z
z

input: feature
listl

Refers to the
examination.
Refers to the
impacting the

negative feature under

list of positive features
above mentioned feature.

output: list2 The list of x coordinates for the grid,

(defun get-x-values (feature listl list2)
(cond ((null listl)

(append (list (first (vector-to-list
(vertex-pt feature

:facel :bottom
:face2 :left
:face3 :back)))

(first (vector-to-list
(vertex-pt feature

:facel :bottom
:face2 :right
:face3 :front))))

list2)
) ; end of condition

(t (get-x-values
feature
(cdr listl)
(append (list (first (vector-to-list

(vertex-pt (car listl)
:facel :bottom
:face2 :left
:face3 :back)))

(first (vector-to-list
(vertex-pt (car listl)

:facel :bottom
:face2 :right
:face3 :front)))

) ; closes list

list2) ; closes append
)) ; closes condition

)) ; closes conditional & function 79

This function will determine the z coordinates for the nodes
of the non-uniform grid and assemble them in a list.

input: feature

listl

output: list2

Refers to the negative feature under
examination.
Refers to the list of positive features
impacting the above mentioned feature.

The list of z coordinates for the grid.

(defun get-z-values (feature listl list2)
(cond ((null listl)

(append (list (third (vector-to-list
(vertex-.pt feature

:facel :bottom
:face2 :left
:face3 :back)))

(third (vector-to-list
(vertex-pt feature

:facel :bottom

list2)

face2 :right
face3 :front))))

(t (get-z-values
feature
(cdr listl)
(append (list (third (vector-to-list

(vertex-pt (car listl)
:facel :bottom
:face2 :left
:face3 :back)))

(third (vector-to-list
(vertex-pt (car listl)

:facel :bottom
:face2 :right
:face3 :front)))

) ; closes list
list2) ; closes append

)) ; closes second argument
)) ; closes conditional and function

This function will create the nodes of the non-uniform grid
that is imposed on a layer of an interaction involving
multiple islands.

input: listl Is a list of CM x-values for the grid.

80list2 Is a list of CM z-values for the grid,
x Is a counter for use in an nth-function to

extract specific elements from listl.
z Is a counter for use in an nth-function to

extract specific elements from list2.
x-max Is the original length of listl with the first

element counted as 1.
z-max Is the original length of list2 with the first

element counted as 1.

output: list3 Initially set to nil, list3 is the list of
nodes defining the grid.

(defun make-nodes (listl list2 x z x-max z-max list3)
(cond ((>= z z-max) (reverse list3))

((>= x x-max)
(make-nodes listl list2 _1

(+ z 1) x-max z-max
(if (= (+ z 1) z-max)
(cons (reverse (car list3))

(cdr list3))
(cons (list (list (first listl)

(nth (+ z 1) list2)))
(cons (reverse (car list3))

(cdr list3)))
) ; endif

) ; end of call to make-nodes
) ; end of second argument of conditional

(t (make-nodes listl list2 (+ x 1) z x-max z-max
(cons (cons (list (nth x listl)

(nth z list2))
(car list3))

(cdr list3))))
) ; end of conditional

) ; end of function

This function transforms the node list into the grid.

input: listl
x and z
x-max

z-max

output: list2

Is the node list.
Are array counters initially set to 0.
Is the length of the internal list of nodes
(the number of columns) beginning with zero
Is the length of the external list of lists
(the number of rows) beginning with zero.
Initially set to nil, list2 is the grid.

(defun make-blocks (listl x
(cond ((> z z-max)

(reverse list2))

x-max z-max list2)z

81((> x x-max)
(make-blocks listl 0 (+ z 1) x-max z-max

(cons (reverse (car list2))
(cdr list2))))

((= x 0)
(make-blocks listl (+ x 1) z x-max z-max

(cons
(list

(list (nth x (nth z listl))
(nth x (nth (+ z 1) listl))
(nth (+ x 1) (nth z listl))
(nth (+ x 1) (nth (+ z 1) listl)))

) ; end of first list
list2)))

(t (make-blocks listl (+_x 1) z x-max z-max
(cons
(cons
(list (nth x (nth z listl))

(nth x (nth (+ z 1) listl))
(nth (+ x 1) (nth z listl))
(nth (+ x 1) (nth (+ z 1) listl)))

(car list2))
(cdr list2))))

) ; end of conditional
) ; end of function

This function will examine the grid and note where positive
features exist on the grid.

input: listl
rib-list

This is the list of blocks.
List of ribs at the given layer.

output: list2 Initially set to nil, this is the
processed grid.

(defun check-grid (listl rib-list list2)
(cond ((null listl) (reverse list2))

(t (check-grid (cdr listl)
rib-list
(cons (check-grid-row (car listl)

rib-list
nil)

list2)
))

) ; end of conditional
) ; end of function

;;; This function will check a single row of the grid for

positive features 82
input: listl

rib-list

;; output: list2

(defun check-grid-row
(cond ((null listl)

9

This is a list describing a row of the grid.
A list of ribs for the given layer.

Initially set to nil, this is the
processed row of the grid.

(listl rib-list list2)
(reverse list2))

(t (check-grid-row (cdr listl)
rib-list
(cons (check-for-block rib-list

(car listl))
list2)

))
) ; end of conditional

; end of function)

;;; This function will check a single rectangle for a positive
;;; feature using the agm solid modeller.
9 9 9

;;; input: listl This is a list of ribs that will be checked.
;;; grid This is the single rectangle that will be
;;; checked.
9 9 9

;;; output: If there is an intersection, ’block will be returned.
;;; If not, the rectangle (grid) will be returned.
9 9 9

(defun check-for-block (listl grid)
(let* ((y (second (vector-to-list (vertex-pt (car listl)

:facel :bottom
:face2 :left
:face3 :back))))

(cube (agm::rn-cube-geom
(list (list (+ (first (first grid))

0.0001)
(- (first (third grid))

0.0001))
(list y

(+ Y 0.1))
(list (+ (second (first grid))

0.0001)
(- (second (second grid))

0.0001))
))

) ; end of cube definition
) ; end of variable definitions

(cond ((agm::intersecting-geoms-p (the geom
(:from (car listl)))

83
’(block))

cube
0.00001)

(t
(if (null (cdr listl))

grid
(check-for-block (cdr listl) grid)))

) ; end of conditional
) ; end of let

) ; end of function

;;; This function controls the functions to repeatedly link
;;; rectangles of the grid into MetCAPP features.

;;; input: blocks This is the list which describes the grid.
9 9 9

;;; output: listl Initially set to nil, this is a list of the
;;; created MetCAPP features in terms of
;;; rectangles.
9 9 9

(defun mult-make-regions (blocks listl)
(let ((home (get-next-home blocks (join-lists listl nil) 0 0))

) ; end of variable definitions

(cond ((equal home 'done) listl)

(t (mult-make-regions
blocks
(cons (join-blocks t t t t blocks home)

listl))
) ; end of condition

) ; end of conditional
) ; end of let statement

) ; end of function

This function is used to determine the "home" of the next
MetCAPP feature to be created. The home refers to the first
and possibly the only rectangle to compose a MetCAPP feature.
If a new home does not exist, meaning that the entire layer
has been mapped into MetCAPP features, 'done is returned.

input: blocks
listl

row
column

This is the list representing the grid.
This is the list of MetCAPP features already
created.
An index for the row.
An index for the column.

output: The home for the next MetCAPP feature.

84(defun get-next-home (blocks listl row column)
(let ((home (nth column (nth row blocks)))

) ; end of variable definitions

(cond ((null home)
(if (eql (length blocks) row)

’ done
(get-next-home blocks listl (+ row 1) 0)
) ; endif

) ; end of condition

((equal home ’(block))
(get-next-home blocks listl row (+ column 1))
) ; end of condition

((bob-subsetp (list (list row column)) listl)
(get-next-home blocks -listl row (+ column 1))
) ; end of condition

(t (list (list row column)))
) ; end of conditional

) ; end of let statement
) ; end of function

This function will attempt to join additional rectangles to
the home of a given MetCAPP feature.

input: +x This is the key to determine if expansion in
the +x direction is possible.

+z This is the key to determine if expansion in
the +z direction is possible.

-x This is the key to determine if expansion in
the -x direction is possible.

— z This is the key to determine if expansion in
the — z direction is possible.
For all of the above, t indicates possible,
and nil indicates impossible,

blocks This is the representation of the grid.

output: listl
I

Is an index list to determine which blocks
have been joined.

(defun join-blocks (+x +z -x -z blocks listl)
(let ((x (get-x-dimension listl blocks))

(z (get-z-dimension listl blocks))
) ; end of variable definitions
(cond ((and (<= z x) +z)

(if (eql (expand+z listl blocks) 'block)
(join-blocks +x nil -x -z blocks listl)

(join-blocks +x +z -x -z blocks
(append (expand+z listl blocks)

85listl))
) ; endif

) ; end of condition

(+x
(if (eql (expand+x listl blocks) 'block)

(join-blocks nil +z -x -z blocks listl)
(join-blocks +x +z -x -z blocks

(append (expand+x listl blocks)
listl))

) ; endif
) ; end of condition

(+z
(if (eql (expand+z listl blocks) ’block)

(join-blocks +x nil -x -z blocks listl)
(join-blocks +x +z -=-x -z blocks

(append (expand+z listl blocks)
listl))

) ; endif
) ; end of condition

((and (<= z x) -z)
(if (eql (expand-z listl blocks) ’block)

(join-blocks +x +z -x nil blocks listl)
(join-blocks +x +z -x -z blocks

(append (expand-z listl blocks)
listl))

) ; endif
) ; end of condition

(-x
(if (eql (expand-x listl blocks) ’block)

(join-blocks +x +z nil -z blocks listl)
(join-blocks +x +z -x -z blocks

(append (expand-x listl blocks)
listl))

) ; endif
) ; end of condition

(-z
(if (eql (expand-z listl blocks) ’block)

(join-blocks +x +z -x nil blocks listl)
(join-blocks +x +z -x -z blocks

(append (expand-z listl blocks)
listl))

) ; endif
) ; end of condition

(t listl)

) ; end of conditional
) ; end of let statement

) ; end of function 86

This function will attempt to expand the MetCAPP feature in
the +x direction.

input: listl

blocks

output: listl

This is the list representing the current
MetCAPP feature.
This is the list representing the grid.

In the process of expansion, listl is
updated to show the increased feature.

(defun expand+x (listl blocks)
(let ((x (car (sort

(get-all-nth 1 listl nil)
’>)))

(z-list (remove-duplicates
(sort (get-all-nth 0 listl nil) ’<))

) ; end of z-list definition

) ; end of variable definitions

(expand-bob ’x (+ x 1) z-list blocks nil)
) ; end of let

) ; end of function

This function will attempt to expand the MetCAPP feature in
the +z direction.

input: listl

blocks

This is the list representing the current
MetCAPP feature.
This is the list representing the grid.

;;; output: listl In the process of expansion, listl is
;;; updated to show the increased feature.
t f t

(defun expand+z (listl blocks)
(let ((z (car (sort

(get-all-nth 0 listl nil)
’>)))

(x-list (remove-duplicates
(sort (get-all-nth 1 listl nil) '<))

) ; end of x-list definition

) ; end of variable definitions

(expand-bob ' z (+ z 1) x-list blocks nil)
) ; end of let

) ; end of function

This function will attempt to expand the MetCAPP feature in 87
the ~x direction.

input: listl
blocks

This is the list representing the current
MetCAPP feature.
This is the list representing the grid.

output: listl In the process of expansion, listl is
updated to show the increased feature.

(defun expand-x (listl blocks)
(let ((x (car (sort

(get-all-nth 1 listl nil)
’<)))

(z-list (remove-duplicates
(sort (get-all-nth 0 listl nil) '<))

) ; end of z-list definition

) ; end of variable definitions

(if (< (- x 1) 0)
'block
(expand-bob 'x (- x 1) z-list blocks nil)
) ; endif

) ; end of let
) ; end of function

This function will attempt to expand the MetCAPP feature in
the —z direction.

input: listl

blocks

This is the list representing the current
MetCAPP feature.
This is the list representing the grid.

output: listl In the process of expansion, listl is
updated to show the increased feature.

(defun expand-z (listl blocks)
(let ((z (car (sort

(get-all-nth 0 listl nil)
’<)))

(x-list (remove-duplicates
(sort (get-all-nth 1 listl nil) ’<))

) ; end of x-list definition
) ; end of variable definitions

(if (< (- z 1) 0)
'block
(expand-bob 'z (- z 1) x-list blocks nil)
) ; endif

) ; end of let

) ; end of function 88

This is the generic function to actually do the expansion.

input: x-or-z Identifies expansion into the x or z
direction.

n Is the row or column to expand into.
listl Is a list of columns or rows to expand over.
blocks This is the grid representation.

output: list2 Initially set to nil, this list will be
the rectangles included by the expansion.

(defun expand-bob (x-or-z n listl blocks list2)
(cond ((null listl) list2)

((eql x-or-z 'x)
(if (or (equal (nth n (nth (car listl) blocks))

'(block))
(null (nth n (nth (car listl) blocks))))

'block
(expand-bob x-or-z n (cdr listl) blocks

(cons (list (car listl) n)
list2))

) ; endif
) ; end of second condition

(t (if (or (equal (nth (car listl) (nth n blocks))
’(block))

(null (nth (car listl) (nth n blocks))))
'block

(expand-bob x-or-z n (cdr listl) blocks
(cons (list n (car listl))

list2))
) ; endif

) ; end of condition
) ; end of conditional

; end of function)

This function determines the MetCAPP features for a given
layer based on input from mult-make-mcapp-features.

input: feature
blocks
listl
height

output: list2

The design feature being processed.
This list represents the grid rectangles.
Is an index to blocks list.
Of the layer being processed.

Initially set to nil, list2 is the list of
the MetCAPP features for that layer.

(defun mult-make-features (feature blocks listl height list2)

APPENDIX C

POSITIVE-OPS CODE

iiiiiiiiiiiiiiiiiiiiiiiiitJiiitiiititiiiiitiiiirritriiiiitiiiii

; ;; ; ; ;; FUNCTIONS TO DEFINE POSITIVE-OPS PROPERTY ; ;;;; ;
II II II ! II I t ! I
iiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiJiiiiiitiiiititiriitiiJiiiiiiii
iiiiiiiiiiiiiiiiiiiiiiiiiiiif^iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

j;; This function repeatedly sends a single element of listl to
;;; get-mcapp-prime.
9 9 9

;;; input: listl The mcapp-features-list from a given feature.
;;; It is a list of lists of same layer MetCAPP features
;;; that completely define the positive-negative feature
;;; interaction.
J t t
;;; output: list2 Initially set to nil, list2 becomes the
;;; positive-ops property of a feature. It is a list of
;;; lists of same layer operations that completely define
;;; the positive-negative feature interaction.
9 9 9

(defun get-metcapp-ops (listl list2)
(cond ((null listl) list2)

(t (get-metcapp-ops
(cdr listl)
(append (list (get-mcapp-prime (car listl) nil))

list2)))
))

;;; This function repeatedly sends a single element of listl to
;;; get-mcapp.
9 9 9

;;; input: listl A list of lists of MetCAPP properties
;;; completely describing a single layer of interaction
9 9 9

;;; output: list2 Initially set to nil, list2 becomes the
;;; list of lists of operations returned from MetCAPP.
9 9 9

(defun get-mcapp-prime (listl list2)
(cond ((null listl) list2)

(t (get-mcapp-prime
(cdr listl)
(append (list (get-mcapp (car (car listl))))

89

list2))) 90
))

; ;; This function calls MetCAPP with a single list of properties
;;; that define a given MetCAPP feature.
9 9 9

;;; input: listl A list of MetCAPP properties
9 9 9

;;; output: A list of operations from MetCAPP
9 9 9

(defun get-mcapp (listl)
(let* ((save-pointer

(lcl:make-foreign-pointer
:address (man-api ;call to MetCapp

(set-ip in-pointer ;convert to strings
(mapcar 'prop-to-string listl)))

:type '(:pointer output)))
(save-operations
(many-structs-to-lists /convert C struct to list
save-pointer)))

(free-operations-memory save-pointer)
save-operations)

)

APPENDIX D

ROUGH-TOOL-LIST CODE

iiiiiiiiiiiiiiiiiiiiiiiitiiiitiiiiiiiiittiittiiiii
riJrirJriitJJtftJiJrriirJiiirrJriiirJriltrrrt/ttrJ

FUNCTIONS TO DEFINE~THE ROUGH-TOOL-LIST

r t tu ii / t / ii / t ii t / it / ii t iiii i / t r r / t / / / t t t t / t / t t it /
i i i ! } ! i ! i i ! ! t i i i i i i i 1 i i i i / i i ! i ! i ! i i t > i i i i i i i i i i i i i

;;; This function is responsible for building the rough-tool-list
;;; by repeatedly sending a list of the operations for each layer
;;; of the interaction to the get-rough-tools function.
i r r
;;; input: listl The positive-ops list for a feature which is
;;; a list of operations by layer and then by
;;; MetCAPP feature.
;;; output: list2 The completed rough-tool-list which is a list
;;; of the rough tools required for that
;;; interaction by layer.• • •
9 9 9
(defun get-rough-tool-list (listl list2)

(cond ((null listl) (reverse list2))
(t (get-rough-tool-list (cdr listl)

(cons (get-rough-tools
(car listl)
nil)

list2)))
) ; end of conditional

) j end of function

This function is responsible for extracting the appropriate
roughing tools for a layer from a list of the operations for
all of the MetCAPP features of that layer.
input: listl List of the operations by MetCAPP feature for

the layer being processed.
output: list2 Initially set to nil, list2 is the completed

list of roughing tools for that layer.

91

92(defun get-rough-tools (listl list2)
(cond ((null listl) list2)

(t (get-rough-tools (cdr listl)
(append (list

(third
(third (first listl))))

list2)))
) ; end of conditional

) ; end of function

93

APPENDIX E

FINISH-TOOL-LIST CODE
i i i i r i 1 r ! ! ! J ! t i ! ! t 1 t } ! ! ! i ! ! i ! ! J i } } / ! 1 ! ! ! i i ! } i r ! ! i ! i ! ! } } i i i i ! ! i
i ! ! i } ! r ! 1 ! i i ! ! i i ! r ! i r i i ! i 1 i i ! i / 1 ! i ! ! ! ! ! i i ! ! r r i i r i ! i r r ! } i ! } i 11 i

; ;;;;;; FUNCTIONS TO DEFINE THE FINISH-TOOL-LIST ;;; ; ;
! ! ! ! ! i i i ! 1 ! i
i r i ! i t ! i ! ! 1 i i ! r i i r ! i r ! i i ! ! 1 i t r i i i r ! i i 11 i i ! i i r r ! i i i t i i i i i i i i i i I
} i i } i i r ! i 1 1 i i 1 1 i ! ! ! i i ! i i i ! ! i hi i ! i ! i i i 1 r i i i i r r r ! ! ! ! ! ! i i ! i i i ! i ! !

;;; This function is responsible for building the finish-tool-list
;;; by repeatedly sending a list of the operations for each layer
;;; of the interaction to the get-finish-tools function.
Ill

;;; input: listl The positive-ops list for a feature which is
; ;; a list of operations by layer and then by
;;; MetCAPP feature.
t t t

;;; output: list2 The completed finish-tool-list which is a list
;;; of the rough tools required for that
;;; interaction by layer.
/ft

(defun get-finish-tool-list (listl list2)
(cond ((null listl) (reverse list2))

(t (get-finish-tool-list (cdr listl)
(cons (get-finish-tools

(car listl)
nil)
list2)))

) ; end of conditional
) ; end of function

This function is responsible for extracting the appropriate
finishing tools for a layer from a list of the operations for
all of the MetCAPP features of that layer.

input: listl List of the operations by MetCAPP feature for
the layer being processed.

output: list2 Initially set to nil, list2 is the completed
list of finishing tools for that layer.

94(defun get-finish-tools (listl list2)
(cond ((null listl) list2)

(t (get-finish-tools (cdr listl)
(cons (third

(car
(last (first listl)))

) ; closes third
list2)))

) ; end of conditional
) ; end of function

APPENDIX F

MACHINING REGIONS CODE

iiiiiiiiiiiiiifiiiiiiiiiiiiifiiiiiiiiiififiiiiiiiiiiiiiiiiiiiii
iJiJiitiiiJJJiiiiiiitiiiiiiiiiiiiiiiiiiiiiJittiiiitiitiitiiiJii

;;;;;;;; FUNCTIONS TO DEFINE THE MACHINING-REGIONS ;;;;;
//////// / ! t ! I

! I ! II t I ! I t II I II t t II 1 II I ! I ! t I t I I II I I ! I II II II t I II t II I I I I ! I ! I ! t I ! I
II t ! 1 II II II t ! II t II II II II t I ! II !“t II II II t t ! II II II t I II II II II II II II !

This function
regions layer

is responsible for determining the machining
by layer for an interaction.

input:
f

listl

list2
list4

Is the pkt-islnad-list from the
processed.
Is the rough-tool-list from the
Is (the metcapp-features-list (

d2-pocket being
pocket.
from pocket)).

;;; output:
Iff
iiiiii This
;;; regions

input;

list3 The machining-regions (rough or finish) for
the processed pocket.

function is responsible for determining the machining
layer by layer for an interaction.

listl Is the pkt-islnad-list from the d2-pocket being
processed.

Iist2 Is the rough-tool-list from the pocket.
Iist4 Is (the metcapp-features-list (:from pocket)).

;;; output: list3 The machining-regions (rough or finish) for
;;; the processed pocket.
tit
(defun get-machining-regions (listl list2 list3 list4)

(cond ((null listl) (reverse list3))

((eql (length (second (car listl))) 0) ; no islands
(get-machining-regions
(cdr listl)
(cdr list2)
(cons (list (get-pocket-region (first (car listl))

(car list2))
(third (car listl)))

list3)
(cdr list4)))

95

96((eql (length (second (car listl))) 1) ; one island
(get-machining-regions
(cdr listl)
(cdr list2)
(cons (list (get-regions (first (car listl))

(car (second (car listl)))
(car list2))

(third (car listl)))
list3)

(cdr list4)))

((> (length (second (car listl))) 1) ; multiple islands
(get-machining-regions
(cdr listl)
(cdr list2)
(cons (get-mult-machining-regions (car list4)

(car list2))
list3)

(cdr list4)))
) ; end of conditional

) ; end of function

;;; This function will establish the required information for NC
;;; code generation for a layer without any islands of a
;;; rectangular pocket region.
9 9 9

;;; input: pocket The pocket feature being processed.
;;; tool-list The tool-list (rough or finish) for that
;;; layer.
9 9 9

;;; output: (((apt-vertices) tool-id 'pocket))
9 9 9

(defun get-pocket-region (pocket tool-list)
(list (list (get-apt-coords (vertex-pt pocket

:facel :bottom
:face2 :left
:face3 :front))

(get-apt-coords (vertex-pt pocket
:facel :bottom
:face2 :right
:face3 :front))

(get-apt-coords (vertex-pt pocket
:facel :bottom
:face2 :right
:face3 :back))

(get-apt-coords (vertex-pt pocket
:facel :bottom
:face2 :left
:face3 :back)))

(car tool-list)
'pocket))

;;; This function groups the regions for a single island. 97
(defun get-regions (pocket rib tool-list)

Points A through P are the vertices of the pocket and the rib
and the projection of the rib's vertices onto the pocket.
See the diagram below:

J I H G

K

M N -

B

Points A D G and J are the four corners of the pocket.
Points M N 0 and P are the four corners of the rib.
Points B C E F H I K and L are the projection of points
M N 0 and P onto each side of the pocket.

(let* ((tool-1 (first tool-list))
(tool-2 (second tool-list))
(tool-3 (third tool-list))
(tool-4 (fourth tool-list))
(A (vertex-pt pocket :facel :bottom

:face2 :front
:face3 :left))

(D (vertex-pt pocket :facel :bottom
:face2 :front

:face3 :right))
(G (vertex-pt pocket :facel :bottom

:face2 :back
:face3 :right))

(J (vertex-pt pocket :facel :bottom
:face2 :back

:face3 :left))
(get-apt-coords (vertex-pt rib :facel :bottom(M

(N (get-apt-coords

(0 (get-apt-coords

(P (get-apt-coords

:face2 :front
:face3 :left)))

(vertex-pt rib :facel :bottom
:face2 :front
:face3 :right)))

(vertex-pt rib :facel :bottom
:face2 :back
:face3 :right)))

(vertex-pt rib :facel :bottom

98:face2 :back
:face3 :left)))

(front (first (get-frbl-list pocket rib)))
(right (second (get-frbl-list pocket rib)))
(back (third (get-frbl-list pocket rib)))
(B (get-apt-coords

(add-points :pointl A
:point2 (get-vector left 0 0))))

(C (get-apt-coords
(subtract-points :pointl D

:point2 (get-vector right 0 0))))
(I (get-apt-coords

(add-points :pointl J
:point2 (get-vector left 0 0))))

(H (get-apt-coords
(subtract-points ipointl G

:point2 (.get-vector right 0 0))))
(F (get-apt-coords

(add-points :pointl G
:point2 (get-vector 0 0 back))))

(E (get-apt-coords
(subtract-points :pointl D

:point2 (get-vector 0 0 front))))
(K (get-apt-coords

(add-points :pointl J
:point2 (get-vector 0 0 back))))

(L (get-apt-coords
(subtract-points ipointl A

:point2 (get-vector 0 0 front))))

(A (get-apt-coords A))
(D (get-apt-coords D))
(G (get-apt-coords G))
(J (get-apt-coords J))

(pocket-1 (if (and (< left front) (< right front))
(list (list ADEL) tool-1 ’enclosed-pocket)

(if (< left front)
(list (list A C N L) tool-1 'open-pocket)
(if (< right front)
(list (list B D E M) tool-1 'open-pocket)

(list (list B C N M) tool-1 'slot)))))

(pocket-3 (if (and (< left back) (< right back))
(list (list K F G J) tool-3 'enclosed-pocket)

(if (< left back)
(list (list K 0 H J) tool-3 'open-pocket)

99(if (< right back)
(list (list P F G I) tool-3 'open-pocket)

(list (list P 0 H I) tool-3 'slot)))))

i i i
iii
iii

(pocket-2 (if (and (< back right) (< front right))
(list (list C D G H) tool-2 'enclosed-pocket) .

(if (< front right)
(list (list C D F O) tool-2 'open-pocket)
(if (< back right)
(list (list N E F G H) tool-2 'open-pocket)

(list (list N E F O) tool-2 ’slot)))))
;;;
! ! !
iir ***

(pocket-4 (if (and (< back left) (< front left))
(list (list A B I J) tool-4 'enclosed-pocket)

(if (< front left)
(list (list A B P K) tool-4 'open-pocket)
(if (< back left)
(list (list L M I J) tool-4 'open-pocket)

(list (list L M P K) tool-4 'slot))))))

(cond ((and (equal tool-1 tool-2) (equal tool-2 tool-3) (equal tool-3
tool-4))

(list (list (list A D G J) (list M N O P)) tool-1
'O-pocket))

((and (equal tool-1 tool-2) (equal tool-2 tool-3))
(if (< left right)

(list (list (list ADGJKONL) tool-1
'U-enclosed-pocket)

pocket-4)
(list (list (list BDGIPONM) tool-1 'U-slot)

pocket-4)))

((and (equal tool-2 tool-3) (equal tool-3 tool-4))
(if (< front back)

(list (list (list ABPOCDGJ) tool-2
'U-enclosed-pocket)

pocket-1)
(list (list (list LM PONEGJ) tool-2 'U-slot)

pocket-1)))

((and (equal tool-3 tool-4) (equal tool-4 tool-1))
(if (< right left)

(list (list (list ADEMPFGJ) tool-3
'U-enclosed-pocket)

pocket-2)
(list (list (list ACNMPOHJ) tool-3 'U-slot)

pocket-2)))

100((and (equal tool-4 tool-1) (equal tool-1 tool-2))
(if (< back front)

(list (list (list ADGHNMIJ) tool-*
U-enclosed-pocket)

pocket-3)
(list (list (list ADFONMPK) tool-4 ’U-slot)

pocket-3)))
((and (equal tool-1 tool-2) (equal tool-3 tool-4))
(if (< left front)

(list (list (list A D G H N L) tool-1 ’L-enclosed-pocket)
(list (list L M P 0 H J) tool-3 ’L-slot))

(list (list (list B D F O N M) tool-1 ’L-slot)
(list (list A B P F G J) tool-3 ’L-enclosed-pocket))))

((and (equal tool-2 tool-3) (equal tool-4 tool-1))
(if (< front right) -

(list (list (list C D G J K O) tool-2 ’L-enclosed-pocket)
(list (list A C N M P K) tool-4 ’L-slot))

(list (list (list N E G I P 0) tool-2 ’L-slot)
(list (list A D E M I J) tool-4 ’L-pocket))))

((equal tool-1 tool-2)
(if (and (< left front) (< back front))

(list (list (list A D G H N L) tool-1 ’L-enclosed-pocket)
pocket-3
pocket-4)

(if (< left front)
(list (list (list A D F O N L) tool-1 'L-open-pocket)

pocket-3
pocket-4)

(if (< back front)
(list (list (list B D G H N M) tool-1 ’L-open-pocket)

pocket-3
pocket-4)

(list (list (list B D F 0 N M) tool-1 ’L-slot)
pocket-3
pocket-4)))))

((equal tool-2 tool-3)
(if (and (< left back) (< front back))

(list (list (list C D G J K O) tool-2 ’L-enclosed-pocket)
pocket-4
pocket-1)

(if (< left back)
(list (list (list N E G J K O) tool-2 ’L-open-pocket)

pocket-4
pocket-1)

(if (< front back)
(list (list (list C D G I P O) tool-2 ’L-open-pocket)

pocket-4
pocket-1)

(list (list (list N E G I P O) tool-2 ’L-slot)

101pocket-4
pocket-1)))))

((equal tool-3 tool-4)
(if (and (< right back) (< front back))

(list (list (list A B P F G J) tool-3 ’L-enclosed-pocket)
pocket-1
pocket-2)

(if (< front back)
(list (list (list A B P 0 H J) tool-3 'L-open-pocket)

pocket-1
pocket-2)

(if (< right back)
(list (list (list L M P F G J) tool-3 ’L-open-pocket)

pocket-1
pocket-2)

(list (list (list t M P O H J) tool-3 ’L-slot)
pocket-1
pocket-2)))))

((equal tool-4 tool-1)
(if (and (< right front) (< back front))

(list (list (list A D E M I J) tool-4 ’L-enclosed-pocket)
pocket-2
pocket-3)

(if (< right front)
(list (list (list A D E M P K) tool-4 ’L-open-pocket)

pocket-2
pocket-3)

(if (< back front)
(list (list (list A C N M I J) tool-4 ’L-open-pocket)

pocket-2
pocket-3)

(list (list (list A C N M P K) tool-4 ’L-slot)
pocket-2
pocket-3)))))

(t (list pocket-1 pocket-2 pocket-3 pocket-4)))))

This function is responsible for creating the machining
regions for a layer with multiple islands.

input: metcapp-features The list of MetCAPP features for
that layer.

tools The list of tool for that layer,

output: A list of the machining regions for that layer.

(defun get-mult-machining-regions (metcapp-features tools)

102(let* ((blocks (car (last (car metcapp-features))))
(same-layer-regions (add-tools metcapp-features

tools
nil))

(same-layer-regions (add-identifier
(remove-intersections
0 0 same-layer-regions nil)

nil
0))

(sorted-same-layer-regions (sort-by-tool-diameter
(f ind-adj acents
same-layer-regions
same-layer-regions
nil)

nil
nil))

(same-tool-regions (get-isame-tool-regions
sorted-same-layer-regions
nil))

(sequenced-regions (sequence-regions
same-tool-regions
nil nil))

(processed-regions (add-vertices-to-regions
sequenced-regions
blocks
nil))

) ; end of variable definitions
(add-entry-sequences processed-regions 0 nil)
)) ; end of function

add-tools recursive
input: same-layer-regions

tool-list
output: list3 (same-layer-regions with metcapp-props replaced

by an appropriate tool-ID)

(defun add-tools (same-layer-regions tool-list list3)
(cond ((null same-layer-regions) list3)

(t (add-tools (cdr same-layer-regions)
(cdr tool-list)
(cons (list (car tool-list)

(second
(car same-layer-regions)))

list3))
) ; end of condition

) ; end of conditional
) ; end of function

;;; This function removes the intersection of two machining

;;; regions. 103
(defun remove-intersections (i j listl list2)

(let ((regionl (nth i listl))
(region2 (nth j listl))
)
(cond ((null regionl) (reverse list2))

((null region2)
(remove-intersections (+ i 1)

0
listl
(cons regionl

list2)))

((= i j)
(remove-intersections i

(+ j 1)
listl
list2))

((> (car (get-mill-data (first regionl)))
(car (get-mill-data (first region2))))

(remove-intersections i
(+ j 1)
listl
list2))

((null (intersection-bob (second regionl)
(second region2)
nil))

(remove-intersections i
(+ j 1)
listl
list2))

(t (remove-intersections
i
0
(append (bob-remove (list regionl) listl)

(reform-region (intersection-bob
(second regionl)
(second region2)
nil)
(second regionl)
(first regionl)))

list2))
) ; end of conditional

) ; end of let statement
) ; end of function

104;;; This function is a child function of remove-intersections.
;;; intersection of regionl and region2
;;; listl is the index list of regionl
;;; list2 is the list of reformed reions
9 f 9

(defun reform-region (intersection listl beforel)
(let* ((i-row-list (remove-duplicates

(get-all-nth 0 intersection nil)))
(i-column-list (remove-duplicates

(get-all-nth 1 intersection nil)))
(row-list (multiple-remove

i-row-list
(remove-duplicates
(get-all-nth 0 listl nil))))

(column-list (multiple-remove
i-column-list
(remove-duplicates
(get-all-nth 1 listl nil))))

) ; end of variable definitions
(cond ((and (null row-list) (null column-list))

nil)

((null row-list)
(list (list beforel

(make-indexes i-row-list
column-list
nil))))

((null column-list)
(list (list beforel

(make-indexes row-list
i-column-list
nil))))

(t (list (list beforel
(make-indexes i-row-list

column-list
nil))

(list beforel
(make-indexes row-list

i-column-list
nil))

(list beforel
(make-indexes row-list

column-list
nil))

))
) ; end of conditional

) ; end of let statement
) ; end of function

;;; add-identifier recursive

child of get-mult-machining-regions function 105
;;; input: sorted-same-layer-regions
;;; output: sorted-same-layer-regions where each region has a
;;; unique integer identifier beginning with 0. This
;;; will allow each region to be referenced by a
;;; (nth n sorted-same-layer-regions) call.
Ill

(defun add-identifier (listl list2 n)
(cond ((null listl) (reverse list2))

(t (add-identifier (cdr listl)
(cons (append (list n) (car listl))

list2)
(+ n 1)))

) ; end of conditional
) ; end of function -

;;; listl is a same-layer-region list such that each element has
;;; the following structure:
;;; (index tool-ID (block-list))
;;; This list is processed by recursion.
Ill

;;; list2 is a same-layer-region list such that each element has
;;; the following structure:
;;; (index tool-ID (block-list))
;;; This list is initially equal to listl but is unaltered by
;;; recursion.
7 / /
;;; list3 is the new same-layer-region list such that each element
;;; has the following structure:
;;; (index tool-ID (block-list) (adjacent-regions-list)
;;; (violated-sides-list))
III

(defun find-adjacents (listl list2 list3)
(let* ((row-list (sort (remove-duplicates

(get-all-nth 0
(third (car listl))
nil))

’<))
(column-list (sort (remove-duplicates

(get-all-nth 1
(third (car listl))
nil))

’<))
(back (list ’back

(make-indexes
(list (- (car row-list) 1))
column-list
nil)))

106(left (list 'left
(make-indexes
row-list
(list (- (car column-list) 1))
nil)))

(front (list ’front
(make-indexes
(list (+ (car (last row-list)) 1))
column-list
nil)))

(right (list ’right
(make-indexes
row-list
(list (+ (car (last column-list)) 1))
nil)))

) ; end of variable definitions

(cond ((null (cdr listl))
(reverse (cons (sub-find-adjacents

(car listl)
list2
(list left back right front))

list3)))

(t (find-adjacents (cdr listl)
list2
(cons (sub-find-adjacents

(car listl)
list2
(list left back right front))

list3)))
) ; end of conditional

) ; end of let statement
) ; end of function

sub-find-adjacents Recursive child function of
f ind-adj acents.

region is an element of listl as defined in the parent.

Iist2 is list2 from the parent function.
lbrf-list is the list of left back right front as defined in

the parent function for the region that is passed.

new-region this is the result of processing region
(the adjacents-list is added on).
This will become an element of list3 in the parent function.

(defun sub-find-adjacents (region list2 lbrf-list) 107
(let ((adjacentcy (get-adjacentcy lbrf-list

(third (car list2))))
) ; end of variable definitions

(cond ((null list2) region)

((equal (car adjacentcy) ’fully)
(sub-f ind-adj acents
(list (first region)

(second region)
(third region)
(cons (list (first (car list2))

(second adjacentcy)
(first region))

(fourth region))
(cons (second adjacentcy)

(fifth region)))
(cdr list2)
lbrf-list)

) ; end of condition

((equal (car adjacentcy) ’partially)
(sub-f ind-adj acents
(list (first region)

(second region)
(third region)
(cons (list (first (car list2))

(second adjacentcy)
(first region))

(fourth region))
(fifth region))

(cdr list2)
lbrf-list)

) ; end of condition

(t (sub-find-adjacents region
(cdr list2)
lbrf-list))

) ; end of conditional
) ; end of let statement

) ; end of function

;;; listl is the left-back-right-front list of the region for
;;; which adjacentcy is to be determined.
i i r
;;; list2 is the list of indecies of the region that adjacentcy-to
;;; is to be determined.
Iff

(defun get-adjacentcy (listl list2)
(cond ((null listl)

(list ’none)) 108
((bob-subsetp (second (car listl)) list2)
(list ’fully (first (car listl))))

((not (null (intersection-bob (second (car listl))
list2
nil)))

(list 'partially (first (car listl))))

(t (get-adjacentcy (cdr listl) list2))
) ; end of conditional

) ; end of function

;;; sort-by-tool-diameter recursive
;;; input: same-layer-regions- with tool-ID
;;; ((identifier tool-ID (index-list) (adjacents-list)
;;; (violated-sides)) ...)
r r t
;;; output: same-layer-regions sorted such that the regions to be
;; cut by the largest tool diameters come first
;; ; (descending order).
J J i
(defun sort-by-tool-diameter (same-layer-regions

sorted-same-layer-regions
temp-list)

(cond ((null same-layer-regions) sorted-same-layer-regions)

((and (null sorted-same-layer-regions)
(null temp-list))

(sort-by-tool-diameter (cdr same-layer-regions)
(list (car same-layer-regions))
nil))

((null sorted-same-layer-regions)
(sort-by-tool-diameter
(cdr same-layer-regions)
(append (reverse temp-list)

(list (car same-layer-regions)))
nil))

((>= (car (get-mill-data
(second (car same-layer-regions))))

(car (get-mill-data
(second (car sorted-same-layer-regions)))))

(sort-by-tool-diameter
(cdr same-layer-regions)
(append (reverse temp-list)

(cons (car same-layer-regions)
sorted-same-layer-regions))

nil))

109(t (sort-by-tool-diameter
same-layer-regions
(cdr sorted-same-layer-regions)
(cons (car sorted-same-layer-regions)

(reverse temp-list))))
) ; end of conditional

) ; end of function

;;; get-same-tool-regions recursive
;;; child of get-mult-machining-regions function
J J J
jjj input: sorted-same-layer-regions
;;; output: list of same-tool-regions
fit

(defun get-same-tool-regions (listl list2)
(cond ((null listl) (reverse- list2))

((null list2)
(get-same-tool-regions (cdr listl)

(list (list (car listl)))))

((equal (second (car listl))
(second (car (car list2))))

(get-same-tool-regions (cdr listl)
(cons (cons (car listl)

(car list2))
(cdr list2)))

) ; end of condition

(t (get-same-tool-regions (cdr listl)
(cons (list (car listl))

list2)))
) ; end of conditional

) ; end of function

;;; listl is the same-layer-regions list grouped by same tool
;;; next-list and list2 are initially nil
r t i

(defun sequence-regions (listl next-list list2)
(cond ((null listl) (reverse list2))

(t (sequence-regions
(cdr listl)
(car (sub-sequence-regions (car listl)

next-list
nil
list2))

(second (sub-sequence-regions (car listl)
next-list
nil
list2))))

110) ; end of conditional
) ; end of function

(defun sub-sequence-regions (same-tool-regions
next-listl
next-list2
sequenced-regions)

(cond ((null same-tool-regions)
(list (append next-listl next-list2)

sequenced-regions))

((null next-listl)
(sub-sequence-regions
(cdr same-tool-regions)
(fourth (car same-tool-regions))
next-list2 -
(cons (append (car same-tool-regions) ’((enclosed)))

sequenced-regions)))

((not (null (get-id-region (first (car next-listl))
same-tool-regions)))

(sub-sequence-regions
(bob-remove (list (get-id-region

(first (car next-listl))
same-tool-regions))

same-tool-regions)
(append (fourth (get-id-region (first (car next-listl))

same-tool-regions))
(bob-remove (list (car next-listl)) next-listl))

next-list2
(cons (append (get-id-region (first (car next-listl))

same-tool-regions)
(list (car next-listl)))

sequenced-regions)))

(t (sub-sequence-regions
same-tool-regions
(bob-remove (list (car next-listl)) next-listl)
(cons (car next-listl) next-list2)
sequenced-regions))

) ; end of conditional
) ; end of function

(defun add-vertices-to-regions (regions blocks list2)
(cond ((null regions) (reverse list2))

(t (add-vertices-to-regions
(cdr regions)
blocks
(cons (list (first (car regions))

(second (car regions))
(get-region-vertices (third (car regions))

111blocks)
(fourth (car regions))
(fifth (car regions))
(sixth (car regions)))

list2)))

(defun get-region-vertices (indices blocks)
(let* ((rows (sort (remove-duplicates

(get-all-nth 0 indices nil)) '<))
(columns (sort (remove-duplicates

(get-all-nth 1 indices nil)) '<))
)

(list (apt-from-xz (second (nth (first columns)
(nth (.car (last rows))
blocks))))

(apt-from-xz (fourth (nth (car (last columns))
(nth (car (last rows))
blocks))))

(apt-from-xz (third (nth (car (last columns))
(nth (first rows)
blocks))))

(apt-from-xz (first (nth (first columns)
(nth (first rows)
blocks))))

;;; i is a counter set initially to 0
;;; region-2 is the region being entered
J J i
(defun add-entry-sequences (processed-regions i list2)

(let* ((region-2 (nth i processed-regions))
(region-1 (get-id-region (third (sixth region-2))

processed-regions))
) ; end of variable definitions

(cond ((null region-2) (reverse list2))

((null region-1)
(add-entry-sequences processed-regions

(+ i 1)
(cons (list (second region-2)

(third region-2)
'enclosed)

list2)))

(t (add-entry-sequences
processed-regions

112(+ i 1)
(cons (list (second region-2)

(third region-2)
(get-entry-sequence
(sixth region-2)
(third region-1)
(third region-2)
(dietrick-round
(/ (car (get-mill-data

(second region-2)))
25.4))))

list2)))
) ; end of conditional

) ; end of let statement
) ; end of function

;;; entry is the list of "how the region is to be entered”
;;; (region-being-entered opposite-side-being-entered
;;; region-being-exited)
f / /
;;; vertices-1 is the list of vertices of the region being exited
;;; vertices-2 is the list of vertices of the region being entered
7 7 7(defun get-entry-sequence (entry vertices-1 vertices-2 tool-dia)

(cond ((equal (second entry) ’front)
(get-entry-into-back vertices-1 vertices-2 tool-dia))

((equal (second entry) ’back)
(get-entry-into-front vertices-1 vertices-2 tool-dia))

((equal (second entry) ’left)
(get-entry-into-right vertices-1 vertices-2 tool-dia))

((equal (second entry) ’right)
(get-entry-into-left vertices-1 vertices-2 tool-dia))

) ; end of conditional
) ; end of function

;;; vertices-1 refers to the vertices of the pocket-entered-from
;;; vertices-2 refers to the vertices of the pocket-entered
r r f

;;; alphas refer to pocket being exited
;;; betas refer to pocket being entered
t 9 r
(defun get-entry-into-back (vertices-1 vertices-2 tool-dia)

(let* ((alpha-1 (first vertices-1))
(alpha-2 (second vertices-1))
(beta-1 (fourth vertices-2))
(beta-2 (third vertices-2))
(delta (cond ((and (<= (first beta-1) (first alpha-1))

113(<= (first alpha-2) (first beta-2)))
(list (/ (+ (first alpha-1)

(first alpha-2))
2.0)
(second alpha-1)))

((and (<= (first alpha-1) (first beta-1))
(<= (first beta-2) (first alpha-2)))

(list (/ (+ (first beta-1)
(first beta-2))

2.0)
(second beta-1)))

((and (<= (first alpha-1) (first beta-1))
(<= (first beta-1) (first alpha-2)))

(list (/ (+ (first beta-1)
(first alpha-2))

2.0)
(second beta-1)))

((and (<= (first alpha-1) (first beta-2))
(<= (first beta-2) (first alpha-2)))

(list (/ (+ (first beta-2)
(first alpha-1))

2.0)
(second alpha-1)))

) ; end of condional
) ; end of delta definition

(gamma (list (dietrick-round
(/ (+ (first (first vertices-2))

(first (second vertices-2))) 2.0))
(dietrick-round
(/ (+ (second (first vertices-2))

(second (third vertices-2))) 2.0))))

) ; end of variable definitions
(list (list (first delta)

(+ (second delta) (* 0.5 tool-dia)))
(list (first delta)

(- (second delta) (* 0.5 tool-dia)))
gamma)

) ; end of let statement
) ; end of function

;;; vertices-l refers to the vertices of the pocket-entered-from
;;; vertices-2 refers to the vertices of the pocket-entered
Z Z Z

(defun get-entry-into-front (vertices-l vertices-2 tool-dia)
(let* ((alpha-1 (fourth vertices-l))

(alpha-2 (third vertices-l))

(beta-1 (first vertices-2)) 114
(beta-2 (second vertices-2))
(delta (cond ((and (<= (first beta-1) (first alpha-1))

(<= (first alpha-2) (first beta-2)))
(list (/ (+ (first alpha-1)

(first alpha-2))
2.0)
(second alpha-1)))

((and (<= (first alpha-1) (first beta-1))
(<= (first beta-2) (first alpha-2)))

(list (/ (+ (first beta-1)
(first beta-2))

2.0)
(second beta-1)))

((and (<= (first alpha-1) (first beta-1))
(<= (first beta-1) (first alpha-2)))

(list (/ (+ (first beta-1)
(first alpha-2))

2.0)
(second beta-1)))

((and (<= (first alpha-1) (first beta-2))
(<= (first beta-2) (first alpha-2)))

(list (/ (+ (first beta-2)
(first alpha-1))

2.0)
(second alpha-1)))

) ; end of condional
) ; end of delta definition

(gamma (list (dietrick-round
(/ (+ (first (first vertices-2))

(first (second vertices-2))) 2.0))
(dietrick-round
(/ (+ (second (first vertices-2))

(second (third vertices-2))) 2.0))))

) ; end of variable definitions

(list (list (first delta)
(- (second delta) (* 0.5 tool-dia)))

(list (first delta)
(+ (second delta) (* 0.5 tool-dia)))

gamma)
) ; end of let statement

) ; end of function

;;; entry refers to the list "how will this pocket be entered"
;;; (pocket-entered opposite-side-entered pocket-entered-from)
;;; vertices-1 refers to the vertices of the pocket-entered-from

;;; vertices-2 refers to the vertices of the pocket-entered 115
(defun get-entry-into-left (vertices-1 vertices-2 tool-dia)

(let* ((alpha-1 (second vertices-1))
(alpha-2 (third vertices-1))
(beta-1 (first vertices-2))
(beta-2 (fourth vertices-2))
(delta (cond ((and (<= (second beta-1)

(second alpha-1))
(<= (second alpha-2)
(second beta-2)))

(list (first alpha-1)
(/ (+ (second alpha-1)

(second alpha-2))
2.0)))

((and (<= (second alpha-1)
(second beta-1))

(<= (second beta-2)
(second alpha-2)))

(list (first beta-1)
(/ (+ (second beta-1)

(second beta-2))
2.0)))

((and (<= (second alpha-1)
(second beta-1))

(<= (second beta-1)
(second alpha-2)))

(list (first beta-1)
(/ (+ (second beta-1)

(second alpha-2))
2.0)))

((and (<= (second alpha-1)
(second beta-2))

(<= (second beta-2)
(second alpha-2)))

(list (first alpha-1)
(/ (+ (second beta-2)

(second alpha-1))
2.0)))

) ; end of condional
) ; end of delta definition

(gamma (list (dietrick-round
(/ (+ (first (first vertices-2))

(first (second vertices-2)))
2.0))
(dietrick-round
(/ (+ (second (first vertices-2))

(second (third vertices-2)))
2.0))))

) ; end of variable definitions 116
(list (list (- (first delta) (* 0.5 tool-dia))

(second delta))
(list (+ (first delta) (* 0.5 tool-dia))

(second delta))
gamma)

) ; end of let statement
) ; end of function

/ r
f J

vertices-l refers to the vertices of the pocket-entered-from
vertices-2 refers to the vertices of the pocket-entered

(defun get-entry-into-right (vertices-l vertices-2 tool-dia)
(let* ((alpha-1 (first vertices-l))

(alpha-2 (fourth vertices-l))
(beta-1 (second vertices-2))
(beta-2 (third vertices-2))
(delta (cond ((and (<= (second beta-1)

(second alpha-1))
(<= (second alpha-2)
(second beta-2)))

(list (first alpha-1)
(/ (+ (second alpha-1)

(second alpha-2))
2.0)))

((and (<= (second alpha-1)
(second beta-1))

(<= (second beta-2)
(second alpha-2)))

(list (first beta-1)
(/ (+ (second beta-1)

(second beta-2))
2.0)))

((and (<= (second alpha-1)
(second beta-1))

(<= (second beta-1)
(second alpha-2)))

(list (first beta-1)
(/ (+ (second beta-1)

(second alpha-2))
2.0)))

((and (<= (second alpha-1)
(second beta-2))

(<= (second beta-2)
(second alpha-2)))

(list (first alpha-1)
(/ (+ (second beta-2)

(second alpha-1))

1172.0)))
) ; end of condional

) ; end of delta definition

(gamma (list (dietrick-round
(/ (+ (first (first vertices-2))

(first (second vertices-2))) 2.0))
(dietrick-round
(/ (+ (second (first vertices-2))

(second (third vertices-2))) 2.0))))

) ; end of variable definitions

(list (list (+ (first delta) (* 0.5 tool-dia))
(second delta))

(list (- (first delta) (* 0.5 tool-dia))
(second delta)) -

gamma)
) ; end of let statement

) ; end of function

