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ABSTRACT

POSITIVE-NEGATIVE FEATURE INTERACTIONS IN COMPUTER AIDED 
PROCESS PLANNING

Name: Robert A. Dietrick
University of Dayton

Advisor: Dr. John P. Eimermacher

The Rapid Design System (RDS), a United States Air Force 

sponsored research project, is an object-oriented system 

composed of feature-based design, fabrication, and inspection 

sub-systems. The RDS permits a user to design a part using 

features and to then automatically generate the process plan 

including the Numerical Control (NC) code to machine the part.

In the design sub-system, the user may select from both 

positive (i.e. a rib feature) and negative (i.e. a pocket 

feature) features to create a part. The research addressed by 

this paper concerns the special issues associated with 

positive features in the fabrication sub-system. Analysis and 

classification is performed on positive features relative to 

process planning issues. In particular, a comprehensive 

scheme for addressing the case of pocket-island interactions 

is presented in detail. The primary issues of these 

interactions are tool selection and NC boundary definition 

for the negative volume associated with one or more positive 

features. The negative volume is mapped into a set of
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intersecting sub-features. After performing generative 

machining process planning on these sub-features to determine 

tooling and speeds and feeds, NC boundaries are defined.
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CHAPTER I

INTRODUCTION

Over the past several years, companies have begun to 

realize that conventional Computer Aided Design (CAD) systems 

using two dimensional primitives (lines, arcs, circles, etc.) 

in either a two or three dimensional workspace, are not 

capable of being effectively integrated with manufacturing and 

business software to form an integrated company computer 

architecture. One of the principle shortcomings of these 

conventional CAD systems is their inability to capture 

critical information such as design intent, geometric 

relationships, material selection criteria, and manufacturing 

rules that impact design.

In response, object-oriented systems are being developed 

as the next generation of CAD. By object oriented, it is 

meant that the computer language (i.e. Lisp) permits the 

creation of ’’objects." These objects are advanced data 

structures that allow large amounts of information to be 

associated with them in the form of properties.

One such research project is the Rapid Design System 

(RDS), a United States Air Force sponsored project. The 

objective of the RDS project is to develop a software package 

that will enable the user to design a machinable part and
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automatically generate the manufacturing and inspection 

process plans. Furthermore, by combining the design, 

fabrication, and inspection sub-systems with a special memory 

(the Episoidal Associative Memory or EAM) that has the ability 

to ’’learn" by experience, good and bad practices, the user 

will be provided with a knowledge base to assist the design, 

fabrication, and inspection processes (See Figure 1).

Figure 1: The Architecture of the RDS
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One of the several universities involved in the project 

is the University of Dayton which is responsible for the 

fabrication sub-system. The role of the fabrication sub­

system is to develop the complete machining operations process 

plan for a given part. This includes determining which 

machine will be used to produce the part, the necessary 

machining operations, tool,, selection, speeds and feeds, and 

the generation of the NC code to drive the machine.

To accomplish this, the fabrication sub-system is built 

around MetCAPP, a generative process planner developed by the 

Institute of Advanced Manufacturing Sciences, Inc., 

Cincinnati, Ohio. To provide MetCAPP with the proper 

information, there is a feature translation module that 

translates design features to manufacturing features. After 

MetCAPP is consulted to determine the required tooling, speeds 

and feeds, and pass logic for each feature, the operations 

sequencing module organizes the operations into an efficient 

process plan. With all of this information, the NC generation 

module automatically generates the NC code for the part. 

Tying everything together and enabling the user to modify the 

results of any step, is the user interface module. The 

research addressed within this paper is an expansion of the

feature translation module.
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Design Philosophy

In the RDS, designing is accomplished by the use of 

features. These features are basically three dimensional 

"building blocks." Primarily, there are two types of features 

that a designer can use. They are positive and negative 

features. As the names imply, positive features represent 

physical material or positive volume whereas negative features 

represent an absence of physical material or negative volume. 

Figure 2 describes some of the design features available in

the RDS.

Although a designer could design or "build" anything 

through the exclusive use of either all positive features or 

alternatively, all negative features and some positive 

starting block, the RDS has incorporated both positive and 

negative features to enhance the system. Primarily, there are 

three basic advantages of incorporating positive design

features:

1. to provide the designer with a more flexible 
environment,

2. to reduce the amount of time required to design a 
given part, and

3. to help further define design intent.

The first two advantages listed above have more to do with 

versatility than anything else. The third advantage, however, 

is significantly more important. This is because two designs 

may be geometrically similar, but still have vastly different

purposes.



Prismatic starting block Cylindrical starting block

Pocket

Figure 2: Some Design Features of the RDS
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Consider the example in Figure 3 which illustrates an 

advantage of providing both positive and negative features. 

In part A, the starting block is a plate. By adding a rib 

feature to this plate it is implied that the plate thickness 

is desirable, but the strength or stiffness of the plate is 

not adequate due to the applied loads. In part B, the 

starting block is rectangular bar stock. By adding two 

shoulder cuts to this bar stock, it is implied that the bar 

stock height is preferred but that the weight or space/fit 

requirements necessitate the removal of material. So by 

including positive and negative features, it is possible to 

more accurately represent the intentions of the designer and 

as was previously mentioned, this is a primary reason for 

developing object-oriented CAD systems.

The Challenge of Positive Features

The philosophy of the object oriented RDS is that each 

feature should be capable of "making itself." That is each 

feature should be able to determine the necessary tooling, 

speeds and feeds, and NC path required to physically produce 

that feature. To assist this process, the RDS incorporates 

the software package MetCAPP, a generative process planner.

Relative to negative features this involves a reasonably 

straightforward, though not trivial approach. This is because 

a negative feature represents in and of itself the material 

to be removed by a machining process. For example, a 7"L x
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Block

a Shoulder 

a Shoulder

Figure 3: Designing with Positive and Negative Features
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4”W x 10"D pocket will require the same tooling and the same 

NC path independent of whether it is on a 10”L x 10”W x 10"D 

starting block or a 30"L x 30"W x 1O’’D starting block provided 

that all other things remain constant.

Conversely, a positive feature, such as a rib feature, of 

the same dimensions could potentially require two entirely 

different sets of operations to produce itself depending on 

the size of the starting block or the size of the pocket if 

the rib is an island in a pocket. At the very least, the NC 

path must be different because of the different amounts of 

material to be removed (See Figure 4). This is a result of 

the inability of a positive feature to inherently communicate 

the necessary information to produce itself. The reason for 

this, is that a positive feature is produced by altering the 

set of operations required to produce some corresponding 

negative feature, thus leaving behind the positive feature. 

Figure 5 provides further explanation. In this figure, two 

rib features, A and B, have been placed in a pocket feature, 

1. The pocket feature contains within itself all of the 

information that is required to select appropriate tooling and 

determine the NC path. In short, the function f that 

determines tooling and NC path is a function of the following 

variables:

1. type of feature (description of negative volume) ,
2. length of the volume to be removed,
3. width of the volume to be removed,
4. depth or height of the volume to be removed,
5. center (x, y, z) of the negative volume,



Material to be removed

a) Pockets on Starting Block

b) Ribs on Starting Block

c) Islands in Pockets

Figure 4: Material to be Removed
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Figure 5: Islands in a Pocket

6. corner radius, and
7. fillet radius.

A positive feature provides the length, width, height, 

and center location of the volume to remain, not of the volume 

to be removed. In particular, the location of the rib 

features relative to each other and relative to the location

of the pocket feature can have a profound impact on the 

tooling required to efficiently produce the resulting 

geometry. Note that the position of rib A relative to pocket 

1 and rib B will require a tool with ci diameter not greater 

than 0.25 inches. It is probably undesirable to use such a 

small tool, however, to machine the entire geometry. This

results in a need for a more complex tool selection scheme.
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Figure 5 should also illustrate the need to modify the 

corresponding negative feature (in this case pocket 1 for both 

rib A and rib B) as opposed to attempting to capture the 

length, width, height, and center for function f in the 

positive features. As can be seen, the information required 

to generate the operations to produce rib A involves features 

1 and A. Similarly, the information required to generate the 

operations to produce rib B involves features 1 and B.

The information required to generate the operations to 

produce both rib A and rib B, however, involves features 1, A, 

and B. Therefore, it is more convenient to view features A 

and B as impacting feature 1, than to view features 1 and B as 

impacting feature A and features 1 and A as impacting feature 

B (See Figure 6).

1

A B

OR

A

1 B

AND
B

1 A

Figure 6: Relationships between Interacting Features
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Problem Statement

Positive features present a two-fold problem to the 

fabrication sub-system of the RDS. First, positive features 

must be recognized to the extent that it is necessary to 

determine the corresponding negative features that they 

impact. In the case of a positive feature that exists on a 

surface of the starting block, there is no distinct negative 

feature that is affected. In the case of a positive feature 

on the surface of the starting block, a corresponding negative 

feature, such as an open flat rectangular surface, could be

created.

The second part of the problem, is the need to alter the 

set of operations associated with the corresponding negative 

feature such that the positive feature will be produced. This 

involves tool selection and NC boundary definition for the 

resulting negative volume. In this context, tool selection 

also implies a degree of tooling optimization. Due to the 

relative ease of generating NC code for a rectangular region 

of removal, rectangular regions are preferred for the defined 

boundaries.

The Scope of Investigation

The scope of investigation is defined in two ways. 

First, it is necessary to define the final form of output from 

the positive features module of the fabrication sub-system. 

This final form should include tooling information, vertices,
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and tool entry and exit information for each of the regions to 

be machined. Tooling information refers to the tool diameter, 

length, material number of flutes, and other information 

required to uniquely define each tool to be used. To 

efficiently handle all of this data, each required tool is 

represented by its unique MetCAPP identification code. The 

information provided to the NC generator by the positive 

features module must be sufficient to generate the NC code.

Second, a decision must be made about how many different 

kinds of positive-negative feature interactions should be 

addressed. There are currently only two types of positive 

features—rib features and boss features. Furthermore, 

because rib features allow the user to define a corner radius, 

a boss feature is nothing more than a rib feature with equal 

width and depth dimensions and a corner radius equal to one 

half of the width.

Having limited the number of positive features to one, 

there are a total of eight positive-negative feature 

interactions. This number is arrived at because the rib 

feature can interact with any of the negative design features 

or a surface of the starting block. Given the negative 

feature involved in an interaction, the characteristics of the 

rib features involved will characterize the specific class of 

interaction (See Figure 7).

The scope of investigation for this paper will be limited

to aligned islands in rectangular pockets. Part of the
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POSITIVE FEATURES

Quadrilateral Edge Step to a Starting Open Triangular* Pocket Slot *
Pocket Cut Shoulder Block Step Pocket

Multiple Single
Islands Island

Simple
Geometry

Complex
Geometry

Aligned Non-aligned

Figure 7: Positive-Negative Feature Interactions

rationale behind this scope, is that virtually all of the 

negative features currently available in the design sub-system 

of the RDS can be represented by rectangular pockets. Another 

reason for selecting pocket-island interactions is to avoid 

any fixturing interferences. A positive feature in a fully 

enclosed pocket will not impact the fixturing reguirements for 

the part. This prevents any further complication relative to 

the need to avoid collisions between the cutting tool or
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machine spindle and the fixturing devices. Once the cutting 

tool is within the pocket area, it is free from possible 

collisions. In addition to this, the NC rules for machining 

a rectangular pocket are relatively simple and well defined.

As the RDS is used by the machine shop of the 4950th Test 

Wing, the feature translation module will have to be further 

refined. The next logical expansion should be to include 

positive features that exist on a surface of the starting 

block. With a relatively minimal amount of new code, this 

should be easily accomplished.



CHAPTER II

ANALYSIS OF THE PROBLEM

With an explicit problem statement and a well defined 

scope of investigation, the logical approach is to first 

establish a means for recognizing rib-pocket interactions and 

to then process these interactions to the desired extent. 

Since any design pocket feature could potentially be a 

corresponding negative feature for one or more design rib 

features, the positive feature recognition will examine each 

of the design pocket features.

It is important to realize that even a single island may 

be composed of multiple rib features (See Figure 8) . The 

importance of this fact, is that any given rib, such as rib B 

in the example, may impact only a section of a pocket without 

being attached to the bottom of the pocket. This leads to the 

concept of viewing and analyzing a positive-negative feature 

interaction in terms of layers. Each layer of an interaction 

must have a constant geometry with respect to the height or y- 

direction except for the fillet radius of either the positive 

or negative features interacting.

16
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In Figure 9, an example interaction involving three 

islands composed of a total of six ribs is decomposed into six 

layers. Each of these six layers may now be processed 

independently with the NC code being generated separately for 

each layer.

Figure 9: Height-Layers of an Interaction
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An alternative to the previously mentioned height-layer 

is the width-layer. The width-layer is formed by a constant 

geometry with respect to the width or x-direction. For an 

illustration of the width-layer, please refer to Figure 10.

The principle advantage of using width layers, is that in 

some cases, consecutive height layers could be machined in a 

single pass but because the NC code is generated separately 

for each layer, they will be machined separately which is less 

efficient. Overall, however, the marginal benefits gained by 

utilizing width-layers is insufficient to offset the increased 

complexity of these layers.

Single Islands

Having briefly addressed the issue of positive feature 

recognition, the processing of positive-negative feature 

interactions can now be addressed. Starting at a simple 

level, the analysis begins with a single island in a pocket. 

It is important to remember that each height-layer is analyzed 

and processed independently. As a result, the figures in the 

following sections are top views instead of cross-sections.

To investigate different techniques of altering the set 

of operations required to produce the corresponding negative 

feature, it is necessary to decompose the problem into its two 

sub-problems. As was previously mentioned, these are tool 

selection and NC boundary definition.
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(b) Cross-Section

Figure 10: Width-Layer Alternative
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The Translation Process

In order to understand how pocket-island interactions are 

processed, one must first understand the translation of design 

features into manufacturing features. Currently, each design 

negative feature is translated to a manufacturing negative 

feature on a one to one basis (see Table 1) . The resulting 

manufacturing feature can be broken down into the following 

three features: the geometry feature, the MetCAPP feature, and

the NC features.

Table 1: Design Features to Manufacturing Features

Desiqn Manufacturinq MetCAPP

Pocket Pocket Enclosed Pocket

Through Slot Through Slot Through Slot

Edge Cut Edge Cut Edge Cut

Open Step Open Step Open Step

Corner Step Corner Step Corner Step

Blind Hole Blind Hole Hole

Through Hole Through Hole Hole

In essence, the geometry feature is nothing more than a 

condensed version of the design feature containing the 

required information to orient and display the feature in the 

fabrication environment. The manufacturing feature, in

general terms, captures the parameters that affect the
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machining process and places them into a form that MetCAPP 

understands. This form is referred to as the MetCAPP feature. 

It is important to note that, currently, each manufacturing 

feature has only one MetCAPP feature associated with it. The 

NC features associated with a given manufacturing feature are 

the set of machining operations, returned from the MetCAPP 

software, that are required to produce that given 

manufacturing feature. Each step of the operation sequence is 

an individual NC feature for which NC code will be generated.

For example, a design pocket feature would be translated 

into a manufacturing pocket feature. This manufacturing 

feature would be composed of the geometry feature, the MetCAPP 

pocket feature, and six NC features (See Figure 11). 

Together, these six features or operations would produce the 

pocket feature.

To provide the NC code generator with sufficient 

information, the translation process must be altered in some 

manner. Referring to Figure 11, the boxes may be viewed as 

results or objects produced by the translation process which 

is represented by the connecting lines. From here it should 

be apparent that the translation process consists of three 

steps. Therefore, the objective could be achieved by altering 

any of these three steps of translation. Note that although 

the NC features are created using the MetCAPP feature, the NC 

features are attached directly to the manufacturing feature in 

the same manner as the MetCAPP and geometry features.
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Design

Negat ive 
Feature

First Step

Manufacturing Negative 
Feature

Second Step

MetCAPP Feature
DIMENSIONS FOR: Rectangular Pocket - Fully Enclosed

DIMENSION ENTRY
Length of Pocket 10.000
Width of Pocket 3.000
Depth of Pocket 1.000
Corner Radius 0.250
Fillet Radius (0.0313)
Maximum Allowable Cutter Diameter (2.00 )
Maximum Height of Obstruction (0.00 )
Thin Wall Condition (No )
Thin Floor Condition (No )
Angle Formed Between Floor & Wall (90.000)
Setup Rigidity (5 - 10, bad to good) (10 )
Sub Floor Length (0.000 )
Sub Floor Width (0.000 )
Sub Floor Axial Depth (0.000 )
Sub Floor Corner Radius (0.000 )
Sub Floor Fillet Radius (0.000 )

Third Step

NC Features
STEP OPERATION SEQUENCE TOOLING PASSES TIME

1 Plunge End Mill MLS-0160 1 0.109
2 Slot End Mill MLS-0160 1 0.817
3 Rough End Mill MLS-0152 2 0.534
4 Semi-Finish End Mill Wall MLS-0152 1 0.444
5 Finish End Mill Floor MLS-0090 3 0.711
6 Finish End Mill Wall MLS-0211 1 0.619

Figure 11: The Current Translation Process
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Altering the third step, however, will not be examined 

within this paper because the third step of translation is 

accomplished by the MetCAPP software alone. Thus, there are 

primarily two methods for accomplishing the objectives of tool 

selection and NC boundary definition, translational 

elimination and feature analysis.

Translational Elimination

The first method is to replace the original or design 

(DI) negative and positive features with a set of negative 

manufacturing (D2) features such that the summation of 

negative manufacturing features and the starting block is 

equal to the summation of design positive and negative 

features including the starting block.

For example, consider a rectangular pocket with a single 

rectangular island in it (See Figure 12). The set of design 

features, pocket-1 and rib-1, is replaced by the set of 

manufacturing features, pocket-A, pocket-B, pocket-C, and 

pocket-D. The top part of this figure represents the 

structure used for associating data. The D2 pocket boxes 

refer to the manufacturing pocket features that are created in 

the translation process. The features or sub-features 

associated with each of these D2 pocket features are 

represented by the Geom, MCAPP, and NCI through NC6 boxes.
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POCKET-C

POCKET
B

POCKET
D

POCKET-A

Figure 12: The Method of Translational Elimination
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This method is referred to as translational elimination 

because in the initial step of the translation process, 

positive features are eliminated. As a result, only negative 

features exist in the fabrication environment.

By using translational elimination the problem of tool 

selection is solved since appropriate tooling can be 

determined independently _for each manufacturing pocket 

feature. Of course, some or all of the related pockets may be 

able to share common tooling. This would still be addressed 

by the tooling optimization module that would optimize the 

tooling across all of the manufacturing features.

In addition to solving the problem of tool selection, 

translational elimination also solves the problem of NC 

boundary definition. Since there will not be any positive 

features in the fabrication sub-system if this method is used 

for tool selection, there is no longer an issue of NC boundary 

definition. Each of the newly created manufacturing pockets 

would inherently have its own boundary.

As might be expected the ability of translational 

elimination to simultaneously solve both problems is the 

primary advantage of this method. Unfortunately, there is a 

major problem with the simplistic method of translational 

elimination. This is the problem of disassociation of the 

related manufacturing features. Disassociation would occur 

because the only means to determine if two given manufacturing

features are related would be to examine the design feature or
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features that led to their creation.

This lack of association between features that are 

related may impose limitations on the benefits of feature 

based CAD systems. Relative to the RDS, disassociation may 

impair the ability of the Episoidal Associative Memory to form 

design rules based on manufacturing feedback.

Furthermore, additional work would have to be done to 

increase the efficiency of the machining plan. Primarily, to 

eliminate the extra plunge or drill operation on a pocket that 

is adjacent to another pocket. (For example, pocket-A and 

pocket-B of Figure 12. These two pocket features could be 

machined with only a single plunge operation.)

The other problem that would be encountered is the need 

for a smooth transition between adjacent pockets. If 

translational elimination is used, the manufacturing pocket 

features would have to overlap to eliminate the extra corner 

and fillet material (See Figure 13).

Design Features Manufacturing Features

Figure 13: Need for overlapping pockets
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Feature Analysis

Returning to Figure 11, if the first step of the 

translation process is not altered and the third step of the 

translation process is not alterable, then only the second 

step remains. In general, altering the second step of the 

translation process, the creation of the MetCAPP feature, is 

referred to as the method of feature analysis.

Primarily, there are two methods for accomplishing 

feature analysis. Both of these methods involve, at least 

potentially, the creation of multiple MetCAPP features. Since 

the first step of the translation process is unaltered, each 

corresponding negative design feature is still translated into 

a single negative manufacturing feature. This avoids the 

problem of disassociation which is encountered in

translational elimination.

Mathematical Analysis, Feature analysis can be performed 

mathematically by developing a similarity function, f, which 

uses the machining parameters as variables. Then, by 

calculating the function at different locations in the 

corresponding negative feature, comparisons could be made and 

on the basis of these comparisons, a variable number of

MetCAPP features could be created.

For pocket features on the same part, tool selection 

depends on five variables: length, width, height, corner 

radius, and fillet radius. Since the similarity function

would be operating on the parameters of a single pocket, it is
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possible to narrow the function to include only the length and 

width dimensions because the depth, corner radius, and fillet 

radius will be constant for any given pocket in the current

RDS.

Using this function, the regions of a pocket-island 

interaction would be similar if the values of the function 

were within some hypothetical interval, delta, of each other. 

For each set of similar regions, one MetCAPP feature would be 

created to determine the tooling and NC features (operations) 

required for those similar regions.

Having established which regions are similar and having 

determined the tooling for each region, NC boundaries can now 

be defined. To define the NC boundaries, the overlap of 

regions one through four must be eliminated. If the two 

intersecting regions are similar, then the intersection may be 

subtracted from either region. Otherwise, the intersection 

must be subtracted from the region that will be machined with 

the smaller tool diameter (See Figure 14).

r

Figure 14: NC boundary definition
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The advantage of mathematical feature analysis is that 

MetCAPP features would be created only as needed. Most 

pocket-single island interactions could probably be handled 

with one or two MetCAPP features. This would reduce the 

number of calls to the MetCAPP software and significantly 

shorten the processing time of positive-negative feature 

interactions.

Unfortunately, the entire method depends on developing an 

accurate and suitable similarity function. Without the 

ability to examine the internal workings of the MetCAPP 

software, this would not be an easy task. Furthermore, using 

mathematical feature analysis more accurately addresses the 

problem of tooling optimization than that of tool selection 

for positive-negative feature interactions.

Assuming a genuine need to perform tooling optimization 

across all of the manufacturing features of a given part, 

using the same similarity function to process the positive­

negative interactions would be somewhat redundant and 

inflexible. For these reasons, a different variety of feature 

analysis was chosen as the final solution to be implemented 

within the RDS. Although still imperfect, it possesses 

several strengths.

Mapping Analysis. To perform mapping feature analysis, the 

resulting negative volume of a pocket-island interaction is 

represented as the union of MetCAPP features. In the case of 

a single island in a pocket, this involves a very



30

straightforward, simplistic approach.

For example, the design features in Figure 15 are

replaced by a single manufacturing pocket feature that has 

four MetCAPP features associated with it. Note that where the 

MetCAPP features intersect, the tooling of either feature may 

be selected to remove the material in that intersection. This 

is to insure the efficiency of the process plan.

Figure 15: Feature Analysis Translation Process



31

Then, in the same manner as before, the NC boundaries can 

be defined (See Figure 16). By specifying which boundaries 

can be violated by the milling cutter, a smooth transition 

between machining regions will be insured.

vz

V\x\/X

A A

_________ J

NC BoundariesMetCAPP Features

Figure 16: MetCAPP Features to NC Boundaries

One attribute of this method which may appear to be a 

disadvantage is the need to create a large number of MetCAPP 

features that will probably be very similar. Currently, this 

requires many calls to the MetCAPP software and represents a 

substantial time loss in the processing of positive features. 

However, when a tooling optimization module is integrated with 

the fabrication sub-system of the RDS, the MetCAPP features 

for the entire part could be checked for similarity, thereby 

reducing the number of calls to MetCAPP. This would allow the 

tooling optimization to be more accurate because a tool that 

might not be justifiable for use in a single region of a 

single pocket may now be justified because it will provide a 

time savings on other regions of other pockets.
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For example, consider a pocket feature with an island 

that may be machined with two different tools in 20 seconds of 

cutting time and another 10 seconds for the tool change. The 

feature could also be machined using only one of the tools in 

2 5 seconds of cutting time. Obviously, if this is the only 

feature being considered, it is more efficient to use the 

single tool alternative for a 5 seconds time savings. If, 

however, there were six identical features of this kind, it 

would be more efficient to use the two-tool alternative for a 

time savings of 20 seconds assuming that the tool is already 

in the magazine (130 seconds for two tools; 150 seconds for 

one tool).

Multiple Islands

The ability of feature analysis to analyze and process 

pocket-single island interactions is clearly insufficient to 

establish it as a solution. To be considered a solution, 

feature analysis must be capable of processing pocket-multiple 

island interactions in a logical manner. To say the least, 

automating feature analysis to process multiple island 

interactions is not trivial.

Tool Selection

The problem is that analyzing a single island in a pocket 

is very straightforward, involving only six dimensions, 

whereas three or even two islands in a pocket not only
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(b)

Figure 17: Critical Dimensions for Island Arrangements



34

introduce more dimensions, they introduce an undetermined

number of non-zero dimensions.

This is illustrated with the help of Figure 17 which 

depicts two possible arrangements of three islands in a 

pocket. With a little time, one should conclude that, indeed, 

all of the dimensions of Figure 17b are needed. All of these 

dimensions are required to achieve the goal of feature 

analysis—to determine the room available, in terms of length 

and width, for a cutting tool at every location in a pocket- 

island interaction.

Returning to the case of a single island in a pocket, 

consider the impact the intersections of the MetCAPP features 

have on the problem. The intersections lead to the concept of 

imposing a three by three non-uniform grid onto the geometry 

of the interaction (See Figure 18).

0 1 2
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~~A

.250

t
J

Figure 18: Imposing a Non-Uniform Grid
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The center of the grid, rectangle (1, 1), represents the 

positive volume of the island and will not be removed in the 

machining process. The remaining eight rectangles, 

representing the negative volume of the interaction, will be 

removed in the machining process.

To determine the maximum amount of room available for a 

cutting tool, the rectangles of the grid are combined to form 

larger rectangles. This is important because the length and 

width of each individual rectangle may not accurately define 

the room available for a given tool.

This is certainly the case for rectangle (1, 0) . 

Initially, the width of this rectangle restricts the size of 

a tool to 0.25 inches. Clearly, however, a 1.0 inch tool 

would be acceptable to remove the material between the left 

wall of the pocket and the left side of the island.

To consider the more complex case of two islands in a 

pocket, again impose a grid on the resulting geometry. After 

imposing a grid, create MetCAPP features by combining grid 

rectangles to form larger rectangles. The process used to 

develop these larger rectangles is not critical provided that 

every basic grid rectangle is associated with at least one 

MetCAPP feature and the rectangles are expanded to their 

maximum rectangular size.

An example of the results produced by applying this 

procedure for the interaction depicted in Figure 19, is shown

in Table 2. With the entire negative volume of the interaction
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mapped into MetCAPP features, the task of tool selection is 

accomplished.

Table 2: Composition of MetCAPP Features 

MetCAPP Feature Composition

1 (0 0) (0 1) (0 2) (0 3) (0 4)

2 (0 0) 41 o) (2 0) (3 0) (4 0)

3 (2 0) (2 1) (2 2) (3 0) (3 1) (3 2)

(4 0) (4 1) (4 2)

4 (4 0) (4 1) (4 2) (4 3) (4 4)

5 (0 2) (0 3) (0 4) (1 2) (1 3) (1 4)

(2 2) (2 3) (2 4)

6 (0 4) (1 4) (2 4) (3 4) (4 4)

Figure 19: Multiple islands in a pocket
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NC Boundary Definition

The NC boundaries are established for multiple island 

interactions similarly to the way in which they are defined 

for single island interactions. When a rectangle is 

associated with more than one MetCAPP feature, it is removed 

from the MetCAPP feature that produced the tool with a smaller 

diameter. This insures that every rectangle of the grid is 

actually machined with the largest available tool. If, upon 

removing a rectangle from a MetCAPP feature, that MetCAPP 

feature becomes non-rectangular, then the feature will be 

reduced to form new NC boundaries that are rectangular.

The rectangles associated with each bounded machining 

region of the interaction depicted in Figure 19 are listed in 

Table 3. Note that machining regions 5a, 5b, and 5c are the 

results of reducing MetCAPP feature No. 5.

Table 3: Composition of NC Machining Regions 

Machining Region Composition

1 (0 0) (0 1)
2 (1 0)

3 (2 0) (2 1) (2 2) (3 0)

(4 0) (4 1) (4 2)
4 (4 3)
5a (0 2) (1 2)
5b (0 3) (0 4) (1 3) (1 4)
5c (2 3) (2 4)
6 (3 4)



CHAPTER III

FEATURE ANALYSIS

After reviewing the available methods for processing 

positive-negative feature interactions and selecting feature 

analysis by mapping, the computer code to automatically 

process islands in pockets was developed and integrated with 

the RDS. In this chapter, the general structure and workings 

of this code will be addressed. Not only should this provide 

some general knowledge of the code, it should facilitate a 

greater understanding of the mechanics involved in the 

application of feature analysis.

It should be noted, however, that the code which has been 

developed involves two major assumptions. First, it is 

assumed that the fillet radius of the pocket feature and the 

fillet radii of all interacting rib features are equal. 

Second, the corner radii of all interacting rib features are 

assumed to be equal to zero.

These assumptions do not overly limit the practical 

application of this code. Further, until NC code is generated 

from the information produced by this code, it should remain 

simple to reduce the amount of any fine tuning that may be 

required.

38
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Overview

The entire RDS, with the exception of the MetCAPP 

software package and interface, is written in Lisp on top of 

a Concept Modeller Lisp template. To further explain this, 

the Concept Modeller, a Wisdom Systems product, is an object- 

oriented CAD system designed to be customized by its user. 

The RDS is one example, although a highly unique one, of this 

customization. The Concept Modeller Lisp template refers to 

all of those Lisp functions that are not ordinarily available 

in Common Lisp.

In the RDS, a feature such as a pocket is an object with 

associated properties such as depth, width, height, etc. To 

process islands in pockets, seven additional properties are 

added to the D2-pocket-feature. These seven new properties 

exist for all pockets in the fabrication sub-system regardless 

of whether or not they are impacted by positive features. By 

structuring the code in this manner, a consistency is 

established to avoid the further complication of those tasks 

performed by other modules of the fabrication sub-system.

The end goal of all of this work is to communicate to the 

NC code generation module the material to be removed to 

produce a given pocket feature. With or without positive 

features, there is by definition material to be removed for 

every pocket feature in the fabrication sub-system.
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Figure 20: An Overview of the Positive Features Code
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The names of these seven new properties as well as an 

overview of the code are shown in Figure 20. Note the 

dependence of the properties on those that have already been 

defined. A definition and explanation of the properties will 

be given in the following sections. The code to define each 

property is contained in Appendix A through Appendix F. Each 

appendix contains all of the functions required to define a 

property.

Positive Feature Recognition

The key to the entire process of dealing with positive­

negative feature interactions is to first identify them in a 

meaningful fashion. The result of this detection process is 

the Pkt-Island-List property of a pocket. This list 

identifies the pocket, the ribs impacting it, and the height 

of the layer for each layer of the interaction (See Figure 

21) .

To compile this list, an extremely thin, three- 

dimensional plate geometry is created at the bottom of the 

pocket. The AGM solid modeller is then used to check each rib 

feature of the part to determine if it intersects the plate. 

This establishes the bottom layer of the pocket which will 

become the last element of the Pkt-Island-List.

The preceding elements of the list are then determined by 

moving the thin plate to the top of the shortest rib of that 

layer. Referring to Figure 21, the plate is moved to the top
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of rib-B, then to the top of rib-A, and finally to the top of 

rib-C.

PKT- 1

RIB-C

RIB-A RIB-B

( (PKT-1 (NIL) 0.250)
(PKT-1 (RIB-C) 0.375)
(PKT-1 (RIB-A RIB-C) 0. 125)
(PKT-1 (RIB-A RIB-B) 0.250) )

Figure 21: The Pkt-Island-List

Building MetCAPP Features

After establishing the Pkt-Island-List, the pocket-island 

interaction can be processed one layer at a time. The first 

step in processing these layers is to develop the MetCAPP- 

Features-List where each element of the list contains the 

MetCAPP features of a single layer of the interaction.

To begin building the MetCAPP feature that will compose 

this list, a non-uniform grid is imposed on the interaction 

such that each rectangle of the grid is either completely 

negative or completely positive volume. The negative volume 

is then mapped into MetCAPP features with each rectangle being
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mapped into at least one feature and each feature retaining a 

rectangular geometry. This is accomplished by starting with 

any rectangle that has not yet been mapped and expanding it in 

the smaller of its two dimensions, length and width. The 

expansion process stops when the MetCAPP feature is in contact 

with positive volume on all four sides.

Referring to Table 4_ for a list of properties of a 

MetCAPP feature, the length and width are determined by the 

previously described expansion process. The height is 

obtained from the height of the layer, contained in the Pkt- 

Island-List. The maximum height of obstruction is equal to 

the summation of the height of each layer above the given one 

plus the maximum height of obstruction associated with the D2- 

pocket-feature. Then, with the exception of the sub-floor 

properties which are

Table 4: MetCAPP Properties for a Pocket

Length of Pocket 
Width of Pocket 
Depth of Pocket 
Corner Radius 
Fillet Radius
Maximum Allowable Cutter Diameter 
Maximum Height Obstruction 
Thin Wall Condition 
Thin Floor Condition
Angle Formed Between the Floor & Wall 
Setup Rigidity (5-10, bad to good)
Sub Floor Length
Sub Floor Width 
Sub Floor Axial Depth 
Sub Floor Corner Radius 
Sub Floor Fillet Radius
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always set equal to zero, the remaining properties of the 

MetCAPP feature are set equal to the same properties 

associated directly with the D2-pocket-feature being 

processed.

Note that the maximum height of obstruction property 

prevents MetCAPP from returning a tool to short to mill the 

pocket. If this property JLs not properly set, the machine 

collet could collide with the part. MetCAPP will also 

compensate for a long tool by reducing the feed rate to 

prevent excessive tool deflection. In the event that a 

suitable tool cannot be found because of the height to width 

ratio of the negative volume, MetCAPP returns a warning

message.

In the future when the restrictions requiring the pocket 

fillet radius to be equal to the rib fillet radii are removed, 

the largest fillet radius of any rib in the pocket or the 

fillet radius of the pocket itself will be used for all of the 

MetCAPP features of that layer. Then, additional MetCAPP 

features are created as needed to determine the required 

finishing tools establish the proper fillet radii.

Getting the Operations

To get the machining operations associated with the 

MetCAPP features, each feature is sent one at a time through 

the interface to MetCAPP. The operations are then received 

back through the interface. Each set of operations then
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becomes a single sub-element of a list. All of the sub­

elements associated with a particular layer form an element of 

the positive-ops property. Most of the functions to 

accomplish this task are already present in the fabrication 

sub-system.

The most important part of this process is that the 

operations lists received from MetCAPP most be assembled such 

that the elements of the positive-ops list of each pocket 

exactly match with their corresponding elements of the 

MetCAPP-features-list for that pocket. If their would be a 

failure to achieve this, the rest of the processing would

break down.

Establishing Tooling

The set of operations returned from the MetCAPP software 

generally consists of six operations or steps to create that 

given feature. Currently, there is considerable debate and 

uncertainty about the need to completely follow these steps 

verbatim. In particular, many of these steps require a 

separate tool which typically results in a total of four 

different end mills to perform all six steps. As a result, 

the positive feature code selects only two tools from each set 

of operations in an attempt to simplify the positive features 

code and streamline the operations. In the future, after a

more thorough investigation of the MetCAPP process plan, the
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positive features code can be modified to include more or all 

of the tools or operations with a minimal programming effort.

The two tools that are selected are the plunge end mill 

and the wall finish end mill. These tools correspond to the 

first and last tools of the operations list, respectively, and 

will be used for roughing and finishing, respectively. To 

facilitate the necessary data handling, two properties are 

assigned to the D2-pocket-feature, the rough-tool-list and the 

finish-tool-list, to store the tool identification code

associated with each tool.

This is probably not the optimum solution to the problem. 

Unfortunately, until the fabrication sub-system is complete 

and parts are actually machined with NC code generated by the 

RDS, fine tuning of the positive features code is virtually 

impossible. With the flexible overall structure of the highly 

modular code, however, it will require relatively minimal 

programming effort to select more or all of the tools 

recommended by MetCAPP.

The Machining Regions

The final step in processing pocket-island interactions 

is to transform the MetCAPP features into machining regions 

and provide the NC generation module with the tooling, entry 

and exit, and side violation information. All of this 

information is produced by a single set of Lisp functions that 

define the rough-regions and the finish-regions properties



with the rough-tool-list and the finish-tool-list as part of 

the input.

To assist in the explanation of the activities performed 

to produce either the rough-regions or the finish-regions, 

please refer to Figure 22 which depicts a single element of 

the rough-regions property of a given D2-pocket-feature. Each 

element of the list that composes this property contains all 

of the necessary information for a single layer. The top 

layer of a pocket-island interaction is represented by the 

first element of the list and the bottom layer is represented 

by the last element.

( "MLS-O169"
((17.0 9.0) (19.0 9.0) (19.0 12.0) (17.0 12.0)
(BACK LEFT FRONT)
({18.0 8.449) (18.0 9.551) (18.0 10.5)) )

Figure 22: An Element of the Rough-Regions Property

The first critical step in compiling the information to 

be associated with an element of the rough-regions list is to 

transform each of the MetCAPP features of a layer into a 

machining region. To do this, the intersection of the two 

features must be subtracted from one of the intersecting 

features. If the tool diameters associated with the two 

intersecting features are equal, the choice is considered to 

be arbitrary. Otherwise, the intersection is subtracted from 

the MetCAPP feature with the smaller tool diameter. Through
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this procedure amount of material removed by the larger 

diameter tools will be effectively maximized.

In some instances, the subtraction of the intersection 

from a MetCAPP feature will leave a non-rectangular geometry. 

When this happens, the resulting region will be decomposed 

into new rectangular regions. By maintaining rectangular 

machining regions, additional complexity relative to the 

process of generating NC code is avoided.

After determining the machining region, the four vertices 

of the region are transformed from the Concept Modeller 

coordinates to APT coordinates in a standard coordinate system 

transformation (See Figure 23). The APT coordinate vertices 

are then placed in a list starting with the front left and 

proceeding in a counter-clockwise direction. This vertice 

list in conjunction with the depth of cut which is obtained 

from the Pkt-Island-List, now defines the volume of material

to be removed.

Figure 23: The CM to APT Coordinate Transformation
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Also following the determination of the machining region, 

the machining regions which are adjacent to each region are 

found. By defining which side the adjacent region is in 

contact with the region in question, it is possible to define 

which sides of each machining region may be violated to move 

the tool from one region to the next and which sides must be 

violated in order to establish a smooth transition across 

regions.

Once this information is organized, the machining regions 

can be efficiently sequenced. This is accomplished with the 

use of a fairly simple algorithm. The algorithm begins by 

grouping the regions according to the tool that will be used 

for that region. Then, beginning with the group of regions to 

be machined by the largest diameter tool, a region is selected 

to be machined. Next, any region adjacent to it that is 

within the same group will be selected. This process 

continues until none of the remaining regions in the group is 

adjacent to any of the previously machined regions. This 

process is then repeated for each group of regions in 

descending order of tool diameter. Note that in each 

successive group of regions, the next region to be machined 

may be adjacent to a region of another group that was already 

processed. This entire process is illustrated in Figure 24.

Note that the next list is a list of adjacent regions to 

be considered for the next region to be machined. This list

includes all of the regions that are adjacent to the current
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Tool Groups: MLS-0169: 1. 2.
MLS-0165: 5. 6,

CURRENT

Pocket- 1 
Pocket-2 
Pocket-3 
Pocket-4 
Pocket-5 
Pocket-6 
Pocket-7 
Pocket-8

NEXT LIST

2. 4. 6. 8
. 4 . 7. 6. 8
4. 7. 6. 8
5. 7. 6. 8

6 . 7. 8
7. 8

8
nil

3. 4 
7. 8

GROUP LIST

2. 3. 4 
3. 4

4
5. 6. 7. 8 

6. 7. 8
7. 8 

8
nil

Figure 24: The Sequencing of Machining Regions

region being machined regardless of which tool group they are 

in. If, however, the first region in the next list is not an

element of the current tool group list, it will be skipped
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until all of the regions of the current tool group list are

machined.

At the same time the regions are sequenced, the tool 

entry sequence into the region to be machined is determined. 

The procedure for generating the tool entry sequence, as shown 

in Figure 25, is to first find the midpoint of the line 

segment that is common to both machining regions. By adding 

the product of the inward normal unit vector and the scalar 

tool radius to this point, the exit point of the just machined 

region and the entry point of the next region to be machined 

are established. The third point in the sequence is the 

center of the next region to be machined. With all of this 

information, the task of NC code generation for the island- 

pocket interaction should now be possible without any 

unnecessary complications.
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A: Point 1

B: Point 2

C: Midpoint of Segment AB

D: Tool Exit Point

E: Tool Entry Point 

F: Center of Next Region

Figure 25: The Tool Entry/Exit Sequence



CHAPTER IV

ADDITIONAL ISSUES

In addition to developing the algorithms and Lisp code 

that have been described in the preceding sections, the 

research involved a certain-amount of speculation relative to 

the solutions for items not completely addressed by the 

research. The results of this speculation relative to several 

closely related issues are addressed in the following 

sections.

Miscellaneous Pocket-Island Issues

As has been previously mentioned, the Lisp code developed 

to handle rib features interacting with pocket features 

requires two assumptions that limit the practical application 

of the code. The two assumptions are that the fillet radii of 

all interacting ribs are equal to the fillet radius of the 

pocket and that the corner radii of all of the rib features 

are equal to zero. Although these assumptions place 

significant restrictions on the use of the positive features 

code, the modifications required to remove these restrictions 

are not major.
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Non-Zero Rib Corner Radii

Perhaps the greatest restriction placed on the positive 

features processing code is the requirement that the fillet 

radius of all interacting rib features be equal to zero. To 

eliminate this requirement, it is necessary to communicate to 

the NC code generation module the corner radius and the center 

of curvature as well as the appropriate tooling.

Relative to the tooling, a decision has to be made as to 

whether or not a roughing pass will be needed in addition to 

the finishing pass. Probably the most convenient way to make 

this determination would be to compare the corner radius to

tool radius ratio to some critical value:

(Corner Radius) / (Tool Radius) ? K 

If K, is exceeded, indicating a relatively large amount of 

material to be removed by the finishing tool, a roughing pass 

is required. The majority of the work required to eliminate 

the corner radius restriction involves the NC code generation.

Unequal Fillet Radii

The elimination of the requirement that the fillet radii 

of the interacting rib and pocket features be equal involves 

some what more work, but is still reasonably simple. The 

desired fillet radius of a machining region will impact the 

finishing tool and possibly the roughing tool selection.

To account for this, the largest fillet radius of the 

layer being processed should be used with all of the MetCAPP
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features of that layer. This will provide the appropriate 

roughing tools for the layer and also the appropriate 

finishing tool for the pocket or rib feature associated with 

that fillet radius. Then, to select the necessary finishing 

tool or tools for the remaining features of that layer, an 

additional MetCAPP feature is created with the required fillet 

radius for each different fillet radius. Finally, the 

machining region for each extra finishing tool can be defined 

simply as a rectangle that must be "traced" with tool to 

produce the proper fillet radius.

Multi-Sided Convex Machining Regions 

Although not necessary, the inclusion of multi-sided,

convex machining regions can in some cases result in 

significant time savings. In particular, these regions are 

very helpful in the reforming of intersecting regions (See 

Figure 26).

Currently, when two MetCAPP features intersect, the 

entire intersection is subtracted from one of the two

corresponding machining regions. In some instances, this 

results in one of the corresponding machining regions becoming 

non-rectangular which requires it to be further decomposed 

into a set of rectangular machining regions. The operations 

to machine the set of new machining regions will sometimes be 

more time consuming then to machine the entire region as it 

existed prior to the subtraction of the intersection.
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(a) Intersecting MetCAPP Features

(b) Resulting Machining Regions 

Figure 26: The Processing of Intersecting MetCAPP Features
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To overcome this inefficiency, the rectangles composing 

the intersection could be split between the two intersecting 

MetCAPP features to form two five-sided-regions (See Figure 

27) . Using this procedure, time savings could be increased 

and the multi-sided, convex machining regions should not pose 

any major problem to the automated process of generating NC

code.

Figure 27: Multi-Sided Machining Regions
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Non-Aligned Ribs

Although the RDS does not currently enable a user to 

rotate a rib to a position in which it is no longer aligned 

within a pocket feature, this capability will certainly be 

forthcoming. Another reason for addressing this topic is that 

the related issues of machining triangular and quadrilateral 

pockets can also be examined.

In examining a non-aligned rib feature interacting with 

a rectangular pocket feature, it should be obvious that the 

corner location alone will be of little value since it may be 

outside of the rectangular pocket feature (See Figure 28) . 

Instead it will be necessary to establish a modified corner 

location based on the original location and the radius of

curvature of the corner.

Figure 28: Non-Aligned Rib Feature in Pocket
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The geometry resulting from this interaction would appear 

to easily lend itself to the use of triangular pocket MetCAPP 

features for mapping. Unfortunately, the MetCAPP software 

package does not currently provide such a feature.

Multi-Sided Pocket Features

The last of the related issues to be addressed within 

this paper is the issue of multi-sided design pockets in 

either a convex or a concave configuration. Again this issue 

involves a capability that is not yet available in the feature 

based design environment of the RDS. As a result the 

specifics of how to provide the necessary information to the 

NC code generation module cannot be addressed as they will 

depend heavily upon the feature representation of such a 

pocket.

Depending on whether or not the pocket is concave or 

convex it could be handled in one of two ways. If the pocket 

is convex, mathematical analysis may be used to determine the 

maximum rectangular region to be used as the MetCAPP feature 

within the pocket (See Figure 30). Then, the convex pocket 

feature could be used for NC boundary definition. There is no 

need to alter the feature because, as was previously 

mentioned, there are no major obstacles to be overcome with 

regard to automatically generating NC code for a multi-sided 

convex machining region.
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Figure 30: Multi-Sided Convex Pocket Feature

If, however, the multi-sided region is concave, a non- 

uniform grid could be imposed on the feature and the same 

mapping procedure already described could be used for tool 

selection and NC boundary definition. This process could be 

further complicated if the feature combined multi-sided 

concave and convex regions, but it is still probably the best

alternative.



CHAPTER V

CONCLUSIONS

As the RDS developed, a need was recognized within the 

fabrication sub-system to develop and implement a procedure to 

accomplish the tasks of tool selection and NC boundary for the 

resulting negative volume of a positive-negative feature 

interaction. After an initial investigation of the general 

problem, the field of research was reduced to include only 

pocket-island interactions where the rib features were 

restricted to an aligned position relative to the rectangular 

pocket.

The investigation shows that the broadly viewed design to 

manufacturing translation process is the arena in which to 

develop the necessary procedure. Being a three-step process, 

the translation process provides three levels at which 

modifications can be made to accomplish the desired 

objectives.

Since altering the third step of translation would 

require the MetCAPP software package itself to be altered, 

which is considered to be an alternative beyond the scope of 

this investigation, this paper explores only two methods. The 

first alternative, translational elimination, is a process in 

which the design pocket feature and rib features would be
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replaced by a set of manufacturing pocket features thereby 

eliminating the rib feature in the first step of translation. 

This process, however, would disrupt the one-to-one 

correspondence of design features to manufacturing features 

presenting possible problems in disassociation.

Largely for this reason, the second alternative is chosen 

as the best process to accomplish the sought after objectives. 

By decomposing the pocket-island interaction into layers of 

rectangles, the resulting negative volume can be mapped into 

MetCAPP features and then into machining regions. The first 

of these mappings succeeds in accomplishing the task of tool 

selection and the second adequately establishes the required 

NC boundaries. Combined, this critical information enables 

the automatic generation of NC code.

To date, the Lisp code to perform feature analysis by 

mapping has been developed and is currently being evaluated 

for single and multiple island interaction.



CHAPTER VI

RECOMMENDATIONS

Despite the tremendous advance in the growing ability of 

the fabrication sub-system to effectively process positive­

negative feature interactions, a great deal of work remains. 

Foremost among the remaining tasks is the need to adapt the NC 

code generation module to produce NC code from the information 

provided in the rough-regions and finish-regions properties of 

the D2-pocket-feature. To complete this task and fulfill the 

remaining validation requirements of the positive features 

code, the NC code should be executed (at least through the use 

of verification software) and evaluated for a variety of 

pocket-island interactions.

In the process of this validation, as well as other 

evaluations or validations of results involving the use of 

MetCAPP to select tools for multiple features, a tremendous 

need for tooling optimization across MetCAPP features should 

become evident. The inability of MetCAPP to select tools 

based on a set of features instead of on a single feature 

basis is one of the obstacles that must be overcome to 

successfully integrate MetCAPP with the RDS.

Regardless of whether this problem is to be solved within 

MetCAPP itself or merely within the RDS, one of the most
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critical factors influencing tool selection should be the 

number of parts to be produced. As the tool setup time is 

distributed over an increasing number of parts, the more 

significant the time savings, in terms of decreased machining 

time, associated with a given tool will become.

In addition to developing the ability to generate NC code 

from new properties added to the D2-pocket-feature, there is 

a need to update the operations sequencing module and the user 

interface. Since the final output of the positive features 

code is a description of what material must be removed and how 

it should be removed, the rough-regions and the finish-regions 

properties of a d2-pocket-feature will always be defined 

regardless of whether or not any islands interact with the 

given pocket. This being the case, the operation sequencing 

module should be updated so that it always processes the newly 

defined pocket properties. By doing this, a high level of 

consistency will be maintained which will benefit the RDS in 

the long term.

Also the user interface should be expanded to work in 

conjunction with the positive features code. Cartaya [1] 

stated the need for an interactive user interface that would 

allow the user to modify the design to manufacturing feature 

translation and the tooling and operations produced by 

MetCAPP. If anything, this need has been magnified by the 

revised translation process. Clearly, the RDS should extend 

to the user the ability to modify the actual mapping process
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used to determine tooling and boundaries.

In addition to the just mentioned integration work, there 

is also a need to improve and expand the positive features 

code itself. Some of the future work was described to varying 

degrees in the chapter about additional issues. Probably the 

two most important short term refinements are the need to 

eliminate the restrictions £>n the rib corner radii and fillet 

radii as well as the need to incorporate the ability to define 

multi-sided convex machining regions when advantageous.

As the RDS continues to expand, additional work will be 

required in all areas of the fabrication sub-system. The 

positive features code is no exception to this rule.
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APPENDIX A

PKT-ISLAND-LIST COMPUTER CODE

I t I II t ! ! I I t II II / t t t II I / / / / II ! I t > I I I I t I II • t ! • I I t t / t Ill / I I t / t
iiiiiiiiittiitiiiiiiiiitiiiiiitiiiiiiJiiiJJtitiiitiiiiiitit

; FUNCTIONS TO DEFINE PKT-ISLAND-LIST ; ; ; ;
7 7 7 r J till
irritiriiiiirifriitiiriiiiriitiiiiriitriiiiiiiiiittiiiirrii 
JtiiJiitiiJiiitiiiiJJiiiiti-iiiitiJiititiiiitiiitiitiiiiiiij

;;; This is the parent function controling the other functions 
;;; that are called to create the pkt-island-list for a 
;;; d2-pocket-feature. It works by establishing the first 
;;; intervals for a thin plate geom created by the agm. 
z / /
;;; input: pkt The design pocket feature corresponding to the 
;;; d2-pocket-feature being translated.

;;; output: The pkt-island-list is returned.
;;; ((pkt (rib-list) height) (pkt (rib-list) height) ...)
r r r
(defun find-ribs-in-pocket (pkt)

(let* ((alpha (vertex-pt pkt :facel :bottom
:face2 :left 

:face3 :front))
(beta (vertex-pt pkt :facel :top 

:face2 :right 
:face3 :back))

(alpha (vector-to-list alpha))
(beta (vector-to-list beta))
(gamma (list (first alpha) (first beta)))
(delta (list (second alpha) (+ (second alpha) 0.0001))) 
(zeta (list (third alpha) (third beta))))

(get-islands (list gamma delta zeta) nil pkt (second beta))))

Given the first interval from find-ribs-in-pocket, this 
function creates the pkt-island-list.

input: listl This is a list of the intervals from which the 
next geom will be created.

Iist2 This is the pkt-island-list being built, 
pkt The design pocket being translated.
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68The top of the pocket in the y direction. 

The completed pkt-island-list.
max

output: list2

(defun get-islands (listl list2 pkt max)
(let* ((pkt-geom (agm::rn-cube-geom listl))

(list3 (find-ribs pkt-geom
(select :type 'rib-feature) nil)))

(cond ((<= max (second (second listl))) list2) 
(t (get-islands (list (first listl)

(list (get-next-y max 
list3)

(+ (get-next-y max 
list3)

0.001))
(third listl))

(append (list
(list pkt 

list3
(dietrick-round 
(- (get-next-y max

list3)
(first
(second listl)) 

)))))
list2)

pkt
max)))))

This function will determine which ribs from a given list 
intersect the given thin plate geom.

input: feature
listl

output: list2

This is the thin plate geom.
Is a list of ribs to be checked for 
intersection.

The list of intersecting ribs.
(defun find-ribs (feature listl list2) 

(cond ((null listl) list2)

((agm::intersecting-geoms-p feature
(the geom (:from (car listl))) 
0.00001)

(find-ribs feature 
(cdr listl)
(append (list (car listl)) list2)))

(t (find-ribs feature (cdr listl) list2))
) ; end of conditional

) ; end of function
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;;; This function determines the next smallest value of y (CM)
;;; and establishes the next y interval for the next thin plate.
999
;;; input: n This is the maximum value of y corresponding
;;; to the top of the pocket.
;;; listl This is a list of the ribs detected in the last
;;; thin plate investigation.
i i !
jjj output: A list of two numbers which is the y interval for 
;;; the next thin plate geom creation (see get-islands).
9 9 9

(defun get-next-y (n listl)
(cond ((null listl) (+ n 0.0001))

((> n
(second (vector-to-list (vertex-pt (car listl)

~ :facel :top
:face2 :left 
:face3 :front))))

(get-next-y (second (vector-to-list 
(vertex-pt (car listl)

:facel :top 
:face2 :left 
:face3 :front)))

(cdr listl)))
(t (get-next-y n (cdr listl)))
) ; end of conditional

) ; end of function



APPENDIX B

MCAPP-FEATURES-LIST CODE

! i ! i } ! i ! ! ! 1 ! i i ! i i ! i i i ! i ! ! ! ! r 1 i i i ! ! i ! i ! ! ! i ! 1 ! i ! ! i ! ! ! 1 i ! ! r i ! ! i i ! i i !

; ; ;; ; ; ; ; FUNCTIONS TO DEFINE MCAPP-FEATURES-LIST ; ; ; ;; ; ;
! ! i i ! i i ! //?//?/
i i ! I i 1 r ! i i i i ! i / 1 r i i i r i i i i i i i i ! i i ! r i 1 i i i ! ! ! r ! r ! 1 r r ! ! I ! ! r ! i r i i ! J ! ! 1
i i i i i i r r i i i i i i i i i i i i t i i t i i i i i ft i i i i i i i n i i i i t i t i i i r r t i i i i i ii ! i 111

;;; This function repeatedly processes a single element of the 
;;; pkt-island-list to build the mcapp-features-list property.
7 7 7
;;; input: listl The pkt-island-list which describes each 
;;; layer with a list.
rtf
;;; output: list2 A list of same layer lists composed of MetCAPP 
;;; features describing that layer.
r r r
(defun get-mcapp-features-list (listl list2)

(cond ((null listl) list2) ; output when done

((= (length (second (car listl))) 0) ; no islands
(get-mcapp-features-list
(cdr listl)
(cons (list (get-mcapp-pocket 

(first (car listl))
(third (car listl))))

list2)))

((< (length (second (car listl))) 2) ; single island
(get-mcapp-features-list
(cdr listl)
(cons (list (get-mcapp-features 

(first (car listl))
(second (car listl))
(third (car listl))))

list2)))

(t (get-mcapp-features-list ; multiple islands 
(cdr listl)
(cons (mult-make-mcapp-features 

(first (car listl))
(second (car listl))
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71(third (car listl))) 
list2)))

) ; end of conditional
) ; end of function

This function develops the list of MetCAPP properties that 
define a MetCAPP pocket feature without any islands.

input: feature This is the design feature being processed
by the positive features code.
height This is the height of the layer which is 
currently being processed.

output: The list of MetCAPP properties defining a pocket.

(defun get-mcapp-pocket (feature height)
(list
(append (list (the d2-starting-block material

(:from (the d2-feature (:from feature))))
(the metcapp-name

(:from (the d2-feature (:from feature)))) 
(the machine

(:from (the d2-feature (:from feature)))) 
(car (sort (list (the depth (:from feature))

(the width (:from feature)))
’>))

(car (sort (list (the depth (:from feature)) 
(the width (:from feature)))

'<))
height)

(get-props feature
(the fillet-radius

(:from (the d2-feature
(:from feature)))

))
) /closes append 

)) /closes list and function

This function processes a single island interaction layer

input: feature
rib-list

height

design feature being processed.
list of ribs from the layer currently being 
processed.
height of layer currently being processed.

output: A list of MetCAPP features defining the layer being 
processed.

(defun get-mcapp-features (feature rib-list height)
(let ((frbl-list (get-frbl-list feature (car rib-list)))



(cond ((null listl) list2) 72
(t (mult-make-features 

feature 
blocks 
(cdr listl) 
height 
(cons
(list
(list (the d2-starting-block material

(:from (the d2-feature (:from feature))))
(the metcapp-name

(:from (the d2-feature (:from feature)))) 
(the machine

(:from (the d2-feature (:from feature)))) 
(first (sort (list

(get-x-dimension (car listl) 
blocks)

(get-z-dimension (car listl) 
blocks)) '>))

(first (sort (list
(get-x-dimension (car listl)

blocks)
(get-z-dimension (car listl) 

blocks)) ’<))
height
(the corner-radius

(:from (the d2-feature (:from 
(the fillet-radius

(:from (the d2-feature (:from 
(the max-allow-cutter-dia

(:from (the d2-feature (:from 
(the max-height-obstruction

(:from (the d2-feature (:from 
(the thin-wall

(:from (the d2-feature (:from 
(the angle-floor-wall

(:from (the d2-feature (:from 
(the setup-rigidity

(:from (the d2-feature (:from 
nil ;;; sub-floor-length 
nil ;;; sub-floor-width 
nil ;;; sub-floor-height 
nil ;;; sub-floor-corner-radius 
nil ;;; sub-floor-fillet-radius 
) ; end of metcapp parameters

(car listl)
blocks) ; end of second list 
list2)) ; end of list and cons

) ; end of condition
) ; end of conditional
end of function

feature)))) 

feature)))) 

feature)))) 

feature)))) 

feature)))) 
feature)))) 

feature))))

) I



) ; end of declarations 73
(cond ((or (eql (the fillet-radius

(:from (the d2-feature (:from feature))))
(the bottom-fillet-rad 

(:from (car rib-list))))
(eql 11)) ; To ensure this condition is followed

; until the additional code is done.

(get-four-regions feature 
frbl-list
(the bottom-fillet-radius 

(:from feature)) height))
; Code for these conditions not yet complete 
((> (the fillet-radius

(:from (the d2-zfeature (:from feature))))
(the bottom-fillet-rad (:from (car rib-list))))

(append
(get-four-regions feature 

frbl-list
(the fillet-radius

(:from (the d2-feature
(:from feature))))

height)
(finish-feature feature 

(car rib-list) 
frbl-list
(the bottom-fillet-rad

(:from (car rib-list)))))
) ; end of condition

(t (append
(get-four-regions feature 

frbl-list
(the bottom-fillet-rad

(:from (car rib-list)))
height)

(finish-feature feature 
(car rib-list) 
frbl-list
(the fillet-radius

(:from (the d2-feature
(:from feature)))))

)) ; closes append and condition 
) ; end of conditional

)) ; end of if, let, and function

;; This function determines the front, right, back, and left 
;; dimensions when a single island intersects a pocket layer.

input: feature The design feature being processed by the



;;; positive features code. 74
;;; rib The rib feature intersecting the layer of the
;;; feature currently being processed.
999

;;; output: A list of the front, right, back, and left.
9 9 9

(defun get-frbl-list (feature rib)
(list (vector-dot-product

(get-vector 001)
(subtract-points :pointl (vertex-pt feature 

:facel :bottom 
:face2 :left 
:face3 :front)

:point2 (vertex-pt rib
:facel :bottom 
:face2 :left
face3 : front) ) )

(vector-dot-product 
(get-vector 100)
(subtract-points :pointl (vertex-pt feature 

:facel :bottom 
:face2 :right 
:face3 :back)

:point2 (vertex-pt rib
:facel :bottom 
:face2 :right 
:face3 :back)))

(vector-dot-product 
(get-vector 001)
(subtract-points :pointl (vertex-pt rib 

:facel :bottom 
:face2 :right 
:face3 :back)

:point2 (vertex-pt feature 
:facel :bottom 
:face2 :right 
:face3 :back)))

(vector-dot-product 
(get-vector 100)
(subtract-points :pointl (vertex-pt rib 

ifacel :bottom 
:face2 :left 
:face3 :front)

:point2 (vertex-pt feature 
:facel :bottom 
:face2 :left 
:face3 :front)))

)) ; closes list and function

; This function actually creates the MetCAPP properties that 
; define a four MetCAPP features that represent a single layer 
; of an interaction with one island.
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;;; input: feature Feature being processed.
;;; frbl-list List of dimensions.
;;; fillet-radius To be used.
;;; height Of the layer being processed.
9 9 9

;;; output: The MetCAPP properties defining four features.
9 9 9

(defun get-four-regions (feature frbl-list fillet-radius height) 
(list (append (list (the d2-starting-block material

(:from (the d2-feature
(:from feature))))

(the metcapp-name
(:from (the d2-feature

(:from feature))))
(the machine

(:from (-the d2-feature
(:from feature))))

(car (sort (list (first frbl-list)
(the width

(:from feature)))
’>))

(car (sort (list (first frbl-list)
(the width

(:from feature)))
*<))

height)
(get-props feature fillet-radius))

(append (list (the d2-starting-block material 
(:from (the d2-feature

(:from feature))))
(the metcapp-name

(:from (the d2-feature
(:from feature))))

(the machine
(:from (the d2-feature

(:from feature))))
(car (sort (list (the depth

(:from feature))
(second frbl-list))

’>))
(car (sort (list (the depth

(:from feature))
(second frbl-list))

’<))
height)

(get-props feature fillet-radius))

(append (list (the d2-starting-block material 
(:from (the d2-feature

(:from feature))))
(the metcapp-name



76(:from (the d2-feature
(:from feature))))

(the machine
(:from (the d2-feature

(:from feature))))
(car (sort (list (third frbl-list)

(the width
(:from feature)))

’>))
(car (sort (list (third frbl-list) 

(the width
(:from feature)))

’<))
height)

(get-props feature fillet-radius))

(append (list (the d^-starting-block material 
(:from (the d2-feature

(:from feature))))
(the metcapp-name

(:from (the d2-feature
(:from feature))))

(the machine
(:from (the d2-feature

(:from feature))))
(car (sort (list (the depth

(:from feature))
(fourth frbl-list))

’>))
(car (sort (list (the depth 

(:from feature))
(fourth frbl-list))

’<))
height)

(get-props feature fillet-radius))))

;;; Future function referenced by get-mcapp-features but not 
;;; yet complete, 
z z r
(defun finish-feature (pocket rib frbl-list fillet-radius)

’need-code-here)

This function defines a fraction of the MetCAPP properties.

input: feature Design feature being processed,
fillet-radius To be used.

output: A list of some of the MetCAPP properties.

(defun get-props (feature fillet-radius)



77(list (the corner-radius
(:from (the d2-feature (:from 

fillet-radius 
(the max-allow-cutter-dia

(:from (the d2-feature (:from 
(the max-height-obstruction

(:from (the d2-feature (:from 
(the thin-wall

(:from (the d2-feature (:from 
(the thin-floor

(:from (the d2-feature (:from 
(the angle-floor-wall

(:from (the d2-feature (:from 
(the setup-rigidity

(:from (the d2-feature (:from 
nil ;;; sub-floor-length 
nil ;;; sub-floor-width- 
nil ;;; sub-floor-height 
nil ;;; sub-floor-corner-radius 
nil ;;; sub-floor-fillet-radius 
))

feature))))

feature)))) 

feature))))

feature))))

feature)))) 

feature))))

feature))))

This function determines the MetCAPP features for a single 
layer where multiple islands are involved.

input: feature Negative feature being processed.
rib-list List of ribs at the given layer,
height Of the layer being processed.

output: A list of MetCAPP features for the processed layer,

(defun mult-make-mcapp-features (feature rib-list height)
(let* ((x-values (remove-duplicates

(sort (get-x-values feature 
rib-list 
nil) '<)))

(z-values (remove-duplicates
(sort (get-z-values feature 

rib-list 
nil) '<)))

(nodes (make-nodes x-values 
z-values
0
0
(length x-values) 
(length z-values) 
nil))

(grid (make-blocks nodes 
0 
0
(- (length x-values) 2) 
(- (length z-values) 2)
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(blocks (check-grid grid rib-list nil))
(regions (mult-make-regions blocks nil))
) ; end of variable definitions

(mult-make-features feature blocks regions height nil)

) ; end of let statement 
) ; end of function

This function will determine the x coordinates for the nodes 
of the non-uniform grid and assemble them in a list.

z
z

input: feature
listl

Refers to the 
examination. 
Refers to the 
impacting the

negative feature under

list of positive features 
above mentioned feature.

output: list2 The list of x coordinates for the grid,

(defun get-x-values (feature listl list2) 
(cond ((null listl)

(append (list (first (vector-to-list 
(vertex-pt feature

:facel :bottom 
:face2 :left 
:face3 :back)))

(first (vector-to-list 
(vertex-pt feature

:facel :bottom 
:face2 :right 
:face3 :front))))

list2)
) ; end of condition

(t (get-x-values 
feature 
(cdr listl)
(append (list (first (vector-to-list 

(vertex-pt (car listl)
:facel :bottom 
:face2 :left 
:face3 :back)))

(first (vector-to-list
(vertex-pt (car listl)

:facel :bottom 
:face2 :right 
:face3 :front)))

) ; closes list

list2) ; closes append 
)) ; closes condition



)) ; closes conditional & function 79

This function will determine the z coordinates for the nodes 
of the non-uniform grid and assemble them in a list.

input: feature

listl

output: list2

Refers to the negative feature under 
examination.
Refers to the list of positive features 
impacting the above mentioned feature. 

The list of z coordinates for the grid.

(defun get-z-values (feature listl list2) 
(cond ((null listl)

(append (list (third (vector-to-list 
(vertex-.pt feature

:facel :bottom 
:face2 :left 
:face3 :back)))

(third (vector-to-list 
(vertex-pt feature

:facel :bottom

list2)

face2 :right 
face3 :front))))

(t (get-z-values 
feature 
(cdr listl)
(append (list (third (vector-to-list 

(vertex-pt (car listl)
:facel :bottom 
:face2 :left 
:face3 :back)))

(third (vector-to-list
(vertex-pt (car listl)

:facel :bottom 
:face2 :right 
:face3 :front)))

) ; closes list
list2) ; closes append 

) ) ; closes second argument
)) ; closes conditional and function

This function will create the nodes of the non-uniform grid 
that is imposed on a layer of an interaction involving 
multiple islands.

input: listl Is a list of CM x-values for the grid.



80list2 Is a list of CM z-values for the grid, 
x Is a counter for use in an nth-function to

extract specific elements from listl. 
z Is a counter for use in an nth-function to

extract specific elements from list2. 
x-max Is the original length of listl with the first 

element counted as 1.
z-max Is the original length of list2 with the first 

element counted as 1.

output: list3 Initially set to nil, list3 is the list of 
nodes defining the grid.

(defun make-nodes (listl list2 x z x-max z-max list3) 
(cond ((>= z z-max) (reverse list3))

((>= x x-max)
(make-nodes listl list2 _1

(+ z 1) x-max z-max 
(if (= (+ z 1) z-max)
(cons (reverse (car list3))

(cdr list3))
(cons (list (list (first listl)

(nth (+ z 1) list2)))
(cons (reverse (car list3))

(cdr list3)))
) ; endif

) ; end of call to make-nodes
) ; end of second argument of conditional

(t (make-nodes listl list2 (+ x 1) z x-max z-max 
(cons (cons (list (nth x listl)

(nth z list2))
(car list3))

(cdr list3))))
) ; end of conditional

) ; end of function

This function transforms the node list into the grid.

input: listl
x and z 
x-max

z-max

output: list2

Is the node list.
Are array counters initially set to 0.
Is the length of the internal list of nodes 
(the number of columns) beginning with zero 
Is the length of the external list of lists 
(the number of rows) beginning with zero.
Initially set to nil, list2 is the grid.

(defun make-blocks (listl x 
(cond ((> z z-max)

(reverse list2))

x-max z-max list2)z
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(make-blocks listl 0 (+ z 1) x-max z-max 

(cons (reverse (car list2))
(cdr list2))))

((= x 0)
(make-blocks listl (+ x 1) z x-max z-max 

(cons
(list

(list (nth x (nth z listl))
(nth x (nth (+ z 1) listl))
(nth (+ x 1) (nth z listl))
(nth (+ x 1) (nth (+ z 1) listl)))

) ; end of first list
list2)))

(t (make-blocks listl (+_x 1) z x-max z-max
(cons
(cons
(list (nth x (nth z listl))

(nth x (nth (+ z 1) listl))
(nth (+ x 1) (nth z listl))
(nth (+ x 1) (nth (+ z 1) listl)))

(car list2))
(cdr list2))))

) ; end of conditional 
) ; end of function

This function will examine the grid and note where positive 
features exist on the grid.

input: listl
rib-list

This is the list of blocks.
List of ribs at the given layer.

output: list2 Initially set to nil, this is the
processed grid.

(defun check-grid (listl rib-list list2) 
(cond ((null listl) (reverse list2))

(t (check-grid (cdr listl) 
rib-list
(cons (check-grid-row (car listl) 

rib-list 
nil)

list2)
))

) ; end of conditional 
) ; end of function

;;; This function will check a single row of the grid for
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input: listl

rib-list

;; output: list2

(defun check-grid-row 
(cond ((null listl)

9

This is a list describing a row of the grid. 
A list of ribs for the given layer.

Initially set to nil, this is the 
processed row of the grid.

(listl rib-list list2)
(reverse list2))

(t (check-grid-row (cdr listl) 
rib-list
(cons (check-for-block rib-list 

(car listl))
list2)

))
) ; end of conditional

; end of function)

;;; This function will check a single rectangle for a positive 
;;; feature using the agm solid modeller.
9 9 9

;;; input: listl This is a list of ribs that will be checked.
;;; grid This is the single rectangle that will be
;;; checked.
9 9 9

;;; output: If there is an intersection, ’block will be returned. 
;;; If not, the rectangle (grid) will be returned.
9 9 9

(defun check-for-block (listl grid)
(let* ((y (second (vector-to-list (vertex-pt (car listl)

:facel :bottom 
:face2 :left 
:face3 :back))))

(cube (agm::rn-cube-geom
(list (list (+ (first (first grid))

0.0001)
(- (first (third grid))

0.0001))
(list y

(+ Y 0.1))
(list (+ (second (first grid))

0.0001)
(- (second (second grid))

0.0001))
))

) ; end of cube definition
) ; end of variable definitions

(cond ((agm::intersecting-geoms-p (the geom 
(:from (car listl)))
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’(block))

cube
0.00001)

(t
(if (null (cdr listl)) 

grid
(check-for-block (cdr listl) grid)))

) ; end of conditional
) ; end of let

) ; end of function

;;; This function controls the functions to repeatedly link 
;;; rectangles of the grid into MetCAPP features.

;;; input: blocks This is the list which describes the grid.
9 9 9

;;; output: listl Initially set to nil, this is a list of the 
;;; created MetCAPP features in terms of
;;; rectangles.
9 9 9

(defun mult-make-regions (blocks listl)
(let ((home (get-next-home blocks (join-lists listl nil) 0 0))

) ; end of variable definitions

(cond ((equal home 'done) listl)

(t (mult-make-regions 
blocks
(cons (join-blocks t t t t blocks home) 

listl))
) ; end of condition 

) ; end of conditional
) ; end of let statement

) ; end of function

This function is used to determine the "home" of the next 
MetCAPP feature to be created. The home refers to the first 
and possibly the only rectangle to compose a MetCAPP feature. 
If a new home does not exist, meaning that the entire layer 
has been mapped into MetCAPP features, 'done is returned.

input: blocks
listl

row
column

This is the list representing the grid.
This is the list of MetCAPP features already 
created.
An index for the row.
An index for the column.

output: The home for the next MetCAPP feature.



84(defun get-next-home (blocks listl row column)
(let ((home (nth column (nth row blocks)))

) ; end of variable definitions

(cond ((null home)
(if (eql (length blocks) row)

’ done
(get-next-home blocks listl (+ row 1) 0)
) ; endif

) ; end of condition

((equal home ’(block))
(get-next-home blocks listl row ( + column 1)) 
) ; end of condition

((bob-subsetp (list (list row column)) listl) 
(get-next-home blocks -listl row ( + column 1)) 
) ; end of condition

(t (list (list row column)))
) ; end of conditional

) ; end of let statement 
) ; end of function

This function will attempt to join additional rectangles to 
the home of a given MetCAPP feature.

input: +x This is the key to determine if expansion in
the +x direction is possible.

+z This is the key to determine if expansion in
the +z direction is possible.

-x This is the key to determine if expansion in
the -x direction is possible.

— z This is the key to determine if expansion in
the — z direction is possible.
For all of the above, t indicates possible,
and nil indicates impossible, 

blocks This is the representation of the grid.

output: listl
I

Is an index list to determine which blocks 
have been joined.

(defun join-blocks (+x +z -x -z blocks listl) 
(let ((x (get-x-dimension listl blocks))

(z (get-z-dimension listl blocks))
) ; end of variable definitions
(cond ((and (<= z x) +z)

(if (eql (expand+z listl blocks) 'block)
(join-blocks +x nil -x -z blocks listl) 

(join-blocks +x +z -x -z blocks
(append (expand+z listl blocks)



85listl))
) ; endif

) ; end of condition

(+x
(if (eql (expand+x listl blocks) 'block)

(join-blocks nil +z -x -z blocks listl)
(join-blocks +x +z -x -z blocks

(append (expand+x listl blocks)
listl))

) ; endif
) ; end of condition

(+z
(if (eql (expand+z listl blocks) ’block)

(join-blocks +x nil -x -z blocks listl)
(join-blocks +x +z -=-x -z blocks

(append (expand+z listl blocks)
listl))

) ; endif
) ; end of condition

((and (<= z x) -z)
(if (eql (expand-z listl blocks) ’block)

(join-blocks +x +z -x nil blocks listl)
(join-blocks +x +z -x -z blocks

(append (expand-z listl blocks)
listl))

) ; endif
) ; end of condition 

(-x
(if (eql (expand-x listl blocks) ’block)

(join-blocks +x +z nil -z blocks listl)
(join-blocks +x +z -x -z blocks

(append (expand-x listl blocks)
listl))

) ; endif
) ; end of condition

(-z
(if (eql (expand-z listl blocks) ’block)

(join-blocks +x +z -x nil blocks listl)
(join-blocks +x +z -x -z blocks

(append (expand-z listl blocks)
listl))

) ; endif
) ; end of condition

(t listl)

) ; end of conditional 
) ; end of let statement



) ; end of function 86

This function will attempt to expand the MetCAPP feature in 
the +x direction.

input: listl

blocks

output: listl

This is the list representing the current 
MetCAPP feature.
This is the list representing the grid.

In the process of expansion, listl is 
updated to show the increased feature.

(defun expand+x (listl blocks)
(let ((x (car (sort

(get-all-nth 1 listl nil)
’>)))

(z-list (remove-duplicates
(sort (get-all-nth 0 listl nil) ’<))

) ; end of z-list definition

) ; end of variable definitions

(expand-bob ’x (+ x 1) z-list blocks nil) 
) ; end of let

) ; end of function

This function will attempt to expand the MetCAPP feature in 
the +z direction.

input: listl

blocks

This is the list representing the current 
MetCAPP feature.
This is the list representing the grid.

;;; output: listl In the process of expansion, listl is 
;;; updated to show the increased feature.
t f t

(defun expand+z (listl blocks)
(let ((z (car (sort

(get-all-nth 0 listl nil)
’>)))

(x-list (remove-duplicates
(sort (get-all-nth 1 listl nil) '<))

) ; end of x-list definition

) ; end of variable definitions

(expand-bob ' z (+ z 1) x-list blocks nil) 
) ; end of let

) ; end of function



This function will attempt to expand the MetCAPP feature in 87 
the ~x direction.

input: listl
blocks

This is the list representing the current 
MetCAPP feature.
This is the list representing the grid.

output: listl In the process of expansion, listl is 
updated to show the increased feature.

(defun expand-x (listl blocks)
(let ((x (car (sort

(get-all-nth 1 listl nil)
’<)))

(z-list (remove-duplicates
(sort (get-all-nth 0 listl nil) '<))

) ; end of z-list definition

) ; end of variable definitions

(if (< (- x 1) 0)
'block
(expand-bob 'x (- x 1) z-list blocks nil) 
) ; endif

) ; end of let 
) ; end of function

This function will attempt to expand the MetCAPP feature in 
the —z direction.

input: listl

blocks

This is the list representing the current 
MetCAPP feature.
This is the list representing the grid.

output: listl In the process of expansion, listl is 
updated to show the increased feature.

(defun expand-z (listl blocks)
(let ((z (car (sort

(get-all-nth 0 listl nil)
’<)))

(x-list (remove-duplicates
(sort (get-all-nth 1 listl nil) ’<))

) ; end of x-list definition
) ; end of variable definitions

(if (< (- z 1) 0)
'block
(expand-bob 'z (- z 1) x-list blocks nil) 
) ; endif

) ; end of let



) ; end of function 88

This is the generic function to actually do the expansion.

input: x-or-z Identifies expansion into the x or z
direction.

n Is the row or column to expand into.
listl Is a list of columns or rows to expand over.
blocks This is the grid representation.

output: list2 Initially set to nil, this list will be 
the rectangles included by the expansion.

(defun expand-bob (x-or-z n listl blocks list2) 
(cond ((null listl) list2)

((eql x-or-z 'x)
(if (or (equal (nth n (nth (car listl) blocks)) 

'(block))
(null (nth n (nth (car listl) blocks))))

'block
(expand-bob x-or-z n (cdr listl) blocks 

(cons (list (car listl) n)
list2))

) ; endif
) ; end of second condition

(t (if (or (equal (nth (car listl) (nth n blocks)) 
’(block))

(null (nth (car listl) (nth n blocks))))
'block

(expand-bob x-or-z n (cdr listl) blocks 
(cons (list n (car listl))

list2))
) ; endif

) ; end of condition
) ; end of conditional

; end of function)

This function determines the MetCAPP features for a given 
layer based on input from mult-make-mcapp-features.

input: feature
blocks 
listl 
height

output: list2

The design feature being processed.
This list represents the grid rectangles. 
Is an index to blocks list.
Of the layer being processed.

Initially set to nil, list2 is the list of 
the MetCAPP features for that layer.

(defun mult-make-features (feature blocks listl height list2)



APPENDIX C

POSITIVE-OPS CODE

iiiiiiiiiiiiiiiiiiiiiiiiitJiiitiiititiiiiitiiiirritriiiiitiiiii

; ;; ; ; ;; FUNCTIONS TO DEFINE POSITIVE-OPS PROPERTY ; ;;;; ;
II II II ! II I t ! I
iiiiiiiiiiiiiitiiiiiiiiiiiiiiiiiJiiiiiitiiiititiriitiiJiiiiiiii
iiiiiiiiiiiiiiiiiiiiiiiiiiiif^iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

j;; This function repeatedly sends a single element of listl to 
;;; get-mcapp-prime.
9 9 9

;;; input: listl The mcapp-features-list from a given feature. 
;;; It is a list of lists of same layer MetCAPP features
;;; that completely define the positive-negative feature
;;; interaction.
J t t
;;; output: list2 Initially set to nil, list2 becomes the 
;;; positive-ops property of a feature. It is a list of
;;; lists of same layer operations that completely define
;;; the positive-negative feature interaction.
9 9 9

(defun get-metcapp-ops (listl list2)
(cond ((null listl) list2)

( t (get-metcapp-ops 
(cdr listl)
(append (list (get-mcapp-prime (car listl) nil)) 

list2)))
))

;;; This function repeatedly sends a single element of listl to 
;;; get-mcapp.
9 9 9

;;; input: listl A list of lists of MetCAPP properties 
;;; completely describing a single layer of interaction
9 9 9

;;; output: list2 Initially set to nil, list2 becomes the 
;;; list of lists of operations returned from MetCAPP.
9 9 9

(defun get-mcapp-prime (listl list2)
(cond ((null listl) list2)

( t (get-mcapp-prime 
(cdr listl)
(append (list (get-mcapp (car (car listl))))

89



list2))) 90
))

; ;; This function calls MetCAPP with a single list of properties 
;;; that define a given MetCAPP feature.
9 9 9

;;; input: listl A list of MetCAPP properties
9 9 9

;;; output: A list of operations from MetCAPP
9 9 9

(defun get-mcapp (listl)
(let* ((save-pointer

(lcl:make-foreign-pointer 
:address (man-api ;call to MetCapp

(set-ip in-pointer ;convert to strings
(mapcar 'prop-to-string listl)))

:type '(:pointer output)))
(save-operations
(many-structs-to-lists /convert C struct to list
save-pointer)))

(free-operations-memory save-pointer) 
save-operations)

)



APPENDIX D

ROUGH-TOOL-LIST CODE

iiiiiiiiiiiiiiiiiiiiiiiitiiiitiiiiiiiiittiittiiiii
riJrirJriitJJtftJiJrriirJiiirrJriiirJriltrrrt/ttrJ 

FUNCTIONS TO DEFINE~THE ROUGH-TOOL-LIST

r t tu ii / t / ii / t ii t / it / ii t iiii i / t r r / t / / / t t t t / t / t t it / 
i i i ! } ! i ! i i ! ! t i i i i i i i 1 i i i i / i i ! i ! i ! i i t > i i i i i i i i i i i i i

;;; This function is responsible for building the rough-tool-list 
;;; by repeatedly sending a list of the operations for each layer 
;;; of the interaction to the get-rough-tools function.
i r r
;;; input: listl The positive-ops list for a feature which is 
;;; a list of operations by layer and then by
;;; MetCAPP feature.
;;; output: list2 The completed rough-tool-list which is a list 
;;; of the rough tools required for that
;;; interaction by layer.• • •
9 9 9
(defun get-rough-tool-list (listl list2)

(cond ((null listl) (reverse list2))
( t (get-rough-tool-list (cdr listl)

(cons (get-rough-tools
(car listl) 
nil)

list2)))
) ; end of conditional 

) j end of function

This function is responsible for extracting the appropriate 
roughing tools for a layer from a list of the operations for 
all of the MetCAPP features of that layer.
input: listl List of the operations by MetCAPP feature for

the layer being processed.
output: list2 Initially set to nil, list2 is the completed 

list of roughing tools for that layer.

91



92(defun get-rough-tools (listl list2)
(cond ((null listl) list2)

( t (get-rough-tools (cdr listl)
(append (list

(third
(third (first listl)))) 

list2)))
) ; end of conditional

) ; end of function
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APPENDIX E

FINISH-TOOL-LIST CODE
i i i i r i 1 r ! ! ! J ! t i ! ! t 1 t } ! ! ! i ! ! i ! ! J i } } / ! 1 ! ! ! i i ! } i r ! ! i ! i ! ! } } i i i i ! ! i 
i ! ! i } ! r ! 1 ! i i ! ! i i ! r ! i r i i ! i 1 i i ! i / 1 ! i ! ! ! ! ! i i ! ! r r i i r i ! i r r ! } i ! } i 11 i

; ;;;;;; FUNCTIONS TO DEFINE THE FINISH-TOOL-LIST ;;; ; ;
! ! ! ! ! i i i ! 1 ! i
i r i ! i t ! i ! ! 1 i i ! r i i r ! i r ! i i ! ! 1 i t r i i i r ! i i 11 i i ! i i r r ! i i i t i i i i i i i i i i I 
} i i } i i r ! i 1 1 i i 1 1 i ! ! ! i i ! i i i ! ! i hi i ! i ! i i i 1 r i i i i r r r ! ! ! ! ! ! i i ! i i i ! i ! !

;;; This function is responsible for building the finish-tool-list 
;;; by repeatedly sending a list of the operations for each layer 
;;; of the interaction to the get-finish-tools function.
Ill

;;; input: listl The positive-ops list for a feature which is 
; ;; a list of operations by layer and then by
;;; MetCAPP feature.
t t t

;;; output: list2 The completed finish-tool-list which is a list 
;;; of the rough tools required for that
;;; interaction by layer.
/ft

(defun get-finish-tool-list (listl list2)
(cond ((null listl) (reverse list2))

( t (get-finish-tool-list (cdr listl)
(cons (get-finish-tools

(car listl) 
nil)
list2)))

) ; end of conditional
) ; end of function

This function is responsible for extracting the appropriate 
finishing tools for a layer from a list of the operations for 
all of the MetCAPP features of that layer.

input: listl List of the operations by MetCAPP feature for 
the layer being processed.

output: list2 Initially set to nil, list2 is the completed 
list of finishing tools for that layer.



94(defun get-finish-tools (listl list2)
(cond ((null listl) list2)

( t (get-finish-tools (cdr listl)
(cons (third

(car
(last (first listl))) 

) ; closes third
list2)))

) ; end of conditional
) ; end of function



APPENDIX F

MACHINING REGIONS CODE

iiiiiiiiiiiiiifiiiiiiiiiiiiifiiiiiiiiiififiiiiiiiiiiiiiiiiiiiii
iJiJiitiiiJJJiiiiiiitiiiiiiiiiiiiiiiiiiiiiJittiiiitiitiitiiiJii

;;;;;;;; FUNCTIONS TO DEFINE THE MACHINING-REGIONS ;;;;;
//////// / ! t ! I

! I ! II t I ! I t II I II t t II 1 II I ! I ! t I t I I II I I ! I II II II t I II t II I I I I ! I ! I ! t I ! I 
II t ! 1 II II II t ! II t II II II II t I ! II !“t II II II t t ! II II II t I II II II II II II II !

This function 
regions layer

is responsible for determining the machining 
by layer for an interaction.

input:
f

listl

list2
list4

Is the pkt-islnad-list from the 
processed.
Is the rough-tool-list from the 
Is (the metcapp-features-list (

d2-pocket being 
pocket.
from pocket)).

;;; output:
Iff
iiiiii This 
;;; regions

input;

list3 The machining-regions (rough or finish) for 
the processed pocket.

function is responsible for determining the machining 
layer by layer for an interaction.

listl Is the pkt-islnad-list from the d2-pocket being 
processed.

Iist2 Is the rough-tool-list from the pocket.
Iist4 Is (the metcapp-features-list (:from pocket)).

;;; output: list3 The machining-regions (rough or finish) for
;;; the processed pocket.
tit
(defun get-machining-regions (listl list2 list3 list4)

(cond ((null listl) (reverse list3))

((eql (length (second (car listl))) 0) ; no islands 
(get-machining-regions
(cdr listl)
(cdr list2)
(cons (list (get-pocket-region (first (car listl)) 

(car list2))
(third (car listl)))

list3)
(cdr list4)))
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96((eql (length (second (car listl))) 1) ; one island
(get-machining-regions
(cdr listl)
(cdr list2)
(cons (list (get-regions (first (car listl))

(car (second (car listl)))
(car list2))

(third (car listl))) 
list3)

(cdr list4)))

((> (length (second (car listl))) 1) ; multiple islands 
(get-machining-regions
(cdr listl)
(cdr list2)
(cons (get-mult-machining-regions (car list4)

(car list2))
list3)

(cdr list4)))
) ; end of conditional

) ; end of function

;;; This function will establish the required information for NC 
;;; code generation for a layer without any islands of a 
;;; rectangular pocket region.
9 9 9

;;; input: pocket The pocket feature being processed.
;;; tool-list The tool-list (rough or finish) for that
;;; layer.
9 9 9

;;; output: (((apt-vertices) tool-id 'pocket))
9 9 9

(defun get-pocket-region (pocket tool-list)
(list (list (get-apt-coords (vertex-pt pocket

:facel :bottom 
:face2 :left 
:face3 :front))

(get-apt-coords (vertex-pt pocket 
:facel :bottom 
:face2 :right 
:face3 :front))

(get-apt-coords (vertex-pt pocket 
:facel :bottom 
:face2 :right 
:face3 :back))

(get-apt-coords (vertex-pt pocket 
:facel :bottom 
:face2 :left 
:face3 :back)))

(car tool-list)
'pocket))



;;; This function groups the regions for a single island. 97
(defun get-regions (pocket rib tool-list)

Points A through P are the vertices of the pocket and the rib 
and the projection of the rib's vertices onto the pocket.
See the diagram below:

J I H G

K

M N -

B

Points A D G and J are the four corners of the pocket.
Points M N 0 and P are the four corners of the rib.
Points B C E F H I K and L are the projection of points
M N 0 and P onto each side of the pocket.

(let* ((tool-1 (first tool-list))
(tool-2 (second tool-list))
(tool-3 (third tool-list))
(tool-4 (fourth tool-list))
(A (vertex-pt pocket :facel :bottom

:face2 :front 
:face3 :left))

(D (vertex-pt pocket :facel :bottom 
:face2 :front

:face3 :right))
(G (vertex-pt pocket :facel :bottom 

:face2 :back
:face3 :right))

(J (vertex-pt pocket :facel :bottom 
:face2 :back

:face3 :left))
(get-apt-coords (vertex-pt rib :facel :bottom(M

(N (get-apt-coords

(0 (get-apt-coords

(P (get-apt-coords

:face2 :front 
:face3 :left)))

(vertex-pt rib :facel :bottom 
:face2 :front 
:face3 :right)))

(vertex-pt rib :facel :bottom 
:face2 :back 
:face3 :right)))

(vertex-pt rib :facel :bottom



98:face2 :back 
:face3 :left)))

(front (first (get-frbl-list pocket rib))) 
(right (second (get-frbl-list pocket rib)))
(back (third (get-frbl-list pocket rib)))
(B (get-apt-coords

(add-points :pointl A
:point2 (get-vector left 0 0))))

(C (get-apt-coords
(subtract-points :pointl D

:point2 (get-vector right 0 0)))) 
(I (get-apt-coords

(add-points :pointl J
:point2 (get-vector left 0 0))))

(H (get-apt-coords
(subtract-points ipointl G

:point2 (.get-vector right 0 0) ) ) ) 
(F (get-apt-coords

(add-points :pointl G
:point2 (get-vector 0 0 back))))

(E (get-apt-coords
(subtract-points :pointl D

:point2 (get-vector 0 0 front)))) 
(K (get-apt-coords

(add-points :pointl J
:point2 (get-vector 0 0 back))))

(L (get-apt-coords
(subtract-points ipointl A

:point2 (get-vector 0 0 front))))

(A (get-apt-coords A))
(D (get-apt-coords D))
(G (get-apt-coords G))
(J (get-apt-coords J))

(pocket-1 (if (and (< left front) (< right front))
(list (list ADEL) tool-1 ’enclosed-pocket)

(if (< left front)
(list (list A C N L) tool-1 'open-pocket)
(if (< right front)
(list (list B D E M) tool-1 'open-pocket) 

(list (list B C N M) tool-1 'slot)))))

(pocket-3 (if (and (< left back) (< right back))
(list (list K F G J) tool-3 'enclosed-pocket)

(if (< left back)
(list (list K 0 H J) tool-3 'open-pocket)



99(if (< right back)
(list (list P F G I) tool-3 'open-pocket) 

(list (list P 0 H I) tool-3 'slot)))))

i i i
iii
iii

(pocket-2 (if (and (< back right) (< front right))
(list (list C D G H) tool-2 'enclosed-pocket) .

(if (< front right)
(list (list C D F O) tool-2 'open-pocket)
(if (< back right)
(list (list N E F G H) tool-2 'open-pocket)

(list (list N E F O) tool-2 ’slot)))))
;;;
! ! !
iir ***

(pocket-4 (if (and (< back left) (< front left))
(list (list A B I J) tool-4 'enclosed-pocket)

(if (< front left)
(list (list A B P K) tool-4 'open-pocket)
(if (< back left)
(list (list L M I J) tool-4 'open-pocket)

(list (list L M P K) tool-4 'slot))))))

(cond ((and (equal tool-1 tool-2) (equal tool-2 tool-3) (equal tool-3 
tool-4))

(list (list (list A D G J) (list M N O P) ) tool-1 
'O-pocket))

((and (equal tool-1 tool-2) (equal tool-2 tool-3))
(if (< left right)

(list (list (list ADGJKONL) tool-1 
'U-enclosed-pocket)

pocket-4)
(list (list (list BDGIPONM) tool-1 'U-slot) 

pocket-4)))

((and (equal tool-2 tool-3) (equal tool-3 tool-4))
(if (< front back)

(list (list (list ABPOCDGJ) tool-2 
'U-enclosed-pocket)

pocket-1)
(list (list (list LM PONEGJ) tool-2 'U-slot) 

pocket-1)))

((and (equal tool-3 tool-4) (equal tool-4 tool-1))
(if (< right left)

(list (list (list ADEMPFGJ) tool-3 
'U-enclosed-pocket)

pocket-2)
(list (list (list ACNMPOHJ) tool-3 'U-slot) 

pocket-2)))



100((and (equal tool-4 tool-1) (equal tool-1 tool-2))
(if (< back front)

(list (list (list ADGHNMIJ) tool-* 
U-enclosed-pocket)

pocket-3)
(list (list (list ADFONMPK) tool-4 ’U-slot) 

pocket-3)))
((and (equal tool-1 tool-2) (equal tool-3 tool-4))
(if (< left front)

(list (list (list A D G H N L) tool-1 ’L-enclosed-pocket) 
(list (list L M P 0 H J) tool-3 ’L-slot))

(list (list (list B D F O N M) tool-1 ’L-slot)
(list (list A B P F G J) tool-3 ’L-enclosed-pocket))))

((and (equal tool-2 tool-3) (equal tool-4 tool-1))
(if (< front right) -

(list (list (list C D G J K O) tool-2 ’L-enclosed-pocket) 
(list (list A C N M P K) tool-4 ’L-slot))

(list (list (list N E G I P 0) tool-2 ’L-slot)
(list (list A D E M I J) tool-4 ’L-pocket))))

((equal tool-1 tool-2)
(if (and (< left front) (< back front))

(list (list (list A D G H N L) tool-1 ’L-enclosed-pocket) 
pocket-3 
pocket-4)

(if (< left front)
(list (list (list A D F O N L) tool-1 'L-open-pocket) 

pocket-3 
pocket-4)

(if (< back front)
(list (list (list B D G H N M) tool-1 ’L-open-pocket) 

pocket-3 
pocket-4)

(list (list (list B D F 0 N M) tool-1 ’L-slot) 
pocket-3 
pocket-4)))))

((equal tool-2 tool-3)
(if (and (< left back) (< front back))

(list (list (list C D G J K O) tool-2 ’L-enclosed-pocket) 
pocket-4 
pocket-1)

(if (< left back)
(list (list (list N E G J K O) tool-2 ’L-open-pocket) 

pocket-4 
pocket-1)

(if (< front back)
(list (list (list C D G I P O) tool-2 ’L-open-pocket) 

pocket-4 
pocket-1)

(list (list (list N E G I P O) tool-2 ’L-slot)



101pocket-4 
pocket-1))) ) )

((equal tool-3 tool-4)
(if (and (< right back) (< front back))

(list (list (list A B P F G J) tool-3 ’L-enclosed-pocket) 
pocket-1 
pocket-2)

(if (< front back)
(list (list (list A B P 0 H J) tool-3 'L-open-pocket) 

pocket-1 
pocket-2)

(if (< right back)
(list (list (list L M P F G J) tool-3 ’L-open-pocket) 

pocket-1 
pocket-2)

(list (list (list t M P O H J) tool-3 ’L-slot) 
pocket-1 
pocket-2)))))

((equal tool-4 tool-1)
(if (and (< right front) (< back front))

(list (list (list A D E M I J) tool-4 ’L-enclosed-pocket) 
pocket-2 
pocket-3)

(if (< right front)
(list (list (list A D E M P K) tool-4 ’L-open-pocket) 

pocket-2 
pocket-3)

(if (< back front)
(list (list (list A C N M I J) tool-4 ’L-open-pocket) 

pocket-2 
pocket-3)

(list (list (list A C N M P K) tool-4 ’L-slot) 
pocket-2 
pocket-3)) ) ))

(t (list pocket-1 pocket-2 pocket-3 pocket-4)))))

This function is responsible for creating the machining 
regions for a layer with multiple islands.

input: metcapp-features The list of MetCAPP features for
that layer.

tools The list of tool for that layer,

output: A list of the machining regions for that layer.

(defun get-mult-machining-regions (metcapp-features tools)



102(let* ((blocks (car (last (car metcapp-features))))
(same-layer-regions (add-tools metcapp-features 

tools 
nil) )

(same-layer-regions (add-identifier 
(remove-intersections 
0 0 same-layer-regions nil) 

nil
0))

(sorted-same-layer-regions (sort-by-tool-diameter 
(f ind-adj acents 
same-layer-regions 
same-layer-regions 
nil)

nil 
nil))

(same-tool-regions (get-isame-tool-regions 
sorted-same-layer-regions 
nil) )

(sequenced-regions (sequence-regions 
same-tool-regions 
nil nil))

(processed-regions (add-vertices-to-regions 
sequenced-regions 
blocks
nil) )

) ; end of variable definitions
(add-entry-sequences processed-regions 0 nil)
)) ; end of function

add-tools recursive
input: same-layer-regions

tool-list
output: list3 (same-layer-regions with metcapp-props replaced 

by an appropriate tool-ID)

(defun add-tools (same-layer-regions tool-list list3) 
(cond ((null same-layer-regions) list3)

(t (add-tools (cdr same-layer-regions)
(cdr tool-list)
(cons (list (car tool-list)

(second
(car same-layer-regions))) 

list3))
) ; end of condition

) ; end of conditional
) ; end of function

;;; This function removes the intersection of two machining



;;; regions. 103
(defun remove-intersections (i j listl list2)

(let ((regionl (nth i listl))
(region2 (nth j listl))
)
(cond ((null regionl) (reverse list2))

((null region2)
(remove-intersections (+ i 1)

0
listl
(cons regionl 

list2)))

((= i j)
(remove-intersections i 

(+ j 1) 
listl 
list2))

((> (car (get-mill-data (first regionl)))
(car (get-mill-data (first region2))))

(remove-intersections i 
(+ j 1) 
listl 
list2))

((null (intersection-bob (second regionl) 
(second region2) 
nil))

(remove-intersections i 
(+ j 1) 
listl 
list2))

(t (remove-intersections 
i 
0
(append (bob-remove (list regionl) listl) 

(reform-region (intersection-bob
(second regionl)
(second region2) 
nil)
(second regionl)
(first regionl)))

list2))
) ; end of conditional

) ; end of let statement
) ; end of function



104;;; This function is a child function of remove-intersections. 
;;; intersection of regionl and region2 
;;; listl is the index list of regionl 
;;; list2 is the list of reformed reions
9 f 9

(defun reform-region (intersection listl beforel)
(let* ((i-row-list (remove-duplicates

(get-all-nth 0 intersection nil)))
(i-column-list (remove-duplicates

(get-all-nth 1 intersection nil)))
(row-list (multiple-remove

i-row-list 
(remove-duplicates
(get-all-nth 0 listl nil))))

(column-list (multiple-remove
i-column-list
(remove-duplicates
(get-all-nth 1 listl nil))))

) ; end of variable definitions
(cond ((and (null row-list) (null column-list)) 

nil)

((null row-list)
(list (list beforel

(make-indexes i-row-list 
column-list 
nil))))

((null column-list)
(list (list beforel

(make-indexes row-list 
i-column-list 
nil))))

(t (list (list beforel
(make-indexes i-row-list

column-list 
nil))

(list beforel
(make-indexes row-list

i-column-list
nil))

(list beforel
(make-indexes row-list

column-list
nil))

))
) ; end of conditional

) ; end of let statement
) ; end of function

;;; add-identifier recursive
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;;; input: sorted-same-layer-regions
;;; output: sorted-same-layer-regions where each region has a 
;;; unique integer identifier beginning with 0. This
;;; will allow each region to be referenced by a
;;; (nth n sorted-same-layer-regions) call.
Ill

(defun add-identifier (listl list2 n)
(cond ((null listl) (reverse list2))

(t (add-identifier (cdr listl)
(cons (append (list n) (car listl))

list2)
(+ n 1)))

) ; end of conditional
) ; end of function -

;;; listl is a same-layer-region list such that each element has 
;;; the following structure:
;;; (index tool-ID (block-list))
;;; This list is processed by recursion.
Ill

;;; list2 is a same-layer-region list such that each element has 
;;; the following structure:
;;; (index tool-ID (block-list))
;;; This list is initially equal to listl but is unaltered by
;;; recursion.
7 / /
;;; list3 is the new same-layer-region list such that each element 
;;; has the following structure:
;;; (index tool-ID (block-list) (adjacent-regions-list)
;;; (violated-sides-list))
III

(defun find-adjacents (listl list2 list3)
(let* ((row-list (sort (remove-duplicates

(get-all-nth 0
(third (car listl)) 
nil))

’<))
(column-list (sort (remove-duplicates 

(get-all-nth 1
(third (car listl)) 
nil))

’<))
(back (list ’back

(make-indexes
(list (- (car row-list) 1))
column-list
nil)))



106(left (list 'left
(make-indexes
row-list
(list (- (car column-list) 1)) 
nil)))

(front (list ’front
(make-indexes
(list (+ (car (last row-list)) 1))
column-list
nil)))

(right (list ’right
(make-indexes
row-list
(list (+ (car (last column-list)) 1)) 
nil)))

) ; end of variable definitions

(cond ((null (cdr listl))
(reverse (cons (sub-find-adjacents

(car listl) 
list2
(list left back right front)) 

list3)) )

(t (find-adjacents (cdr listl) 
list2
(cons (sub-find-adjacents 

(car listl) 
list2
(list left back right front)) 

list3)))
) ; end of conditional

) ; end of let statement
) ; end of function

sub-find-adjacents Recursive child function of
f ind-adj acents.

region is an element of listl as defined in the parent.

Iist2 is list2 from the parent function.
lbrf-list is the list of left back right front as defined in 

the parent function for the region that is passed.

new-region this is the result of processing region
(the adjacents-list is added on).
This will become an element of list3 in the parent function.
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(let ((adjacentcy (get-adjacentcy lbrf-list

(third (car list2))))
) ; end of variable definitions

(cond ((null list2) region)

((equal (car adjacentcy) ’fully)
(sub-f ind-adj acents
(list (first region)

(second region)
(third region)
(cons (list (first (car list2))

(second adjacentcy)
(first region))

(fourth region))
(cons (second adjacentcy)

(fifth region)))
(cdr list2) 
lbrf-list)

) ; end of condition

((equal (car adjacentcy) ’partially)
(sub-f ind-adj acents
(list (first region)

(second region)
(third region)
(cons (list (first (car list2))

(second adjacentcy)
(first region))

(fourth region))
(fifth region))

(cdr list2) 
lbrf-list)

) ; end of condition

(t (sub-find-adjacents region 
(cdr list2) 
lbrf-list))

) ; end of conditional 
) ; end of let statement

) ; end of function

;;; listl is the left-back-right-front list of the region for 
;;; which adjacentcy is to be determined. 
i i r
;;; list2 is the list of indecies of the region that adjacentcy-to 
;;; is to be determined.
Iff

(defun get-adjacentcy (listl list2)
(cond ((null listl)



(list ’none)) 108
((bob-subsetp (second (car listl)) list2)
(list ’fully (first (car listl))))

((not (null (intersection-bob (second (car listl)) 
list2 
nil)))

(list 'partially (first (car listl))))

(t (get-adjacentcy (cdr listl) list2))
) ; end of conditional

) ; end of function

;;; sort-by-tool-diameter recursive
;;; input: same-layer-regions- with tool-ID
;;; ((identifier tool-ID (index-list) (adjacents-list)
;;; (violated-sides)) ...)
r r t
;;; output: same-layer-regions sorted such that the regions to be 
;; cut by the largest tool diameters come first
;; ; (descending order).
J J i
(defun sort-by-tool-diameter (same-layer-regions 

sorted-same-layer-regions 
temp-list)

(cond ((null same-layer-regions) sorted-same-layer-regions)

((and (null sorted-same-layer-regions)
(null temp-list))

(sort-by-tool-diameter (cdr same-layer-regions)
(list (car same-layer-regions)) 
nil))

((null sorted-same-layer-regions)
(sort-by-tool-diameter 
(cdr same-layer-regions)
(append (reverse temp-list)

(list (car same-layer-regions)))
nil))

((>= (car (get-mill-data
(second (car same-layer-regions))))

(car (get-mill-data
(second (car sorted-same-layer-regions)))))

(sort-by-tool-diameter 
(cdr same-layer-regions)
(append (reverse temp-list)

(cons (car same-layer-regions) 
sorted-same-layer-regions))

nil))



109(t (sort-by-tool-diameter 
same-layer-regions 
(cdr sorted-same-layer-regions)
(cons (car sorted-same-layer-regions)

(reverse temp-list))))
) ; end of conditional 

) ; end of function

;;; get-same-tool-regions recursive
;;; child of get-mult-machining-regions function 
J J J
jjj input: sorted-same-layer-regions
;;; output: list of same-tool-regions
fit

(defun get-same-tool-regions (listl list2)
(cond ((null listl) (reverse- list2))

((null list2)
(get-same-tool-regions (cdr listl)

(list (list (car listl)))))

((equal (second (car listl))
(second (car (car list2))))

(get-same-tool-regions (cdr listl)
(cons (cons (car listl)

(car list2))
(cdr list2)))

) ; end of condition

(t (get-same-tool-regions (cdr listl)
(cons (list (car listl))

list2)))
) ; end of conditional 

) ; end of function

;;; listl is the same-layer-regions list grouped by same tool 
;;; next-list and list2 are initially nil
r t i

(defun sequence-regions (listl next-list list2)
(cond ((null listl) (reverse list2))

(t (sequence-regions
(cdr listl)
(car (sub-sequence-regions (car listl) 

next-list 
nil
list2))

(second (sub-sequence-regions (car listl) 
next-list 
nil
list2))))



110) ; end of conditional 
) ; end of function

(defun sub-sequence-regions (same-tool-regions 
next-listl 
next-list2 
sequenced-regions)

(cond ((null same-tool-regions)
(list (append next-listl next-list2)

sequenced-regions))

((null next-listl)
(sub-sequence-regions
(cdr same-tool-regions)
(fourth (car same-tool-regions)) 
next-list2 -
(cons (append (car same-tool-regions) ’((enclosed))) 

sequenced-regions)))

((not (null (get-id-region (first (car next-listl)) 
same-tool-regions) ) )

(sub-sequence-regions 
(bob-remove (list (get-id-region

(first (car next-listl)) 
same-tool-regions))

same-tool-regions)
(append (fourth (get-id-region (first (car next-listl)) 

same-tool-regions))
(bob-remove (list (car next-listl)) next-listl)) 

next-list2
(cons (append (get-id-region (first (car next-listl)) 

same-tool-regions)
(list (car next-listl))) 

sequenced-regions)))

(t (sub-sequence-regions 
same-tool-regions
(bob-remove (list (car next-listl)) next-listl)
(cons (car next-listl) next-list2) 
sequenced-regions))

) ; end of conditional
) ; end of function

(defun add-vertices-to-regions (regions blocks list2) 
(cond ((null regions) (reverse list2))

(t (add-vertices-to-regions 
(cdr regions) 
blocks
(cons (list (first (car regions))

(second (car regions))
(get-region-vertices (third (car regions))
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(fourth (car regions)) 
(fifth (car regions)) 
(sixth (car regions)))

list2)))

(defun get-region-vertices (indices blocks)
(let* ((rows (sort (remove-duplicates

(get-all-nth 0 indices nil)) '<)) 
(columns (sort (remove-duplicates

(get-all-nth 1 indices nil)) '<))
)

(list (apt-from-xz (second (nth (first columns) 
(nth (.car (last rows))
blocks))))

(apt-from-xz (fourth (nth (car (last columns)) 
(nth (car (last rows))
blocks))))

(apt-from-xz (third (nth (car (last columns)) 
(nth (first rows)
blocks))))

(apt-from-xz (first (nth (first columns)
(nth (first rows)
blocks))))

;;; i is a counter set initially to 0
;;; region-2 is the region being entered
J J i
(defun add-entry-sequences (processed-regions i list2) 

(let* ((region-2 (nth i processed-regions))
(region-1 (get-id-region (third (sixth region-2)) 

processed-regions))
) ; end of variable definitions

(cond ((null region-2) (reverse list2))

((null region-1)
(add-entry-sequences processed-regions

( + i 1)
(cons (list (second region-2) 

(third region-2)
'enclosed)

list2)))

(t (add-entry-sequences 
processed-regions



112(+ i 1)
(cons (list (second region-2) 

(third region-2)
(get-entry-sequence
(sixth region-2)
(third region-1)
(third region-2) 
(dietrick-round
(/ (car (get-mill-data

(second region-2)))
25.4))))

list2)))
) ; end of conditional

) ; end of let statement
) ; end of function

;;; entry is the list of "how the region is to be entered”
;;; (region-being-entered opposite-side-being-entered
;;; region-being-exited)
f / /
;;; vertices-1 is the list of vertices of the region being exited 
;;; vertices-2 is the list of vertices of the region being entered 
7 7 7(defun get-entry-sequence (entry vertices-1 vertices-2 tool-dia) 

(cond ((equal (second entry) ’front)
(get-entry-into-back vertices-1 vertices-2 tool-dia))

((equal (second entry) ’back)
(get-entry-into-front vertices-1 vertices-2 tool-dia))

((equal (second entry) ’left)
(get-entry-into-right vertices-1 vertices-2 tool-dia))

((equal (second entry) ’right)
(get-entry-into-left vertices-1 vertices-2 tool-dia))

) ; end of conditional
) ; end of function

;;; vertices-1 refers to the vertices of the pocket-entered-from 
;;; vertices-2 refers to the vertices of the pocket-entered
r r f

;;; alphas refer to pocket being exited
;;; betas refer to pocket being entered
t 9 r
(defun get-entry-into-back (vertices-1 vertices-2 tool-dia)

(let* ((alpha-1 (first vertices-1))
(alpha-2 (second vertices-1))
(beta-1 (fourth vertices-2))
(beta-2 (third vertices-2))
(delta (cond ((and (<= (first beta-1) (first alpha-1))



113(<= (first alpha-2) (first beta-2))) 
(list (/ ( + (first alpha-1)

(first alpha-2))
2.0)
(second alpha-1)))

((and (<= (first alpha-1) (first beta-1)) 
(<= (first beta-2) (first alpha-2)))

(list (/ (+ (first beta-1)
(first beta-2))

2.0)
(second beta-1)))

((and (<= (first alpha-1) (first beta-1)) 
(<= (first beta-1) (first alpha-2)))

(list (/ ( + (first beta-1)
(first alpha-2))

2.0)
(second beta-1)))

((and (<= (first alpha-1) (first beta-2)) 
(<= (first beta-2) (first alpha-2)))

(list (/ ( + (first beta-2)
(first alpha-1))

2.0)
(second alpha-1)))

) ; end of condional
) ; end of delta definition

(gamma (list (dietrick-round
(/ (+ (first (first vertices-2))

(first (second vertices-2))) 2.0)) 
(dietrick-round
(/ (+ (second (first vertices-2))

(second (third vertices-2))) 2.0))))

) ; end of variable definitions
(list (list (first delta)

(+ (second delta) (* 0.5 tool-dia)))
(list (first delta)

(- (second delta) (* 0.5 tool-dia)))
gamma)

) ; end of let statement
) ; end of function

;;; vertices-l refers to the vertices of the pocket-entered-from 
;;; vertices-2 refers to the vertices of the pocket-entered
Z Z Z

(defun get-entry-into-front (vertices-l vertices-2 tool-dia) 
(let* ((alpha-1 (fourth vertices-l))

(alpha-2 (third vertices-l))
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(beta-2 (second vertices-2))
(delta (cond ((and (<= (first beta-1) (first alpha-1))

(<= (first alpha-2) (first beta-2)))
(list (/ ( + (first alpha-1)

(first alpha-2))
2.0)
(second alpha-1)))

((and (<= (first alpha-1) (first beta-1))
(<= (first beta-2) (first alpha-2)))

(list (/ (+ (first beta-1)
(first beta-2))

2.0)
(second beta-1)))

((and (<= (first alpha-1) (first beta-1))
(<= (first beta-1) (first alpha-2)))

(list (/ (+ (first beta-1)
(first alpha-2))

2.0)
(second beta-1)))

((and (<= (first alpha-1) (first beta-2))
(<= (first beta-2) (first alpha-2)))

(list (/ ( + (first beta-2)
(first alpha-1))

2.0)
(second alpha-1)))

) ; end of condional
) ; end of delta definition

(gamma (list (dietrick-round
(/ (+ (first (first vertices-2))

(first (second vertices-2))) 2.0)) 
(dietrick-round
(/ (+ (second (first vertices-2))

(second (third vertices-2))) 2.0))))

) ; end of variable definitions

(list (list (first delta)
(- (second delta) (* 0.5 tool-dia)))

(list (first delta)
(+ (second delta) (* 0.5 tool-dia)))

gamma)
) ; end of let statement

) ; end of function

;;; entry refers to the list "how will this pocket be entered"
;;; (pocket-entered opposite-side-entered pocket-entered-from) 
;;; vertices-1 refers to the vertices of the pocket-entered-from



;;; vertices-2 refers to the vertices of the pocket-entered 115
(defun get-entry-into-left (vertices-1 vertices-2 tool-dia) 

(let* ((alpha-1 (second vertices-1))
(alpha-2 (third vertices-1))
(beta-1 (first vertices-2))
(beta-2 (fourth vertices-2))
(delta (cond ((and (<= (second beta-1)

(second alpha-1))
(<= (second alpha-2)
(second beta-2)))

(list (first alpha-1)
(/ (+ (second alpha-1)

(second alpha-2))
2.0)))

((and (<= (second alpha-1)
(second beta-1))

(<= (second beta-2)
(second alpha-2)))

(list (first beta-1)
(/ (+ (second beta-1)

(second beta-2))
2.0)))

((and (<= (second alpha-1)
(second beta-1))

(<= (second beta-1)
(second alpha-2)))

(list (first beta-1)
(/ (+ (second beta-1)

(second alpha-2))
2.0)))

((and (<= (second alpha-1)
(second beta-2))

(<= (second beta-2)
(second alpha-2)))

(list (first alpha-1)
(/ (+ (second beta-2)

(second alpha-1))
2.0)))

) ; end of condional 
) ; end of delta definition

(gamma (list (dietrick-round
(/ (+ (first (first vertices-2))

(first (second vertices-2)))
2.0))
(dietrick-round
(/ (+ (second (first vertices-2))

(second (third vertices-2)))
2.0))))



) ; end of variable definitions 116
(list (list (- (first delta) (* 0.5 tool-dia)) 

(second delta))
(list (+ (first delta) (* 0.5 tool-dia)) 

(second delta))
gamma)

) ; end of let statement
) ; end of function

/ r 
f J

vertices-l refers to the vertices of the pocket-entered-from 
vertices-2 refers to the vertices of the pocket-entered

(defun get-entry-into-right (vertices-l vertices-2 tool-dia) 
(let* ((alpha-1 (first vertices-l))

(alpha-2 (fourth vertices-l))
(beta-1 (second vertices-2))
(beta-2 (third vertices-2))
(delta (cond ((and (<= (second beta-1)

(second alpha-1))
(<= (second alpha-2)
(second beta-2)))

(list (first alpha-1)
(/ (+ (second alpha-1)

(second alpha-2))
2.0)))

((and (<= (second alpha-1) 
(second beta-1))

(<= (second beta-2) 
(second alpha-2)))

(list (first beta-1)
(/ (+ (second beta-1)

(second beta-2)) 
2.0)))

((and (<= (second alpha-1) 
(second beta-1))

(<= (second beta-1) 
(second alpha-2)))

(list (first beta-1)
(/ (+ (second beta-1)

(second alpha-2)) 
2.0)))

((and (<= (second alpha-1) 
(second beta-2))

(<= (second beta-2) 
(second alpha-2)))

(list (first alpha-1)
(/ (+ (second beta-2)

(second alpha-1))



1172.0)))
) ; end of condional

) ; end of delta definition

(gamma (list (dietrick-round
(/ (+ (first (first vertices-2))

(first (second vertices-2))) 2.0))
(dietrick-round
(/ (+ (second (first vertices-2))

(second (third vertices-2))) 2.0))))

) ; end of variable definitions

(list (list (+ (first delta) (* 0.5 tool-dia)) 
(second delta))

(list (- (first delta) (* 0.5 tool-dia))
(second delta)) -

gamma)
) ; end of let statement 

) ; end of function


