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ABSTRACT

DESIGN OF AN ADAPTIVE PID CONTROLLER
FOR IMPLEMENTATION ON THE
MOTOROLA DSP56000

Name: DePoyster, Mark, R.
University of Dayton, 1993

Advisor: Dr. Malcolm W. Daniels

An adaptive PID control algorithm is developed for implementation on a DSP 

chip. Basic PID theory is reviewed and a practical discrete-time PID algorithm is 

developed that includes a number of enhancements over the classical PID control 

algorithm. The advantages of using a DSP chip for control are also discussed. The PID 

control algorithm is then implemented on a Motorola DSP56000 processor. The 

architecture and instruction set of the DSP56000 are examined and the DSP56000-based 

controller is tested in the laboratory. Test results are presented and the DSP56000-based 

PID controller is shown to function as designed.

An adaptive PID algorithm is then developed based on the Simplified Self-Tuning 

Control (SSTC) model. The-SSTC PID controller is based on a self-tuning regulator 

structure that employs a recursive least-squares parameter estimation algorithm and a 

pole-cancellation control law design strategy. The process zeros are not canceled in the 

SSTC approach, allowing the algorithm to be used with non-minimum phase systems. The 

plant model is constrained to be second-order to force the general SSTC control algorithm
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into a PID-like structure. The recursive least-squares estimation algorithm employs U-D 

cofactorization to guarantee numerical robustness. The estimator data is prefiltered to 

attenuate high frequency noise and low frequency disturbances to ensure that the 

parameter estimates are not biased. A dead-zone is also included in the estimation 

algorithm to prevent bursting due to parameter drifting. The adaptive PID algorithm is 

simulated and is shown to perform well for both setpoint tracking and disturbance 

rejection applications.
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CHAPTER I

INTRODUCTION

1.1 Introduction to PID Control

In recent years, significant advances have been made in the field of automatic 

control theory. Sophisticated computer-based design tools now allow even large scale 

multivariable control designs to be developed in a relatively short amount of time. A large 

number of processes, however, are still controlled by single loop, single-input, single­

output (SISO) control systems. A block diagram of a basic SISO control loop is shown in 

Fig. 1,

Figure 1. SISO error driven controller block diagram

where w(Z) is the reference input, e(Z) is the error signal, w(Z) is the control output, y(t) 

is the plant output, and v<7) is a load disturbance on the output. For many years, the

1



2

most widely used SISO controller has been the proportional-integral-derivative 

controller, commonly referred to as a PID controller. Its name is derived from the fact 

that the PID control algorithm is composed of three terms (the proportional term, the 

integral term and the derivative term) that are added together to form the control output 

signal, w(Z). The equation for the controller output is given as:

de(t)e(‘) + 7 je(s)<*+
u(t) = K\

dt
(1.1)

where: K is the controller gain 

7? is the integral time 

Td is the derivative time.

PID controller implementation has gone through many stages of development 

over the years. The earliest controllers developed in the mid-193 Os were pneumatic 

devices that used pressure capsules or vapor temperature bulbs for sensors and a 

combination of mechanical linkages and needle valves for adjusting the proportional, 

integral and derivative times. These pneumatic instruments were later replaced with 

electronic designs that eventually relied on operational amplifier circuits. With the advent 

of digital computers, and more recently, microprocessors, virtually all new PID controllers 

are implemented digitally.

PID control has proven to be robust and is used in a wide variety of commercial, 

industrial and military applications. PID control can be used in large-scale industrial 

applications where a single large computer controls hundreds of individual control loops. 

More commonly, however, PID controllers are implemented as stand-alone devices using 

microprocessors. General purpose PID controllers are commercially available off-the- 

shelf, equipped with options that allow them to be interfaced to a wide variety of sensors 

and actuators. PID algorithms are also frequently employed in embedded control 

applications, where the controller is designed into a larger system to perform a specific
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function. Regardless of the application, the PID controller must be tuned to produce the 

desired closed-loop response in the plant output. As seen in equation (1.1), three 

parameters must be adjusted in order to tune the PID controller. They are the controller 

gain K, the integral time Tt and the derivative time Td. Equation (1.1) may be 

expressed in Laplace transform form as:

(1.2)

The controller transfer function may then be expressed as:

(1.3)

Equation (1.3) shows what takes place mathematically in the s-plane when the PID 

controller is tuned. The controller provides one pole at the origin (for removal of d.c. 

offsets) and two zeros that the designer can position by adjusting the parameters Tt and Td. 

The two controller zeros are frequently used to cancel the dominant poles of a second- 

order plant.

PID controllers are normally used to control plants that are assumed to be linear 

and time-invariant. If a model of the plant is available, standard design methods such as 

pole-placement may be used to determine suitable PID controller parameters. If an 

accurate plant model is not available, empirical methods such as the Ziegler-Nichols 

(1942) techniques have been developed for optimally tuning PID controllers. Ziegler- 

Nichols procedures are often not employed in practice, however, as they can be time- 

consuming and can require operation of the plant near its stability limits. Many plants are 

therefore tuned by trial-and-error methods that can result in poorly controlled processes. 

Even if the controller is properly tuned, many plants that are assumed to be time-invariant 

are actually not. Plant parameters can change due to aging, component failure or 

environmental changes. Changes in the plant parameters may also be inherent to the 

process, as in some chemical reactions or an aircraft changing altitude in flight. Even
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though changes in the plant parameters may occur at a relatively slow rate, the 

performance of the system can eventually degrade to the point where it is no longer 

acceptable. In some instances, the controller can be manually retuned to compensate for 

changes in the plant parameters. In other applications, however, the controller may not be 

accessible after it has been initially tuned, as in embedded control applications. In order to 

ensure robustness in cases where the system is not available after the initial tuning, the PID 

controller is detuned to compensate for changes in the plant parameters. This can result in 

suboptimal system performance. In situations where the plant is time-varying and 

constant-gain feedback control does not provide an acceptable solution, it would be 

desirable for the controller to adapt to changes in the plant parameters by continually 

updating its own parameters without any operator intervention. The solution to this 

problem is known as adaptive control.

1.2 Introduction to Adaptive Control

Research into the area of adaptive control began in the 1950s with the design of 

autopilots for high performance aircraft. Ordinary constant-gain feedback had difficulty 

dealing with the wide range of speeds and altitudes that such aircraft may have to operate 

in. Interest in adaptive control was somewhat diminished, however, after a disaster 

occurred in a flight test where adaptive control was employed. In the 1960s, the 

development of state space and stability theories broke down many of the barriers that 

impeded adaptive control research. Bellman's (1957) work on dynamic programming and 

Feldbaum's (1960) introduction of dual control theory also aided in the advancement of 

adaptive control theory. The idea that learning and adaptive control could be described in 

a common framework of recursive equations was put forth by Tsypkin (1971) during this 

period as well. Another extremely important area of research that was key to the
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development of adaptive control theory in the 1960s was the subject of system 

identification and parameter estimation. A survey paper by Astrom and Eykhoff (1971) 

serves as an excellent reference to the research on system identification conducted during 

that period. In the 1970s, interest in adaptive control continued to increase as many 

different estimation schemes were combined with a variety of control law design methods 

to form adaptive controllers. In the late 1970s and early 1980s, correct proofs for stability 

of certain adaptive control models began to appear, although under very restrictive 

assumptions. The 1980s saw many applications of adaptive control systems even while 

the theory continued under development. According to Astrom (1987), by the spring of 

1986, several thousand adaptive regulators were already in industrial use. With the 

development of stability proofs for the ideal case in 1980, the main thrust of the research 

shifted in the mid-1980s to robust adaptive control. Research in the area of stochastic 

adaptive control also intensified during that period. Today, adaptive control continues to 

be the subject of much research, as evidenced by the number of international conferences 

and journals dedicated to the subject.

Several different approaches to adaptive control have been proposed in the 

literature. Many of the concepts of the early adaptive schemes, such as the General 

Electric autopilot proposed by Marx (1959) and Marsik's (1970) adaptive regulator, are 

used in many of the later approaches. There are four heuristic schemes that encompass 

most of the current work in the field of adaptive control:

• Self-Oscillating Adaptive Systems

• Gain Scheduling

• Model Reference Adaptive Systems

• Self-Tuning Regulators
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Each of these approaches will be explained briefly in the following paragraphs.

Self-oscillating adaptive systems represent some of the earliest work in adaptive

control. A block diagram of the self-oscillating system proposed by Minneapolis- 

Honeywell (see Schuck, 1959) for an autopilot is shown in Figure 2.

Figure 2. Block diagram of Self-Oscillating Adaptive System

The idea behind the system of Figure 2 is to have a feedback loop whose gain is as high as 

possible combined with feedforward compensation to produce the desired response to 

command signals. The high loop gain is maintained by the relay in the feedback loop. It 

can be shown that for signals whose frequencies are much lower than the limit cycle 

oscillation, the equivalent amplitude margin is approximately equal to 2. The system 

therefore continuously adjusts itself to yield an acceptable amplitude margin. The self- 

oscillating adaptive system has been used successfully in flight control systems for many 

different missiles. It has the drawback, however, in that experience has shown that pilots 

will usually notice the limit cycle, thus limiting its application to unmanned flight.

Attempts have been made to reduce the amplitude of the limit cycle, but if the relay 

amplitude is too small, the response to command signals may be too slow. Other 

attempts have been made to quench the relay oscillations by the use of a dither signal with 

limited success.

A second method commonly used for adaptive control is gain scheduling. Like

self-oscillating adaptive systems, gain scheduling was originally applied to the
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development of flight control systems. It has also been successfully applied, however, in 

numerous industrial applications. A block diagram of a typical gain scheduling system is 

shown in Figure 3.

Figure 3. Block diagram of control system with Gain Scheduling

The system of Figure 3 monitors certain characteristics of the process denoted as 

operating conditions that relate to changes in the process dynamics. Regulator 

parameters are determined for a number of different operating conditions. Different sets 

of regulator parameters can then be activated as the operating conditions change. One of 

the advantages to gain scheduling is that the controller parameters can be changed very 

quickly in response to process parameters. The major drawback of gain scheduling, 

however, is that the control design process must be repeated for the number of parameter 

sets in the schedule. When extensive simulations are involved, this can be a time- 

consuming process. There has also been some controversy as to whether or not gain 

scheduling should be considered as a truly adaptive method, as the parameter changes are 

made in open-loop. Gain scheduling remains a viable solution, however, to many control 

problems, and it is easily implemented in computer-based control systems. It is still 

commonly used in flight control systems and has been used for controlling industrial 

robots and in various process control applications.
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The third adaptive control scheme that will be considered is the Model Reference 

Adaptive Controller. The Model Reference Adaptive Controller (MRAC) was originally 

proposed by Whitaker (1958) at the Massachusetts Institute of Technology. A block 

diagram of the system is shown in Figure 4.

Figure 4. Block diagram of Model Reference Adaptive Controller

The MRAC model is essentially composed of two loops. The inner loop is an ordinary 

feedback loop consisting of an adjustable controller and the plant. An additional outer 

loop has been added to the system, which includes a reference model and a controller 

parameter adjustment mechanism. A reference model is chosen that produces the 

specified system response characteristics. As the actual controlled plant output differs 

from the output of the reference model, a model error signal eft) is generated. The model 

error eft) drives an on-line adjustment mechanism that updates the parameters #(/) to the 

adjustable controller in attempting to drive e(t) to zero. The adjustment mechanism is the 

key to the entire system and determining an appropriate one is not a trivial task. The 

parameter adjustment mechanism in Whitaker's original proposal has come to be known as

the "MIT-rule".
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Whitaker's original "MIT-rule" is given as:

' •^p = -*«O)grad;,£(Z) (14)

where: 0(f) is the controller parameter vector

£■(/) is the model error

and k determines the parameter adaptation rate.

The "MIT-rule" given in equation (1.4) assumes that the controller parameters 0(t) 

change at a much slower rate than the other system variables. (This assumption is almost 

always made in the analysis of adaptive control systems.) In order to make the model 

error s(f) small, the parameters are changed in the direction of the negative gradient of 

^(Z). The "MIT-rule" has been shown to perform well if the parameter k is small. 

Difficulties arise, however, if k is too large relative to the size of the reference input. The 

stability of the system using the "MIT-rule" cannot therefore be guaranteed. Parks (1966) 

proposed an alternative adjustment mechanism based on Lyapunov's second method to 

deal with the stability problem of the "MIT-rule". In another important work, Monopoli 

(1973) eliminated the need to determine the derivative of the plant output that was 

required in Parks' work by using an augmented error signal instead of using the model 

error directly. A good bibliography on the subject of model reference adaptive control is 

given in Astrom and Wittenmark (1989).

MRAC was originally conceived for continuous-time systems. In fact, the first 

design of a MRAC for discrete-time SISO systems was not proposed until 1977 (Ionescu 

and Monopoli, 1977). In 1980, several important proofs of global stability for both 

continuous-time and discrete-time MRAC systems were presented by Egardt (1979,

1980), Goodwin, et. al. (1980), Morse (1980) and Narendra, et. al. (1980). These works
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proved that if the plant is linear and time-invariant with unknown parameters, it can be 

stabilized based on the following assumptions:

• the plant zeros are stable

• the plant relative degree is known exactly and matches that of the 
reference model

• the sign of the high frequency gain is known

• an upper bound for the order of the plant is known.

Once proof of global stability for the ideal case had been established, much of the research 

in the 1980s concentrated on relaxing the above assumptions, making MRAC design more 

robust. Model reference adaptive control is generally considered to be one of the two 

most important branches of adaptive control and remains the subject of considerable 

research.

The last adaptive control scheme to be considered is known as the self-tuning 

regulator. The self-tuning regulator (STR) ranks with model reference adaptive control in 

importance in the adaptive control community. The STR was first conceived by R. E. 

Kalman (1958). Kalman divided the control design procedure into three basic steps:

I. Measure the dynamic characteristics of the process.

II. Specify the desired characteristics of the controller.

III. Put together a controller using standard elements 
which has the required dynamic characteristics.

Kalman's goal was "to design a machine which, when inserted in the place of the controller

... will automatically perform steps (I-III), and set itself up as a controller which is

optimum in some sense." Armed with the dream of developing a machine that would

eliminate the need for a control designer, Kalman designed a special-purpose computer to,
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implement the controller, but the project was plagued by hardware problems. His concept 

went on to serve as a model, however, for what is now known as the self-tuning regulator. 

A block diagram of the self-tuning regulator may be seen in Fig. 5.

Figure 5. Block diagram of Self-Tuning Regulator

Like the model reference adaptive controller, the STR model is comprised of two loops 

with the inner loop consisting of the regulator and the process. The outer loop, however, 

is significantly different in the two approaches. In the model of Figure 5, the outer loop 

consists of a parameter estimator and an on-line controller design mechanism labeled 

"Control Law Synthesis" in the figure. The function of the estimator is to select 

parameters that best fit a preconceived prejudice model of the plant. The parameter 

updates are based on the dynamic characteristics of the plant as determined from the plant 

input and output signals. The certainty equivalence principle is then applied in which the 

uncertainties of the estimated parameters are ignored and the estimated parameters are 

assumed to be the true parameters of the plant. The estimated plant parameters are then 

used in a design calculation to determine the updated parameters for the controller. It is 

sometimes possible to reconfigure the controller so that the estimator parameters become
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the controller parameters themselves, thus eliminating any intermediate calculations. This 

is referred to as a direct implementation. If intermediate calculations are required to 

obtain the controller parameters from the parameter estimates, it is referred to as an 

indirect implementation.

One of the advantages of the STR approach is that it offers considerable flexibility 

in implementation. Kalman's (1958) discrete-time design used a stochastic least-squares 

parameter estimation scheme with a deadbeat control law. Astrom and Wittenmark 

(1973) proposed a deterministic least-squares estimator used in conjunction with a 

minimum variance controller. Wellstead (1978) proposed using pole-zero assignment for 

STRs, an idea that was also expanded upon by Astrom and Wittenmark (1980). By the 

late 1970s, the STR had caught the interest of many researchers. Most of the estimators 

proposed for self-tuning controllers have included some sort of least-squares based 

algorithm. Stemby (1977) provided the first general proof for the convergence of the 

least-squares algorithm based upon martingale theory. Several years later, his work was 

extended to include adaptive control systems (see Stemby and Rootzen, 1982). To prove 

convergence of the estimated parameters, the later work employed a probabilistic 

approach known as "Bayesean embedding" which assumed the plant parameters to be 

random variables. The proof assumed, however, that the system is excited by white, 

Gaussian noise. Almost all of the other stability and convergence analyses have been 

based on finding a "stochastic Lyapunov function" (Kumar, 1990); however, the method 

has only been successful in a few isolated cases when the parameter estimator is either a 

stochastic gradient algorithm or a modified least-squares algorithm, and the control law is 

of the minimum variance type (see Goodwin, et. al. (1981), Becker, et. al. (1985), Kumar 

and Praly (1987) and Sin and Goodwin (1982)).

Kumar (1990) points out that even today, very little is known about the behavior

of recursive least-squares parameter estimate based adaptive control schemes from an
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analytical perspective. While stability and convergence theories have been developed for 

idealized conditions, these conditions are often unrealistic in practice. Difficulties such as 

non-linearities, unmodeled dynamics and actuator saturation can arise that violate the 

assumptions made in the theoretical stability proofs making it necessary to circumvent the 

theoretical limitations when implementing self-tuning control. Much of the research on 

self-tuning control in the last decade has therefore been focused on ad hoc methods for 

making self-tuning algorithms more robust.

1.3 Adaptive PID Control

Due to the complexity of the algorithms involved, adaptive control research was 

severely hampered by a lack of adequate hardware in the 1950s and 1960s. As digital 

computers became less expensive and more powerful in the 1970s, adaptive control 

research began to flourish. Research again intensified as microprocessors appeared on the 

scene in the 1980s. The advent of the microprocessor offered the potential for widespread 

use of adaptive control in many of the applications where PID controllers have performed 

poorly due to non-linearities, time-varying plant parameters or inadequate tuning by 

process operators. Although the general adaptive methods described previously, such as 

MRAC and self-tuning control, could be readily implemented in microprocessors, many 

plant engineers and technicians have found the adaptive algorithms difficult to understand 

and have, hence, tended to reject them. For this reason, adaptive control algorithms have 

been developed that conform to a PID-like structure.

The development of adaptive PID algorithms has been approached in two 

fundamentally different ways. The first approach is to develop a controller that 

automatically tunes itself to the plant, either on a power-up condition or upon operator 

initiation. After the initial tuning-in period, the controller tuning parameters are fixed until
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the automatic tuning process is manually reinitiated. Controllers designed for this type of 

application are known as auto-tuning controllers. The advantage of this method is that 

considerable time is saved in the tuning process and the system is often better tuned than 

when it is tuned by an operator. Astrom and Hagglund (1984b) proposed an automatic 

tuning method that uses relay feedback to determine the critical point on the Nyquist curve 

of the open-loop transfer function of the controlled plant. Once the critical point has been 

determined, any of several methods may be used to choose appropriate PID tuning 

parameters (see Astrom and Hagglund (1984a), Astrom and Hagglund (1988) and 

Hagglund and Astrom (1985)). This method has been used in many of the so-called auto­

tuning PID controllers that are on the market today. Krause and Myron (1984) proposed 

a method involving pattern recognition of the process reaction curve of the open-loop 

system. The Foxboro EXACT controller is based on this technique. These and several 

other industrial implementations of auto-tuning PID control have been compared by 

Radke (1987). Although auto-tuning PID controllers have been extremely effective and 

are widely used in industry today, they cannot be considered truly adaptive controllers, 

since once the controller has been tuned, albeit automatically, the controller parameters 

are thereafter fixed. Human intervention is required to retune the controller if the process 

changes over time. The application of these devices is, in fact, limited to the same 

applications where conventional PID control is appropriate. The manual tuning process is 

merely eliminated.

The alternative approach to auto-tuning PID controllers is to employ one of the 

adaptive models described earlier, i.e., the MRAC or the STR model. The control law is 

modified, however, to conform to a PID-like structure. Established PID design 

techniques, such as pole-placement, can then be used to modify the controller design 

based on the current values of the estimated parameters. A number of variations of this 

approach have been proposed in the literature, most of which fall into the self-tuning
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regulator category. Normally, some form of recursive least-squares algorithm is used to 

estimate the parameters of the plant on-line, and any one of a number of available control 

law design methods can be employed. One method used in the implementation of adaptive 

PID control employs a deadbeat control strategy. Such a design was proposed by Kurz, 

et. al. (1980). This method is suitable for low-pass processes with small dead times; 

however, it suffers the same limitation as conventional deadbeat control, i.e., the control 

output is directly dependent on the sample time. If the size of the control output must be 

limited, the sample time must be made proportionally large to compensate. Pole- 

placement techniques, such as those proposed by Wittenmark (1979), Astrom and 

Wittenmark (1980) and Wittenmark and Astrom (1980), are also used in adaptive PID 

applications. They provide the designer the advantage of being able to control the system 

response by selecting the locations of the closed-loop poles. Wittenmark and Astrom 

(1980) proposed still another adaptive PID method utilizing pole-zero cancellation.

Similar approaches have been proposed by Lammers (1982) and Banyasz and Keviczky 

(1982). The pole-zero cancellation approach is a direct implementation and is thus, 

computationally efficient; however, it is limited to plants that can be modeled well by 

second-order, that are without dead time and that have stable poles and zeros.

Warwick, et. al. (1987) proposed a parameter adaptive control methodology 

which is essentially a pole cancellation method whose primary objective is servo tracking. 

Since the technique does not result in the cancellation of the process zeros, it can be 

applied to non-minimum phase systems as well. The technique, known as simplified self- 

tuning control (SSTC), is flexible enough to allow the basic algorithm to be modified into 

several interesting variations, one of which is an adaptive PID algorithm. A standard 

recursive least-squares algorithm is used as the parameter estimator. (An extended least- 

squares algorithm could be used if colored noise were present, but the authors contend
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that the ordinary least-squares approach usually works sufficiently well, even if the noise is 

colored.)

The STR model has been shown to allow considerable flexibility in the 

implementation of parameter estimation algorithms and control law synthesis 

methodologies. In each case, however, it is necessary to impose certain restrictions on the 

plant model to accommodate the PID-like controller structure. If the plant can be 

adequately modeled under the restrictive assumptions, adaptive PID algorithms offer a 

potentially simpler solution to the adaptive control problem than some of the more general 

approaches.

1.4 DSP-based Control Implementation

Most adaptive control applications require parameter-based plant models, and 

most parametric identification schemes involve some form of a least-squares algorithm, 

although specific computation methods vary widely. Least-squares based techniques 

require iterative solutions that must be implemented on a digital computer. The 

algorithms can be math intensive and require considerable processing power if an iteration 

is to be completed during each sample interval. Some algorithms may require hundreds of 

multiplications and divisions in a single iteration, depending on the model order assumed. 

Until recently, microprocessor-based adaptive control was limited to applications requiring 

relatively slow sample rates, such as temperature control or control of chemical processes. 

Recent advances in very large scale integration (VLSI) methods have allowed integrated 

circuit manufacturers to develop a special class of microprocessors for processing digital 

signals. Features such as fast clock speeds (40 Megahertz), multiple large accumulators 

(up to 96 bits), hardware multipliers and Harvard architectures provide these processors 

with the ability to perform high precision operations at very high speeds. Consequently,
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these special function microprocessors, known as DSP chips, are ideal candidates for 

adaptive control applications that require significantly faster sampling rates than are 

possible using general-purpose microprocessors.

1.5 Statement of the Problem:

A large number of SISO processes are currently controlled by PID controllers. 

PID controllers have proven to be robust in many applications and they are easily 

understood by control engineers and technicians. It may therefore be desirable in many 

cases for adaptive controllers to conform to a PID-like structure. Although conformance 

to a PID model puts constraints on control system performance, PID control remains a 

viable alternative for many adaptive applications. In addition, DSP chips offer many 

advantages over general-purpose microprocessors for the implementation of adaptive PID 

algorithm. The problem to be investigated may therefore be stated as follows:

Is it possible to implement an adaptive PID controller on a digital signal 

processing chip?

The results of the investigation of this problem are presented in this thesis.
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1.6 Thesis Organization

The remainder of the paper is organized as follows: First, a practical discrete-time 

PID algorithm is developed in Chapter 2. A number of enhancements to the classical PID 

control algorithm given in equation (1.1) are incorporated to make the algorithm more 

robust. Several methods for designing with PID controllers are also explained. In 

Chapter 3, the discrete PID algorithm is implemented on the Motorola DSP56000 digital 

signal processing chip. The basic architecture and instruction set of the DSP56000 are 

explained, and the DSP56000 implementation of the PID algorithm is also analyzed. The 

PID control program is then tested in real-time using a Motorola ADS56000 development 

system tied to an Intel 80386-compatible computer modeled as the plant. The Zenith 

80386-based computer is equipped with a National Instruments AT-MIO-16 analog I/O 

board that serves as the input/output interface for the plant. In Chapter 4, an adaptive 

PID control algorithm based on a self-tuning regulator model is developed. A recursive 

least-squares algorithm is selected for the parameter estimator. The parameter estimator is 

then incorporated into a PID version of the SSTC controller presented by Warwick, et. al. 

(1987). The estimation algorithm includes several ad hoc improvements to make it more 

robust. The adaptive PID algorithm is then simulated, the results of which are presented 

and analyzed in Chapter 5. The recursive least-squares parameter estimator is tested, 

followed by simulations of the general SSTC algorithm. The SSTC algorithm is then 

forced into a PID-like structure, which is also simulated and analyzed. Finally, 

conclusions are drawn in Chapter 6 and recommendations are made for future work.



CHAPTER II

DEVELOPMENT OF THE DISCRETE­

TIME PID ALGORITHM

2.1 Introduction

Equation (1.1) described the classical form of the PID algorithm as:
#(0 = Je(Z)+| je(s)<&+ T„■

Although the classical PID control law yields a controller that is suitable for a wide variety 

of applications, implementation in that form can result in some difficulties. Several 

enhancements to the basic algorithm have been proposed over the years to deal with some 

of the difficulties.

One problem arises from the fact that each of the terms of equation (1.1) acts on 

the error signal, e(Z), which is the difference between the reference input, w(Z), and the 

plant output, y(t). The control law treats a change in the reference input or a disturbance 

on the output in an identical fashion. A large, sudden change in the setpoint will generate 

a large error signal from the derivative term known as derivative kick that could possibly 

drive the plant into a non-linear region. Derivative kick can be addressed by modifying the 

structure of the controller so that the derivative term is only acted upon by the plant

19
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output and not the setpoint. The proportional term can also contribute to excessive 

overshoot in response to large setpoint changes. The problem of proportional kick can 

also be dealt with by modifying the controller structure so that the proportional term is 

also only acted upon by the output and not the error. The disadvantage of this method is 

that responses to setpoint changes can be somewhat sluggish. Another common difficulty, 

known as integral windup, occurs when a large setpoint change causes the control output 

to remain saturated for an extended time. The integral term continues to grow larger even 

after the output has saturated. When the output finally reaches the setpoint value and the 

error changes signs, it takes some time for the integral term to unwind and allow the 

control output to change signs as well. This results in a large overshoot in the plant 

output. Modification of the classical PID structure, combined with the addition of a non­

linear limiting function, is one of the simpler methods for dealing with integral windup. 

Using the derivative term in its classical form can also lead to difficulties. In the form of

equation (1.1), the nature of the derivative term, Td —e(/), (or in Laplace transform form, 
dt

sTde(s)), is that its gain increases with frequency. The derivative term tends to amplify 

higher frequency measurement noise, possibly leading to erratic behavior in the control 

output. The derivative term is therefore often filtered in order to limit its gain at high 

frequencies.

Once a suitable model has been developed for the PID controller, it must be 

converted to discrete-time form before it can be digitally implemented. Many different 

methods have been developed for approximating a differential equation by a difference 

equation. Each method possesses certain advantages and disadvantages over the others in 

how the frequency response of the discrete model compares to the frequency response of 

the continuous model. When considering control applications, a key criterion for 

evaluating the different methods is the amount of phase error generated by the 

discretization, as the stability of a control loop is directly related to the phase margin. A
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discretization method commonly employed in control applications is a numerical 

integration technique known as the bilinear transformation, or Tustin's approximation. A 

major benefit of using the bilinear transformation is that it produces zero phase error in the 

discrete-time model. There are side effects, however, that become apparent when 

applying it to the derivative term, i.e., it can cause ringing in the output if Td is too small. 

Frequently, therefore, the derivative term is converted using the backward difference 

integration method, while the bilinear transformation is employed to convert the 

proportional and integral terms to discrete-time form.

After developing a discrete-time PID model, the PID parameters must be selected 

to produce the desired response in the plant output. A number of different design 

methods have been developed for determining appropriate PID parameter values. Most of 

the techniques require working in the 5 - plane and then converting the continuous-time 

controller model to discrete form. If the process model is of a low enough order, the 

controller design can also be done directly in the z- plane using discrete-time pole- 

placement techniques. Discrete pole-placement requires a discrete-time model of the 

plant, however. Direct digital design methods are commonly used in implementing 

adaptive controllers since the parameter estimation algorithms are usually based on 

discrete-time models. Direct digital design methods do have a drawback, however, in 

that it can be difficult to translate the discrete-time control law to a PID structure.

There are a number of other issues that must be addressed when implementing a 

digital PID controller. As with any sampled data system, it is crucial to select an 

appropriate sampling rate for the controller. Too slow a sampling rate can result in poor 

control of the plant or even aliasing. Too fast a sampling rate can lead to numerical 

difficulties. A number of guidelines have been proposed for selecting appropriate 

sampling rates for digital controllers. Another important issue to consider when designing 

a digital control system is quantization. Analog signals must be quantized before they can
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be processed by a computer or microprocessor. Too few bits in the A/D converter, for 

instance, can lead to problems such as limit cycling. Not only are signals quantized in 

digital control systems, but coefficients and parameters must be quantized as well. 

Quantization can be modeled as a noise source in the control system and may need to be 

considered in the design of the controller. Also, the length of the storage words in the 

computer memory must be considered. Too few bits in a memory word can result in an 

offset between the setpoint and the plant output. The word length required to achieve a 

given steady-state error can be calculated if the PID parameters and the sampling 

frequency are known.

In this chapter, a continuous-time PID algorithm is developed that incorporates 

many of the modifications discussed. The continuous-time algorithm is converted to 

discrete-time using the bilinear transformation and the ramifications of the conversion are 

discussed. Several PID controller design methods are also explained and some advantages 

and disadvantages of each method are pointed out. Finally, some key PID controller 

implementation issues are explored, including selection of an appropriate sampling rate 

and analysis of quantization error.

2.2 Development of the PID Terms

Proportional action can be described by the control law:

m(Z) = Ke(t).

The control output, w(Q, is proportional to the error e(t). To analyze the closed-loop 

behavior of the proportional term, consider a model of a linear time-invariant plant under 

simple proportional feedback. A block diagram of the system with a load disturbance v(Q 

and measurement noise is shown in Figure 6.
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If K is the D.C. gain of the plant, then the steady-state output of the plant is given as:
KK

(w- rj) +
1 + KK 1 + KK.

(2-1)
p p

Astrom and Hagglund (1988b) make the following observations from equation (2.1):

1. A high controller gain,/C, is desirable to make the plant output y' as close 

as possible to the setpoint, w.

2. A high controller gain, K, makes the system less sensitive to the load 

disturbance, v.

3. A high controller gain, A?, makes the process more sensitive to the 

measurement noise 77.

4. Measurement noise, 77, responds to the system in the same way as the setpoint,

w.

Although equation (2.1) does not address the dynamics of the system, it does point out 

that unless K or Kp =00, there will always be an offset between the output and the 

setpoint. In order for K or Kp to equal infinity, either the controller or the plant must

contain an integrator. Since it is rare for a plant to contain an integrator, it is usually 

necessary for the controller to contain the integrator in order to remove the offset.
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Referring again to equation (1.1), the control output resulting from the integral 

term being added to the proportional term is expressed as:
( 1 ' A 

«(0 = ^ e(Z) +— (2.2)

Assuming the system is in steady-state with w(Z) = w0 and e(t) = e0, equation (2.2) 

becomes:
( e

u0=K e0+-±t .
V A 7

As long as e0 does not equal zero, u0 will never remain constant. A positive error, no 

matter how small, always yields an increasing control output, and a negative error always 

causes a decreasing control output. Integral action, therefore, guarantees zero steady- 

state error for a step disturbance with the offset being removed in a time proportional to 7^ 

(The smaller 7J is, the faster the integral removes the offset).

The use of integral control alone frequently leads to an unstable closed-loop 

system, as it adds 90 degrees of phase lag to the forward path. Integral control, therefore, 

is almost always used in combination with proportional control. Proportional plus integral 

control (commonly known as PI control) generally leads to a stable closed-loop system, 

providing 7? is appropriately chosen. However, even when used in combination with the 

proportional term, the integral term adds a degree of instability to the system. It is often 

necessary to add a stabilizing influence to counteract the effects of the integrator. This is 

accomplished with the addition of a derivative term.

Very often, process dynamics are such that there is a time lag from when a change 

is made in w(Z) to when a change is noticeable in the process output, y(t). The response 

could be improved if the controller predicted changes in the process output. This is the 

function of the derivative term of equation (1.1). As explained by Astrom and Hagglund 

(1988b), the prediction is made by extrapolating the error along the tangent to the error 

curve, as seen in Figure 7.
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Figure 7. Graph depicting predictive action of derivative term

Derivative action is often required to control plants with excessive phase lag, such 

as processes of order greater than three or processes with large dead times (Clarke, 1984). 

The derivative term adds phase lead and therefore stability into the system. It is used less 

than the other PID terms in practice, however, as it can be difficult to tune and tends to 

amplify noise at high frequencies. This is one of several practical problems that must be 

addressed when implementing PID controllers. As stated earlier, the solution to many of 

these difficulties lies in the modification of the basic PID structure given in equation (1.1).
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2.3 Development of the PID Controller Structure

A simplified block diagram of the classical PID structure is shown in Figure 8. 

Some of the difficulties encountered when implementing a PID controller in the form of 

Figure 8 have already been discussed. In this section, a practical PID controller structure 

is developed that addresses many of those difficulties.

Figure 8. Simplified block diagram of classical PID structure

The proportional and integral terms from the classical PID algorithm given in

equation (1.1) can be used to form a PI controller described by:
(1 + sr}

Gc(s) = £
sT sT

(2-3)1 + = K
i y

Equation (2.3) can be drawn as a simple lag in positive feedback as shown in Figure 9.

In order to avoid the problem of derivative kick, the derivative term should only be 

acted on by the output and not the setpoint. One way of accomplishing this, referred to by
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Astrom and Wittenmark (1990) as a derivative-of output controller, is shown in the model 

of Figure 10.

Figure 10. Block diagram of Derivative-of-Output PID model

Assuming D(s) = K(f + sTd), the control output from Figure 10 is determined to be:

z . (1 + 5^)
u(s) = Ky

sT
\+2j^+rjj£

sT,
(2.4)K y(s)

From equation (2.4), it can be seen that the reference input drives a PI response from the

controller. The derivative term, however, is acted upon only by the output and derivative

kick is thus avoided. The parameters of equation (2.4) relate to the parameters of the

classical PID model, K', Tl, Td\ in the following manner:
K'=K

(2.5)T'=2Tl 1

The parameters of the derivative-of-output controller are similar to those of the classical 

controller, as seen in equation (2.5). The parameters 7J and Td do not interact as they do 

in the some interacting forms (see Clark, 1984).

The derivative-of-output controller is an improvement over the classical PID 

structure in that it eliminates derivative kick without introducing interaction between the 

Tt and Td terms. It does not, however, address the problem of excessive overshoot 

resulting from proportional kick. An alternative model, referred to by Astrom and
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Wittenmark (1990) as the setpoint-on-l-only controller, addresses proportional kick by 

changing the PID model so that, like the derivative term, the proportional term is acted 

upon only by the output and not the setpoint. The setpoint-on-I-only controller can be 

tuned to react quickly to load disturbances; however, the controller's reaction to setpoint 

changes can be somewhat sluggish, relying only on the integration of the error signal to 

drive the plant.

The derivative term from the derivative-of-output PID model can be expressed as:

»As) = -KsTdy{s) (2.6)

The gain of the derivative term given in equation (2.6) is expressed as:

|-X/<y7;| = KcoTd (2.7)

From equation (2.7), it can be seen that the gain of the derivative term grows without 

bound as co increases. This implies that for large co (i.e., outside the bandwidth of the 

plant), process and measurement noise are the dominating factors in driving the derivative 

term. This problem is somewhat alleviated by filtering the derivative term to limit its gain 

at high frequencies. A common method of filtering the derivative term is given in equation 

(2-8):
( A

sT,
D(s) = -K T

1 + 5 — 
NJ

(2.8)

where N is the maximum allowable gain of the derivative term. (Astrom and Wittenmark 

(1990) report that A is typically set in the range of 3-20.) The magnitude response of the 

filtered derivative term with K=\, A = 10 and Td - 0.1 is shown compared to the 

unfiltered derivative term response in Figure 11.
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Figure 11. Magnitude responses of filtered vs. unfiltered derivative terms

The cutoff frequency of the filtered term occurs at radians with a maximum gain of

20 dB (N=l 0.0). Figure 11 demonstrates how limiting the gain of the derivative term at 

high frequencies minimizes the effect of measurement noise on the control output. A 

block diagram of the modified continuous-time PID model is shown in Figure 12.

Figure 12. Block diagram of modified PID controller

The PID model of Figure 12 is a derivative-of-output controller in which the

derivative term is acted upon only by the output, thus eliminating the problem of
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derivative kick. The derivative term filter also minimizes the effect of measurement noise 

on the control output.

2.4 Discretization of the PID Algorithm

In order to digitally implement a continuous-time system, it must first be converted 

to discrete-time form. Many approaches have been developed for converting continuous­

time transfer functions to discrete equivalents. Franklin, Powell and Workman (1990) 

have divided these methods into three categories:

1

2

3

hold equivalence 

zero-pole mapping 

numerical integration.

In essence, the goal of each of the approaches is identical; i.e., to convert a differential 

equation to a difference equation that approximates the differential equation. Franklin, 

Powell and Workman (1990) analyze the merits of each procedure in terms of its 

application to digital control. The most common methods for discretizing continuous-time 

controller models come under the heading of numerical integration. Three approaches are 

commonly used to approximate an integral numerically. They are the forward rectangular 

rule, the backward rectangular rule and the trapezoidal rule, referring to how the 

incremental value of the area under the curve is calculated in each case. With forward 

integration, the left half of the s-plane maps onto the entire z-plane, including the area 

outside the unit circle defined by |z| = 1. A stable continuous-time system can therefore be 

made unstable using the forward rectangular rule. The backward rectangular rule, 

however, maps the left half of the s-plane into a region entirely within the unit circle in the
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z-plane, thus guaranteeing stability in the transformation. The trapezoidal rule (also 

known as the bilinear transformation} is unique in that the left half of the s-plane maps 

into the entire stable region of the z-plane, i.e., inside the unit circle. The jco axis in the s- 

plane maps directly onto the unit circle in the z-plane. This leads to a significant amount 

of distortion, since the jco axis in the s-plane ranges from -oo to + oo while the unit circle 

in the z-plane ranges from 0 to 2?r. The frequency distortion resulting from this 

transformation can be significantly reduced by employing a technique known as pre- 

yvarping. (Franklin, Powell and Workman (1990) discuss the methodology at some 

length.) This method can only be applied, however, if the critical frequency is known in 

advance.

Although any of these approaches may be used to convert a continuous-time

controller model to discrete-time form, the methods most generally used for control

applications are the backward rectangular rule (sometimes referred to as the backward

difference) and the bilinear transformation, since both methods guarantee stable poles in

the z-plane if the poles in the s-plane are stable. Clarke (1984) analyzes the frequency

response characteristics of the two methods in terms of a normalized frequency. If only

frequencies up to the Nyquist frequency are considered, i.e.,
71

the frequency with respect to the Nyquist frequency can be normalized by letting 

x = where x is the normalized frequency ranging from 0-^1. The gain and phase

error for 0 < x < 1 are summarized in Table 1.
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Table 1. Phase and gain error from backward rectangular rule

Freqx Gain error Phase error

0.1 .9959 -9

0.25 .9745 -22.5

0.50 .9003 -45

0.75 .7842 -67.5

1.00 .6366 -90

Table 1 demonstrates the criticality of the sampling rate relative to gain and phase error. 

The phase error becomes significant for <y > 0.1<yw , indicating that sampling rate should 

be at least ten times the Nyquist frequency. The gain and phase error resulting from the 

bilinear transform are summarized in Table 2.

Table 2. Phase and gain error from bilinear transform

Freq x Gain error Phase error

0.1 1.0083 0

0.25 1.0548 0

0.50 1.2732 0

0.75 2.0492 0

1.00 00 0

In Table 2, the phase error is zero up to the Nyquist frequency, and the gain error does not 

become significant until a> > 0.5<vN. Since phase error is generally more important than 

gain error in control applications, the bilinear transformation appears to be the better
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choice for conversion of the continuous-time controller to discrete-time. Having 

developed a practical PID model and selected the bilinear transformation as the method of 

discretization, the continuous-time PID model must now be transformed to a discrete-time 

model.

The following development follows Clarke (1984). From the PI regulator given in

equation (2.3), the integral term from Figure 9 is given as:
1/

1 /T
h(s) = TTV = -iZ^1 + xTy y_ + 5

Solving for the exact z-transform of H(x) yields:

H(z) = (l-z“')Z- H(s)

(l-e'^)z'1

1-e /’z"1
. . -VSubstituting p for e /Ti gives:

H(z ) = (!-£)* -1
(2-9)

\-Pz~'

Equation (2.9) is the exact z-transform of the integral term of Figure 9. Placing equation 

(2.9) in feedback with gain K' yields:

(2-10)£/(z-‘) = K'E(z-') + U(z-').

Solving for U(z 1) gives:

U(z~') = K'\ (l-^)z-1

(1-Z-)
)£(z-‘). (2.11)

•••H(z-1) =

1 +

Equation (2.11) is an expression for the exact z-transform of the PI controller where

The PI controller from Figure 9 can be expressed in Laplace transform form as: 

Ge(«) = ^(
sT,
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Applying the bilinear transformation to Gc yields:

Gc(z"') = ^

1+2(1 z ) 
T(i+r') '

2(1 -z-')

r(2?;+T)

27;

f 2Tz"'
[ (27’ + T)(l-z-1) '

T(l+z_1) '

(2.12)

Comparing equation (2.11) to (2.12): 
2T

(!-£) =
27-T 

;.p=--i—- andK' = K H 2Z + T
a2t;+ta

27?
= 7C 1+T

27? (2-13)
(27?+ T)

Equation (2.12) is an approximation of the exact z-transform of the PI controller

expressed in equation (2.11) with equation (2.13) giving the discrete approximation for p.

From equation (2.10):

U(z~') = K'E(z~') + U(z-')
\-/3z-' . (2.14)

U{z~') = K'E(z-') + z~'U(z~') - K'Pz-'E{z~')

Taking z_1 as the backwards shift operator, equation (2.14) becomes:

u(k) = K' e(k) + u(k -1) - K' Pe(k -1). (2.15)

The control output in equation (2.15), w(£), can be split into the proportional part:

i 7

P(k) = K'e(k),

and the integral part:

I{k) = u(k-\)-K'Pe(k-\)

Simplifying the integral term gives:
I(k) = K' e(k -1)+I(k - pK' e(k -1)

= /?/(£-l) + (l-/7)w(£-l)

(2-16)

(2-17)

or,

I(k +1) = pi(k) + (1 - P)u(k). (2.18)

Equation (2.18) then becomes an expression for the integral term in terms of p, which can 

then be approximated to any degree one desires.

Next, the derivative term is transformed to discrete-time form. The filtered

derivative term was given previously as:
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D(s) = -K
sT,

T1 + 5^
< NJ

(2-19)

Applying the bilinear transform to equation (2.19) yields:
2r/i-z-')

D(z') = -K T(l + z~')
-i\\

1 + ^- 2(1-Z-)
r(z-’)

Letting y = ^-,

£>(z"') =-------A~'2^1 z )—y(z-')

N (. N J

1 + 2 Jn}^ H1 “ 2 ) = -*’ 2 z^z*1) + £' 2 jz"1 7(z-’).

Taking z 1 as the backwards shift operator yields:

2j7-ll/N J 2K' y
W) = kT >-..^(k -1) + 7/,/-[X* -1) - X*)] •

2y+i 
/#+1

Setting:

2r/^ 2r/^
gives:

2^+'

<T(l + z-')J

D(k) = d0D(k - V)+d}[y(k -1) -X*)]• (2.20)

Equation (2.20) is the discrete-time expression for the filtered derivative term in terms of 
7L

Z = —•
T

The complete PID algorithm can now be formed by combining equations (2.16),

(2.18) and (2.20) to give:
u(k) = P(k)+I(k) + D(k)
u(k) = K'e(k) +I(k)+d0D(k -1) +d}[y(k -1) -X*)] ( '

with:
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I(k +1) = pl(k) + (1 -P)u(k) (2.22)

where:

It only remains to determine the appropriate values for the parameters K, 77, Td, T and

N.

Many different methods have been developed for selecting PID controller 

parameters to yield a specified plant performance. Some of the more commonly used 

approaches to PID controller design are discussed briefly in the next section.

2.5 Designing with PID Controllers

PID control is used for a wide variety of applications. A PID algorithm may be 

used in a custom design to control a specific plant. In such cases, a mathematical model 

of the plant is developed and the controller parameters are obtained using a model-based 

design method, such as pole-placement. PID controllers may also be purchased off-the- 

shelf for use in an industrial application. In such cases, the engineer determines the 

controller parameters empirically. Undoubtedly, the most significant contribution to the 

area of empirically-based PID design has been made by Ziegler and Nichols (1942). 

Ziegler and Nichols proposed two different techniques for developing optimum controller 

parameters that remain widely used. Both methods share a common criteria in that they 

are designed to achieve a 1/4 decay ratio in the response of the output of the controlled 

process to a step change, but the methods differ in their implementation.

The first method proposed by Ziegler and Nichols defines the process dynamics

from the open-loop step response of the system. The open-loop step response is
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characterized by two parameters: the maximum slope of the response curve and the 

process time delay. These two parameters are obtained graphically by drawing a tangent at 

the point where the slope of the curve is at a maximum as shown in Figure 13. The 

distance from the intersection of the tangent line to the x and y axes are labeled L and a, 

respectively. The values L and a are used to calculate the controller parameters as given 

in Table 3.

Figure 13. Parameters obtained from Ziegler-Nichols Step Response Method 

Table 3. Ziegler-Nichols step response method parameters

Controller K r, T

P 1/
/a

PI .9/
/a 3L

PID i.y
/a 2L

L/
/2

The Ziegler-Nichols frequency response method is based on the knowledge of a 

single point on the Nyquist frequency response curve, i.e., the critical point. (The critical 

point is where the Nyquist curve intersects the negative real axis.) This point can be
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obtained experimentally by controlling the process with purely proportional feedback and 

increasing the controller gain until the process output begins to oscillate. At this point, the 

controller output and the plant output are 180° out of phase. The gain required to bring 

the system to the point of oscillation is referred to as the ultimate gain, kc, and the period 

of oscillation of the resultant output is called the ultimate period, tc. Table 4 gives the 

recommended PID parameters for the Ziegler-Nichols frequency response method.

Table 4. Ziegler-Nichols frequency response method parameters

Controller K T,

P Q.5kc

PI 0.4^ Co

00o
’

PID 0.6A, 0.5<„

The Ziegler-Nichols criteria are designed for cases where the primary control 

objective is disturbance rejection (the regulator case) as opposed to set-point tracking (the 

servo case). The gain obtained from the two Ziegler-Nichols methods is relatively high in 

order to meet this objective. It can be shown that a decay ratio of 1/4 equates to a relative 

damping £=0.22 which causes a rather large overshoot for setpoint changes. Other 

empirically-based tuning criteria have also been proposed that offer improved performance 

over Ziegler-Nichols techniques. Miller, Lopez, Smith and Murrill (1967) compare the 

most significant of the empirically based tuning criteria (including Ziegler-Nichols) and 

conclude that controller tuning methods that use an integral error criteria are superior to 

the other techniques.

It is not always possible, or even desirable, to use empirical methods to obtain PID 

controller parameters. If a model of the plant is available, the parameters can be derived 

using pole-placement. Consider a plant characterized by the second-order model:
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GM = (i+sr)(i+.s£)

If the transfer function of the PID controller is given as:
A'(l+s7’ + s27'7^) 

Gc(s) =----------- - ----------
sT

the characteristic equation of the closed-loop system can be determined to be:
kK

s3 + s2 1 1 kpKTa
T T TT LJ1 72 21J2 J

_L+M
^2. TTT

= 0. (2.24)+ 5 + •

If the desired closed loop characteristic equation can be described as:
(5+ aco)(s2 + 2£cos+ co2) = 0, (2-25)

the controller parameters can be determined by substituting equation (2.25) into equation 

(2.24) and comparing like powers of 5. A more detailed description of the continuous­

time pole-placement procedure is given in Astrom and Hagglund (1988b).

The response of many SISO systems can be characterized by a pair of complex 

poles, commonly referred to as the dominant poles. Whereas the Ziegler-Nichols (1942) 

techniques are based on the knowledge of one point on the Nyquist curve, Astrom and 

Hagglund (1988b) have developed a procedure for designing a controller based on the 

knowledge of two points on the Nyquist curve. The dominant pole design method 

estimates the locations of the dominant poles of the closed-loop system from the Nyquist 

curve of the open-loop system. A complete development of the method is given by 

Astrom and Hagglund (1988b).

A number of PID design methods are based on the concept of selecting controller 

parameters so that the dominant poles of the plant are canceled. These methods are 

simple to implement and yield a system that responds well to setpoint changes; however, 

Astrom and Hagglund (1988b) contend that the response of these systems to load 

disturbances is poor, as it includes the dynamics of the canceled poles. The closed-loop 

system will therefore respond to load disturbances similarly to the response of the open-
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loop system. The same effect occurs if the cancellation of the poles is not exact. These 

methods should therefore be avoided in practice if the controller is going to be used 

primarily as a regulator.

All of the design methods mentioned so far have been based on continuous-time 

models of the controller and the plant. The controller parameters obtained must be 

converted to discrete-time before applying the method. It is also possible, however, to 

position the closed-loop poles of lower-order discrete-time models directly. A thorough 

treatise on the subject of discrete-time pole-placement is given by Astrom and Wittenmark 

(1990).

Some of the more common techniques for designing with PID controllers have 

been presented, but many other methods have also been developed. As long as the sample 

rate is relatively fast, the controller design can be done in continuous-time and the 

parameters obtained can be converted for use in the discrete-time algorithm. The 

controller design may also be done directly in discrete-time, although it may be more 

difficult to force the resulting controller into a PID structure.

2.6 PID Implementation Issues

Once the PID control algorithm has been developed and the method for selecting 

the controller parameters has been determined, several important issues remain to be 

addressed before the PID algorithm is implemented. A key consideration in any digital 

control design is the selection of the appropriate sampling rate. Sample rates that are too 

fast can lead to numerical difficulties, and sample rates that are too slow can result in a 

poorly controlled process, or even aliasing. In this section, some guidelines are given for 

selection of a sampling frequency that is appropriate for the application. Quantization 

error and word length also play an important role in the implementation of digital
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controllers, particularly in the selection of the controller hardware. Both hardware 

quantization and computational quantization are discussed briefly in this section. Word 

lengths that are too short can result in problems such as integration offset or limit cycling. 

A method for determining the minimum requirements for memory elements is also 

presented.

Sample rate selection

Selection of an appropriate sampling interval is critical for the controller to be able 

to meet the design specifications. The effect of sample rate on frequency response has 

already been discussed briefly in Section 2.4. The constraining factor in the selection of 

the sampling rate is found in Shannon's sampling theorem, which states that "a continuous­

time signal with a Fourier transform that is zero outside the interval (-<u0, a>0) is given 

uniquely by its values in equidistant points if the sampling frequency is higher than 2a>0" 

(Astrom and Wittenmark, 1990). The frequency 2<x?0 is referred to as the Nyquist 

frequency. Simply stated, a continuous signal can be completely recovered after sampling 

if the signal is sampled at a rate at least twice the highest frequency component of the 

signal. If this rule is not adhered to, the original continuous-time signal cannot be 

recovered. This effect is known as aliasing. Anti-aliasing filters are often used to filter 

the input signal before sampling to remove the high frequency components. Anti-aliasing 

filters must be used carefully in control applications, however, as they introduce additional 

phase lag into the system which, in turn, causes instability. The additional phase lag may 

have to be factored into the control design if it is significant. This can be done by 

approximating it as a simple time delay.
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It is often assumed that the sampling rate should be as high as possible, particularly 

if the control design is performed in continuous-time and then converted to discrete-time. 

Faster sampling leads to a discrete equivalent that more closely approximates the analog 

model. Clarke (1984) points out, however, that there are cases where high sampling 

frequencies can lead to difficulties. Problems can arise, for instance, in cases where 

derivative action is employed and relatively long integral and derivative times are required 

for a given plant. Middleton and Goodwin (1990) demonstrate how too rapid sampling 

can also lead to numerical difficulties. Because word lengths are fixed by hardware 

limitations in digital systems, as the sampling rate is increased, the maximum 

computational error also increases. Middleton and Goodwin (1990) recommend that the 

sampling rate be selected to be approximately ten times the closed-loop bandwidth of the 

system; however, they do state that sampling rates up to fifty times the closed-loop 

bandwidth are often acceptable when implemented in high-precision hardware. Clarke 

(1984) states that in most cases, there is little point in selecting the sampling interval T 

such that there are more that ten to twenty samples during the ninety-five percent rise time 

of the step response. Astrom and Wittenmark (1990) recommend a sampling rate of ten 

to thirty times the closed-loop bandwidth of the closed-loop system. If Nr is the number 

of sampling periods per rise-time:

where Tr is the rise time. Astrom and Wittenmark (1990) recommend choosing Nr to be 

between four and ten for a first or second-order system.
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Quantization and word length

Quantization errors are the result of having to store digital numbers in memory 

elements with a finite accuracy. Quantization errors can be introduced in several ways. 

Quantization occurs in hardware devices such as analog-to-digital (A/D) converters. 

Quantization also occurs when performing numerical computations on parameters or 

coefficients that result in overflow, underflow and roundoff. The consequences of 

quantization depend on the structure of the feedback control system that is used. Detailed 

analysis of quantization leads to a very complicated non-linear model that is difficult to 

analyze. Some insight can be gained, however, by examining some simple cases using 

linear analysis.

Quantization of parameters or signals can cause three different effects; bias, noise 

and limit cycles. Bias is caused primarily through truncation. In two's complement 

arithmetic, truncating a positive number or a negative number results in a bias in the same 

direction, i.e., trunc(x) < x for both positive and negative x. If the quantization step is 

defined to be q, the maximum error resulting from truncation is q, which results in a bias

It can be similarly shown that the maximum error resulting from roundoff is %

which yields a bias of 0. Rounding is therefore preferred over truncation.

Quantization error can also appear in the form of noise. Hanselmann (1987)

presents a model for handling quantization error as noise. Assuming two's-complement 

arithmetic and a quantization step of q, the mean and variance of the quantization noise 

can be determined to be:

mean:

p = 0 for rounding

These expressions assume a uniform quantization error distribution in the interval q, 

which has been shown to be a valid assumption under some conditions. It also assumes a
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continuous amplitude input into the quantizer. This is true for A/D converters, but is not 

valid in considering internal computations. If the quantization is done as truncation, the 

error is equally distributed over the interval (o,</). If quantization is performed as 

rounding, the error is equally distributed over the interval . Astrom and

Wittenmark (1990) also show how quantization error can be modeled using linear 

analysis, treating the quantization error as a stochastic input. The linear models serve only 

as an approximation, however, and do not completely describe all aspects of quantization 

error. Another technique for analyzing quantization error using describing function 

analysis is given by Astrom and Wittenmark (1990). Describing function analysis can be 

used to predict limit cycles due to quantization and roundoff.

The necessity of roundoff when dealing with finite precision machines raises the 

question of what computer word length is required for the application. A problem known 

as integration offset can arise when the length of the storage element for the integral term 

is too short. The expression for updating the integral term was given as:

I(k +'l) = pi(k) + (l~P)u(k)

where p was determined for the bilinear transformation to be:

The correction term, (l - p)u(k), is normally much smaller than the integral term pi(k). 

If the word length is too short, the correction term will be rounded off causing an offset in 

the output. In a processor that utilizes fixed-point fractional arithmetic, the maximum 

value of w(A:)is limited to 1. For example, let T =.01 sec and f = 10 sec. This results in 

P=0.9990005 and (1 - p) = 0.0009995. In order to obtain less than 5 percent error in

the integral term, the minimum number of bits required can be calculated to be:
log[(0.0009995)(0.05)] 

number of bits =------ b------------------------ -
log(2)

= 14.28 » 15 bits.



45

2.7 Chapter Summary

In this chapter, basic PID control theory has been presented. The action of the 

PID terms was individually explained. It was noted that the classical version of the PID 

control law presents some difficulties in practical implementation. For instance, the 

problem of derivative kick stems from the derivative term being driven by the error signal 

which changes suddenly in response to a setpoint change or a load disturbance. A solution 

was proposed whereby the controller structure is modified so that the derivative term is 

only acted upon by the output and not the setpoint. This allows for quick response to load 

disturbances without generating a large overshoot from a change in setpoint. The problem 

of integral windup was also addressed by the addition of a limiting function at the output 

of the integral term. Another difficulty with the classical controller was found in the 

derivative term. The pure derivative term was shown to have a gain that increased 

without bound with the frequency, resulting in controller sensitivity to measurement noise. 

The problem was lessened by incorporating a filter into the derivative term that limited its 

gain at high frequencies.

After the continuous-time PID controller was developed, the discretization of the 

algorithm for digital implementation was discussed. The backward rectangular rule and 

the trapezoidal rule were selected as the primary methods for discretizing a continuous­

time control system, and some frequency response considerations of the two methods 

were analyzed. Since the bilinear transformation caused no phase error in the 

discretization, it was selected as the means of discretizing the continuous-time controller 

model. The continuous-time PID model was then discretized and developed for 

implementation.

Having developed a discrete-time PID algorithm, some of the more popular 

methods for designing with PID controllers were briefly discussed. The Ziegler-Nichols
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step response and frequency response methods were explained. Also, the dominant pole 

design method of Astrom and Hagglund (1988b) was explained, as well as a continuous­

time pole-placement technique. In addition, a discrete-time pole placement method was 

briefly discussed for performing direct digital design.

Two important implementation issues were then presented. The ramifications of 

the sampling frequency on the control system were discussed and some guidelines for 

selecting an appropriate controller sampling frequency were presented. Also, the issues of 

quantization and word length were explored. Some of the difficulties of signal and 

computational quantization were explained and several methods were referenced for 

analyzing quantization errors. In addition, the issue of memory word lengths was 

discussed.



CHAPTER III

PID CONTROLLER IMPLEMENTATION

3.1 Introduction

A discrete-time version of the PID algorithm was developed in Chapter 2. The 

derivative-of-output model was selected for implementation and the bilinear 

transformation was chosen as the method for conversion of the continuous-time model to 

discrete-time. In this chapter, the PID algorithm is coded in Motorola DSP56000 

assembly language and tested on the Motorola ADS56000 development system. An Intel 

80386-based Zenith computer running a Microsoft QuickBASIC program is used as a 

plant model. The Motorola ADS56000 development system acting as the PID controller 

is physically linked to the Zenith computer via a National Instruments AT-MIO-16 A/D 

board installed in the computer backplane. A Motorola DSP56ADC16 Evaluation Board 

serves as the interface for the control output and the feedback input to the DSP56000.

The purpose of this chapter is to discuss the implementation of the PID control algorithm 

on the DSP56000 and to demonstrate the performance of the PID algorithm operating in a 

real-time environment.

DSP chips offer a number of hardware and software advantages over general- 

purpose microprocessors. In this chapter, the features of DSP chips that are of particular

47
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importance for control applications are described first. Next, a brief overview of the 

Motorola DSP56000 is presented, with both architectural issues and significant hardware 

and software features being discussed (The knowledgeable reader may wish to omit this 

section). The development and organization of the PID algorithm in DSP56000 assembly 

code is then explained, including both the supervisory code (such as DSP chip 

initialization, peripheral port programming and sample rate control) and the actual PID 

algorithm. In addition, some of the more important features of the National Instruments 

AT-MIO-16 A/D board and DOS LabDriver software that serve as the plant input and 

output interface are discussed. The discussion includes an explanation of the real-time 

plant model and the program written to implement it.

Following the explanation of the hardware and software used to implement the 

PID controller and the plant, the results of testing the PID controller are presented and 

analyzed. First, the actions of the proportional, integral and derivative terms are tested 

and compared to analytical results for the same conditions. The PID controller is then 

tested operating in a closed-loop with the 80386-based plant. Two sets of controller 

parameters are selected to test the performance of the controller. The first set of 

controller parameters is obtained empirically by performing the Ziegler-Nichols (1942) 

frequency response test on the actual plant. The second parameter set is taken from a 

simulation by Hagglund and Astrom (1985) of their auto-tuning PID controller based on 

the dominant pole design method. Finally, the performance of the PID controller from the 

perspective of processing speed is evaluated.
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3.2 Using a DSP Chip for Control

A key issue to consider when designing a microprocessor-based control system is 

which microprocessor to use in the implementation. Several factors must be considered 

before the microprocessor can be selected. Ahmed (1991) categorizes these factors as:

• Architecture

• Performance

• Peripheral Integration.

Probably the most important of the three categories is architecture. The processor 

architecture not only has a direct effect on the resolution and bandwidth of the control 

system, but it also plays a vital role in system performance. Architecture affects signal and 

coefficient quantization levels, as well as numerical factors such as truncation, roundoff 

and overflow. For instance, insufficient register and memory element word lengths can 

cause excessive quantization noise, limit cycling and integration offset. Truncation can 

cause bias in the system output, and register overflow can cause positive numbers to 

become negative and vice-versa with potentially catastrophic results. Architecture also 

plays a vital role in minimization of computational overhead, which greatly affects 

performance. The traditional Von-Neuman architecture used in general-purpose 

microprocessors creates a bottleneck where instructions and data share the same data bus. 

Also, in most general-purpose microprocessors, multiplication is accomplished through 

repeated addition. Only recently have hardware multipliers become available on the 

central processor chip, and they are not usually an integral part of the arithmetic-logic 

unit.

The second criteria to consider when evaluating microprocessors for control 

applications is performance. It has been stated that the sampling rate of the controller 

should normally be between 10 and 20 times the bandwidth of the system. The maximum
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sampling rate of the control system is dependent on the speed at which the processor can 

execute instructions. This could be a non-issue in cases where sampling rate is on the 

order of seconds, or even minutes. In many control applications, however, very high 

sampling frequencies are required. Performance can become even more critical when a 

more sophisticated control strategy is necessary, such as adaptive control, where orders of 

magnitude more instructions must be executed in each sampling interval. Performance is 

also important in the consideration of computational delay. If the control system is 

designed so that there is no direct feedthrough of the controller input to the controller 

output, there will be a delay from the time the plant output is measured to when the new 

control output is calculated. This time period is referred to as computational delay. 

Computational delay will introduce additional phase lag into the system and can degrade 

system performance if it is significant. Processor throughput, therefore, will directly 

impact computational delay.

The third factor to consider when selecting a microprocessor is peripheral 

integration. If external hardware can be minimized by on-chip peripherals, both cost and 

space requirements can be reduced. If the control system is to be used in a mobile 

application, such as in an aerospace or automotive application, board real estate can 

become a critical issue. In a control application, the microprocessor will need to interface 

with A/D converters to monitor the feedback signals from the plant outputs and possibly 

monitor one or more reference inputs. The interfacing to the controller output signals is 

normally handled with D/A converters. The microprocessor may also be required to 

interface with a host computer for monitoring purposes. The number and type of on-chip 

peripherals available on the processor will determine how much external hardware will be 

required to perform the above functions, and thus have a direct bearing on implementation 

cost and space requirements.
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The field of digital signal processing has stimulated the development of dedicated 

VLSI chips specifically designed to handle the demands of processing digital signals. 

These dedicated microprocessors, known as digital signal processing, or DSP chips, offer 

architectural and performance advantages over general-purpose microprocessors. They 

also address many of the difficulties encountered when using general-purpose 

microprocessors. In addition, they frequently incorporate on-chip peripherals that can 

reduce implementation cost and minimize board space requirements. The Motorola 

DSP56000 offers many features that make it suitable for control applications, and it has 

therefore been selected for implementation of the PID controller in this project. Although 

Texas Instruments offers competitive hardware, the Motorola chip has been selected 

because a DSP56000 development system is available for use at the University of Dayton. 

Some of the key features of the DSP56000 that are significant for control applications are 

examined in the following section.

3.3 An Overview of the Motorola DSP56000

The DSP56000 architecture

The Motorola DSP56000 has been specifically designed to maximize processor 

throughput for signal processing applications. The DSP56000 is referred to by Motorola 

as "dual-natured" (Motorola, 1990). This refers to the fact that the DSP56000 has two 

independent memory spaces, two address generation units (AGUs), and a data arithmetic 

logic unit (ALU) having two accumulators and two shifter-limiter circuits. The dual- 

natured architecture makes the DSP56000 ideally suited for digital signal processing that 

requires many successive multiply and add operations. A block diagram showing the dual 

bus structure of the DSP56000 is given in Figure 14. The two independent memory
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spaces are denoted as x-memory and y-memory. Each memory space has its own address 

generation unit and its own data bus. The program memory functions independently of 

the data memory and also has its own address generation unit and data bus. This structure 

allows the next instruction to be fetched while the current instruction is executing, thus 

minimizing the number of clock cycles per instruction cycle. It also permits parallel data 

moves in a single instruction cycle.
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Figure 14. Block diagram of Motorola DSP56000

All arithmetic and logical operations in the DSP56000 are performed in the ALU. 

A block diagram of the ALU is shown in Figure 15. The ALU can perform any of the 

following operations in a single instruction cycle:

• 24-bit by 24-bit multiplication

• Multiply-accumulate with positive or negative accumulation

• Convergent rounding

• Multiply-accumulate with positive or negative accumulation 
and convergent rounding
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• 56-bit addition

• 56-bit subtraction

• A divide iteration

• A normalization iteration

• Shifting

• Logical operations

x DATA BUS

Figure 15. Block diagram of DSP56000 Data ALU
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The structure of the ALU shown in Figure 15 is referred to as a Harvard architecture.

The dual accumulators combined with independent data buses allow for parallel data 

moves. Data for the next operation can be loaded into the input registers in the same 

instruction cycle that the current operation is executing. The multiply-accumulator/logic 

(MAC) unit within the ALU performs rounding of the accumulators if requested in the 

instruction. The rounding method used is called convergent rounding, which rounds 

down if the number is odd and rounds up if the number is even, eliminating any possibility 

of introducing a bias.

Many of the difficulties normally encountered when using general-purpose 

microprocessors for control applications have been amply addressed in the architecture of 

the DSP56000. In addition to the features already mentioned, the 24-bit wide registers in 

the ALU result in quantization levels that allow for fast sampling rates without introducing 

limit cycling or integration offset. The 48-bit accumulators combined with the 8-bit 

extension registers allow for 24 by 24 bit multiplication without loss of precision, reducing 

the possibility of cumulative errors. Although the structure of the DSP56000 is 

specifically designed for digital signal processing, the architecture is well suited for control 

applications as well.

Arithmetic considerations

An important issue that must be addressed when specifying a microprocessor is the 

formatting of data. The two most common data formats are fixed-point and floating­

point. Floating-point representation offers a large dynamic range compared to the rather 

limited dynamic range of fixed point representations. Floating-point numbers also reduce 

the risk of overflow, underflow and truncation errors. There is a significant hardware cost
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disadvantage to process floating-point numbers, however, and for a given number of bits, 

floating-point numbers are less accurate than fixed-point representations. Floating-point 

processors are also typically slower, require more memory and consume more power than 

their fixed-point counterparts.

The DSP56000 uses a fixed-point fractional two's complement representation of 

data. As in the case of most fixed-point formats, two's complement numbers are used 

primarily because they require very simple hardware for addition and subtraction. Unlike 

most general-purpose microprocessors, however, the DSP56000 uses fractional numbers 

rather than integers. Fractional numbers are preferred in digital signal processing because 

multiplication of two fractions always yields a fraction, thus eliminating the possibility of 

an overflow condition when performing a large number of successive multiplications. The 

least significant bits of the product are simply truncated (or rounded) and the resulting 

number is an approximation of the actual product to within the accuracy of the number of 

storage bits available. Fractional representation thus trades precision for control of 

number growth. Integer representations, on the other hand, are always accurate, but at 

the increased risk of a multiplicative overflow.

In order to eliminate the potential for an overflow caused by storing a 56-bit 

accumulator in a 24-bit memory location, the DSP56000 has the ability to perform 

saturation arithmetic. The accumulators in the DSP56000 are equipped with 8-bit 

extension registers that allow numbers up to 255.9999998 to be represented. In a general- 

purpose microprocessor, if a number greater than $7FFFFF is transferred to a 24-bit 

register or memory location, an overflow occurs and the number in the 24-bit register is 

interpreted as being negative. Using saturation arithmetic, the DSP56000 automatically 

substitutes the maximum positive (or negative) number (e.g., $7FFFFF) for the number in 

the accumulator when data is stored to a 24-bit register or memory location, thus 

minimizing the error.
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The DSP56000 instruction set

The Motorola DSP56000 has an instruction set containing 62 instructions. In this 

section, a few of the more significant features of the instruction set will be highlighted.

The programming model for the DSP56000 is shown in Figure 16. The DSP56000 can be 

viewed as consisting of three functional units: the data arithmetic logic unit (ALU), the 

address generation unit (AGU), and the program controller. These three units essentially 

operate in parallel. The instruction set is designed to keep each of the units busy each 

instruction cycle in order to maximize processor performance. Because of the parallelism 

designed into the DSP architecture, up to three data transfers can be specified in a single 

instruction; one on the X data bus (XDB), one on the Y data bus (YDB) and one within 

the data ALU itself. Of the 62 instructions in the set, 30 allow for parallel data moves.

Another powerful feature of the DSP56000 is the number of addressing modes 

available to the programmer. The addressing modes are divided into three main 

categories: register direct, register indirect, and special. Within these three categories are 

18 specific addressing modes. The indirect addressing modes that utilize the address index 

registers are of particular importance As the name implies, the offset registers allow the 

address registers to be offset. The modifier registers specify whether the offset is to be 

applied as a straight linear addition, or whether a special arithmetic offset is to be applied, 

such as modulo arithmetic. In addition, the address registers can be automatically 

incremented or decremented before or after the instruction is executed.

The DSP56000 also offers several other instructions that minimize the amount of 

code required and maximize the speed of operation. A hardware "DO LOOP" is available. 

Multiply and multiply-and-add instructions can be selected with or without rounding. X- 

memory and y-memory can be treated as long words if double precision (48-bits) is
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required. A one-bit hardware divide instruction can also be used to develop a full division 

subroutine. In summary, the DSP56000 instruction set provides the programmer with a 

powerful set of tools for developing fast, efficient code for control applications.

On-chip peripherals

The DSP56000 contains three ports that provide the hardware link to off-chip 

devices. Port A is the memory expansion port that can be used for memory expansion or 

for memory-mapped I/O. Port B is a dual-purpose I/O port that can serve one of two 

different functions. It can be used as a general-purpose parallel I/O port, with 15 pins that 

can be individually configured as inputs or outputs, or it can serve as an 8-bit bi­

directional host interface (HI). Port C is a 9 pin I/O port that can be configured in one of 

three ways. With the first option, the 9 pins can be set up as parallel I/O that can be 

configured as inputs or outputs. The second option is to configure three pins as the serial 

communications interface or SCI. When set up in this manner, the other six pins can be 

configured as general-purpose parallel I/O. If the third option is selected, Port C can be 

configured as the synchronous serial interface or SSI. A block diagram of the 

configuration and pin-outs of the three ports is shown in Figure 17.

The SCI: The SCI provides full-duplex serial communication to other DSPs,

microprocessors, or peripheral devices. Communication can be selected to be 

synchronous or asynchronous. The SCI uses three pins denoted as transmit data (TXD), 

receive data (RXD) and the SCI serial clock (SCLK). The SCI uses industry standard 

baud rates and protocols. The SCI consists of separate transmit and receive sections 

which operate independently. It also contains an internal programmable baud-rate
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generator which can double as a general-purpose timer when not being used by the SCI. 

A block diagram of the SCI internal baud rate generator is shown in Figure 18.
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Figure 17. Motorola DSP56000 Peripheral Ports

By setting the clock divider bits (CD0-CD12), the clock prescaler bit (SCP), and 

the clock out divider (COD), the desired baud rate can be selected knowing the oscillator 

clock frequency, fo , which is normally 20.5 megahertz. In addition to controlling baud 

rates for transmission and reception of data, the SCI clock can also be used as a timer to
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generate periodic interrupts of the DSP. (This will prove to be useful for controlling the 

sampling rate of the PID controller.)

fosc

TO SCLK

Figure 18. Block Diagram of SCI baud rate generator

The SSI: The SSI provides a full-duplex serial port that can communicate with a 

number of different devices, including codecs, other DSPs, microprocessors and peripheral 

devices. In the SSI, all serial transfers of data are synchronized to a clock, with one word
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being transferred per period in normal mode or up to 32 words per period in network 

mode. It can also function in an on-demand mode.

The on-chip peripherals provide the DSP56000 with the flexibility to interface with 

external peripheral devices, other DSPs, or a large number of other intelligent devices.

The brief explanation given provides only an overview of the operation of the peripherals. 

Detailed explanations are available in the DSP56000ZDSP56001 Digital Signal Processor 

User's Manual (Motorola, 1991). In this project, the SCI timer is used to control the 

sampling frequency of the PID controller. The SSI provides the interface from the DSP to 

the A/D converter that serves as the PID controller's feedback input. The SSI also serves 

as the interface to the D/A converter that is used as the control output of the PID 

controller.

The DSP56000ADS Application Development System

In order to develop, debug and evaluate microprocessor-based applications, it is 

essential to have a development system that provides the designer with a window to the 

inner workings of the microprocessor. A development system should also provide the 

designer with a means of interfacing to the microprocessor so that the design can be tested 

in a real-time environment. Motorola has provided the DSP56000ADS for developing 

DSP56000 applications. The DSP56000ADS consists of three major components. The 

first component of the system is the Application Development Module (ADM). The ADM 

is a stand-alone circuit board containing a DSP56001 processor and related control 

circuitry. The second component of the DSP56000ADS is a HOST-BUS interface board. 

The HOST-BUS interface board physically resides in the host computer and provides the 

interface between the host computer and the ADM. The third element of the 

DSP56000ADS is the software program that serves as the operator interface to the ADM.
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The DSP56000ADS has been used to develop the PID controller for this project. For a 

more detailed description of the function of the DSP56000ADS, refer to the 

DSP56000ADS Application Development System User's Manual (Motorola, 1989).

The DSPADC16 evaluation board

The DSP56000ADS allows the DSP-based PID controller to be operated in a real­

time environment. The ADM board provides the DSP56001 processor and the necessary 

support circuitry, but separate hardware is required for the A/D and D/A converters 

required for the controller's input-output interface. The Motorola DSPADC16 Evaluation 

Board (EVB) is used for this purpose.

The DSPADC16 EVB is an A/D and D/A conversion system that can be used 

either in a stand-alone mode or in conjunction with the DSP56000ADS. The EVB utilizes 

the Motorola DSP56ADC16 16-bit 100 KHz sigma-delta A/D converter and the Motorola 

PCM-56 D/A converter. The DSP56ADC16, which is manufactured with an on-chip 

serial interface, can be directly linked to the SSI receiver port of the DSP56001 located on 

the ADM board. The PCM-56 is also equipped with a serial interface and ties directly to 

the SSI transmitter port of the DSP56001 on the ADM. A block diagram of the EVB is 

shown in Figure 19.

The DSP56ADC16 is a sigma-delta A/D converter that utilizes oversampling of 

the analog input signal. In principal, a series of coarsely quantified (1-bit) data are 

obtained by oversampling of the input. A digital-domain decimation process is then used 

to compute a more precise estimate of the analog signal at a lower sampling rate. In the 

case of the Motorola EVB, the input sampling frequency (i.e., the 1-bit sampling done at 

the input of the converter) is 2.8244 MHz, which is one-half the frequency of the on-board
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oscillator. The output sampling rate, i.e., the rate at which reconstructed digital data is 

available from the A/D converter, is 48 KHz. The Nyquist frequency for the A/D 

converter is therefore 24 KHz. (In reality, the practical bandwidth of the EVB is about 22 

KHz due to other hardware constraints.) A more detailed explanation of sigma-delta A/D 

conversion and a list of references is given by Park (1990).

EVB BOARD ADM BOARD--------- ■

Figure 19. Block diagram of DSP56ADC16 Evaluation Board

The EVB can be configured for either a fully differential input or a single-ended 

input. The EVB is configured for differential operation for this application because an AC 

coupling circuit that blocks d.c. levels is activated when the board is configured for single- 

ended operation. The maximum peak-to-peak differential input signal to the board is 

approximately four volts.
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3.4 The PID Controller Software

The PID algorithm developed in Chapter 2 has been implemented in DSP56000 

assembly language. The DSP assembly language program is named "PID64B.asm" and is 

listed in the appendix. A simplified flowchart of the program is given in Figure 20. A 

brief explanation of the program operation follows.

DSP initialization

In the first section of the program, the DSP registers mapped to x-memory are 

assigned variable names and the program variables are assigned to addresses in either x- 

memory or y-memory. The Interrupt Priority Register (IPR), the Bus Control Register 

(BCR), the SCI and the SSI are initialized and the historical variables are cleared.

Next, the SSI is set up for operation with the EVB. The Port C control register 

(PCC) is initialized to set up Port C to function as the SSI. The SSI is set to operate in 

normal mode with an external continuous synchronous clock. It is also set for a data 

word length of 16-bits and the frame synch is set to be one word long.

The program uses the SCI timer to control the sample rate of the controller by

interrupting the DSP at periodic intervals. When an interrupt is generated by the SCI

timer, the program flow is redirected via an interrupt vector to an interrupt service routine

(ISR). The ISR then becomes the main code for the PID algorithm. Once the algorithm

has been completed for one sampling interval, the ISR is exited and the program loops

until the next timer interrupt occurs. As shown in Figure 18, bits CD11-CD0 and bit SCP

in the SCCR are used to determine the time base according to the formula:
f

Interrupts/sec = —-r—,--------- °sc v---------r64(7(SCP) + l)(CD +1)

where fosc is 20,500,000 in this case.
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Figure 20. Flowchart of DSP56000 PID controller program

Although the operating conditions of the SSI have been initiated in the DSP, the 

SSI is not enabled to transmit and receive data until the SCI timer interrupt routine has 

been initiated. Once powered up, the EVB continuously samples the input of the A/D
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converter and transmits data across the SSL If the DSP does not read the data in the 

receive data register (RX), the next time the receive data shift register is filled, it will not 

be able to transfer the new data to the RX register. The SSI will then generate a receiver 

overrun error (ROE). In order to keep this from happening, the DSP would have to be 

reading the SSI receive data register at a frequency of 48 KHz. The SSI is therefore not 

enabled until the SCI timer interrupt service routine has been initiated. It is disabled again 

before control is returned to the main program.

The reference input

For this project, the reference input w(^) is assumed to be a fixed setpoint as 

opposed to a dynamic reference signal to be tracked. The setpoint value is stored in an x- 

memory location. In order to test the system's response to setpoint changes, the reference 

input w(k) is switched between a positive and a negative value at selected intervals. An 

address register RO serves as a sample counter to control the switching of the setpoint.

Coefficient scaling

As discussed previously, the DSP56000 utilizes two's complement, fixed-point

fractional arithmetic. It has been noted that the 24-bit words in the DSP have a numeric

range of $800000 to $7FFFFF hexadecimal, or -1 to .99999988 decimal. It is therefore

necessary that all PID controller coefficients be scaled to fit within that range. The

discrete-time control law was given previously in equation (2.31) and is repeated here as: 
u(k) = P(k)+I(k) + D(k)
u(k) = K'e(k)+I(k) + d0D(k -l)+d, [y(k -1) -X*)] ‘

The integral term was given previously in equation (2.32) and is repeated here as:

/(£ n) = /?/(£) Hi-/W)- (3.2)
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The discrete-time coefficients of equations (3.1) and (3.2) are determined from the 

coefficients of the classical continuous-time PID algorithm to be:

The coefficients that must be considered for scaling are therefore:

K',p,d0 and dv

In order to determine an appropriate scaling factor for K' , a limit must be set on 

K’. An arbitrary limit of 64 is selected for K' in order to be able to achieve a good

response in relatively slow plants. The parameter K' had to therefore be prescaled by 

to insure that its scaled value would not exceed one. From equation (3.3), since 7?

and T are always assumed to be positive, the variable p will always be less than one and 

thus does not have to be scaled. Likewise, the quantity (1-/?) will also always be less than

one.

In solving for the derivative term, dx is multiplied by K'. From equation (3.3), dQ 

is given as:

^o =
AT

AT

The term dQ will always be less than one and does not require scaling. From (3.3), the 

term dx is given as:

4 =

Assuming T«N, the term

(NT+2Td\

2K'TdN 
(NT + 2Td)
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is limited by KN. K has already been limited to a value of 64, so if an arbitrary limit of 16 

is imposed on N, the maximum value of dx becomes (64)(16)=1024. The term dx must 

therefore be prescaled by /!/j/q24 •
In summary, the coefficients of the PID controller that must be prescaled and their 

respective scaling factors are given in equation (3.4).
v — 1/

■‘'"scaled / 64
d -Vd
^1 scaled ~/1024Mi

(3-4)

By limiting K to a maximum of 64 and N to a maximum of 16 and applying the scaling 

factors shown in equation (3.4), the coefficients of the PID algorithm will be assured of 

staying within the limits of the two's complement fractional representation of the 

DSP56000.

Calculation of the control output

The calculation of the control output u(k) is detailed in the following paragraphs 

(refer to the flowchart in Figure 20). First, the error term is calculated as e(&)=w(&)-X&) 

andX^) is stored &sy(k-f) to be used in the next sampling interval. Next, the solution for 

the derivative term is calculated. (It proved to be prudent to solve for the derivative term 

first in order to minimize program overhead.) From equation (3.1), the derivative term is 

determined to be:

D(k) = d,D(k -1) +rf, [X* -1) - X*)]

From the previous section, it was determined that dx is prescaled by //jo24 ' Therefore, 

before adding the two terms comprising D(k), the term dQD(k -1) must also be divided by

1024. However, since the derivative term will be added to the proportional term which is 

already scaled by it is convenient to divide d0D(k -1) by and to multiply the 

term dx [X# -1) - T W] by 16 before adding them together. This results in D(k) being



69

scaled by ^4, making it the same scale as the proportional term, P(k). The term D(k) is

stored using limiting, or saturation arithmetic. This is to eliminate the possibility of 

overflow when storing the 56-bit accumulator in a 24-bit memory location.

Next, the proportional term P(fc) is calculated as:

P(k) = K'e(k)

where K' has been prescaled by . P(k) and D(k) are then added together. The 

integral term that was computed in the previous sampling interval is then scaled by J/^4 

and added to the sum of P(k) and D(k). The sum of P(k), I(k) and D(&)is then 

multiplied by 64, completing the calculation of u(k).

Once the completed control output, u(k), is calculated, it is multiplied by a 

hardware scaling factor. The control output is then moved to the SSI transmit/receive 

data register. The SSI status register is polled until the transmit data enabled bit (TDE) 

is set to one, indicating that the data has been transferred to the transmit data shift 

register. The data remains in the transmit data shift register awaiting the next SSI frame 

synch to be transmitted to the D/A converter. After the control output has been sent to 

the D/A converter, the next value of the integral term is precalculated for the next 

sampling interval in order to minimize the computational delay. The expression for the 

integral term is given in equation (3.2) as:

/(Jt + l) = /7/(Jl) + (l-y9)M(A:).

I(k +1) is then stored (with limiting) at full scale as I(k) to be used in the calculation of 

u(k) during the next sampling interval.
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3.5 The Real-time Plant Model

The plant hardware

A QuickBASIC program running on an Intel 80386-based 33 MHz Zenith 

computer is used to emulate a plant in order to test the PID controller in a real-time 

environment, A National Instruments AT-MIO-16 analog I/O board installed in the 

computer backplane serves as the input-output interface for the plant. The AT-MIO-16 is 

equipped with a 12-bit, 25 //sec A/D converter that can be multiplexed as 16 single-ended 

A/D channels or 8 differential channels that can sample at selected frequencies up to 91 

KHz. The A/D channels can be configured for several input ranges with programmable 

gains. The AT-MIO-16 also has two 12-bit D/A converters, three 16-bit counter/timers 

and eight digital I/O lines available. For this project, the AT-MIO-16 has been configured 

as follows:

• Differential, bipolar analog input

• ±10 volt analog input range

• Internal ±10 analog output voltage reference

• Two's-complement mode for analog output.

The AT-MIO-16 is capable of generating internal clock frequencies up to 1 MHz 

(1 //sec resolution). Experiments indicated that sampling frequencies up to 10 KHz are 

achievable before the software (i.e., the computational delay} becomes the constraining 

factor. Numerical difficulties are encountered, however, for sample intervals less than 1 

msec as the coefficients for some relatively slow plant models become extremely small.

An internal clock frequency of 1 KHz has therefore been selected to produce a timebase of
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1 millisecond for the sample counter, thus allowing sampling intervals to be selected in 1 

millisecond increments.

The plant model

For this project, an adaptive control scheme has been selected that is based on a 

parametric system identification algorithm. The algorithm attempts to identify parameters 

in a polynomial representation of the plant by minimizing a least-squares error cost 

function. A polynomial representation is therefore selected for the plant model to facilitate 

later testing of the controller parameter estimator.

Many different parametric models have been developed to represent dynamic 

systems. A commonly used polynomial model is the autoregressive with exogenous input 

(or ARX) model, given as:

A(q)y(k) = B(q)u(Jc-nk)+e(Jk) (3.5)

where e(k) is assumed to be white noise sequence. Equation (3.5) can also be expressed

as:

X*) = <?(<?)«(*)+ #(</>«
where: G(q) = q^ and H(q) = —i—

A(q) A(q)

A(q) = 1 + a}q~} + ••• anaqna 

and: B(q) = 1 + b}qA + • • • bnbq~nh.

The variables na and nb are the orders of polynomials A(q) and B(q), respectively, and 

nk is the number of unit delays from the input w(^)to the output y(k). Also, q~} 

represents the backward shift operator.
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From the perspective of the plant, no noise is to be injected into the model; 

therefore, a deterministic version of the ARX model is selected to be used as the plant. 

The plant model can thus be expressed as:

A^k^q^B^k). (3.6)

It was also assumed that nk > 1, resulting in the model:
rt„\ = = be/' +b2^~2+ +b^~nb (t, 7-,

A(q) \ + axq~' +a2q~2 + - +amq~"° '

A practical limitation must be imposed on the orders of A(q) and B(q). According to 

Astrom and Haaglund (1988b), "PID control is sufficient for processes where the 

dominant dynamics are of second order". Isermann (1982) demonstrates that for a plant 

to be identifiable in a closed-loop, if the controller is second-order (e.g., PID), then the 

plant cannot exceed fourth-order (This subject will be examined more thoroughly in 

Chapter 4). Therefore, na and nb are both limited to four in the program emulating the 

plant model given in equation (3.7).

The plant software

A set of software drivers from National Instruments called DOS LabDriver 

provides the link between the plant program and the AT-MIO-16 board. The DOS 

LabDriver function library is linked to the compiled QuickBASIC program, allowing 

function calls to be made to the AT-MIO-16. A simplified flowchart of the plant program 

is shown in Figure 21. Several features are incorporated into the plant program to 

facilitate testing of the PID controller. Coefficients for five different plants can be stored 

within the program. A constant load disturbance can be added to the plant output at a 

selected sample number to test the disturbance rejection capability of the controller. Also, 

plant input and output data can be stored to a computer file for later analysis. Data
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storage can start and terminate at any sample number. In order to minimize the 

computational delay, the value of the plant output is calculated in advance for the next 

sample interval. An on-board timer/counter is used to control the sampling frequency of 

the plant. After the next y(k) is calculated, the counter is polled until the counter value

Figure 21. Simplified flowchart of plant model program
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reaches the sampling interval preset value. The counter is reset and reinitiated and the 

main loop repeats until a key on the computer keyboard is pressed.

The DOS LabDriver software provides an extensive library of functions that act as 

the interface between the QuickBASIC program and the AT-MIO-16 board. The 

initialization of the AT-MIO-16 is performed via function calls, as well as writing and 

reading data to and from the A/D and D/A converters. Details for all of the functions are 

available in the DOS LabDriver User Manual (National Instruments, 1991). The 

operation of the plant software has been tested by generating step responses from a 

number of discrete-time models and comparing them to simulation results obtained from 

Program CC for the same models. The test results demonstrate that the plant model 

software accurately reproduces the plant models as specified.

3.6 Testing the PID Algorithm

Testing the proportional, integral and derivative terms

Before testing the PID controller in a real-time environment, the operation of the 

various parts of the DSP PID code are checked under controlled conditions for numerical 

accuracy. A technique suggested by Astrom and Steingrimsson (1991) is used to test the 

computation of the proportional and integral terms. The test consists of applying a 

symmetrical square wave with an amplitude of ±0.1 and a period of 400 samples as the 

feedback input to the controller and recording the calculated control output at each sample 

interval. The control output computed by the DSP can then be compared to theoretical 

values. The following continuous-time PID controller parameters are chosen for the test:
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£ = 0.6 
27 = 2.2 

Td =0 
T = 0.1 sec

From equation (3.3), the discrete-time parameters are calculated as:

£'=0.6136364
/?=.9555555.

The ADS56000 development system allows the DSP56001 on the ADM board to read 

and write data to files on the computer hard drive. An input file is created containing 200 

samples of +0.1 followed by 200 samples of -0.1. An output file is then opened from the 

ADS56000 to store the control output samples. The proportional and integral action of 

the controller can be seen in Figure 22.

0.3

0,7 0 100 200 300 400
k

Figure 22. Test of PI algorithm on Motorola DSP56001

With the reference input w(&) held constant at zero, when y(k) is changed from 

0 to +0.1 at k = 1, a constant error of e(k) = -0.1 is generated. The proportional term 

responds to the error by producing an effect on u(k) equal to:
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K'e(k) = -0.6136...

Since e(k) remains constant at e0 = -0.1, the integral term causes w(A?) to ramp in the 

negative direction at a rate of:
%-lc = -0.04545*.

T,

At k = 200, a step change in y(k) of -0.2 results in an error e(k) = +0.2. The 

proportional term again reacts by increasing u{k) by approximately 1.2. With the error 

e(k) becoming positive, the integral term causes u(k) to ramp in the positive direction. 

Theoretical values have been calculated for several values of k and compared with the 

actual data obtained from the test of Figure 22. The results of the comparison are shown 

in Table 5.

Table 5. Calculated vs. actual results of PI algorithm test

k ^(^)theoreticaJ % efrof

1 -0.1 -0.613636 -0.613637 0.00016

2 -0.1 -0.640909 -0.640911 0.00031

3 -0.1 -0.668182 -0.668185 0.00045
e • * •

100 -0.1 -0.331364 -0.331375 0.00332

200 -0.1 -0.604091 -0.604114 0.00381

The actual values closely approximate the values obtained from hand calculations, 

demonstrating that the algorithm is functioning correctly, although there appears to be a 

very small cumulative error as k increases.
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The derivative term is also tested using a procedure followed by Astrom and 

Steingrimsson (1991). Two impulses of magnitude +0.1 and -0.1 and lasting one sampling 

period are applied to the controller input at times t = 1 sec and Z = 3 sec. The continuous­

time PID controller parameters are set as follows:

£ = 0.6 
27 = 2.2 
2; =0.5 
A = 8 

T = 0.1 sec

where N is the maximum derivative gain. The discrete-time parameters are calculated 

from equation (3.3) to be:
£’=.6136364 
£=.9555555 
d0 = 0681818 
J, =2.727273.

The resulting controller output is shown in Figure 23. The derivative term reacts to the 

rate of change in the controller input, e(k). When the input to the controller is forced to 

+0.1 for one sample at k = 10, the derivative term reacts as predicted by causing a large 

negative pulse in u(k). When e(k) changes direction on the very next sample (k = 11), 

the derivative term drives the control output u(k) in the opposite direction. Again, the 

actual values calculated by the DSP56001 are compared to theoretical values. The results 

are given in Table 6.
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Figure 23. Test of derivative action on Motorola DSP56001

Table 6. Calculated vs. actual results of derivative term test

k 4*) % error

10 +0.1 -.3340909 -.3340902 -0.00021

11 +0.1 .2392837 .2392830 -0.00029

12 +0.1 .0137735 .0137733 -0.00145

13 +0.1 -.0016022 -.0016024 +0.01248

14 +0.1 -.0026506 -.0026509 +0.01132

15 +0.1 -.0027220 -.0027224 +0.01469

: *

30 -0.1 .3313636 .3313620 -0.00048

31 -0.1 -.2420110 -.2420105 -0.00021

32 -0.1 -.0165007 -.0165012 +0.00303

33 -0.1 -.0011250 -.0011257 +0.06222

34 -Q.l -.0000767 -.0000774 +0.91265
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The results from Table 6 show that the actual values of the control output are very close 

to the theoretical values. The percentage of error remains less than 0.1% until k = 34. 

Only when the values approach zero does the percentage of error become significant.

Testing the anti-integral windup feature

If the error term remains large for a long period of time (as may occur after a large 

setpoint change), the integral term can continue to grow long after the output has 

saturated. One method of eliminating the problem of integral yvindup is the use of a 

limiting function as shown in Figure 12. The limiting function is given as:
If “min =>“ = "'

if u'<u ■ =>w = w . (3.8)min min v 7

if w'>w av =>w = wav.max max

If Mmm and wmax are set t0 the minimum and maximum limits respectively of the DSP56000 

fractional number range, equation (3.8) can be implemented by storing w' using the 

limiting function of the DSP56000. The function given in equation (3.8) is tested in the 

DSP56000 program by applying an input of magnitude +0.1 to the controller for 600 

samples, allowing the integral term to grow in the negative direction until the controller 

output saturates at -1.0. After a delay, the input to the controller is changed to -0.1, 

causing the error term to change signs and the controller output to integrate in the 

opposite direction. The input sequence to the controller is read from an input file from the 

ADS56000 system and the control output is stored in a file on the computer hard drive. 

The PID controller parameters are set the same as in the derivative test of the previous 

section with the sample rate set at T = 0.1 seconds. The results of the test are shown in 

Figure 24.



80

Figure 24. Anti-integral windup test on Motorola DSP56001

The control output u(k) integrates in a negative direction until both the control output 

and the integral term are saturated at a value of -1.0. When the controller input y(k) 

changes signs at k = 601, (Z = 60.1 sec), u(k) immediately responds positively. The 

dashed line in the figure shows the effect of integral windup. If the integral term had not 

been limited, the control output would have remain saturated for more than 200 additional 

samples (20 seconds) causing excessive overshoot in the plant output y(k). (The values 

of the control output were calculated for several samples and compared to the actual 

values and the actual values compared closely to the theoretical values.)

The tests of the proportional and integral terms, the derivative term and the anti­

integral windup function have demonstrated that the DSP56000 PID control algorithm 

functions properly and that the PID calculations are numerically accurate. In each case, 

data was read from a computer input file to ensure predictable results, and the control 

output was written to an output file so that the actual values could be compared to 

theoretical results. The DSP56000-based PID controller is now ready for testing in a real­

time environment.
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3.7 Real-Time Test Results

System Configuration

The purpose of this section is to demonstrate the capability of the DSP-based PID 

controller operating under real-time conditions. The data for the graphs displayed in this 

section are taken in real-time from the plant input and output of the AT-MIO-16 board via 

the plant simulation program. The PID controller setpoint is automatically cycled between 

a positive and negative value to check the step response of the system. The setpoint is 

limited to ±0.1 in the experiments so as not to clip the controller output signal. A 

simulated d.c. load disturbance of -0.1 (equal to the setpoint) is placed on the plant output 

in the plant simulation program in order to check the disturbance rejection capability of the 

controller. A block diagram of the test configuration hardware is shown in Figure 25.

Figure 25. Block diagram of controller-plant test configuration hardware
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A fourth-order model was selected as the plant. The continuous-time plant model

is expressed in Laplace transform form as:

G„(s) =---------------- *---------------- ■ (3.9)f (l + s)(l+.2s)(l+.05.s)(l+.01s)

Astrom and Hagglund (1988b) used the transfer function of equation (3.9) to analyze 

several different methods for designing PID controllers. Data from their work proved 

helpful in analyzing the DSP-based controller in this project. The Bode plot of the 

continuous-time model is shown in Figure 26.

w rad/sec

Figure 26. Bode plot of continuous-time plant model

The continuous-time model is converted to discrete-time using the zero-order hold 

equivalent. The zero-order hold yields a discrete-time transfer function that fits the 

prescribed model of the plant as described by equation (3.5). A sample time of 0.004 

seconds was selected for the plant. (Experimentation revealed that sample times less than 

0.004 seconds produce discrete models with extremely small coefficients that lead to
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numerical difficulties.) The sampling frequency of 250 Hz (1570.8 rad/sec) yields a 

Nyquist frequency of 785.4 rad/sec, well beyond the significant bandwidth of the plant. 

The discrete-time model of the plant is determined to be:

Equation (3.10):
G k _ (9.662176 E-08)z~1 +(9,639456 E-07)z~2 +(8,716264 E-07)z~3 +(7.141308E-Q8)z 4 

P^Z ' " l-(3.569643)z_1 +(4.7440286)z-2 -(2.7784929)z~3 +(0.604109335)z-4

The magnitude and phase plots of the discrete model given in equation (3.10) are shown in 

Figure 27.

Figure 27. Bode plot of discrete-time plant model used in real-time test

The magnitude response of Figure 27 is identical to the response of the continuous-time 

model up to the Nyquist frequency. There is a small phase lag in the discrete-time model,
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however, that becomes apparent as the frequency exceeds about 10 rad/sec, which is 

typical of the zero-order hold equivalent.

A sampling frequency of 100 Hz is selected for the controller. (When a sampling 

frequency of 10 Hz was attempted, the controller proved to be unable to control the 

dynamics of the plant.) The controller is able to adequately control the plant with a 

sampling rate of 0.01 seconds. The sampling rate of the plant is therefore 2.5 times faster 

than the controller's sampling rate. The open-loop step response of the plant operating 

with a sampling frequency of 250 Hz is shown in Figure 28. The plant exhibits a 

monotonic step response, making it a suitable candidate for PID control.

Figure 28. Open-loop step response of plant used in real-time test
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Test overview

Four experiments are conducted to test the operation of the PID controller under 

real-time conditions. In the first two trials, the response of the controller to setpoint 

changes and load disturbances is tested using two different sets of controller parameters. 

The first set of controller parameters is obtained by performing the Ziegler-Nichols (1942) 

frequency response test on the actual plant operating in closed-loop with the DSP-based 

controller. The second set of controller parameters is obtained from a simulation of 

Hagglund and Astrom's (1985) auto-tuning PID controller based on the dominant pole 

design method. In both cases, continuous-time parameters are discretized using the 

relationships given in equation (3.3). The parameters are also scaled for use in the 

DSP56000 as described in Section 3.4.

In the third test, the effect of the derivative filter on the controlled plant is 

observed. The proportional gain K, the integral time T( and the derivative time Td are 

held constant while the maximum derivative gain N is adjusted to four different values. In 

the fourth test, the maximum sampling rate of the DSP-based controller is determined.

PID controller test using Ziegler-Nichols Frequency Response Method

In this test, the controller parameters are determined using the Ziegler-Nichols 

(1942) frequency response method performed on the actual plant. With the integral and 

derivative terms set to zero in the controller, the controller gain is gradually increased until 

the plant output begins to oscillate. From the experiment, the critical gain, kc, is 

determined to be 21.145 and the critical period, tc, is 0.75848 seconds. (The critical gain 

must be determined by working backwards from the discrete-time controller gain, which is 

what is actually being varied.) The controller sample rate is set at T = 0.01 seconds and
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the maximum derivative gain is set at N= 16. The continuous and discrete-time 

parameters determined from the critical gain and critical period are listed in Table 7.

Table 7. PID parameters from Ziegler-Nichols frequency response method

• • : Con tin u ous-Time

Parameters

Discrete-Time •

: Parameters IS

K 12.687 K' 0.2008479

T, .37924 p 0.9739746

Td .0910176 d, 0.0644238

d2 0.1068936

The reference input is switched between -0.1 and +0.1, and a d.c. load disturbance of-0.1 

is introduced at k = 3000 (Z = 12 sec). The resultant plant and controller outputs are 

shown in Figure 29.

The plant output exhibits a rather large overshoot (approximately 40%) in 

response to the change in the reference input. Ziegler-Nichols (1942) tuning rules are 

designed to give superior disturbance rejection and quarter-amplitude damping with 

^=0.22, but the step response of Figure 29 is somewhat more underdamped than the 

classic Ziegler-Nichols response. One explanation for this behavior is the discretization of 

the PID controller using the bilinear transformation. Although the bilinear transform does 

not produce any phase lag, Astrom and Steingrimsson (1991) report that if the derivative 

term is discretized using the bilinear transformation, it produces a ringing response in the 

output for small values of Td. (The value of Td from Table 7 is .0910176.) Although the 

plant output is somewhat underdamped, it does respond quite well to a relatively large 

disturbance (v= -0.1) at k = 3000.
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Figure 29. Plant and controller outputs with Ziegler-Nichols parameters

Also notice that the control output is slightly clipped in the first peak of the 

response. (Recall that the voltage on the EVB card ranges from -2.0 to +2.0 volts.) 

Some large impulses can be seen in the control output as well. The impulses are due to 

the response of the derivative term to noise on the output. (An investigation into the 

source of the noise revealed that it is primarily due to quantization of the 16-bit A/D 

converter.) For this test, the gain of the derivative filter is set to the maximum value of 

16. Further testing showed that the size of the impulses can be significantly reduced by 

decreasing the value of N. The effect of N is analyzed further later in this chapter.
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PID controller test using Hagglund-Astrom (1985) auto-tuner parameters

The plant model expressed in equation (3.9) is used by Hagglund and Astrom 

(1985) in a continuous-time simulation that tests the auto-tuning PID controller algorithm 

based on the dominant pole design method. The PID parameters obtained from the 

continuous-time simulation of Hagglund and Astrom (1985) are used to test the DSP- 

based PID controller further. The continuous-time parameters of Hagglund and Astrom 

and their scaled, discrete-time equivalents are given in Table 8.

Table 8. PID parameters from Hagglund-Astrom auto-tuner

Co«ti»im«s-Time

Parameters

Discrete-Time

Parameters

K 9.62 K' 0.15184

T, .492 p 0.97988

Td .123 d, 0.2118

d2 0.092

The proportional gain K' in Table 8 is smaller than the value of K' obtained using 

Ziegler-Nichols (1942), and the derivative terms dx and d2 in Table 8 are larger than the 

previous values Again, with N= 16, the resultant outputs are shown in Figure 30. The 

plant response is considerably improved over the previous test. The overshoot is smaller 

(down from 40% to 25%), there is less ripple in the steady-state output and the 

disturbance rejection response is better damped. The smaller proportional gain and the 

larger derivative terms produced a response that is more damped than in the previous case.
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Figure 30. Plant and controller outputs with Hagglund-Astrom parameters

Testing the derivative term filter

The previous two trials have demonstrated the capability of the DSP-based PID 

controller to respond to changes in the reference input and to reject disturbances on the 

output. In both tests, rather large impulses were observed on the control output as a 

result of the derivative term reacting to measurement noise. Testing indicated that the size 

of the impulses could be reduced by decreasing N, the maximum derivative gain. In this 

section, the derivative term filter is evaluated. The controller parameters will remain the 

same as in the previous case. Again, a disturbance is introduced at k = 4000. The effect 

of N on dx and can be seen in Table 9.
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Table 9. Effect of N on derivative term coefficients

d2 .

16 0.211823 0.092002

8 0.509202 0.057289

4 0.720279 0.032651

2 0.849264 0.017553

1 0.921875 0.009119

Recalling that the derivative term, D(k), is expressed as:

D(A) = d,D(k -l)+d2[y(k -1) - X*)],

as N is increased, the previous value of D(k) becomes more heavily weighted, effectively 

filtering D(k) from higher frequencies. Figures 31 through 34 show the plant output for 

N = 16, 4, 2 and 1, respectively. Although there is some difference in the response 

between N = 16 and N= 4, the response of the plant begins to seriously degrade at N = 2. 

Obviously, the selection of N must be made carefully as it represents a tradeoff between 

filtering unwanted noise and impeding the action of the derivative term. The results do 

indicate, however, that the derivative filter is functioning as predicted.

Establishing the maximum controller sampling rate

One of the primary reasons for using a DSP chip for control is increased processor 

throughput to achieve the maximum possible sampling frequency. In the final test of the 

DSP56000-based PID controller, the maximum sampling rate is determined. A function 

generator is attached to the input of the controller. An oscilloscope is attached to the
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Figure 31. Plant output for N = 16 Figure 32. Plant output for N = 4

Figure 33. Plant output for N = 2 Figure 34. Plant output for N = 1

controller output so that the sampling frequency of the controller can actually be 

measured. The sampling frequency of the controller is controlled by the SCI timer that 

generates interrupts to the processor. The maximum frequency that the SCI timer can be 

set to operate at is :

This corresponds to a sample interval of 3.12 //see. With the SCI timer set at the 

maximum frequency, the controller's sampling frequency is measured to be approximately 

48 KHz. This is the output sampling frequency of the DSP56ADC16 A/D converter, 

indicating that the A/D converter is the limiting factor. As a check, the number of
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oscillator cycles required to execute the main loop of the PID program is calculated to be 

200. At 20.5 MHz, this estimates the execution time of the PID code to be roughly 

10 //sec, which corresponds to a sampling frequency of 100 KHz, approximately double 

the sampling frequency measured on the controller output. The limiting factor on 

controller sampling frequency is therefore the DSP56ADC16. Higher sampling 

frequencies are theoretically achievable (up to 100 KHz) if a faster responding A/D 

converter is used.

3.8 Chapter Summary

In this chapter, the PID algorithm developed in Chapter 2 was implemented on the 

Motorola DSP56000. The question of why to use a DSP chip for control was addressed. 

The Harvard architecture of the DSP was shown to provide a number of advantages over 

the Von Neuman architecture of most general-purpose microprocessors. The hardware 

and software features of the Motorola DSP56000 that make it attractive for control 

applications were also discussed. The function of the on-chip peripherals was explained as 

well. Included in the discussion were the use of the SCI timer interrupt to control 

sampling rate, and the operation of the synchronous serial interface (SSI) used to interface 

with the DSP56ADC16 A/D converter.

The PID algorithm was implemented in Motorola DSP56000 assembly language.

A simplified flowchart of the program was presented and a brief explanation of the 

program was given. The need for scaling of the PID controller coefficients for DSP56000 

implementation was pointed out and appropriate scaling factors were determined for the 

controller coefficients. The program was organized to minimize the effect of 

computational delay and was written to take advantage of the numerical stability of a
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parallel computational structure, forming each of the three PID terms independently and 

then summing them to form the control output.

The development of the plant model used for real-time testing of the PID 

controller was presented as well. A deterministic version of the ARX model was selected 

for the plant. The National Instruments AT-MIO-16 A/D, D/A converter board was 

examined, and the DOS LabDriver software to drive it was briefly covered. The program 

written to implement the plant model was also explained.

The DSP56000-based PID controller was then tested. The function of the three

PID controller terms was first tested in a controlled mode where each of the three 

controller terms could be evaluated independently and compared to theoretical data. The 

numerical accuracy of each of the three controller terms was established, and the function 

of the anti-integral windup feature was verified. The PID controller was then tested in 

real-time connected to a functioning plant. Two sets of controller parameters were 

selected to test the effect of the controller parameters on the response of the plant. The 

action of the derivative filter was also tested in a real-time mode. Finally, the maximum 

sampling rate of the DSP56000-based controller was established.

In conclusion, the PID controller implemented on the DSP56000 functioned as

designed in all cases.



CHAPTER IV

DEVELOPMENT OF THE

ADAPTIVE PID ALGORITHM

4.1 Introduction

Having developed a working, practical PID controller on the Motorola DSP56000, 

the question remains as to how to make the PID controller adaptive. The concept of 

adaptive control was introduced in Chapter 1 and an overview of the most commonly 

employed adaptive control schemes was presented. Gain scheduling is currently being 

successfully implemented and could easily be implemented using a PID controller; 

however, it does have several drawbacks. Gain scheduling requires that a suitable model 

of the plant be available. Even if a good model of the plant is available, several sets of 

controller parameters must be obtained for the different ranges of variation of the plant 

parameters. The procedure can be time-consuming and is also prone to transition 

problems between gain sets. Self-oscillating adaptive systems have proven to be robust 

and are commonly used in flight control systems for missiles. The application of self- 

oscillating adaptive systems is somewhat limited, however, in that a limit cycle oscillation 

is usually discernible in the output. Also inherent in the concept is a trade-off between the

94
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amplitude of the induced limit cycle and the system's ability to respond to command 

signals. It also does not lend itself well to adaptive PID control. Model reference 

adaptive control (MRAC) remains a subject of great interest to researchers in the field of 

adaptive control. The concept has been extended to include non-minimum phase systems, 

multivariable systems and nonlinear systems. MRAC is rarely implemented in a PID-like 

structure, however, although Clarke and Gawthrop (1975) proposed an adaptive PID 

controller that applied a model reference controller using least-squares estimation.

A survey of the literature indicates that a considerable amount of work has been 

done using a self-tuning regulator structure for adaptive PID control. A key to the 

successful design of a self-tuning regulator is the selection of an appropriate parameter 

estimation method. Since the parameter estimator must function on-line in an adaptive 

controller, the estimation algorithm must perform recursively. Most recursive estimation 

methods are derived from an off-line counterpart. The off-line method is extended to 

perform the calculation one iteration at a time using a newly acquired data element at each 

iteration. Several different recursive estimation schemes have been developed, including 

recursive least-squares (RLS), recursive extended least-squares (RELS), recursive 

maximum likelihood (RML) and recursive instrumental variables (RIV). By far, the most 

widely used recursive estimation method is recursive least squares. Actually, all of the 

above methods are based on some variation of the RLS algorithm. Ljung and Soderstrom 

(1983) go so far as to state that "There is only one recursive identification method. It 

contains design variables to be chosen by the user".

For a system to be identifiable, some restrictions must be placed on the input signal 

to the parameter estimator. The input signal must have sufficient frequency content to 

adequately excite all modes of the system. An input that meets this requirement is said to 

be persistently exciting. It can be shown that if the input is persistently exciting and the 

parameter errors are uncorrelated with each other and with the input signal, the least
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squares-estimates will converge to the true values of the parameters. Severe numerical 

problems can occur, however, when the input is not persistently exciting. Some of the 

matrices used in the calculation of the estimated parameters can become singular or near 

singular causing the estimation algorithm to fail. Numerical difficulties can also occur 

when numerical inaccuracies develop in the computations due to roundoff. Variations of 

the basic least-squares method, called square root algorithms have been successfully used 

to overcome some of these numerical difficulties. By using the square root of the 

covariance matrix in the calculations, the effective dynamic range of the calculations is 

limited. One such method proposed by Bierman (1977) is known as U-D cofactorization. 

Other modifications to the least-squares algorithm have been proposed as well. Astrom 

and Wittenmark's (1973) original self-tuning regulator assumes that the plant parameters 

remain constant, which is why they refer to it as self-tuning as opposed to adaptive. The 

idea has been extended, however, to include plants with time-varying parameters. A 

forgetting factor can be introduced into the least-squares algorithm that discounts the 

effect of past data on the calculations, thus allowing the algorithm to track time-varying 

parameters.

Other difficulties must also be considered when implementing recursive parameter 

estimation. It can be shown that disturbances in the input-output data to the estimator 

result in biased estimates. Filtering of the data may therefore be required, as disturbances 

will disguise the true dynamics of the plant to the estimator. The effects of measurement 

noise in the data can be minimized by low-pass filtering. Several different techniques, 

including the use of high-pass filters, may be used to remove offsets and low frequency 

disturbances from the input and output signals. Very often, a band-pass filter is used to 

filter the estimator data. The allowable bandwidth of the filter depends on the bandwidth 

of interest of the plant being identified. The filter must be designed specifically for the
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plant in question; therefore, some knowledge of the plant dynamics must be known in 

advance if data filtering is to be utilized.

Special considerations must also be made when parameter estimation is performed 

on a plant under closed-loop control. A criterion for being able to identify a plant is that 

the input signal to the estimator must be independent of the residuals (estimation errors). 

Although this is typically true in an open-loop case, it is not necessarily true in a closed- 

loop situation. In fact, it can be demonstrated that when simple proportional feedback is 

used, the controller output and the residuals are correlated. Assuming the reference input 

is constant, once the controller has brought the plant output to equilibrium, no new 

information about the plant dynamics is provided to the estimator. If a forgetting factor 

has been introduced into the algorithm, the estimator will then tend to forget what it has 

learned about the plant dynamics and the covariances of the parameters will begin to 

increase exponentially, a condition known as estimator wind-up. When new information 

about the plant becomes available to the estimator, as is the case when the plant 

parameters change, the covariance matrix is saturated and the estimator is unable to 

identify the changes in the parameters. Several methods have been proposed to deal with 

estimator windup, such as covariance resetting, time variable forgetting factors, constant 

trace algorithms and directional forgetting. Probably the simplest method is to reset the 

covariances to some initial values if a limit is reached, although this may introduce a time- 

lag from when the parameters change to when the estimator responds, depending on when 

the estimator covariances were last reset. A related problem, known as bursting, can also 

occur when attempting identification of a plant operating in a closed-loop. When the plant 

reaches equilibrium due to feedback and the input to the estimator is no longer sufficiently 

exciting, the estimated parameters may drift, causing instability in the output. As the 

output becomes more unstable, the input to the estimator is excited to the point where the 

estimator is again able to identify the plant parameters. The controller can then bring the
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plant back under control and the process repeats itself indefinitely. One way to deal with 

bursting is to turn off the estimator when the parameter error becomes sufficiently small.

A dead-zone is thus introduced into the algorithm that allows the estimator to work only 

when the parameter error becomes significant. The size of the dead-zone is another 

parameter that must be adjusted and depends on the noise floor of the given application.

As evidenced in the previous discussion, recursive parameter estimation is not a 

trivial task, particularly when attempted in a closed-loop, and many ad hoc methods have 

been developed to alleviate some of the inherent difficulties encountered. The second 

main element of the self-tuning controller is the on-line control design mechanism. The 

minimum variance controller originally proposed by Astrom and Wittenmark (1973) was 

extended by Clarke and Gawthrop (1975) who proposed a technique known as 

generalized minimum variance control. The work of Astrom and Wittenmark and Clarke 

and Gawthrop spawned development into many other control law design variations, 

including pole-placement and LQG design. When the controller is to conform to a PID- 

like structure, the number of options for choosing an underlying design principle becomes 

somewhat limited. To accommodate a PID controller structure, generally some type of 

pole-placement algorithm is used, and the model order of the parameter estimator is 

limited to second-order. Imposing a limit on the model order of the estimator limits its 

application to plants that can be adequately modeled assuming lower order dynamics only. 

Another factor to consider is the computational complexity of the design mechanism. If 

the controller will be required to operate at high sampling rates or if the algorithm is to be 

implemented on a microprocessor or a DSP chip, some of the pole-placement techniques 

that require on-line solution of simultaneous linear equations may not be suitable. The 

algorithm should also be robust, in the sense that it should be able to perform in presence 

of random disturbances.
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Warwick, Karam and Tham (1987) proposed a self-tuning controller algorithm 

that meets most of the controller objectives just mentioned. The proposed control law 

design mechanism uses the estimated plant model parameters directly in the control law 

and is thus considered an implicit or direct realization. The algorithm is computationally 

efficient, making it suitable for implementation on a microprocessor or DSP chip. The 

primary objective of the algorithm is setpoint tracking, and the controller design is based 

on a deadbeat control strategy that attempts to cancel the dominant process poles, but not 

the process zeros. This allows the controller to be used with non-minimum phase plants. 

The algorithm is also versatile, in that it can be easily modified to work with a number of 

different control strategies. For instance, although the proposed self-tuning controller is 

not specifically designed for PID control, a PID-like controller can be realized by imposing 

specific limitations on the general controller structure.

The disadvantage of the algorithm proposed by Warwick, et. al. is that the closed- 

loop dynamics of the system are fixed by the pole cancellation of the deadbeat control 

strategy. Cancellation of the plant poles may allow for good reference input tracking, but 

the response to load disturbances may be less than optimal. Pole-placement offers an 

advantage over deadbeat control in that the locations of the closed-loop system poles can 

be arbitrarily selected. Some of the early work on self-tuning PID controllers based on 

pole-placement was done by Wittenmark (1979) and Astrom and Wittenmark (1980). 

McInnis, et.al. (1985) modified the pole-placement algorithm of Astrom and Wittenmark 

(1980) so that the two extra closed-loop zeros are placed at the origin, simplifying the 

calculations required in the implementation.

In this chapter, an adaptive PID algorithm is developed. A recursive least-squares 

estimator using U-D cofactorization as proposed by Bierman (1977) is used for the 

parameter estimator. The estimation scheme incorporates exponential forgetting and 

resetting for tracking time-varying parameters. In order to deal with estimator windup
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and bursting, the estimator also includes a dead-zone that causes it to shut-off when the 

parameter error drops below a given threshold. Two different control law design 

mechanisms are also presented in the chapter. First, the simple self-tuning control 

(SSTC) algorithm proposed by Warwick, Karam and Tham is developed. The basic SSTC 

algorithm is modified to accommodate a PID-like controller structure by imposing certain 

constraints on the algorithm. The second control law design mechanism presented is a 

pole-placement algorithm proposed by McInnis, et. al. The pole-placement method allows 

for a setpoint-on-I-only PID structure which minimizes proportional and derivative kick. 

The remainder of the chapter deals with the development of the two outer loop sections of 

the adaptive controller: the parameter estimation algorithm and the control law design 

mechanism.

4.2 Open-Loop Parameter Estimation

Development of the recursive least-squares algorithm

A critical step in the system identification process is the definition of a suitable model for 

the plant. One of the most commonly used parametric models in system identification is 

the autoregressive moving average with exogenous input (ARMAX) model. The 

ARMAX model is defined as:

A(q)y(t) = B(q)u(t) + C(q)e(t)

A(q) = l+a,q-' + +a„q-"

B(q) = b,q-'+ ■■■ +bflq~n 

C(q) = l + ctq~' + ■■■ + criq"

where:
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e(t) is a sequence of uniformly distributed, independent random disturbances, q 1 is the 

backward shift operator and t are samples taken in discrete time. The ARMAX model 

allows for modeling of non-white noise by the inclusion of a coloring filter, C(q). 

However, if the noise, , is assumed to be white, a simplified version of the ARMAX

model, called the ARX model, can then be used. The ARX model is defined as:

^(tf W) = B(q)u(t) + s(t) (4.1)

where :
A(q) = l+a,q~'+ ••• +

B(q) = btq~'+ - +bmq-\

Equation (4.1) can also be written in a familiar form as:

X0+a\y(f -1)+— +«„X' - «) = *,«(«-1)+- • • +b„u(t -m) + e(t). (4.2)

By assuming e(t) to be white noise, the ordinary least-squares estimator can then be used 

to estimate the parameters of the model. The ensuing development of the recursive least- 

squares algorithm follows Ljung and Soderstrom (1983).

A parameter vector 6 is defined as:

and a regression vector is defined as:

<pT (f) = [-X* -1). ..-X' -«)»(<--™)] •

Equation 4.2 can then be written as:

X0=^X0+X0.

Having defined the model structure, the problem is to estimate the parameter vector, 0. 

One way to do this is to minimize what is left unexplained by the model, i.e., e(t). A cost 

function can thus be constructed as:

=“X [xo - xo] (4.3)
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where VN(0} is minimized with respect to#. (at is a series of positive numbers that allow 

different weights to be given to different observations. Setting at equal to one gives all 

the data equal weight.) Since (#) is a quadratic in #, it can be minimized analytically. 

The least squares estimate of 0 is defined as #(W)and can be determined to be:

^a,<p(t)<pT (t) 22“<xoxo. (4.4)
Z=1 /=!

In order to solve equation (4.4) recursively, a new vector, R(t), is defined as:

Then from equation (4.4):

22 ai^)yW = R(t-1)61(7-1).
fc=l

Therefore:

R (Z -1) = R (Z) - at XOX (0 

which yields an expression for #(/):
W = a(z -1)+R-' [xo - 0 -1) X0]

with:

7?(Z) = A(Z-l) + a,X0XX).
If R(Z) is defined as:

R(Z) = yfl(Z),

then it can be shown that:
R(Z) = R(Z -1)+| [«,X0X (0 - R(< -1)],

thus giving:
<V) = tf(z -1)+;R-' (Z)xo[xo -&«- OXO]

1 (4-5)

R(Z) = R(Z -1) +y[a,X0X« - R(<-1)]-

Unfortunately, equations (4.5) are not well suited for on-line computations as they require 

the inversion of R(Z) at each sampling interval. A new variable is therefore introduced:
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P(Z) = 7?i(Z) = |r,(Z).

The matrix inversion lemma is given as:
[A + BCD]'= A1 - A‘b[da‘B + C*]dA’ . (4.6)

Applying the lemma of (4.6) to equation (4.5) with:

A = P(Z-1), B = p(Z), C=<z,, D=^r(Z)

gives:
P( Z) = [p “* (z -1) + <p(t) a, <pT (z)] ‘

P(Z-1)^Z)/(Z)P(Z-1). (4.7)

+^(Z)P(Z-1)«<Z)

The result of equation (4.7) is that the inversion of a square matrix is replaced by the 

inversion of a scalar. The recursive least-squares algorithm for determining 0(t) is thus 

determined to be:

fl(z) = d(z -1)+L(Z)[^(Z) - (z - 1KZ)] 

P(<-l)<zV)L(z) =
a. + ^>T(z)P(z-i)<e<z)

(4.8a)

(4.8b)

P(z) = ^/-L(Z)(»r(Z) P(z-l) (4.8c)

It is seen in algorithm (4.8) that initial conditions $(0)and P(0) must be established for 

the vectors #(Z)and P(Z). The correct initial values would be obtained if the recursion of 

algorithm (4.8) did not begin until time to = dim <p(t) - dim 6 (which is when R(Z) of 

equation (4.5) becomes invertable). However, since the estimation normally begins at 

time t = 0, some arbitrary values for #(0) and P(0) must be selected. According to Ljung 

and Soderstrom (1983), it can be shown that as P"’(0) —> 0, the value of the recursive 

estimate approaches the value of the off-line estimate. The initial conditions for #(Z) and 

P(Z) are therefore typically chosen to be:
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P(0) = al where a is a large constant 

and 6(0) = 0.

The question now arises as to how the algorithm behaves as the number of samples 

grows large. It can be shown that the recursive least-squares estimate of the parameters 

0(f) will converge to the true parameters 0(t) under the following conditions:

1. The input {u (t)} is persistently exciting

2. The residuals {f(/)}are independent

3. The input sequence {m(z)} is independent 
of the disturbance sequence {«(/)}•

Ljung and Soderstrom (1983) define persistently exciting as follows:

Let {w(Z)} be such that the limits
I v A

lim — Vu(t)uT(t- j)=r(j) exist for all 0< j <n.
N

Form the n x n block matrix Rn whose i,k block entry is r(i - k). The sequence

{w(/)}is then said to be persistently exciting of order n, if Rn is nonsingular.

Astrom and Wittenmark (1989) investigated the persistence of excitation of several special 

signals of interest. Their conclusions are presented in Table 10.

Table 10. Order of persistence of excitation of various signal types

Signal Type Order n of Persistence of Excitation

Pulse Not PE for any n

Step PE of order 1

Sinusoid PE of order 2

Periodic Signal with period n At most, PE of order n

Random signals PE of any order
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It can be shown that a signal that is persistently exciting of order n has a spectral density 

that is non zero at least n points. Persistence of excitation, therefore, implies that the 

signal contains sufficient frequency content to excite all of the modes of the system in 

question.

Tracking time-varying parameters

The recursive least-squares algorithm expressed in algorithm (4.8) assumes that 

the system being identified is time-invariant. One of the primary reasons for using 

adaptive control, however, is to compensate for system parameters that vary slowly over 

time. The least-squares cost function was given in equation (4.3) as:

^w(6') = ^a,Z[X0-^X')] ■

If the parameters are time-varying, the criterion of equation (4.3) gives an estimate of the 

average behavior over the interval from 1 to N. The criterion of equation (4.3) can be 

modified to discount older data and thus provide an estimate of the current values of the 

parameters. The modified criterion is given as:

<4-9>
1

where 2 is referred to as the forgettingfactor. If 2 = 1, all of the data is weighted 

equally; however, if 2 < 1, recent data are weighted more heavily and an exponential 

forgetting profile is imposed upon the least-squares cost function of equation (4.3). If 

R(t) is redefined to be:

k=l

the recursive least squares algorithm can be redeveloped as:
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d(0 = 0(z -1)+L(z)[x0 - (z - oxo] 
p(z-i)XOL(Z) =

a,
+ /(Z)P(Z-1)XO

1/ _ 
/a. L(Z)pr(O P(Z-l)

(4.10a)

(4.10b)

(4.10c)

Observation of algorithm (4.10) reveals that the normal RLS algorithm (4.8) is merely a 

special case of algorithm (4.10) with 2 = 1. In the standard RLS algorithm, as the 

estimates converge, P(Z) tends to go to zero. Making 0 < 2 < 1 has the effect of keeping 

P(Z), and thus L(Z), relatively large. The algorithm will then remain active, able to track 

the time-varying parameters. The final value at which L(Z) converges will ultimately be a 

compromise between tracking ability and noise sensitivity. Ljung and Soderstrom (1983) 

state that it is impossible to track rapidly varying parameters; however, slowly varying 

parameters can often be tracked reasonably well. If some prior knowledge of the variation 

of the parameters is available, 2 can be made to be dynamic as 2(Z); however, if prior 

knowledge of the variability of the parameters is not available, the forgetting factor is 

generally be chosen to be a constant. Assuming ak is equal to one, equation (4.9) can be 

expressed as:

t=\

When 2 is close to one,

2' - e'1"2 - gfln(A-l+l) ^(A-l)

which results in an exponentially decaying time constant of:

where To is referred to as the memory time constant. To should be chosen to coincide with 

the expected rate of variation of the parameters. According to Isermann (1982), 2 must
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be maintained between 0.95 < 2 < 0.995 in most cases. Table 11 shows the effect of the 

relative weighting of the forgetting factor over a 50 sample interval for 2 = 0.99 and 2 = 

0.95. The current sample k = 50 is given a relative weight of one in both cases. For the 

case where 2 = 0.99, the earlier sample of k = 40 is given a relative weight of 0.90. The 

sample taken fifty samples earlier at k = 1 still carries a weight of 0.60. On the other hand, 

for the case where 2 = 0.95, the data at k = 1 will be weighted by a factor of 0.08, making 

its effect on the estimate almost negligible.

Table 11. Effect of relative weighting of the forgetting factor 2

k I 1111 111!!! 30 40 Bill 48 49 . 50

A = 0.99 0.61 0.67 0.73 0.82 0.90 0.97 0.98 0.99 1

2 = 0.95 0.08 0.13 0.21 0.35 0.60 0.85 0.90 0.95 1

A recursive least squares algorithm has now been developed that is suitable for 

estimating parameters of linear time-varying (LTV) systems. The algorithm in its present 

form, however, may be subject to numerical difficulties due to model mismatching, noise 

and computer roundoff. In the next section, a more robust estimation approach will be 

developed that exhibits better stability than the standard RLS algorithm without imposing 

a penalty on the number of computations performed.

U-D Cofactorization

It has been demonstrated (see Ljung and Soderstrom, 1983) that if the input to the 

estimator {w(f)} is not persistently exciting, the matrix P(Z), which is referred to as the 

covariance matrix, may become singular causing a failure of the RLS algorithm. 

Additionally, it is well established that computer inaccuracies, primarily due to roundoff,
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can also lead to numerical difficulties in the computation of the Kalman filter and likewise, 

the RLS algorithm. One possible solution to the problem is to ensure that the 

measurements and the dynamic model are sufficiently noisy to prevent near singularities 

from occurring. This approach, however, could lead to inaccuracies in the estimation 

process as the true dynamic characteristics of the system will be masked by the noise. 

Another possible solution is to perform some of the computations using extra-precision 

arithmetic. This option, however, requires additional memory elements and may suffer 

from performance degradation due to the additional computational effort required. A 

third, and undoubtedly more attractive alternative is to replace the RLS algorithm with 

one that is numerically better conditioned. The square root algorithm presents such an 

alternative. Bierman (1977) contends that methods involving square root algorithms have 

numerical properties that are superior to the alternative methods. The use of square root 

matrices preserves symmetry and assures non-negative eigenvalues for the covariance 

matrix. Square root algorithms also effectively reduce the dynamic range of the numbers 

used in the computations of the covariance matrix. Roughly speaking, computations in the 

range of 10A to 10 v are reduced to the range of 10 to 10^. This essentially halves 

the word length requirements for computing the covariance matrix. Bierman (1977) 

presents a method whereby the covariance matrix P(Z) is factored in the form:

P(Z) = U(Z)D(Z)Ur(Z),

where U(Z) is an upper triangular matrix with ones on the diagonal and D(Z) is a diagonal 

matrix. The recursions are therefore performed in U(Z)and D(Z) as opposed to P(Z).

The use of triangular matrices involves fewer computations and the factorization process 

avoids the necessity of computing time-consuming square roots. According to Bierman 

(1977), using factorization guarantees that P(Z) will remain positive definite. The 

following development follows Bierman (1977):
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Assume at in equation (4.10c) is equal to one. Then:
PQ-l) P(<-1MO/(QP(<-1) 1 (41]

A X+ <pT 2

Also, assume P(Z -1) is factored as U(z - 1)D(Z - l)Ur (Z -1) where U(Z) is upper 

triangular with all diagonal elements equal to one, and D(Z) is a diagonal matrix. Let:

/(Z) = Ur(Z-l)p(Z) 

g(Z) = D(Z-l)/(Z)

AO = A + / (Z)P(Z -1) <p(f) = A + f T (t)g(f).

Substituting into equation (4.11) gives:

U(Z)D(Z)Ur(Z) U(Z-l)D(Z-l)Ur(Z-l)-
U(Z-l)g(Z)gr(Z)U(Z-l)

AO
(4.12)

u(z)d(z)ut(z) = u(z-i) D(Z-l)-
g(Qgr(0

AO

2
2

Now let:
D(Z-l)-^^^ = U(Z)D(Z)Ur(z) (4.13)

where,
U(Z) = U(Z —l)U(Z)

°(0 = D(zX

Now it remains to find the factorization of equation (4.13). Let:
ut,2 - u„'

1 :

where d = dim 0. And let:
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D(0 =
d,

o D.

D(Z-1) =
^i o A

D.dj

and let et be the zth unit vector. Then equation (4.13) can be expressed as:

i=l i=l P

Now let /. be equal to the zth component off Then:

a=^=^+2/«> c4=4 vd=g-
»=1 p

Then (4.13) can be rewritten as:

i=l i=l A
(4.14)

Now and Ui can be determined from equation (4.14) given /?, and Vd. 

matrix:

Consider the

Md = DdUdUd - Ddeded +—VdVj.

Denoting Vdj as the zth component of the column vector Vd, by choosing:
K2

Dd=Dd- d,d

A
Ud,d = 1

U,.d=-=±-Vd, ' =
^dPd

the last column of Md will be made equal to zero. With:



yd,l

y^ =
d,d-1

0v u )

Md can then be written as:

Md =
y- ly d.d 1+ •

A

A# A J

Now if the £th value of p is determined to be:
A=*+£/&

y=i

then equation (4.12) can be used to determine:
-^-+—= 1

V VTy d-V d-\

P& Pd Pd.}

Ill

and
D<=Ddpd-/f,4’ u‘-*=-{fd/pd28' <415>

Now returning to equation (4.14):
W! = Y^--Md =YDteP-~^-VdJp (4.16)

i=l i=l j=1 Pd-\

provided that Ud and Dd are chosen according to equation (4.15). Notice that equation

(4.16) is exactly the same form as equation (4.14) except that t/been decreased to d -1.

The same procedure can therefore be used to find Dd_x, Ud_x, etc. The algorithm to find

U(Z) and D(Z)can then be used to determine:
U(/-l)D(/-l)Ur(Z-1)^(0

L(Z) =
AO

uq-i)g(O

AO

Ljung and Soderstrom (1983) summarize Bierman's complete U-D Cofactorization 

Algorithm as follows:
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1.

2.

3.

Initialize U(0) and D(0) at time t = 0, U(0)D(0)Ur(0) = P(0).

At time Z, compute L(Z) and update U(Z -1) and D(Z -1) by 
performing steps 1-6.

Compute/:=UT(Z-1)^Z), g: = D(Z-l)/, /?0=2.

For y = do steps 3-5.

Compute:

P^’

vi~S,,

4. For i = 1,..., j -1, do step 5 (If 7 = 1, skip step 5).

5. Compute:

U(0,J:=U(Z-l)i,.+viM/, 

v(:=v,.+U(Z-l)sv/

Bierman (1977) points out that the number of computations required for the U-D 

cofactorization algorithm is roughly the same as for the conventional Kalman filter. Yet, 

factorization of the covariance matrix P(Z) greatly enhances the numerical stability of the 

estimation process. In addition, Bierman's U-D algorithm does not require square root 

extractions that are required in some other square root algorithms, making the U-D 

cofactorization more suitable for use in microprocessors or DSP chips. The use of a 

square root algorithm alone, however, does not make for robust parameter estimation. 

Several other issues need to be considered before the estimator can be practically 

implemented.
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Data filtering

Generally speaking, real-world processes are always more complicated than the 

models used to describe them. Often, however, information about the process is available 

a priori for incorporation into a prejudice model. The purpose of the parameter estimator 

is to determine the parameters that best fit the prejudice model. Normally, disturbances 

are included as part of the prejudice model. The disturbances can either be described as 

stochastic, as in a random noise sequence, or as deterministic disturbances, such as levels, 

ramps, sinusoids, etc. Ljung (1987) gives some insight into the frequency domain 

interpretation of the least squares estimation problem as follows: Assuming an ARX 

model described as:

A(q)y(t) = B(q)u(t) + e(t),

the least squares estimate can be expressed as:

=argmn^£(?f(?)X0-W>"(0)

which, as N qo , becomes,
7T

$ - arg min fgp-b^
*3 J

-7 ' A(q)
■|4(<y)p<y (4.17)

where Gp represents the true plant. In equation (4.17), the magnitude of A is small at the

poles, which are the frequencies of interest in the estimation process, but A becomes large 

at higher frequencies. In the presence of measurement noise, the least-squares estimator 

produces biased estimates that tend to be weighted toward the higher frequencies. The 

bandwidth of interest in control applications, however, is around the crossover frequency, 

not at higher frequencies. Low pass filtering of the input and output data is therefore 

typically required to improve the accuracy of the estimates around the crossover 

frequency.
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Assume the process can be modeled as:

(4-18)

where e(t) is a sequence of independent, zero mean random variables (Gaussian white

noise) and v(Z) is a deterministic signal of known form but unknown amplitude. If( a
-------  1, the noise is no longer white and the elements of {f(/)} are no longer
£>(?)

independent; therefore, the least-squares estimate will again be biased. If the prior

estimates of C(^) and D(q) are known, then the regression vector <p(t) can be filtered by

Hf - an(i the regular RLS algorithm can still be used. If C(q) and D(q) are not 
v?)

known, a model such as in equation (4.18) can be assumed and an alternative estimation 

procedure, such as extended least-squares, can be implemented.

The presence of deterministic disturbances (represented by v(t) in equation 

(4.18)) in the input-output data will also lead to biased estimates. Wittenmark (1988) 

discusses the need for an appropriate disturbance annihilation filter to eliminate 

deterministic disturbances. Offsets, drift and other low frequency disturbances can be 

dealt with by filtering the data through a high pass filter, whereas, sinusoidal disturbances 

can be filtered with an appropriate notch filter. In order to deal with high frequency noise, 

offsets and low frequency drift, Wittenmark (1988) recommends a filter of the form show 

in Figure 35.

Xft

rad/sec

Figure 35. Magnitude response of disturbance annihilation filter H^q)
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Astrom and Wittenmark (1989) recommend that a>fl be at least one decade below the 

desired crossover frequency and that co^ be set at 2-10 times the crossover frequency. Of

course, the higher the desired bandwidth of the closed-loop system, the larger the 

bandwidth of the filter needs to be. Astrom and Wittenmark (1989) recommend that 

Hf (q) be of the form:

(?-«)

where |a| < 1. (It is assumed that the controller will be designed to compensate for the 

disturbances filtered out of the data to the estimator.)

Unmodeled dynamics

As discussed previously, the prejudice model is an attempt to model the complex 

dynamics of the true process by a simple linear model. Not only will disturbances 

adversely influence the accuracy of the parameter estimates, unmodeled dynamics can lead 

to problems as well. Unmodeled dynamics can drive the parameter estimates to inaccurate 

or even unreasonable values that can cause poor or possibly catastrophic controller 

performance. Astrom and Wittenmark (1989) use averaging analysis to show that data 

filtering as described above can make the estimator less sensitive to unmodeled dynamics. 

The effect of unmodeled dynamics can also be reduced by increasing the complexity of the 

plant model. A general family of model sets can be defined as:

= + (4.19)
F(q) D(q)

The family of model sets of equation (4.19) allows for a rather complicated description of 

the plant; however, Ljung and Soderstrom (1983) point out that overparameterization of 

the model can lead to singularity problems. Singularity occurs in the model of equation 

(4.19) when:
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There is a factor common to all of A, B and C, 

B and F have a common factor,

C and D have a common factor.

Ljung and Soderstrom (1983) show results of extensive simulations in the presence of 

colored and uncolored noise using 11 different model sets derived from the family of 

models described by equation (4.19). They have drawn several important conclusions 

from their work, three of which are summarized as follows:

1. Most of the model sets show very similar results, with a few exceptions.

2. There is no advantage to using the complex model set of equation (4.19). In fact, 
most of the other less complex models yield superior results.

3. If the signal-to-noise ratio is relatively high, the model set assuming C = D = 1 and 
either T7 = 1 or = 1 (as in the case of the ARX model) is usually the best choice.

The third conclusion noted above is extremely important, as that assumption allows for the 

use of the ordinary RLS algorithm when the noise level is relatively low, as opposed to 

one of the more complicated algorithms, such as extended least-squares.

After the model set has been selected, the appropriate model order must also be 

selected. In an off-line identification problem, the model order can simply be increased 

until it proves to be of no advantage to do so further; however, the on-line problem 

presents a more difficult situation. Unless several estimation algorithms using different 

model orders are run in parallel, the model order must be selected ahead of time. When 

using a RLS algorithm in the presence of noise, a relatively high model order might be 

required to obtain satisfactory results. Ljung and Soderstrom (1983) point out that when 

the model polynomials are of a higher order than the minimal description of the plant at
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the convergence point of 0, overparameterization may result. High model orders also 

tend to emphasize the influence of measurement noise in the estimation process, causing 

the model to be inaccurate at higher frequencies. Too high a model order can also lead to 

false local minima in the estimation process, resulting in biased estimates. If the controller 

design is constrained to a pole-placement method using a PID-like structure, the order of 

the estimator model will also necessarily be constrained. Assuming the input is 

persistently exciting, the performance of the estimator in the case of a reduced order 

estimator will depend on the level of the noise present and on how well the data to the 

estimator is prefiltered.

Estimator windup

The equation for updating the covariance matrix P(Z) in the RLS algorithm was

given in equation (4.11) as:
pf ) = r^-1) _ P(;-1W/(QP(*-1). I

2 A + <pT(tyP(t-1)^(/) 2

The potential of P(Z)becoming singular or near singular has already been discussed. P(Z) 

can become singular due to:

• Lack of persistence of excitation on the input signal,

• Overparameterization of the plant model,

• Computer roundoff errors.

The risk of singularity due to computer round off can be virtually eliminated by using a 

square root factorization method, as per Bierman (1977). Overparameterization can be 

controlled by ensuring that a model set is selected that is not overly complex (e.g., an
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ARX model) and that a model order is chosen that adequately approximates the dynamics 

of the plant. Unless an external perturbation signal is applied, however, it is difficult to 

guarantee that the input to the plant (and the estimator) will remain general enough so that 

the regression vector is persistently spanning (i.e., spans the entire vector space). The 

problem becomes especially difficult when the estimator is operating on a plant in a 

closed-loop configuration and the controller drives the output of the plant to equilibrium. 

The update equation for P(Z) was given in equation (4.10c) as:

p«4 1/ _ 
/a,

L(Z)/(Z) P(Z-1) =
P(Z-l) P(Z-1)L(Z)/(Z)

Aat 2
(4.20)

Since P(Z) contains the covariances of the regression vector <p(t), as (p(t) tends to 

contain no new information, the product P(Z - \}(pT (t)—>0. Assuming at = 1, if no new

information is contained in the measurements, equation (4.20) reduces to 
P(Z-l) (4-21)

Equation (4.21), and thus P(Z), will tend toward infinity at a rate of In an adaptive

control application, in order to ensure stability of the controller, P(Z) must be guaranteed 

to remain bounded and positive definite at all times.

One way of ensuring that P(Z) remains bounded and positive definite is to 

constantly add a positive definite matrix to P(Z). This is known as the Levenberg- 

Marquardt regularization method. Ljung and Soderstrom (1983) propose a similar 

concept for the U-D factorization algorithm by limiting the elements of the matrices 

U(Z) and D(Z). Unlike Levenberg-Marquardt, however, the modification is only applied 

when an eigenvalue is tending to zero. Ljung and Soderstrom (1983) show that since 

det U(Z) = 1, the elements of U(Z) will always remain bounded; therefore, limits need only 

be imposed on D(Z). The second calculation in step 3 of the U-D cofactorization 

algorithm given previously is thus changed to:

D(Z)..:=min C, (4.22)
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where C is a positive number that bounds the elements of D(Z). Providing the input 

sequence is well behaved, the upper bound of C in equation (4.22) is never reached. If an 

element of D(Z) becomes too large, it is bounded by C. Limiting the elements of D(Z) 

ensures that estimator does not fail due to singularity problems if the input is not 

persistently exciting, as will be the case in an adaptive control problem when the reference 

input and the plant output have reached steady-state and the noise level is insufficient to 

adequately excite the system.

Although the modification given in equation (4.22) prevents the estimation 

algorithm from failing by limiting the size of the elements of D(Z), difficulties may be 

encountered if the covariances are allowed to remain large over time. The covariances 

grow large when the system is not persistently excited. When a disturbance does finally 

arrive after the estimator gains are large, the estimates can move very rapidly, causing the 

controller to behave poorly during that period. Also, if the covariances remain large, the 

algorithm becomes excessively sensitive to noise. It is therefore advantageous to 

automatically reset the covariances to some smaller values (e.g., U(0) and D(0)) once 

they have reached the bound of C given in the modification of (4.22).

Several other approaches for dealing with estimator windup have also been 

successfully implemented. Some of the most common are:

• time-variable forgetting factors,

• constant trace algorithms,

• directional forgetting,

• conditioning techniques.

Estimator windup is only one of several difficulties that can be encountered when 

attempting parameter estimation of a plant operating in a closed-loop system. The criteria
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for being able to identify a system in closed-loop and some of the other difficulties that can 

be encountered when attempting closed-loop identification are discussed in the next 

section.

4.3 Identification in Closed-Loop

Although the basic RLS algorithm has been made more robust by the 

modifications discussed above, the success of the algorithm depends to a large degree on 

the generality of the input signal. If the input ceases to be persistently exciting, an ill- 

conditioned covariance matrix results and the algorithm will fail to produce an accurate 

model of the plant. Problems can also be encountered when the identification is 

performed on a plant under closed-loop control. Feedback of sufficiently low order will 

introduce linear dependencies among the elements of the regression vector (p(t) which 

means that a unique solution to the least-squares algorithm will not exist, making the 

system unidentifiable. This problem disappears if the feedback is of sufficiently high order, 

or if a time-varying controller gain is used. Isermann (1982) develops the conditions for 

identifiability in a closed-loop as follows:

Assume a plant is described by the model:

where:

r)=B(9 )/-'«(/) +

•••

+ b„q-

D(q~}) = \+d}q} + -

And let:
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W)_-, and Gc(q~') =
W)

Assume that the plant is placed in a feedback loop with a controller described by the

transfer function:
G (a') _ »(f) _ _ s0+s,q-'+--+svq-'’

c e(t) R(q~') r^r,q-'+-+rltq-f‘

where the error is defined as e(Z) = w(Z) -y(f) and w(Z) is the reference input into the

controller. Also assume that the only excitation to the plant is unmeasurable stochastic 

noise, <?(Z). The non-recursive least-squares algorithm is based on the equation:

y(t)= 6f(p(t) + €(t) (4.23)

where:

<pT(f) = [-y(t-l)...-y(t-m) u(t-d-V)...u(t-d-m)].

Because of the feedback, if w(Z) = 0, the input and output signals are related by: 
u(t-d-\) = -rxu(t-d-2)~ ••• -ruii(t-p-d-1)

(4.24)

(4-25)

The element u(t-d-1) from the regression vector (pT(t) in equation (4.24) is shown in 

equation (4.25) to be linearly dependent on the other elements of (pT (Z) if /z < m-1 and 

v< m - d -1. There is therefore no unique solution for the parameter vector, 0, 

however, if p > m or v> m-d, the linear dependency is removed and the system will be

identifiable. The relationship between the output signal and the noise input can be 

determined to be:
X0
f(Z)

The polynomials R(q ’) and S(q ’) are assumed to be known and relatively prime. If the 

transfer function Gid (q~l) contains p common poles and zeros, then in order for the

system to be identifiable in closed-loop, the order of the controller must be:

max{/z; v+t/}, -p>m. (4 26)
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According to Isermann (1982), if the condition given in equation (4.26) is not met, 

identifiability can still be obtained by either applying a controller with a time-varying gain, 

or by applying an extra perturbation signal that is persistently exciting of order m to the 

closed-loop, but not between the measured signals w(Z) and >»(/). In addition to the above 

criteria, Isermann (1982) also shows that in order for the plant to be identifiable in closed- 

loop, the order m and the dead time d of the process must be known a priori.

Even if the above criteria are met, other difficulties may arise when attempting to 

identify a plant under closed-loop control. The RLS algorithm given in equation (4.10b) 

can be expressed as:
6(z) = 6(t-1)+ F(< ;[X0-('- l)«V)]

Va +(/(/)?(/-!)?(/)1 j (4.27)

Substituting equation (4.23) into equation (4.27) yields: 

&(z)= fl(/-l) + -
(4.28)

The term on the right hand side of equation (4.28) represents the change in the parameter 

#(/) from the last sampling interval. If (p(t) and s(f) are correlated, as will normally be 

the case when the plant is under closed-loop control, the term <p(f)s(f) in (4.28) will 

cause Q(t) to drift. The problem becomes even more significant when the input, and 

consequently (p(t), is not persistently exciting. Assuming the reference input is constant, 

when the estimated parameters converge to some reasonable values, the control law will 

force the system into a steady-state condition. The input to the plant, and thus the 

regression vector p(t), will cease to be persistently exciting and the parameters will drift. 

Eventually, the parameter estimates become poor enough that the control law no longer 

behaves satisfactorily, causing instability in the output. The system is excited by the 

variation in the output causing the parameter estimates once again to converge to
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reasonable values and the process repeats itself. This phenomenon is known as bursting. 

(The same problem may also be experienced in the case of an undermodeled plant.) 

According to Middleton and Goodwin (1990), the best way to deal with bursting that is 

currently known is to incorporate a dead-zone into the algorithm that stops the parameter 

vector and covariance matrix update when the parameter error reaches a threshold value. 

The switching threshold of the dead-zone is established based on the expected level of the 

measurement noise that manifests itself in the parameter error. Not only will the dead- 

zone prevent parameter drift when the input ceases to be persistently exciting, but it also 

helps to minimize estimator windup. Of course, the addition of the dead-zone into the 

algorithm introduces another application specific parameter into the estimation process. 

Rey, et. al. (1990) point out that in order for a dead-zone to be effective in the avoidance 

of bursting, it must be "properly tuned"; i.e., the parameter error threshold must be 

properly adjusted. They further state that the current level of understanding about the 

behavior of dead-zones is not even sufficient to assertion in an actual implementation 

whether the dead-zone is properly tuned or not. There is also no way to predict from the 

data when a system is going to burst. Although it is an ad hoc approach to the problem, 

at this time, the use of the dead-zone appears to be one of the better alternatives to control 

bursting.

The first major component of the self-tuning controller, the parameter estimator, 

has now been developed. Several important modifications have been proposed to make 

the basic RLS algorithm more robust. The other major component in the outer loop of the 

adaptive controller is the control law design mechanism. The underlying design principal 

and the development of a control law design mechanism suitable for an adaptive PID 

application are presented in the following section.
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4.4 The Adaptive Control Law Design Mechanism

One of the attractive features of the self-tuning regulator structure is the flexibility 

gained in the selection of a control law design mechanism. A number of different 

approaches to the development of an adaptive control law design mechanism for self­

tuning regulators have been proposed in the literature. Kalman's (1958) indirect self­

tuning controller used a least-squares estimator in conjunction with a deadbeat controller. 

Astrom and Wittenmark's (1973) original self-tuning regulator was designed for a 

minimum variance control problem, and a self-tuning regulator using a generalized 

minimum variance controller was proposed by Clarke and Gawthrop (1975). A linear 

quadratic Gaussian version of the self-tuning regulator was presented by Peterka and 

Astrom (1973). Some of the earliest work in self-tuning regulators based on pole- 

placement algorithms was reported by Wellstead (1978). Wellstead's work primarily dealt 

with the regulator case, whereas, Astrom and Wittenmark's (1980) work on pole- 

placement algorithms focused strictly on the servo-mechanism case. If the controller 

design is to be constrained to fit a PID-like structure, the number of options for the choice 

of a control law design mechanism is significantly more limited.

The vast majority of self-tuning regulators in the literature that adhere to a PID 

controller model are based on some type of pole-placement technique, although there are a 

few exceptions (see Radke and Isermann, 1984). Warwick, Karam and Tham (1987) 

proposed a self-tuning control strategy with the goals of:

1. Computational efficiency

2. Robustness

3. Versatility

4. Good steady-state servo tracking.
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They refer to their controller algorithm as a simple self-tuning controller (SSTC) due to 

the reduced complexity of the direct adaptive control strategy employed compared to 

some other pole-placement techniques requiring many more computations. The SSTC is 

versatile in that it is not restricted to a plant model of any particular order. In addition, the 

basic controller can be modified to accommodate control laws of different structures, 

including pole-placement and deadbeat control strategies. The controller is also shown to 

be robust, in that it can be applied to processes with variable time delays and to non­

minimum phase systems. They also demonstrate how the controller can perform well in 

the presence of random disturbances. The basic control strategy is that of a deadbeat 

controller that attempts to cancel the process poles with the controller zeros. An option 

that does not cancel the process zeros is also presented, which allows the controller to be 

applied to non-minimum phase systems. The SSTC is developed following Warwick, 

Karam and Tham (1987).

Assume the plant is defined by the model:

^(7"‘ )X0 = •f’Btq-' )u(t) + C(q" )e(t) (4.29)

where:

)=>+«,<7 + -

C(?’1) = l + c,9’1+ •• • +<W'

and £•(/) is a sequence of zero mean random inputs that are uncorrelated with the input 

and output signals, u(t) and y(t). The integer d is the time delay of the plant expressed as 

an integer multiple of the sampling time. Also, assume that d > 1 such that b0 * 0, the 

roots of A(q~') lie in the unit circle of the z-plane and 5(1) 0.

Defining w(Z) as the reference input and s as a scalar feed forward term, the error 

e(t) is defined as:

e(O = sM'(')-X0-
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An error controller is defined as the transfer function:
= G(^)

e(/) F(^’)

where F(q~x) is monic, in the same form as A(q~x) of equation (4.29).

(4-30)

The characteristic equation of the closed-loop system is determined to be:

A(q~' ) F(q~x) + z~d B(q~' )G(q~x) = 0.

The desired closed-loop performance is achieved by the proper selection of the 

polynomials, F(q~x) and G(q~x). A simple form of the controller that follows a deadbeat 

control strategy is obtained by selecting:

G(^1) = ^-1)

and F{q~x) = \-z-dB(,q-x).

The control signal is obtained from equation 4.30 as:

w(Z) = A(q~x >(Z) + B(cTx )u(t -d). (4.31)

In this case, the coefficients of the plant polynomials A(q~x) and B(qx) make up the

parameters of the controller. Substituting (4.31) into (4.29) yields:
F(q-x)C(q~x)S(t)-i-y(t) = z~dB(q~i)sw(t) + (4.32)

To achieve zero steady-state error, s must be selected as:

As stated in the objectives, one of the primary goals of this controller is good steady-state 

servo tracking. Assuming the error term, s(f), is made up of two components, a 

zero mean white noise sequence, and v, which is a d.c. bias, the disturbance can be 

redefined as:

f(Z) = ^(Z) + v.

The tracking error of the controller is therefore expressed as:

tracking error-------------------- .
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The expected value of the tracking error is then determined to be:

^{tracking error} = . (4.33)

Equation (4.33) shows the inability of the controller to achieve zero steady-state error in 

the presence of a d.c. bias. However, by changing the definitions of the controller 

polynomials to:

F(q~') = B(])-q~‘lB(q~'),

the control output can be recalculated to be:
„(,) = ^(g~')g(0 + B(<1-d) (4.34)

5(1) 5(1)

and the closed-loop output is determined to be:
q-dB(q-' )sw(t) [5(1) - q~dB(q~' )]C(^' )e(Z)

X<) =
5(1) G(q~'}

(4.35)

Now, steady-state tracking can be obtained by setting 5 = 1. Since:
[B(l)-g-'B(9-,)]=0

in the steady-state, the effect of the d.c. bias v is eliminated. Notice that in equation 

(4.35), the process zeros are not canceled. Therefore, when controlling non-minimum 

phase systems, unstable poles will not be introduced into the closed-loop equation.

The control law just developed can be extended to models of any order. The 

method can also be modified to conform to a PID-like structure by imposing certain 

limitations on the algorithm. Assume a classical PID controller is converted to discrete­

time using a backward difference giving:

»(<) = e(z) (4.36)

Equation (4.36) can be rewritten as:

(1 - )»(0 = K(q-' )[w(Z) - XO]

where
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K(q-') = k,+k2q~' +k,q~z,

k,=Kp + K,+Kd,

k2 = -(Kp+2Kd), 

k, = Kd.

Equation (4.34) can be rearranged as:

[5(1) -q-“B(q-' )>(/) = A(q~' )[w(Z) - j(0] • (437)

In order for equation (4.37) to take on the form of equation (4.36), the following 

conditions must be true:

5=1

K(q-')=A(z-')

5=1

B(1) = 5(9-‘) = Z.o.

(1
u(t) = w(/-l) +

By restricting the assumed plant model to second-order with no zeros and by forcing the

time delay of the plant to be equal to one (a single sampling interval), the SSTC can be

forced to exhibit a PID-like structure. The resultant control output is determined to be:
+ «lg~l+«2g"2)[W(0-

The controller described by equation (4.38) has the advantage of being a direct 

implementation, as the controller parameters are obtained directly from the plant model 

parameters without requiring .any intermediate calculations. The method is somewhat 

limited, however, by the deadbeat-like control design strategy that cancels the poles of the 

plant. This restricts the ability of the designer to control the dynamics of the closed-loop 

system by arbitrary placement of the closed-loop system poles. Pole-placement methods 

offer an alternative control law design method that allows for control of the dynamics of 

the closed-loop system.
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McInnis, et.al. (1985) proposed a pole-placement PID algorithm for controlling 

left ventricular bypass lift devices. The controller design is based on a setpoint-on-I-only 

PID structure that incorporates filtering of the derivative term. By also adding the same 

filter to the integral term, the two extra closed-loop zeros are forced to be located at the 

origin in the z-plane, simplifying the calculations. The resulting controller structure is 

given in equation (4.39).

w(Z) = -KP~
0-g~')

1 + Kq-'
y(‘)+

K,
(1-<?-')(! +tty-)

—[W(Z)-XZ)] (4.39)

The control law give in equation (4.39) can be formulated as:

P(q~>)u(t) = Lw(t)-S(q~')y(t) (4.40)

where

S(q'1) = s0+slq-' + s2q~2,

L = S(i) = K„

and

5o ~ Kp + + Kd>

s,=^(r-l)-2^,

s2 = ^ - kKp.
If the plant model is assumed to be:

A(q~' )y(f) = B{q~' )u(t) + £(?)

then the closed-loop relationship is determined from equation (4.40) to be:

[A(q-' )P(q ') + B(q-' )S^-' )>(Z) = L ■ Btq'W) + P{q' )e(t). (4.41)

If the plant model is forced to be second-order, the relationship of equation (4.41) shows 

that four closed-loop poles of the desired model, can be arbitrarily positioned,

assuming that:
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the plant model is second-order, 

?1(<7_1) and B(q~}) are coprime, 

B(q~}) does not have the zero q - +1.

By equating coefficients of Am(q ') and A(q ])P(q }) + B(q ')S(q '), the parameters 

50, 5, and s2 can be determined assuming the parameters of the plant model are known.

By applying the certainty equivalence principle, the estimated plant parameters are then 

substituted into the relationship of equation (4.41) in place of the actual plant parameters. 

Let the second-order plant model be defined as:

^(?’l) = l+a1?‘1+a2?‘2 

= +M"2

and let the desired closed-loop polynomial be defined as:

4(?-') = +amtq~' +am2q~2 +am3q^ +aMq^.

Then,

4 (?■■)= A{q~' )P(q~') + B(q~' )S(q~')

which leads to:

0 ” A

+ K- a, ( k -1) - a2) - Z>, (aml - ( K-1) - a,)c - ---------------------------------------------------------------
b„b,

, . a„4 +a2K

2 *> '

Now the parameters of equation (4.42) can be substituted into equation (4.40) to give the 

control law:

w(Z) = (1 - K)u{t -1) + Ku{t - 2) + K^{t) - sQy(t) - sxy(t -1) - s2y(t - 2). (4.43)

Thus, by specifying the desired closed-loop dynamics as the four pole locations of 

Am(q_1), and by substituting the estimated plant parameters into equation (4.42), the 

control output given in equation (4.43) can be determined. The on-line control law design

(4.42a)

(4.42b)

(4.42c)
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mechanism in this case is explicit, or indirect, as the control law design requires an 

intermediate calculation between the estimation of the parameters and the control law 

design.

4.5 Stability and Convergence of Self-Tuning Regulators

The fact that adaptive control systems are non-linear makes stability analysis a 

nontrivial task. Nonlinear systems can be analyzed for Lyapunov stability, i.e., stability of 

a particular solution, but establishing global stability is difficult. According to Astrom and 

Wittenmark (1984b), some stability and convergence proofs for simple algorithms under 

ideal conditions were proposed as early as 1979. But they also state that there have not 

been any proofs based on more realistic assumptions. Astrom and Wittenmark (1989) did 

prove that for a direct adaptive pole assignment algorithm, given a number of critical 

assumptions, the estimates are bounded and the normalized prediction error converges to 

zero. They did not prove, however, that the parameter estimates converge. Astrom and 

Wittenmark (1989) point out that parameter convergence is not necessary for error 

convergence in direct algorithms. This is not the case, however, in indirect schemes where 

parameter convergence is essential to acceptable controller performance.

According to Kumar (1990), "...very little is known regarding the behavior of 

recursive least-squares parameter estimate based adaptive control schemes. For example, 

whether the original minimum variance self-tuning regulators of Peterka and Astrom and 

Wittenmark actually self-tune has been an open question for more than 15 years. Also, no 

conclusive results are available for certainty equivalent control laws which are of pole-zero 

placement type, or based on LQG design, etc." In what are considered two very 

important papers, Stemby (1977) and Rootzen and Stemby (1984) introduced a procedure 

known as "Bayesian embedding," which proves that for systems excited by white,
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Gaussian noise of a sufficient magnitude, the parameter estimates generally converge. 

Kumar (1990) expands on the work of Rootzen and Stemby to prove the stability and 

convergence of least-squares based adaptive control schemes under the condition that the 

additive noise to the system is white and Gaussian, and that the true system is strictly 

minimum phase. Although the proofs are too involved to be included here, the results of 

Kumar's work are summarized as follows:

Theorem 1: The parameter estimates, and thus the adaptive control law, both 

converge asymptotically stable.

Theorem 1 is based on two important conditions. First, the additive noise entering the 

system is required to be white, Gaussian noise. Second, the convergence result may not 

be valid on an exceptional set of true parameter vectors of Lebesgue measure zero.

Theorem 2: The overall adaptively controlled system is stable in an averaged 

squared sense whenever the estimated parameters are used in a 

certainty-equivalent fashion to design a control law which is stable 

for the estimated parameters, and the true system is of 

minimum phase.

Kumar goes on to give convergence and stability proofs for specific cases based on 

Theorem 1 and Theorem 2. But given the above constraints, the convergence of the 

estimated parameters and the stability of the overall adaptive control system can be 

guaranteed.
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4.6 Chapter Summary

In this chapter, the self-tuning regulator has been presented as a solution to an 

adaptive control problem. The basic structure of the self-tuning regulator consists of two 

loops: an inner loop consisting of a regular feedback controller and an outer loop made up 

of a parameter estimator and a control law design mechanism. An on-line parameter 

estimation algorithm has been developed based on recursive least-squares. The basic RLS 

algorithm has been modified to be able to track time-varying parameters by the addition of 

an exponential forgetting factor. Also, U-D cofactorization of the covariance matrix has 

been incorporated to improve the numerical stability of the RLS algorithm. Some of the 

practical implementation issues of parameter estimation, such as data filtering and 

estimator windup, have also been presented. The covariance matrix P(Z) is bounded in 

the event the input ceases to be persistently exciting, and covariance resetting of P(Z) is 

also employed to keep the algorithm from becoming overly sensitive to noise and to keep 

the estimator gains from becoming excessively large.

Two different options for the control law design mechanism have also been 

presented. The first option, proposed by Warwick, Karam and Tham (1985), is referred 

to as a simple self-tuning controller. The SSTC is based on a control strategy that seeks 

to cancel the process poles without canceling the process zeros. The SSTC is a direct 

structure that is computationally efficient, but is limited in that the closed-loop system 

poles cannot be arbitrarily positioned. The basic idea, however, can be expanded to 

include a pole-placement scheme and it can be used in a PID-like controller structure by 

limiting the model order to two. The second option is a pole-placement method as 

proposed by McInnis, et.al. (1985). Although it is an indirect structure and requires more 

computations than the SSTC to implement, it allows for the closed-loop system poles to 

be chosen arbitrarily. The pole-placement method also very easily conforms to a PID
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structure. It can, in fact, be adapted to PID structures of different types. The 

convergence and stability of the adaptive controller was also established for certain limited 

conditions based on the work of Kumar (1990).



CHAPTER V

SIMULATION OF THE ADAPTIVE

PID CONTROLLER

5.1 Introduction

An adaptive PID controller has been developed based on the self-tuning regulator 

(STR) model. A recursive least-squares parameter estimator identifies the parameters of a 

second-order ARX model of the plant. The estimation algorithm includes a forgetting 

factor that allows the controller to work with linear time-varying (LTV) systems, and U- 

D cofactorization is incorporated into the algorithm to improve the numerical conditioning 

of the calculation of the covariance matrix. Several ad hoc improvements, such as 

covariance resetting and a dead-zone on the parameter error, have also been included in 

the algorithm to mitigate some of the difficulties encountered when attempting to identify 

a plant under closed-loop control. Two different control law design techniques have also 

been presented. The first method, referred to as simplified self-tuning control (SSTC), is 

a direct approach that employs a deadbeat control strategy. The SSTC attempts to cancel 

the poles of the plant model, but not the plant zeros. Although SSTC is not specifically 

designed for PID control, it can be readily modified to conform to a PID-like structure by 

imposing certain constraints on the algorithm. The method is somewhat limited, however,

135
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in that the dynamics of the closed-loop system are inherent in the deadbeat-like controller 

structure and cannot be modified by the designer. The second control law design method 

presented is a pole-placement technique that is derived from a discrete-time PID controller 

model. The method allows for four closed-loop poles to be arbitrarily positioned while 

fixing two closed-loop zeros at the origin of the z-plane. Although the method is an 

indirect controller implementation, the additional intermediate calculations required are 

minimal.

The PID version of the SSTC controller has been selected for testing the concepts 

presented in Chapter 4. Although the SSTC solution to the adaptive control problem 

possesses certain inherent limitations, it contains a control law design mechanism that is 

easily implemented and will simplify the testing of the U-D RLS algorithm under closed- 

loop conditions. The adaptive control law may then be modified to incorporate a number 

of different control law design approaches. Several computer programs have been written 

to test the SSTC algorithm developed in the previous chapter. In this chapter, those 

programs will be briefly explained and simulation results will be presented in order to 

evaluate the performance of the algorithms. First, the RLS parameter estimation 

algorithm employing U-D cofactorization is tested in open-loop using a pseudo- random 

binary sequence (PRBS) as the input to the plant. The PRBS will be shown to 

approximate white noise in its frequency spectrum and thus meets the requirement that the 

input to the plant be persistently exciting. The RLS algorithm is then incorporated into 

the SSTC algorithm in a second program, and the SSTC adaptive control algorithm is 

simulated. Finally, the SSTC algorithm is constrained to a PID-like structure to produce 

an adaptive PID controller. The PID version of the SSTC controller is also simulated and 

analyzed in this chapter.
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5.2 The Pseudo-Random Binary Sequence

In order to evaluate the U-D RLS algorithm, an input signal must be provided to 

the plant that is persistently exciting of a suitable order. In Chapter 4, it was shown that 

random signals are known to be persistently exciting of any order and would therefore be 

an ideal source of excitation to the plant. White noise is a realization of a random signal 

that contains constant power per unit bandwidth for all frequencies. (A signal can be 

considered to be white if its power density spectrum is flat over a frequency range that is 

much greater than the bandwidth of the system being considered.) The present value of a 

white noise signal is completely independent of all past values of the signal. It can be 

shown that the autocorrelation function1 of white noise is an impulse of height o2 (the 

mean square value) at r= 0 (i.e., ^(0)), and zero for all other values of t. White noise 

can thus be considered persistently exciting of any order.

A pseudo-random noise signal has the same type of autocorrelation function as

white noise (i.e., an impulse function) but it is repeated with a period T. The

autocorrelation function of a pseudo-random signal is given as:
1 r

0

Davies (1970) presents a method for generating pseudo-random noise using a binary 

signal as shown in Figure 36.

’The Autocorrelation Function of a signal is a statistical measure of the degree to which future and past 
values of a signal are dependent on the current value of the signal. It is defined as:

<t> (r) = Lim— 
2T

T

Jx(Z)x(Z + T}dz.
~T
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Figure 36. Example of pseudo-random binary signal

If the signal of Figure 36 repeats itself every 11AZ units of time, the autocorrelation 

function of the signal will be a periodic function as depicted in Figure 37.

Figure 37. Autocorrelation function of pseudo-random binary signal of Figure 36

Davies (1970) presents several rules that must be adhered to in order to ensure that a 

pseudo-random binary signal approximates a truly random signal:

1. The signal must be periodic with period 7’ can only take on two constant values, ±a, 

and can only change from one state to another at discrete times, kkt, where Az is a 

constant and k is an integer.

2. The number of +a states should be approximately equal to the number of -a states 

(the difference should not exceed one).
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3. In every period, runs of consecutive +a states or — a states should frequently occur, 

with short runs being more frequent than long runs, e.g., 1/2 of the runs of length one, 

1/4 of the runs of length two, 1/8 of the runs of length three, etc. Also, for each run 

length, the +a states should equal the -a states.

4. The autocorrelation function of the signal should be two-valued, peaking in the middle 

and flat toward the ends.

Davies states that any binary sequence with all of the above properties can be defined as a 

pseudo-random binary signal (PRBS).

A PRBS can be generated using a shift register with a modulo-2 gate in a feedback 

loop. For a given number of stages in the shift register, there is a maximum number of 

digits that occur before the sequence repeats itself. This is referred to as the maximum

length sequence. Not every feedback connection will result in a maximum length 
sequence. The largest possible period for an «-stage shift register is (2” -1). Therefore, if 

a given output sequence has a period:

A = 2M-1,

the sequence is a maximum length sequence. Since the maximum length sequence is a 

square wave, its autocorrelation function can be written as:

^) = yZ*OW+*)-

The autocorrelation function of the binary maximum length sequence is shown graphically 

in Figure 38. A slight d.c. component can be seen in the figure, but for large N, Davies 

(1970) asserts that this can be safely neglected.
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Provided the feedback operation in the shift register is restricted to addition, the 

shift register generator is a linear device. The possible feedback combinations that 

produce maximum length sequences can thus be determined algebraically and can be 

implemented in a digital computer program. Davies (1970) has produced a table that 

includes all the possible feedback connections that produce maximum length sequences up 

to n = 10. Based on Davies' (1970) results, a routine was written to generate a pseudo­

random binary sequence with N = 1023 to be used as a persistently exciting input signal 

with which to test the U-D RLS algorithm. The open-loop test results are presented in the 

next section.

5.3 Testing the U-D RLS Algorithm in Open Loop

A QuickBASIC program has been written to test the parameter estimation 

algorithm to be used as part of the adaptive PID controller. A simplified flowchart of the 

program is shown in Figure 39. The PRBS that serves as the input to the simulated plant 

is generated from within the program. The PRBS generated by the program may be seen 

in Figure 40. A frequency divider is built into the PRBS routine the allows the PRBS
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Figure 39 Simplified flowchart of U-D RLS test program

sampling interval to be made a multiple of the plant sampling interval. The PRBS will 

have different frequency characteristics depending on the sampling interval selected. The 

program also simulates the response of the true plant using an ARX model. The input and
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output of the simulated true plant are used to form the regression vector used in the U-D 

RLS algorithm. The covariance matrix D(&) is bounded in the program and will 

automatically reset to D(0) if the estimator winds up to the upper bound Dmax. The RLS 

algorithm also includes a forgetting factor and the program allows the plant parameters to 

change in the middle of the simulation to test the ability of the algorithm to track time- 

varying parameters. The plant input and output, u(t) and y(t), the parameter error £•(/), 

the covariance and gain matrices, U(/),£>(Z) and L(Z), and the estimated parameters,

0(f) are all saved to files on the computer hard drive for later analysis.

Figure 40. Pseudo-random binary sequence used as input to the plant

The first test of the U-D RLS algorithm determines how the forgetting factor 2 

affects the convergence rate of the parameter vector 0(f). A second-order approximation 

of the plant used in the trials of Chapter 3 is selected for the test. The plant is described 

by the transfer function:

G'(5)_(l+sXl+.26s)' (5.1)
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The continuous-time model of equation (5.1) is discretized using the zero-order hold 

equivalent with a sampling interval of T = 1 sec. The resulting discrete-time model is 

given as:
_i W1) = 0.5103711#"1+0.1082462ff~2

1-0.3892412?"1+0.0078585tf’2' 1

The true plant parameters to be estimated are thus:

a, =-0.3892412 
a2 = 0.0078585

• (5-3)
b} =0.5103711 

b2 =0.1082462

The forgetting factor 2 is set to 1.0, 0.999, 0.995 and 0.95 for four trials. Due to the 

relatively slow dynamics of the plant, the sampling rate of the PRBS is multiplied by 10 in 

order to adequately excite the slower modes of the system. The covariance matrix D(£) 

is limited to Dmax = 106 and resets to its initial value of D(0) = 10 if the upper bound Dmax 

is reached. The results of the four trials are shown in Figures 41, 42, 43 and 44.

The parameter convergence appears exponential in each case, which is 

characteristic of the RLS algorithm. The differences in the parameter convergence rates 

are most evident in the parameter a,. In Figures 41 and 42, a} converges slower than in 

Figure 43. In fact, ax does not reach steady-state in any of the first three trials. In Figure 

44, however, a} appears to have completely converged by Z = 600. In the four trials, as 

the forgetting factor 2 is decreased, the parameters converge faster.
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Figure 43. 0(f) for 2 = 0.995
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Figure 42. 0(f) for 2 = 0.999

Figure 44. $(/) for 2 = 0.95

The parameter error e(t) is shown for each of the above cases in Figures 45, 46,

47 and 48. In the deterministic case, the parameter error s(t) is a measure of the accuracy 

of the estimated model relative to the true plant as given by:

For 2 = 1.0 and 2 = 0.999, s(f) is still significant even after 2000 samples. For 

2 = 0.995, s(i) converges to nearly zero after 1500 samples; however, for 2 = 0.95, s(t) 

becomes insignificant relatively quickly (in less than 250 samples). Analysis of frequency 

response plots reveals that for $(2000), the case where 2 = 0.95 produces a slightly more
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accurate model than do the other cases. As 2 decreases in value, however, the estimates 

become more susceptible to noise.

Figure 45. £■(/) for 2 = 1.0
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Figure 47. £'(/) for 2 = 0.995

Figure 46. e(t) for 2 = 0.999
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Figure 48. s(t) for 2 = 0.95

t

The next trial assesses the ability of the U-D RLS algorithm to track time-varying 

parameters. A 3000 sample test is performed with the parameters of the true plant 

changing at t = 1000 and at t = 2000. The parameters for the original plant model of 

equation (5.2) (Plant 1) and for the two modified plants (Plant 2 and Plant 3) are shown in 

Table 12:
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Table 12. Parameters of true Plants 1, 2 and 3

parameter Plant 1 Plant 2 Plant 3

-0.3892412 -0.50 -0.60

a2 0.0078585 -0.01 -0.05

0.5103711 0.40 0.30

b2 0.1082462 0.08 0.005

The magnitude and phase plots of the original plant (Plant 1) and the two modified plants 

(Plant 2 and Plant 3) are shown in Figure 49.

Figure 49. Magnitude and phase responses of three test plants

The forgetting factor 2 is set at 0.95 and the upper bound on D(Z) is set at 106. A graph 

of the estimated parameters 0(t) vs. time for the simulation is shown in Figure 50.
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Figure 50. Graph of parameter vector #(/) tracking time-varying plant parameters

The values of the estimated parameters at t = 1000 and at Z = 2000 and are listed in Table 

13.

Table 13. Estimated and actual parameters for test of time-varying system

e. Plant 1

(actual)

Plant 1

(estimated)

Plant 2

(actual)

Plant 2

(estimated)

Plant 3

(actual)

Plant 3

(estimated)

-0.3892412 0.4876259 -0.50 -0.5850750 -0.60 -0.5022256

a2 0.0078585 0.0536163 -0.01 0.0379177 -0.05 -0.1144118

0.5103711 0.5105271 0.40 0.3992493 0.30 0.2997126

b, 0.1082462 0.5546293 0.08 0.0431978 0.005 0.0342870
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Table 13 indicates that the estimated parameters do not converge to the actual parameters 

of Plants 1, 2 or 3. However, the magnitude and phase plots of Figures 51, 52 and 53, 

respectively, show that the frequency responses of the estimated models are nearly 

identical to those of the actual plants.

Figure 51. Magnitude and phase plots of actual Plant 1 and estimated Plant 1

Figure 52. Magnitude and phase plots of actual Plant 2 and estimated Plant 2
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Figure 53. Magnitude and phase plots of actual Plant 3 and estimated Plant 3

The Bode diagrams demonstrate that the estimator is capable of accurately tracking time- 

varying parameters for the noise-free case. A graph of the elements of the information 

matrix U(Z) for the trial is shown in Figures 54. (Recall that U(Z) is upper triangular with 

ones on the diagonal, and for the second-order model, it can be described by six elements.) 

Although the elements of U(Z) vary widely, they do remain bounded as predicted. A plot 

of the elements of the covariance matrix D(Z) is shown in Figure 55. The regularization 

of D(Z) is evident in the figure. The effect of automatic covariance resetting is also 

apparent as the elements of D(Z) are reset to D(0) when the upper bound of Dmax =106 is

reached.
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Figure 54. Elements of information matrix U(Z)

Figure 55. Elements of covariance matrix D(Z)
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The above simulations demonstrate that the U-D RLS estimation algorithm 

performs well for the deterministic case. The algorithm is now tested with measurement 

noise present in the system. For the simulation, the noise, denoted as is generated 

using a PRBS and is introduced to the true plant by the relation:

^(?)XO = 5(?)»(O+’j(O- (5-4)

The 3000 sample simulation presented above is repeated with the true plant changing from 

Plant 1 to Plant 2 at t = 1000 and from Plant 2 to Plant 3 at Z = 2000. For this trial, 

however, noise with a mean of zero and a variance of 0.05 is added to the system by the 

relation given in equation (5.4). A sample output of the plant response with noise added 

is shown in Figure 56.

Figure 56. Plant output y(t) with added noise

With the forgetting factor 2(Z) set to 0.95, the resulting estimated parameters are shown 

in Figure 57.



152

Figure 57. Estimated parameters with noise present 

The behavior of the parameters is significantly more erratic with noise present. The added 

noise prevents the parameters from converging with 2 = 0.95. In order to evaluate the 

accuracy of the estimated plant models, the frequency responses of the estimates at 

t - 1000, 2000 and 3000 are shown in Figures 58, 59 and 60 respectively. It is evident 

that the presence of added noise in the system has caused the estimates to be biased.

Figure 58. Frequency response of estimated and actual Plant 1 with noise
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Figure 59. Frequency response of estimated and actual Plant 2 with noise

Figure 60. Frequency response of estimated and actual Plant 3 with noise

The effect of the noise on the estimates can be reduced if the input and output data 

to the parameter estimator are prefiltered with a low-pass filter. Consider a second-order
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Butterworth filter with a cutoff frequency coc = 3 rad / sec, discretized using the bilinear

transformation with a sampling interval of one second. The discrete-time filter transfer

function is determined to be:
0.4188914+ 0.8277828Z"1 + 0.4188914z~2 

- 1 + 0.4654349z-1+0.2101308z-2
(5.5)

The magnitude response of the filter is shown in Figure 61.

Two 3000 sample simulations are performed with the true plant remaining fixed as Plant 1 

and the forgetting factor 2 set at 0.95. In the first simulation, noise is added to the system

and the estimator data is not filtered. In the second simulation, the estimator data is pre­

filtered through Hf. The results of the two simulations are presented in Figures 62 

through 65.
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Figure 62. Estimated parameters obtained with unfiltered estimator data

Figure 63. Magnitude response of plant model obtained with unfiltered data
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Figure 64. Estimated parameters obtained with filtered estimator data

Figure 65. Magnitude response of plant model obtained with filtered data

Filtering of the data has caused the behavior of the estimated parameters in 0{t) to be less 

erratic. In each case, the presence of noise slows the convergence rate of the parameter 

estimates compared to the noise-free case presented earlier. Filtering the estimator data 

has also improved the accuracy of the magnitude response of the estimated plant, 

particularly in the high frequency region. The two preceding simulations have shown the 

importance of data filtering when attempting parameter estimation in the presence of 

noise.
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The tests performed in this section have demonstrated the capability of the U-D 

RLS estimation algorithm to generate accurate models when the plant is properly excited 

in the open-loop case. The estimator is able to accurately track time-varying parameters, 

and with proper filtering, can provide an accurate model of the plant even in the presence 

of low level noise.

5.4 Simulation of the SSTC Controller

A deterministic assessment

The U-D RLS algorithm is now incorporated into a program that simulates the 

Simplified Self-Tuning Controller. To test the operation of the SSTC control law design 

mechanism, a simulation is run with the estimated plant parameters held constant. A 

second-order ARX model is assumed for the plant, given as:

-2

-2’\+afl + a2q

The parameters of the true plant being controlled are assumed to be:

ax =-0.3892412 
a2 =0.0078585 
bx =0.5103711 
b2 =0.1082462

which correspond to Plant 1 of the previous section. For the purposes of this test, the true 

plant parameters are used in the control law calculation as the controller parameters. The 

control law for the SSTC controller was given in Chapter 4 as:
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= ^(g'XO + W')»('-« 
B(l) 5(1)

which for the second-order plant model is determined to be:

u(t) =
e(t) + axe(t -1) + a2e(t - 2) + b} u(t -1) + b2u(t - 2) 

bx + b2
(5-6)

The resulting plant and controller outputs in response to the reference input switching 

between plus and minus one may be seen in Figure 66.

The plant output is typical of the deadbeat-like control strategy used in the SSTC 

algorithm, indicating that the control law design algorithm is functioning properly.

The U-D RLS algorithm is now enabled in the SSTC simulation program, making 

the controller truly adaptive. The program allows the plant model to conform to an ARX 

model of any order. In this simulation, the plant model is assumed to be second-order, 

requiring the estimation of four plant parameters. The true plant is left the same as in the 

previous simulation, given as:



159

_i 0,5103711^-1+0.1082462^~2 
pW ~ 1-0.3892412^'+0.0078585<f2 '

Since the SSTC conforms to a direct adaptive control structure, this implies that there are 

four controller parameters to be established as well. Several other controller parameters, 

such as U(0), D(0), Dmax, #(0) and 2, must also be specified before running the 

simulation. Pre-testing of the algorithm indicated that the selection of U(0) and D(0) is 

somewhat arbitrary, as they only affect the estimates for the first few samples. Ljung and 

Soderstrom (1983), however, suggest that they be set to a relatively large value.

U(0) and D(0) are set to 10 for this simulation. The selection of Dmax, the upper bound 

on the covariance matrix D(Z), becomes a trade-off between the sensitivity and accuracy 

of the estimated plant parameters. If Dmax is fixed at too large a value, the estimates tend 

to be unstable and overly sensitive to noise in closed-loop estimation. Too small a value 

of Dmax, on the other hand, can produce less accurate estimates. Pre-testing indicated that 

Dmax = 105 achieves an acceptable balance in this case. In testing the open-loop estimator 

in the previous section, $(0) was set to zero; however, examination of equation (5.6) 

reveals that the sum of parameters bx and Z>2 cannot be permitted to be equal to zero. An 

initial value of 0.5 is arbitrarily selected for the elements of the parameter vector 0(t). If 

the parameters b} and b2 should ever go to zero during the simulation, the program is 

designed to change the control law to be:

w(Z) = u(t-1)

to ensure controller stability until the parameters return to acceptable values. Since the 

open-loop trials yielded the best results with the forgetting factor^ = 0.95, 2 was also set 

at 0.95 for this simulation. The results of a 500 sample simulation may be seen in Figure

67.
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Figure 67. Plant and control outputs of second-order SSTC controller with 2 = 0.95

After only two or three cycles of the reference input, the controller has tuned itself to the 

point where the overshoot of the plant output is less than 10% and the settling time is less 

than 10 seconds. The optimal solution of Figure 66 yielded an output with no overshoot; 

however, the overshoot observed in Figure 67 is attributed to modeling error due to a lack 

of a persistently exciting input to the plant, since the only excitation in this case is the 

change in the reference input. At t = 250, the overshoot significantly increases. The 

reason for this can be seen in the behavior of the elements of the resultant parameter 

vector shown in Figure 68. The parameters appear to have converged at around t - 100. 

Subsequently, the estimates make relatively large changes each time the reference input is 

cycled. Again, this is attributed to the lack of excitation to the plant and the forgetting 

factor 2 being set to heavily weight the most recent data to the estimator. The simulation 

indicates that the forgetting factor X needs to be set higher to make the estimator less 

sensitive to sudden changes in the reference input.
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Figure 68. Estimated plant parameters for second-order SSTC with 2 = 0.95

In the deterministic case, the parameter error represents the modeling error of 

the estimated plant versus the true plant. The parameter error s(t) for the simulation 

above is shown in Figure 69. The parameter error eventually converges to zero when the 

plant output is in steady-state following each change in the reference input. s(t) jumps to 

higher levels, however, during changes in the reference input. This indicates that the 

estimated model is accurate at low frequencies, but is less accurate at higher frequencies. 

Since the plant is only excited every 50 samples when the reference input changes signs, 

the model tends to be biased toward the lower frequencies.

The behavior of the information and covariance matrices U(Z) and D(Z) for the

simulation may be seen in Figures 70 and 71, respectively.
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Figure 69. Parameter error for second-order SSTC with 2 = 0.95

Figure 70. U(Z)for second-order SSTC with 2 = 0.95
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Figure 71. D(Z)for second-order SSTC with 2 = 0.95

The elements of U(Z) remain bounded as predicted. The tendency of the covariance 

matrix D(Z) to become singular when the plant is not sufficiently excited was discussed in 

Chapter 4. One of the difficulties encountered in closed-loop estimation when employing 

a forgetting factor is that the covariance matrix P(Z) (or in this case, U(Z)D(Z)Ur(Z)) is 

governed by the relationship:
P(Z-l)

P(Z) = (5.7)
A

when no new information is contained in the measurements. The exponential effect of 

equation (5.7) is seen in the elements of D(Z). Covariance resetting has been 

incorporated into the SSTC algorithm to reset U(Z) and D(Z) to U(0) and D(0) when 

D(Z) reaches the limit Dmax = 105. The elements of the estimator gain matrix L(Z) are 

plotted in Figure 72.
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Figure 72. L(Z) for second-order SSTC with 2 = 0.95

The estimator gains achieve very small values (less than 0.05) in a few samples, 

demonstrating the rapid convergence rate of the U-D RLS algorithm. When the 

parameters diverge at around 150 samples, the gains become large during the transients as 

the estimator attempts to minimize s(t).

The first simulations indicate that the second-order SSTC algorithm functions as 

predicted. The U-D RLS estimator yields suboptimal, yet reasonable parameters when 

operating on a plant in closed-loop, even though the input is not persistently exciting, thus 

allowing the SSTC controller to generate a control law that performs acceptably. 

Covariance resetting also prevents the covariance matrix from generating an overflow 

condition in the computations. Although a forgetting factor 2 of 0.95 produced excellent 

results in the open-loop trials run previously, it seems to cause the estimated parameters to 

be overly sensitive when the only source of excitation to the plant is an occasional change 

in the reference input.
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To test this hypothesis, the forgetting factor is set to 0.99 and the simulation is run 

again with all of the other parameters remaining the same as before. The resulting plant 

and controller outputs are shown in Figure 73.
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Figure 73. Plant and control outputs of second-order SSTC controller with 2 = 0.99

The plant output with 2 = 0.99 is more stable than the output with 2 = 0.95; however, the 

simulation with 2 = 0.95 produces a better step response, at least until the parameters 

diverge. Step responses obtained with 2 = 0.99 and 2 = 0.95 are shown in Figures 74 and 

75, respectively.
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Figure 74. 2nd-order SSTC step with 2 — 0.99 Figure 75. 2nd-order SSTC step with X = 0.95

The overshoot and the settling time in Figure 75 is less than that of Figure 74. On the 

other hand, the response with 2 = 0.95 begins to degrade in the next cycle after the 

response depicted in Figure 75, whereas, after the tuning-in period, the response with 

2 = 0.99 remains virtually unchanged for the full 500 samples.

A graph of the estimated parameters for the simulation with 2 = 0.99 is shown in 

Figure 76. The averaging effect of the larger forgetting factor is evident in the figure. 

Although the parameter jumps at the changes in the reference input are still evident, they 

are much smaller and the parameters are significantly more stable than with 2 = 0.95. The 

averaging effect of the larger forgetting factor, however, somewhat limits the accuracy of 

the estimates.

In the absence of a persistently exciting input to the plant, the estimated 

parameters have been shown to be prone to drift. The value of the forgetting factor that 

produces the best results in the open-loop trials is less suitable when the estimation is 

performed on a closed-loop plant assuming a second-order plant model. The parameters 

do converge rapidly, but then drift as the level of excitation to the plant input decreases as 

the control output stabilizes.
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Figure 76. Estimated parameters for 2nd-order SSTC with 2 = 0.99

To investigate the effect of the model order of the estimated plant on the 

performance of the controller, several trials are run assuming higher order plant models.

All other parameters are kept the same as the previous tests. The results of the 

simulations are shown in Figures 77 through 80. In each of the figures, the output remains 

stable for the duration of the simulation. As the assumed model order is increased, the 

overshoot decreases and the settling time increases as the output becomes more damped. 

This is seen more clearly in Figure 81, which shows an enlarged view of the outputs of the 

simulation taken at t = 200.
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Figure 78. Plant output for 5th-order modelFigure 77. Plant output for 2nd-order model

Figure 79. Plant output for 9th-order model Figure 80. Plant output for 15th-order model

Figure 81. Effect of higher model orders on output response
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Figure 81 reveals how increasing the assumed model order affects, and can even improve, 

the performance of the adaptive system. It also indicates that a higher order model is not 

a substitute for a persistently exciting input signal. Increasing the model order can 

improve system performance to a degree. However, too high a model order requires extra 

computational effort for little or no improvement in performance, and can actually 

adversely affect system performance in closed-loop estimation.

It is also revealing to examine the locations of the poles and zeros of the estimates 

of the models of different orders. The values of the parameters at t = 200 are selected and 

the locations of the poles and zeros of the true plant, the second order model and the 

fifteenth-order model are plotted in Figures 82, 83 and 84, respectively.

Figure 82. Pole-zero locations of true plant
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Figure 83. Pole-zero locations of second-order model at t = 200

Figure 84. Pole-zero locations of fifteenth-order model at t = 200

The second-order estimate yields two poles and one zero on the real axis, although the 

estimated poles and zeros are not near the true pole and zero locations. The fifteenth- 

order model, on the other hand, yields poles and zeros positioned symmetrically around 

the unit circle, with all but two of the poles (denoted in Figure 84 with the black arrows)
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being effectively canceled out by a zero. This illustrates how the U-D RLS estimator 

responds to overmodeling. The additional poles and zeros from the higher order model 

that have little or no bearing on the system response are positioned to effectively cancel 

out the effect of one another.

A stochastic assessment

The effect of random disturbances on the SSTC algorithm is examined in this 

section. The same plant model is used as in the previous simulations; however, a PRBS is 

added to the measurement of the plant output y(t) to approximate zero-mean white noise. 

The simulation with 2 = 0.95 is repeated here assuming plant models of orders 2, 3, 5 and 

7, and noise with a variance of 0.1 has been added to the measurement signal. The output 

responses are plotted in Figures 85, 86, 87 and 88. The ability of the SSTC algorithm to 

function well in the presence of a significant amount of noise is evident in the figures. As 

with the deterministic case, as the model order is increased, the overshoot decreases and 

the settling time increases. Also, as the model order is increased, the SSTC controller 

compensates for the noise, as evidenced by the decreasing variability of the plant output 

with increasing controller model order. Figure 85 exhibits similar behavior to the noise- 

free simulation of the second-order model shown in Figure 77, in that, after the first two 

or three cycles of the reference input, the output response somewhat degrades. 

Examination of the parameters in Figure 89 reveals why.
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Figure 85. 2nd-0rder model with noise added Figure 86. 3rd-Order model with noise added

Figure 87. 5th-order model with noise added Figure 88. 7th-order model with noise added

Figure 89 is almost identical to the plot of the parameter estimates for the noise-free case 

in Figure 68, indicating that low level noise does not exert a major influence on the 

estimates. (Recall that the plant input and output data are pre-filtered through a low pass 

filter.) For comparison purposes, the parameters of the third-order model are presented in 

Figure 90. The estimated parameters still make sudden jumps in response to the changes 

in the reference input, but they are not nearly as severe as with the second-order model.
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Figure 89. Estimated parameters for 2nd-order model with noise added

Figure 90. Estimated parameters for 3rd-order model with noise added

The SSTC algorithm has been shown to perform well in the presence of low level 

noise. In fact, with the estimator data being pre-filtered, the noise seems to make little
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impact on the controller performance. The simulations have been of fairly short duration, 

however. The algorithm is now tested for an extended time period. A second-order 

model is assumed for the simulation and zero-mean noise with a variance of 0.1 is added 

to the output measurement. 2 is set at 0.95 and the other parameters are set to be the 

same as in the previous simulations. (Due to limitations of the plotting package, only 

every tenth sample is stored. The transient responses of the output are therefore not 

accurately portrayed in the graph.) The results of the simulation are shown in Figure 91.

t

Figure 91. Extended simulation of plant output for 2 = 0.95

The output continues to remain stable even after 10,000 samples with the reference input 

changing signs every 50 samples. A graph of the estimated parameters for the test is given 

in Figure 92.
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Figure 92. Extended simulation of parameter estimates for A = 0.95

With the forgetting factor set at 0.95, the parameter estimates behave erratically for the 

entire simulation period; however, the output remains stable and under reasonable control 

despite the parameter variations.

The same simulation is rerun with 2 = 0.99. The results of the simulation are 

shown in Figure 93. As in the previous case, the output remains stable. The estimated 

parameters are plotted in Figure 94. The parameter estimates are much less erratic than 

those with 2 = 0.95. Although they fluctuate throughout the simulation, the estimates 

remain bounded and appear to have converged around some mean values. Comparing 

Figure 94 with the noise-free case of Figure 76, the presence of noise destabilizes the 

parameter estimates significantly.
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Figure 93. Extended simulation of plant output for 2 = 0.99

Figure 94. Extended simulation of parameter estimates for 2 = 0.99
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Controlling bursting with a dead-zone

For the cases investigated so far, the SSTC algorithm has performed well when the 

assumed model of the plant is at least as high of an order as the true plant. One of the 

conditions for identifiability in a closed-loop system proposed by Isermann (1982) is that 

the order and the deadtime of the process to be controlled be known a priori. This is 

necessary to ensure that the estimator is of at least as high of an order as the process to be 

controlled. The case where the model is of a lower order than the actual plant is examined 

in this section. The estimator attempts to identify a second-order plant assuming the first- 

order model:

----- 1 I-----------------------

Simulation of SSTC with First-Order
- Model Controlling Second-Order Plant -

- -

- -

- -

For the simulation, the forgetting factor 2 is set to 0.95 and all of the other parameters are 

left the same as in the previous simulations. The resultant output of the plant is shown in 

Figure 95.
y(t) 500

400

300
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100
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-100
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t

Figure 95. Simulation of first-order SSTC controlling second-order plant
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The output of Figure 95 is an example of bursting. The same graph is shown at a smaller 

scale in Figure 96.

t

Figure 96. Example of bursting with first-order SSTC controller

Although the plant output rapidly achieves a reasonable response, after a few cycles of the 

reference input, the response degrades as the parameters drift, as shown in Figure 97. 

Eventually, the estimated parameters drift past a stability threshold and the controller can 

no longer control the plant. The erratic output during the burst excites the plant input 

sufficiently to bring the parameter estimates back to reasonable levels. The plant output 

shown in Figure 96, however, appears to be diverging again toward the end of the 

simulation. Although bursting can also be caused by other factors, such as allowing D(Z) 

to grow too large, the simulation demonstrates the danger of undermodeling, particularly 

when attempting closed-loop estimation. This illustrates the necessity for Isermann's 

(1982) criterion for closed-loop identification that the model order of the plant to be 

identified must be known a priori.
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Figure 97. Estimated parameters during bursting with first-order SSTC controller

In Chapter 4, the incorporation of a dead-zone in the parameter estimator was 

proposed to deal with the problem of bursting. The dead-zone is designed to shut off the 

parameter estimator when the absolute value of the parameter error e(t) remains below a 

threshold value for a given number of samples. The estimator reactivates if £■(/) increases 

above the threshold for another preset number of samples. The previous simulation is 

repeated with a dead-zone incorporated into the algorithm. For this trial, the parameter 

threshold is set at ±0.001 with the estimator shut-off time set at 30 samples. The resultant 

plant output is shown in Figure 98. With the addition of the dead-zone, the estimator 

shuts off at t - 540 when |f(/)| <0.001 for 30 samples. The parameter vector 

remains constant thereafter. A magnified view of the parameter error e(t) for the 

simulation is shown in Figure 99.
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Figure 98. Plant output under control of first-order SSTC controller with dead-zone

Figure 99. Magnified view of parameter error with dead-zone enabled

The parameter error e(t) fell below the threshold of 0.001 after the transients decayed 

from the change in-the reference input at t = 500. After the estimator shuts off at t = 540, 

the steady-state parameter error remains below the threshold of ±0.001 for as long as the 

dead zone inhibits the operation of the parameter estimator.
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5.5 Simulation of the SSTC PID Algorithm

A time-invariant plant assessment

It was noted in Chapter 4 that the SSTC control algorithm could be modified to 

conform to a PID-like structure. The control law for the PID version of the SSTC 

algorithm was given as:
+a,0~' +<M~:

u(t) = u(t -1) +
(1 )[w(0-X0]

which can be expressed as:

u(t) = u(t-Y) +
e(t) + axe(t -1) + a2e(t - 2) 

b0
(5.8)

From equation (5.8), it can be seen that three parameters must be estimated for the SSTC

PID algorithm. The SSTC simulation program is modified to accommodate the change in

the estimation algorithm and the revised control law of equation (5.8). A simulation is run

to test the performance of the adaptive PID algorithm. To meet the model order criterion

for identification in a closed-loop, the true plant is modified to be the same order as the

PID estimator. The model of the true plant is described as:
G f -i, = 0.6186173?-1

p{q ' 1-0.3892412^“’+0.0078585^“2

In the simulation, the forgetting factor is set to 2 = 0.95 and the remaining estimator 

parameters are set the same as in the previous SSTC simulations. The resultant plant 

output is shown in Figure 100.
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Figure 100. Plant output under SSTC PID control

The results of the first SSTC PID controller simulation are not encouraging. If the 

simulation is continued past 1000 samples, the output becomes unstable. The estimated 

parameters for the simulation are shown in Figure 101. The parameters exhibit extremely 

erratic behavior throughout the simulation. An investigation into the problem revealed 

that the instability was caused by the initial values of the elements of the parameter vector,
A.
#(/), which for all of the previous simulations were arbitrarily fixed at 0.5. The control 

law expressed in equation (5.8) contains a single term b0 in the denominator of the term on 

the right hand side of the equation. Setting bQ (0) to a value less than one causes the 

control law to drive the plant into instability, at least in this particular case. (This may not 

be true for other plants.)



183

Figure 101. Estimated parameters under SSTC PID control

The initial parameter estimates are changed to 2.0 and the simulation is repeated. 

The output of the plant is displayed in Figure 102. The output response is considerably 

improved. The controller is able to bring the plant from a highly unstable initial state to a 

reasonable level of control in a relatively short time. Although the output is stable after the 

parameters have converged, it remains significantly underdamped. A third trial is thus 

performed with #(0) = 1.0. The resultant plant and control outputs are shown in Figure

103.
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Plant Output under SSTC PID Control with (0) =1.0
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Figure 102. Plant output under SSTC PID control with 0(0) = 2.0
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Figure 103. Plant and control outputs under SSTC PID control with #(0) = 1.0

With $(0) = 1.0, the output adapts within four or five cycles of the reference input. The 

tuned response has an overshoot of less than three percent and a settling time between five 

and eight seconds, as seen in the magnified view of Figure 104.
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Figure 104. Tuned step response of SSTC PID control with 0(0) = 1.0

The output response degrades somewhat on the next cycle of the reference input, as seen 

in Figure 105.
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Figure 105. Stabilized step response of SSTC PID control with 0(0) = 1.0

A graph of the estimated parameters for the simulation is shown in Figure 106.
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t

Figure 106. Parameter estimates of SSTC PID control with 0(0) = 1.0

At first glance, it would appear that the degradation of the response from Figure 104 to 

Figure 105 is caused by the parameters changing to less optimal values around t = 400. 

This seems to violate the nature of the RLS algorithm to cause the parameters to seek the 

most optimal values (i.e., those values that produce the minimal parameter error, £•(/)) for 

a given level of input excitation. Further investigation revealed, however, that the 

response of Figure 105 cannot be reproduced with the parameter values of either Z = 399 

or t - 401. Rather, the response of Figure 105 is a transient due to the rapidly changing 

parameter vector #(Z) at Z = 400 (with 2 = 0.95) that occurs when the reference input 

cycles.

The parameter estimates shown in Figure 106 are also quite different from those of 

Figure 101. Their behavior is characteristic of earlier simulations using the regular SSTC 

algorithm. They are not erratic as in the previous simulation with $(0) = 0.5 and they 

converge to stable steady-state levels. The simulations of the SSTC PID algorithm
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illustrate the sensitivity of the reduced-order algorithm to the initial value of the parameter 

vector, $(/).

A time-varying plant assessment

In the previous section, the plant model was assumed to be time-invariant. In a 

practical sense, the SSTC PID algorithm must be tested when the true plant parameters 

are time-varying. To test the ability of the SSTC PID algorithm to track a linear time- 

varying plant, an 1800 sample simulation, where the parameters of the true plant are 

changed at t = 900, is evaluated. The following two plant models were selected to 

represent the true plant:
.5Z'1

G2(z-')

(5.9a)

,7z-1
1—.5z-'+.2z-2

(5.9b)

The magnitude plots of the two models are given in Figure 107.

Figure 107. Magnitude responses of true plants G, (z_1) and G2(z-1)
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In the simulation, the true plant is G,(z 1) for 0 < t < 900 and G2(z 1) for 900 < t < 1800. 

The forgetting factor A is maintained at 0.95 and the other controller parameters are kept 

the same as in the previous simulations. The resulting plant output y(t) and the controller 

output u(t) are shown in Figures 108 and 109, respectively.

Figure 108. Output of time-varying plant under SSTC PID control

Figure 109. Output of SSTC PID controller with time-varying plant

In simulation, the controller has converged and the plant output has stabilized at about 

t = 500. When the true plant changes from Gx(z~x) to G2(z_1) at t = 900, the plant
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output reacts with a large overshoot for one cycle. By the next cycle of the reference 

input, the plant output is back under control. A close-up view at the point of transition 

between plant parameters is shown in Figure 110. The controller rapidly adapts to the 

change in plant parameters at t = 900.
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Figure 110. Plant and controller outputs at time of transition of plant parameters

The estimated parameters for the simulation are plotted in Figure 111. With the 

forgetting factor 2 set to 0.95, the parameters converge to new values in a few samples 

after the plant changes. It is generally assumed that the plant parameters vary slowly in 

relation to the plant dynamics. In that case, the forgetting factor could be set to a larger 

value and still be able to track the parameter variations in the plant.
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Figure 111. Estimated parameters for SSTC PID control of time-varying plant

Next, the SSTC PID algorithm is tested in the presence of noise. The previous 

simulation is repeated with zero-mean noise with a variance of 0.075 added to the system. 

The plant output resulting from the simulation is shown in Figure 112.

Figure 112. Simulation of SSTC PID controller with added noise
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The system behaves satisfactorily at relatively low noise levels. In testing performed at 

higher noise levels, however, the output becomes unstable after the plant is changed from 

G, (z_1) to G2 (z-1).

An assessment of the SSTC PID disturbance rejection capability

The simulations performed so far have focused on the servo tracking ability of the 

SSTC PID controller and have assumed that the reference input is changing at regular 

intervals. In the next (and final) set of simulations, the regulation capability of the SSTC 

PID controller is tested. The SSTC PID program is modified to allow the reference input 

to cycle a predetermined number of times in order to allow the controller to tune itself to 

the plant. The reference input is then held constant and three separate d.c. disturbances 

are added to the plant. The forgetting factor 2 is set to 0.95 and all of the other 

controller parameters are set the same as the previous simulations. The plant is assumed

to be time-invariant in this case and is the same model used previously, given as:
0.61861737"’

(5.10)
l-0.38924127"’+0.00785857"2

The results of the first simulation are shown in Figure 113.

The controller adapts to the plant by approximately t = 400 when the reference

input is held constant. The controller removes the first offset of -0.25 at t = 500 without 

difficulty; however, shortly after that, the output destabilizes. When the second 

disturbance of +0.25 is encountered at t = 700, the output becomes oscillatory up through 

the third disturbance of -0.25 at t - 900, after which it stabilizes again. The parameter 

estimates for the simulation are shown in Figure 114.



192

X02.0

1.0

0.0

-1.0

-2.0
w(X)3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

i —

ri

|/v-

P

200

rn

Plant Output with d.c. disturbances: 

-0.25 at Z= 500 
+0.25 at f= 700 
-0.25 at t= 900

Control Output with d.c. disturbances: 
-0.25 at t= 500 

+0.25 at t= 700 
-0.25 at 900

400 600 800 1000 1200

t

Figure 113. Disturbance rejection capability of the SSTC PID algorithm
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Figure 114. Response of parameter estimates to D.C. load disturbances
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Figure 114 reveals why the behavior of the plant output is so erratic. When the d.c. 

disturbance of -0.25 is introduced at t - 500, the estimator is no longer receiving accurate 

information about the dynamics of the plant and, consequently, produces biased estimates. 

The biased estimates lead to errant controller parameters resulting in poor system 

performance. One possible solution to the problem is to incorporate a dead-zone into the 

estimation algorithm. The simulation just run is repeated with the dead-zone enabled.

The dead-zone is adjusted so the estimator shuts off when:

|^(/)| < 0.002 for 25 samples

and the estimator reactivates if:

|s(Z)| > 0.002 for 250 samples.

The plant and controller outputs with the dead-zone incorporated into the estimation 

algorithm are shown in Figure 115.

Figure 115. Plant and controller outputs with dead-zone activated
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The dead zone disables the estimator at t = 387 when the parameter error e(t) drops 

below the threshold value of 0.002 for 25 samples. The controller compensates for the 

first disturbance of -0.25 at Z = 500 and the second disturbance of +0.25 at t - 700. In 

order to allow the estimator to track time-varying parameters, however, the estimator 

must be reactivated if s(t) grows too large. As seen in Figure 115, the estimator is 

reactivated at t = 750. By the time the third offset of -0.25 is imposed on the output, the 

estimator has been reactivated and is producing biased estimates due to the load 

disturbance, resulting in the unstable output at Z = 900.

Although the dead-zone provides a temporary solution to the disturbance rejection 

problem by disabling the estimator when the error is small, a disturbance on the output 

may produce a large enough error to reactivate the estimator. The presence of the 

disturbance will then lead to biased parameter estimates. In Chapter 4, it was suggested to 

prefilter the estimator data to remove low frequency disturbances. A first-order high pass 

filter is therefore combined with the low pass filter given in equation (5.5) to form a band

pass filter with the transfer function:
„ z 0.6018139+ 0.601814z ‘-0.601814z~2 - 0.6018139z-3
HBP (Z ) =---------------- ;-------------9------------- a---  (5.11)' l + 0.2l8625lz’’-0.6l2l637z~2 -0.3657355z-3

The magnitude plot of the transfer function given in equation (5.11), along with the 

magnitude plot of the true plant described in equation (5.10), is shown in Figure 116. The 

band-pass filter rejects frequencies outside the band ranging from co = 0.1 to n rad I sec. 

The previous simulation is repeated with the dead-zone enabled, but this time the data to 

the estimator is prefiltered through HBP (z~l). The resultant plant and controller outputs 

are shown in Figure 117.
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Figure 117. SSTC PID control with dead-zone and band-pass filter
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Prefiltering the estimator data through HBP (z~]) solves the disturbance problem by 

preventing the estimator from reacting to the disturbances. It has also improved the 

response of the controller in general, which can be seen in more detail in Figure 118.

Figure 118. Magnified SSTC PID controlled plant with dead-zone and band-pass filter

The response of the plant output is significantly improved over the previous simulations. 

The controller adapts much more quickly than before and the step response exhibits less 

overshoot. A plot of the parameter vector is shown in Figure 119. Unlike the parameter 

estimates from the previous simulations, the estimates remain nearly constant after the 

initial adaptation period. The dead-zone disables the estimator when |fi(/)| < 0.002 for 25 

samples, and the band-pass filter removes the d.c. disturbances before the estimator can 

reactivate. The effect of the filter on the input and output data is seen in Figure 120.
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Figure 119. Estimated parameters for controller with dead-zone and prefiltering

Figure 120. Prefiltered input and output signals to estimator
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The filtered input and output signals shown in Figure 120 hardly resemble the unfiltered 

signals shown in Figure 117 since the low frequency content of the signals has been 

removed. The filtered signals do, however, contain the frequency information that the 

U-D RLS algorithm requires to develop a reasonable model of the plant. The band-pass 

filter removes the d.c. disturbances from the data before the parameter error is able to 

reactivate the estimator. The turn on time of the dead-zone must be set to be longer than 

the settling time of the filter in order to give the filter time to remove the disturbances.

Combining the band-pass filter with the dead-zone provides an effective 

mechanism for dealing with low frequency disturbances, at least in the deterministic case. 

In the final simulation of this chapter, the adaptive PID controller including the dead-zone 

and the estimator data filter is tested in the presence of noise. The results of the 

simulation are shown in Figure 121.
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Figure 121. Plant input and output under SSTC PID Control with added noise
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The noise injected into the system has negligible effects on the performance of the SSTC 

PID controller. The controller is able to adapt to the plant very rapidly, after only one or 

two cycles of the reference input. The controller also exhibits good setpoint tracking and 

disturbance rejection capabilities.

5.6 Chapter Summary

In this chapter, the SSTC PID controller has demonstrated both the ability to track 

a reference input and to regulate a steady-state output. The key to the operation of the 

SSTC PID controller is the U-D RLS estimation algorithm, which was tested first. The 

algorithm was tested in open-loop with the input to the plant being excited by a pseudo­

random binary sequence. The PRBS was shown to meet the criteria for persistent 

excitation and proved to be easily implemented in software. The U-D RLS algorithm 

demonstrated the ability to produce accurate plant models when the plant input was 

sufficiently rich in frequency content. To track time-varying parameters, the U-D RLS 

algorithm employed a forgetting factor to weigh the more recent estimator data more 

heavily than the older data. The effect of the forgetting factor on parameter convergence 

was tested and analyzed. The estimation algorithm was also tested in the presence of 

higher frequency noise, which produced biased parameter estimates. A digital 

implementation of a second-order Butterworth low pass filter was added to the estimation 

algorithm to filter out the noise before the data was passed to the estimation algorithm, 

improving the accuracy of the estimated plant model.

The U-D-RLS algorithm was combined with the SSTC control law design 

mechanism to produce the Simplified Self-Tuning Controller proposed by Warwick, 

Karam and Tham (1987). The control law design mechanism was tested first by disabling 

the estimator and fixing the values of the estimator parameter vector $(/) to equal the
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known actual values of the true plant. Simulations showed that the control law functioned 

as predicted when the parameter estimates were equal to the true plant parameters. The 

estimator was then activated and the completed SSTC controller was tested in closed-loop 

with a second-order plant. Assuming a second-order model in the controller, the 

controller functioned well; however, the optimum response obtained in the test with fixed 

estimates could not be duplicated. With the excitation to the plant being a square wave on 

the reference input, the plant was not sufficiently excited to allow the estimator to produce 

an unbiased model of the plant. With the forgetting factor set to a relatively low value 

(0.95), the parameters converged rapidly, but tended to drift and were susceptible to 

noise. Larger values of 2 produced more stable estimates at the expense of somewhat 

reduced accuracy.

Next, the effect of using higher order models in the controller algorithm was 

tested. The same second-order plant was tested with SSTC model orders ranging from 

two to fifteen. The higher order models generated less overshoot in the output of the 

plant, but tended to increase the settling time. Also, the locations of the poles and zeros 

of the higher order models were examined. Higher order models tended to create poles 

and zeros that canceled out the effect of one another. The SSTC controller performance 

was evaluated for an extended time period. In a 10,000 sample simulation, the controller 

remained stable, with or without noise in the system. It was demonstrated, however, that 

a larger forgetting factor produced more stable parameter estimates in extended 

simulations. The effect of undermodeling was also tested. A second-order plant was 

controlled using a first-order model in the SSTC algorithm. The simulation results 

demonstrated how undermodeling can lead to bursting in the plant output. A dead-zone 

was incorporated into the algorithm to shut off the estimator when the parameter error 

converged to a relatively small value. The dead-zone eliminated bursting in the output.
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The control law of the SSTC algorithm was constrained to conform to a PED-like 

structure. The PID version of the SSTC controller required that only three parameters be 

estimated by the U-D RLS algorithm. When the SSTC PID algorithm was tested using 

the same values of the controller parameters used in the regular SSTC controller, the PID 

version of the algorithm became unstable. It was discovered that the SSTC PID algorithm 

exhibited significant sensitivity to the initial values of the parameter vector Q(t) that was 

not observed in the regular SSTC algorithm. Acceptable results were finally obtained by 

setting #(0) to be equal to 1.0. The ability of the SSTC PID algorithm to track time- 

varying parameters was also tested. The simulation was performed by changing the values 

of the parameters of the true plant in the middle of the test. The SSTC PID controller was 

able to quickly respond to the sudden change in the plant parameters with minimal 

disruption in the plant output.

The ability of the SSTC PID controller to provide disturbance rejection was also 

tested. In the simulations performed, the reference input to the controller was cycled a 

few times to allow the controller to tune itself to the plant. The reference input was then 

held constant while three d.c. disturbances were imposed on the plant output. The 

addition of the first disturbance caused the estimator to produce biased estimates which 

caused a significant amount of instability in the plant output. A dead-zone was used to 

shut off the estimator when the parameter error fell below a threshold value for a 

predetermined number of samples. However, the d.c. disturbances caused the parameter 

error to increase to the point where the estimator was reactivated, again generating biased 

estimates. A first-order high pass filter was added to eliminate the low frequency 

disturbances from the estimator data. The filter eliminated the level disturbances before 

the estimator was reactivated, allowing a constant steady-state output to be maintained. 

The disturbance rejection capability of the controller was also tested in the presence of
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low level, high frequency noise, and the adaptive PID controller was able to function 

without difficulty.



CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Project Overview

The objective of the work presented in this paper was to design an adaptive PID 

controller for implementation on the Motorola DSP56000. In Chapter 2, the concept of 

PID control was first examined from a continuous-time perspective. The classical PID 

algorithm was developed and some of the difficulties encountered with the classical form 

of the algorithm were explained. The derivative-of-output PID model was presented as an 

alternative to classical algorithm. A practical discrete-time PID algorithm was then 

developed from the continuous-time derivative-of-output model. Several important PID 

control design methods were also examined, including both empirical and model-based 

design techniques.

The discrete-time algorithm was implemented in Motorola DSP56000 assembly 

language and tested. The test results were reported in Chapter 3. The idea of using a DSP 

chip for control was examined and an overview of the DSP56000 architecture and 

instruction set was presented. The DSP56000-based PID control algorithm was then 

tested in the laboratory. A Motorola ADS56000 development system was connected to 

an Intel 80386-based computer via a National Instruments AT-MIO-16 analog I/O board.

203
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The personal computer served as the plant for real-time testing of the PID controller. The 

DSP56000-based controller functioned as expected in all of the tests performed.

The development of an adaptive PID control algorithm was presented in Chapter 

4. A recursive least-squares algorithm based on Bierman's (1977) U-D Cofactorization 

method was selected for the parameter estimator. The parametric estimation algorithm 

incorporated a forgetting factor for tracking linear time-varying plants and covariance 

resetting was used to mitigate the problem of estimator wind-up. The algorithm also 

employed a dead-zone to prevent the parameter estimates from drifting if the plant input 

ceased to be persistently exciting. Achieving a persistently exciting input proved to be a 

problem when the estimation was performed on a plant operating in a closed-loop, which 

was the case when the U-D RLS algorithm was used as part of an adaptive controller.

The U-D RLS algorithm was combined with a pole-cancellation control law design 

scheme to form the Simplified Self-Tuning Controller proposed by Warwick, et. al. 

(1987). The control law of the SSTC algorithm was modified to conform to a PID 

controller structure by constraining the plant model to a specific second-order model. An 

alternative control law design based on a pole-placement technique was also presented in 

Chapter 4.

In Chapter 5, the SSTC adaptive control algorithm was simulated. The U-D RLS 

algorithm was first tested in open-loop. A discrete-time version of a second-order 

Butterworth filter was incorporated into the algorithm to deal with biased parameter 

estimates caused by high frequency noise. The U-D RLS algorithm produced accurate 

models when the input to the plant was persistently exciting, even in the presence of low 

level noise, provided the signals to the estimator were prefiltered. The U-D RLS 

algorithm was then combined with the SSTC control law design mechanism to form an 

adaptive controller. Several important aspects of the SSTC algorithm were tested, 

including the effect of the forgetting factor on the convergence rate of the parameter
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estimates and the performance of the algorithm assuming high model orders. Bursting 

was also observed in an investigation of undermodeling. The SSTC algorithm performed 

well in simulation, even when the plant input was not persistently excited.

The SSTC algorithm was then modified to form an adaptive PID controller. The 

SSTC PID controller was able to track time-varying parameters and performed well in 

both servo tracking and regulation simulations. Some difficulties were manifested in the 

PID version of the SSTC algorithm, however, that were not evident in the regular SSTC 

algorithm. The SSTC PID algorithm exhibited sensitivity to the initial values of the 

parameter vector whereas #(0) seemed to have a negligible effect on the regular 

SSTC algorithm. The SSTC PID controller also reacted poorly to a series of constant 

load disturbances on the output until a high-pass filter was incorporated into the 

algorithm. The high-pass filter eliminated the load disturbance effects from the estimator 

data allowing the adaptive controller to maintain control of the plant. Although a number 

of difficulties were encountered, in general, the simulations in Chapter 5 proved the SSTC 

PID algorithm to be functional when applied within the prescribed limitations of the 

algorithm.

In this chapter, some conclusions are drawn based on the results of the preceding 

chapters. Some issues regarding the performance of the real-time testing of the normal 

PID algorithm on the DSP56000 are discussed. After that, performance issues related to 

the U-D RLS estimation algorithm are considered. The practical viability of the SSTC 

PID algorithm is then examined. Issues regarding the implementation of an adaptive PID 

control algorithm on the DSP56000 are also reviewed, and finally, recommendations for 

future work are presented.
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6.2 Real-Time Testing of the Regular PID Algorithm

A practical discrete-time PID algorithm was developed and implemented on the 

Motorola DSP56000. The performance of the DSP56000-based PID controller was 

tested in real-time using two different sets of controller parameters. When the controller 

was tested with parameters obtained using the Ziegler-Nichols (1942) frequency response 

method, the response of the plant output was generally underdamped. The Ziegler- 

Nichols (1942) experiment yielded continuous-time parameters were discretized for use in 

the DSP56000. In Chapter 2, the discretized derivative term was determined to be:

D(k) = dQD(k -1) + rf, [X* -1) - X*)] (61)
with the coefficients dQ and J, given as:

2T̂--1
AT
2T ,------ h 1
AT

and
2ATrfN 
NT + 2T/d0 =

A disadvantage of using the bilinear transform on the derivative term is that as the 

continuous-time coefficient Td —» 0, the discrete-time coefficients </0 —> — 1 and —» 0.

For small Td., this produces a ringing effect on the output as equation (6.1) reduces to:

D(£) = -£>(£-!).

From the Ziegler-Nichols (1942) experiment, the continuous-time derivative term was 

determined to be Td =0.0910176. The response of the plant output was significantly 

improved when the controller was tested using parameters from Hagglund and Astrom's 

(1985) auto-tuner simulation, which provided a larger derivative term of Td = 0.123. Even 

though the plant response was improved in the second trial, Hagglund and Astrom's 

(1985) results could not be duplicated. This is due to the fact that Hagglund and Astrom's 

continuous-time plant model was discretized using a zero-order hold equivalent for the 

real-time tests of Chapter 3. A significant phase lag was therefore introduced in the
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discrete-time model of the plant which led to a plant response with slightly more 

overshoot than experienced by Hagglund and Astrom (1985). The tests in Chapter 3 did 

demonstrate, however, that the DSP56000-based PID algorithm functioned as designed.

6.3 Performance of the U-D RLS Algorithm

In the simulations of Chapter 5, the U-D RLS algorithm produced accurate models 

when the identification was executed on an open-loop plant with a persistently exciting 

input. The estimated models were almost indistinguishable from the true plant in terms of 

frequency response. When the identification was attempted on the plant operating in a 

closed-loop configuration with a feedback controller, however, the resulting parameter 

estimates were biased, causing the controller to perform at suboptimal levels. One of 

Hermann's (1982) criteria for identifiability in the closed-loop case is that the order of the 

denominator of the controller transfer function must be greater than or equal to the order 

of the numerator and denominator of the plant model in order to eliminate the linear 

dependence between the input and output signals. Although this criterion was met in 

simulations of both the SSTC algorithm and the SSTC PID algorithm, the U-D RLS 

algorithm still produced biased estimates when operating in a closed-loop scenario. The 

estimated models were sufficiently close to the actual plant, however, to allow the 

controller to bring the plant to a reasonable level of control in most of the cases studied.

Stability in a self-tuning controller can only be guaranteed if the estimated 

parameters eventually converge to reasonable values. According to Kumar (1990), for a 

self-tuning controller utilizing a recursive least-squares algorithm, this condition can only 

be guaranteed if the system is strictly minimum phase and if the system is externally 

perturbed with Gaussian white noise of sufficient magnitude. The plants studied in 

Chapter 5 met the criterion of being strictly minimum phase, but no noise was added to the
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plant input. Of the simulations run in Chapter 5, the output remained stable in all but three 

of the cases. In the first case, the output became unstable when the initial value of the 

parameter vector 6(t) was set to 0.5. In the second case, the output became unstable 

when the SSTC PID algorithm attempted to control a plant of a higher order than the 

assumed model. In the third case, the output was driven into instability when certain high 

pass filter designs were attempted. In each case, the instability was not caused by a failure 

of the control law, but rather by the failure of the estimator to produce estimates that 

converged to reasonable values. In the disturbance rejection simulations where the 

reference input was held constant after an initial tuning-in period, the only excitation to the 

plant was the presence of disturbances on the output fed back through the controller. If 

Kumar's (1990) assertions are correct, if the random disturbances on the output do not 

sufficiently excite the plant, global stability cannot be assumed without the addition of an 

external perturbation on the plant input. The potential use of additive noise is a subject to 

be considered for future work . Some questions that remain to be answered are:

1. What should be the spectral qualities and the magnitude of the additive noise?

2. What effect will additive noise have on estimate biasing?

3. What are the limitations for which global convergence can be assumed, even 

when additive noise is used?

Another estimation issue to be considered is the use of the dead-zone to solve the 

problem of drifting parameters, particularly once the output has stabilized in the regulation 

case. The parameter error represents the effect of modeling error plus the effect of 

random disturbances. Since the dead-zone is configured to disable the estimator when the 

parameter error drops below a threshold value, when noise is present in the system, the 

threshold must be set to a level higher than the noise floor. The determination of an
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appropriate threshold value is therefore significantly more difficult with noise present on 

the output. If the threshold value is set too high, the estimator is disabled before the 

parameter estimates have converged, resulting in suboptimal controller performance. If, 

on the other hand, the threshold value is set too low, the estimator never shuts off and the 

parameters may drift. The noise level must therefore be determined a priori to properly 

fix the level of the shut-off threshold. Even if the dead-zone threshold is properly adjusted 

initially, it would have to be readjusted if the noise level changes significantly. Hysteresis 

may also be required in the dead-zone to prevent the estimator from prematurely 

reactivating if an impulse occurs in the parameter error (as takes place with a sudden 

change in the reference input or with a load disturbance). In Chapter 5, a time window 

was utilized to filter out such impulses. The time window allowed the parameter error 

transients to decay before the estimator was reactivated.

Selection of the dead-zone thresholds in Chapter 5 was accomplished through 

extensive trial-and-error attempts in numerous simulations. Even in a simulation 

environment where the behavior of the noise was carefully controlled, establishment of 

appropriate threshold values proved to be a time-consuming task. Reiterating the 

assertions of Rey and Johnson (1990), ”... in order for leakage and dead-zones to be 

effective in the avoidance of bursting and preservation of stability, they must be properly 

tuned. Further, our current understanding about them is not sufficient even to assert in 

actual implementation whether they are appropriately tuned." Middleton and Goodwin 

(1990), however, present the dead-zone as a viable solution to avoid potentially 

"catastrophic behavior in the presence of undermodeling and poor excitation." The use of 

the dead-zone as a solution to the problem of bursting remains controversial. At this time, 

however, it appears to be one of the better solutions for addressing the problems of 

undermodeling and lack of persistent excitation.
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Another important issue is the necessity of prefiltering the estimator data to 

remove low frequency disturbances from the parameter vector to prevent biased estimates. 

Several methods have been proposed in the literature for removing level disturbances from 

the estimator data (see Isermann, 1982), one of which is the use of a high-pass filter. In 

the simulation in Chapter 5, the estimator data was prefiltered using a first-order high-pass 

filter with a cutoff frequency of 0.1 rad/sec. A number of other filters, with cut-off 

frequencies as low as 0.0001 rad/sec and of order as high as 8, were also attempted, the 

results of which were not included in the discussion. Two problems were encountered 

that precluded the use of the other filters. The first problem was that when very low cut­

off frequencies were attempted (e.g., coc =.0001 or a>c =.001), small filter coefficients led 

to numerical difficulties in the calculations. The other difficulty encountered was the 

inability of estimator to identify the plant when the alternative filters were attempted. The 

exact explanation for this is not known at this time. In any case, for the filters to be 

properly designed, the frequency response of the plant must be known a priori. Further 

study of the effect of prefiltering of the estimator data is another topic for future work.

One positive observation from the simulations of Chapter 5 is that the U-D RLS 

algorithm proved to be numerically robust. In all of the simulations performed, no 

computational problems occurred (i.e., singularity of the information and covariance 

matrices) that could be attributed to numerical difficulties with the U-D RLS algorithm.

6.4 Performance of the SSTC PID Controller

Another issue brought to light in the simulations of Chapter 5 is the sensitivity of 

the PID version of the SSTC algorithm to the initial value of the parameter vector 0(t). 

The selection of #(0) has little effect on the general SSTC algorithm. When the control 

law is changed from:
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<')*(<) ' B(g-)»(f-rf) 
B(l) B(l)

to:

«(<) =
»(<-l)+(l+a,g-’ +a2g~2)e(Q, 

*o
(6.2)

the selection of fl(0) becomes critical. Improper selection of Z>0(0) drives the plant into 

instability before the estimator has an opportunity to generate a reasonable estimate of the 

parameter. Although the algorithm functioned when bo(O) was set to 1.0, it is not known 

whether this value for Z>0(0) is appropriate for other plants. The problem was never 

observed in simulations where the order of the numerator and the order of the 

denominator of the control law were the same, even when a first-order plant model was 

assumed. Further investigation into the selection of $(0) is therefore recommended.

The PID version of the SSTC algorithm is derived by placing certain constraints on 

the general SSTC algorithm. While the regular SSTC control law allows for models of 

any order to be assumed, the PID version of the algorithm assumes a specific second- 

order plant model, given as:

GAg-') = l + a,q~'+a2q
(6.3)-r? ■

The model of equation (6.3) can be derived from a continuous-time plant given as:

c2s +cxs + c0

using the backward difference transformation and assuming a time delay of 1 sample. 

Although it is not uncommon to assume a reduced-order plant model when employing 

PID control, constraining the plant to fit the model of equation (6.3) severely limits the 

application of the SSTC PID algorithm. In addition to the model order, the PID version 

of the SSTC algorithm assumes a delay time of one sample. Several unsuccessful 

simulations were attempted assuming the controller model of equation (6.3) with a plant 

having a transfer function with a second-order numerator. (The algorithm was not tested
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using plants with longer timer delays.) It appears, therefore, that the plant must be able to 

be accurately modeled by equation (6.3) for the SSTC PID algorithm to function properly.

Another factor potentially limiting the application of both the regular SSTC 

algorithm and the PID version of the SSTC algorithm is that the designer cannot adjust the

controller to modify the dynamic response of the plant. As mentioned previously, the 

deadbeat-like control strategy used by the SSTC family of algorithms inherently fixes the 

response of the plant output for a given set of parameters. In simulation, the output 

typically exhibited some degree of overshoot as a result of modeling error in the closed- 

loop estimation. Although the basic SSTC strategy provides no opportunity to design the 

response to eliminate the overshoot, Warwick, et. al. (1987) present a pole-placement 

version of the algorithm that allows the response of the reference input to be defined by 

selection of target locations of the closed-loop system poles. The SSTC pole-placement 

algorithm, however, does not conform to a PID-like structure. The pole-placement 

algorithm presented in Chapter 4 offers the ability to select the locations of the closed- 

loop system poles while conforming to a standard PID controller model.

6.5 Implementation of Adaptive PID on the DSP56000

The implementation of the PID controller in Chapter 3 and the simulation of the 

adaptive PID controller in Chapter 5 indicate that implementation of an adaptive PID 

controller on the Motorola DSP56000 is quite possible. Several issues remain to be 

addressed, however, before the adaptive PID control algorithm can be implemented. In 

the proposed adaptive PID control algorithms, the uncertainties of the estimated 

parameters were ignored by applying the certainty equivalence principle. In order to 

prevent computational overflow and underflow in the DSP56000, the maximum values of 

the estimated plant parameters must be estimated a priori to ensure that they remain
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bounded. Since the DSP56000 uses fractional arithmetic, the bounds on the estimated 

parameters must be normalized. Experiences from Chapter 5 indicate that the parameter 

estimates generally remain less than one. There were occasions, however, when the 

parameters diverged to much larger values. When the parameter estimates are scaled, the 

question of word length becomes an issue, as available bits in the word are used up in the 

scaling process. Parameter estimates can become quite small if higher order models are 

assumed. Parameter scaling not only introduces the increased potential for modeling 

error, but it also increases the risk of singularity of the covariance matrix, as less bits 

become available for the computations. Tan and Kyriakopoulos (1988) recommend 

simulation of the algorithm over a wide range of operating conditions on a large word- 

length general-purpose computer using floating-point arithmetic to determine the proper 

scaling factors for the variables. Ideally, however, the range of the parameters should be 

determined statistically using Monte Carlo simulations.

The simulations of Chapter 5 demonstrated that adaptive control can work well if 

all of the theoretical pre-conditions are met and if all of the design parameters are properly 

selected. In the real world, however, pre-conditions may be violated and the proper 

design parameters may not necessarily be chosen. Placing bounds on the estimates, for 

instance, could compromise system stability if improperly handled. Noise levels may 

suddenly change, rendering dead-zone thresholds ineffective. Even the selection of initial 

values of some controller parameters has been shown to be critical in some cases. These 

factors all point to the need for some type of supervisory control in the final DSP 

implementation of the algorithm. Knapp and Isermann (1990) have proposed the addition 

of two levels of control, called the supervision level and the coordination level. The 

incorporation of these levels into the self-tuning regulator adaptive controller model is 

shown in the block diagram of Figure 122.
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Figure 122. Adaptive controller model with supervision and coordination levels

Knapp and Isermann (1990) have given the following functions for the two additional 

levels:

SUPERVISION LEVEL

• monitoring the parameter estimates

• detecting a process model mismatch

• decision making, what has changed?

• monitoring the controller design

• monitoring the closed-loop behavior
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COORDINATION LEVEL

• performing a start-up procedure

• switching on/off parameter estimation

• choosing the most suitable control algorithm

• decision making, what sort of controller parameters will be 

used

The details of the above functions are beyond the scope of this paper, but the lists provide 

a general idea of what sort of supervisory functions might be required in a real-world 

implementation of adaptive PID control.

6.6 Viability of the SSTC PID Algorithm

This project has focused on the development of an adaptive PID controller. The 

results of Chapter 5 raise some serious questions, however, as to whether the benefits of 

using a simplified controller model outweigh the disadvantages of constraining the 

algorithm to a PID-like structure. It has been noted that assuming the SSTC PID model 

of equation (6.3) significantly limits the application of the SSTC PID controller. The 

difficulties encountered with the PID version of the SSTC algorithm not encountered in 

the general SSTC algorithm have also been discussed. The benefits of using the PID 

version of the SSTC controller can be summarized as follows:

• Reduced computational burden over the general algorithm

• A well established structure that is easily understood by operators.
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The computational advantage using the SSTC PID algorithm over the general SSTC 

algorithm when constrained to a second-order model is not significant. But the addition of 

the second parameter (b}) in the general SSTC algorithm eliminates the sensitivity of the 

algorithm to #(0). Also, the advantage of using a well established controller structure is 

only gained if the controller must be periodically readjusted by the operator. The very 

purpose for using adaptive control, however, is to eliminate the need for readjustment of 

the controller parameters. Therefore, the limitations imposed by forcing the SSTC 

controller into a PID-like structure, and the difficulties encountered in simulation of the 

SSTC PID algorithm in Chapter 5, appear to outweigh any advantage gained by using the 

PID version of the SSTC algorithm over the general SSTC algorithm.

The advantages of using a pole-placement algorithm over the SSTC algorithms 

have also been discussed. Pole-placement gives the designer the ability to compensate for 

modeling errors introduced by biased parameter estimates by re-selecting target locations 

of the closed-loop system poles. The pole-placement algorithm presented in Chapter 4 

assumed a second-order ARX model for the plant, rather than the more restrictive model 

of equation (6.3). Also, the adaptive pole-placement controller of Chapter 4 allows for 

the selection of four closed-loop poles, giving the designer much more flexibility than with 

the SSTC algorithms. Adaptive PID using pole-placement appears to have greater 

practical potential than the SSTC PID algorithm proposed by Warwick, et. al. (1987).

6.7 Recommendations for Future Work and Concluding Remarks

Several recommendations for future work have already been suggested to. In this 

section, those recommendations, along with some others, are summarized and some 

concluding remarks are made.
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1. Code and simulate the adaptive pole-placement algorithm:

The limitations of the SSTC algorithms have been stated earlier. Although the 

SSTC approach to adaptive control is computationally efficient and easy to 

implement, its potential for application is limited. The pole-placement algorithm 

derived in Chapter 4 should therefore be simulated.

2. Develop guidelines for development of estimator data filters:

The simulations of Chapter 5 made it clear that prefiltering of estimator data is 

essential. However, selection of filters that did not impede the operation of the 

estimator proved to be difficult. The area of estimator data filtering needs to 

be investigated more thoroughly.

3. Investigate the use of external perturbation signals:

The requirements for convergence of the parameters to ensure stability have been 

discussed at length. In many applications, it may be difficult to guarantee that the 

plant input is persistently excited. In those cases, external perturbation of the plant 

may be required. This entire area warrants further study.

4. Determine Supervisory-Coordination level needs for DSP implementation:

The level of supervision and coordination for implementation of the adaptive PID 

algorithm on the DSP56000 needs to be determined. At a minimum, some method 

of monitoring the estimated parameters must be developed to ensure that they 

remain bounded and that the controller remains stable when the parameter 

boundaries are reached.
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5. Develop the adaptive PID algorithm for implementation on the DSP56000:

Once the above steps have been completed, the simulation program must be 

converted for DSP56000 implementation. The program can be tested in the 

ADS56000 development system using the real-time plant model running on the 

80386-based computer.

In conclusion, implementation an adaptive PID controller on the Motorola 

DSP56000 appears to be feasible. The use of DSP chips for control applications have 

been shown to offer a number of advantages over conventional microprocessors. Although 

DSP chips were develop primarily for signal processing applications, the Harvard 

architecture of the DSP56000 allows for increased throughput and consequently, 

decreased computation time which results in increased sampling rates. This additional 

processing power becomes extremely important when faced with the extra computations 

required in an adaptive control application.

Adaptive control offers a number of advantages over other control methods, 

particularly when dealing with time-varying plants. It is apparent from the work presented 

in this paper, however, that adaptive control is not a universal solution to all control 

problems. Since adaptive control is inherently non-linear, stability and robustness analyses 

are extremely difficult. Although stability proofs have been given for a few specific cases, 

they are generally subject to unrealistic constraints and assumptions. In addition, the 

whole area of robustness theory as applied to adaptive control is still under development. 

The success and failure of the adaptive control algorithm, especially the self-tuning 

regulator variety, hinges on the performance of the parameter estimator. Although the 

recursive least-squares algorithm is considered to be one of the more robust approaches to 

parametric estimation, its ability to accurately estimate the plant parameters depends 

entirely on the level of excitation provided to the plant. This can become a problem when
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the plant is operating in a closed-loop, particularly when the primary function of the 

controller is regulation. Although several ad hoc approaches have been proposed for 

dealing with problems such as lack of excitation and the presence of disturbances on the 

output, solutions to these problems remain the subject of much debate.

Very often, the concept of a self-tuning controller is thought to eliminate the work 

of the control designer, since the controller tuning parameters are derived automatically 

on-line. It is evident from the work presented here that this is by no means the case. It is 

true that the parameters used in the control law are derived on-line; however, the 

implementation of adaptive control is a complex process requiring the selection of a host 

of other parameters, most of which are application specific. With the need for prefiltering 

of estimator data, it may be difficult to implement an adaptive controller without having a 

priori knowledge of the plant. In microprocessor or DSP-based applications, extensive 

simulations must be run to determine the bounds of the parameter estimates to allow for 

scaling of the estimated parameters. Accurate noise models must be available for the 

selection of dead-zone threshold values. Depending on the control algorithm employed, 

even the selection of the initial value of the parameter vector can be critical. As stated by 

Astrom (1987), "An adaptive regulator, being inherently nonlinear, is more complicated 

than a fixed gain regulator. Before attempting to use adaptive control it is, therefore, 

important to first examine if the control problem cannot be solved by constant gain 

feedback." Adaptive control does, however, offer a viable solution to control problems 

where fixed-gain feedback is not a viable option.



APPENDIX

.*******************************************************
; file PID64B.ASM *

*

; This program implements a PID control algorithm in DSP56001 *
; assembly language using the SCI clock interrupt to control the *
; sample rate. The controller algorithm is given as follows: *

*
; 1. KP = [K*(l+h/2/Ti)]/64 *
; 2. Beta = (2*Ti - h)/(2*Ti + h) *
; 3. Gamma = Td/h *
; 4. dl = (2*Gamma/N - 1.0)/(2*Gamma/N + 1.0) *
; 5. d2 =Kp/16 * (2*Gamma)/(2*Gamma/N +1.0) *
; 6. input y(k) *
; 7. e(k) = w(k) - y(k)
; 8. D(k) = dl*D(k-l) + 1024*d2*[y(k-l)-y(k)] *
l 9. y(k) => y(k-l) *
; 10. if D(k) > HHJMTT, D(k) = HILIMIT *
; 11. if D(k) < LOWLIMIT, D(k) = LOWLIMIT *
; 12. P(k) = Kp*e(k) *
; 13. I(k) = I(k)/64 *
; 14. u(k) = P(k) + I(k) + D(k) *
; 15. if u(k) > IHLIMIT, u(k) = HILIMIT *
; 16. if u(k) < LOWLIMIT, u(k) = LOWLIMIT *
; 17. u(k) = u(k)*64 *
; 18. output u(k) *
; 19. I(k+1) = Beta*I(k) + (1-Beta)*u(k) *
; 20. if I(k+1) > HILIMIT, I(k+1) = HILIMIT *
; 21. ifl(k+l) < LOWLIMIT, I(k+1) = LOWLIMIT *
; 22. I(k+1) => I(k) *
; 23. go to step 6 *

*J.*******************************************************
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; Written by M. DePoyster 7/18/92
; Revised 8/25/92
; Revised 9/12/92
; Revised 9/19/92
; Revised 1/01/93

page 80

J
; Define DSP Registers *

IPR equ $FFFF ;(x:mem) Interrupt Priority Register
BCR equ $FFFE ;(x:mem) Bus Control Register
SCCR equ $FFF2 ;(x:mem) SCI Clock Control Register
SCR equ $FFF0 ;(x:mem) SCI Control Register
RX TX equ $FFEF ;(x:mem) SSI TransmitZReceive Data Register
SSISR equ $FFEE ;(x:mem) SSI Status Register
CRB equ $FFED ;(x:mem) SSI Control Register B
CRA equ $FFEC ;(x:mem) SSI Control Register A
PCC equ $FFE1 ;(x:mem) Port C Control Register

Define Variables & Constants
5

w equ $0000 Reference input (setpoint)
e equ $0001 ;error term storage
I equ $0002 integral term storage word
temp equ $0003 temporary storage
ykml equ $0004 previous value of y(k), y(k-l)
yk equ $0005 ;current sample of y(k)
D equ $0006 ;derivative term storage word
Kp equ $0007 ;K*(l+h/2/Ti)/64 ... Kp is prescaled by 1/64
Beta equ $0008 ;(2*Ti-h)/(2*Ti+h)
Betam equ $0009 ;1-Beta
dl equ $000A ;(2Td/Nh - l)/(2Td/Nh + 1)
d2 equ $000B ;Kp*(2Td/h)/(2Td/hN+ 1)/16 .. D2 scaled 1/1024
timfact equ $000C ;SCI interrupts/sec = 

;fosc/(64*(7(SCP)+l)*(CD+l))
;(fosc=20,500,000 in our case)
;($002fa3 yields 10 Hz

preset equ $000D ;samples before switching setpoint
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.******************************************
; START PROGRAM *
J

org p:$40

; Initialize Variables, I(k), D(k) and y(k-l) *
******************************************************

clr a
move a,x:I 
move a,x:D 
move a,x:ykml 
move a,x:temp

; Initialize IPR, BCR, SCI and SSI *

; Initialize IPR to allow interrupts to occur 
; Set SSI to Level 2 and SCI to Level 1

movep #$C000,x:IPR ;allow SCI interrupts only 

; Set up ADS board in case of force break instead of force reset

movep #0,x:BCR 
movec #O,sp 
movec #O,sr

;set bcr to zero
;init stack pointer
;clear loop flag/interrupt mask bits

; Set up the SSI for operation with the DSP56ADC16EVB 
; The following code sets port C to function as SCI/SSI

move #$0,a0 ;zero PCC to cycle it
movep aO,x:PCC

move #$000 Iff, aO
movep aO,x:PCC ;write PCC

; The following code sets the SSI CRA and CRB control registers for external 
; cont. synchronous clock, normal mode.
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move #$004000,aO 
movep aO,x:CRA 
move #$000200,aO 
movep aO,x:CRB

;CRA pattern for word length=16 bits

;CRB pattern for cont. ck,synch,normal mode 
;word long frame synch, external clock and frame 
;synch

; Set Up SCI Timer

movep #$2000,x: SCR 
movep x:timfact,x:SCCR; 
andi #$FC,MR

;Enable SCI Timer Interrupt 
;Set clock to 20kHz (.05ms Ts) 
;Enable interrupts

; Initialize set-point counter *

move x: preset, aO 
move aO,rO

; Loop until interrupt ”

self jmp self ;looping waiting for interrupt

SCI TIMER INTERRUPT SERVICE ROUTINE *
*

Main Control Loop *

Enable SSI to Transmit and Receive Data *

timer move #$003000,xl 
move x:CRB,a 
or xl,a
move al,x:CRB

;Set up XI for OR instruction 
;Move SSI CRB to Acc A 
;Tum on RE and TE 
;Move Acc A back to SSI CRB

5
; Wait for A/D word to be clocked in *
; then move it to Acc A. *
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polll jclr #7,x:SSISR,polll 
move x:RX_TX,a 
move a,x:yk

;Loop until RDF bit=l 
;Read A/D data 
;store y(k)

5
; Check counter to see if time to switch
; setpoint (reference) polarity *

clr b ;Clear Acc B
move rO,bO 
move (rO)- 
tst b

;Move current count to B

jne go jump to "go" if count not = 0
move x:preset,bO 
move bO,rO

;else: 1. reset counter = preset

move x:w,b 
neg b
move b,x:w

; 2. change polarity of w

; Store input y(k) and solve for *
; error term, e(k)=w(k)-y(k) *

go clr b
move x:yk,a
move a,yl ;y(k)=>Yl
neg a x:w,xl ;Negate y(k)... w(k) => XI
add xl,a x:ykml,b ;e(k)=w(k)-y(k)... y(k-l) => Acc B

; Store e(k), solve for y(k-l)-y(k) and *
; store y(k) as y(k-l) *

move yl,x:ykml 
sub yl,b a,x:e 
move x:dl,xl

;y(k)=>y(k-l)
;y(k-l)-y(k) => Acc B..store e(k) 
;dl => XI

5

; Solve for the Derivative Term, D(k) *
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move x:D,yl ;D(k) => Y1
mpy xl,yl,a b,xl ;dl*D(k)=>Acc A ... Acc B => XI
rep #6
asr a ;divide dl*D(k) by 64
move x:d2,yl ;d2 => Y1
mpy xl,yl,b ;d2*[y(k-l)-y(k)]
rep #15 ;repeat next instr. 15X
mac xl,yl,b ;16*[d2*(y(k-l)-y(k))] (scaled)
add b,a x:e,xl ;D(k) ... e(k) => XI
tfr a,b ;Move D(k) to Acc B for scaling
rep #6 ;Multiply D(k) by 64
asl b
move b,x:D ; Store D(k) (with limiting)

5
; Solve for Proportional Term, P(k) *

move x:Kp,yl ;Kp => Y1
mpyxl,yl,b ;P(k)=Kp*e(k)

; Add P(k) and D(k) together for storage 51

add b,a ;P(k)+D(k)=>Acc A
clrb
move x:I,b

; Scale Integral Term by 1/64 *

rep #6 ;Repeat next instr 6X
asr b ;I(k)/64

J
; Form Complete PID Term *
.************************************************

add b,a ;P(k)+I(k)+D(k) scaled by 1/64
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rep #6 
asl a
move a,x:temp

;Repeat next instr 6X
;PID(k)*64
;store u(k) temporarily

5

; Send Control Output to D/A converter *

move x:temp,xl
move #$529fbe,yl 
mpy xl,yl,a ;Multiply u(k) by scaling factor 

;of .6455 before outputting
move a,x:RX TX 

po!12 jclr #6,x:SSISR,poll2
;Move PID(k) to RXTX w/ limiting 
;Loop until TDE bit = 1

; Solve for next value of I(k), I(k+1) *

move x:Betam,yl 
mpyxl,yl,a x:I,yl 
move x:Beta,xl 
mac xl,yl,a 
move a,x:I

;(1-Beta)*u(k).. I(k)=>Yl 
;Beta => XI
;I(k+l) = Beta*I(k) + (1-Beta)*u(k)
;I(k+l) => I(k) (with limiting)

rti

org p:$001c 
jsr timer

;SCI Timer interrupt vector

end
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