
UN.VERSITV OF DAVTON ROESCK UBRAM

DESIGN OF AN ADAPTIVE PID CONTROLLER

FOR IMPLEMENTATION ON THE

MOTOROLA DSP56000

Thesis

Submitted to

Graduate Engineering & Research
School of Engineering

UNIVERSITY OF DAYTON

In Partial Fulfillment of the Requirements for

The Degree

Master of Science in Electrical Engineering

by

Mark R. DePoyster

UNIVERSITY OF DAYTON

Dayton, Ohio

August, 1993

94 03327

*

DESIGN OF AN ADAPTIVE PID CONTROLLER
FOR IMPLEMENTATION ON THE
MOTOROLA DSP56000

APPROVED BY:

Malcolm W. Daniels, Ph.D.
Assistant Professor, Electrical Engineering
Committee Chairperson

Dana B. Rogers, Ph.D.
Professor, Electrical Engineering
Committee Member

John J. Westercamp, Ph.D.
Associate Professor, Electrical Engineering
Committee Member

Donald L. Moon, Ph.D.
Interim Associate Dean I Director
Graduate Engineering & Research
School of Engineering

Joseph Lestmgi, D.Eng'VP.E.
Dean
School of Engineering

11

ABSTRACT

DESIGN OF AN ADAPTIVE PID CONTROLLER
FOR IMPLEMENTATION ON THE
MOTOROLA DSP56000

Name: DePoyster, Mark, R.
University of Dayton, 1993

Advisor: Dr. Malcolm W. Daniels

An adaptive PID control algorithm is developed for implementation on a DSP

chip. Basic PID theory is reviewed and a practical discrete-time PID algorithm is

developed that includes a number of enhancements over the classical PID control

algorithm. The advantages of using a DSP chip for control are also discussed. The PID

control algorithm is then implemented on a Motorola DSP56000 processor. The

architecture and instruction set of the DSP56000 are examined and the DSP56000-based

controller is tested in the laboratory. Test results are presented and the DSP56000-based

PID controller is shown to function as designed.

An adaptive PID algorithm is then developed based on the Simplified Self-Tuning

Control (SSTC) model. The-SSTC PID controller is based on a self-tuning regulator

structure that employs a recursive least-squares parameter estimation algorithm and a

pole-cancellation control law design strategy. The process zeros are not canceled in the

SSTC approach, allowing the algorithm to be used with non-minimum phase systems. The

plant model is constrained to be second-order to force the general SSTC control algorithm

iii

into a PID-like structure. The recursive least-squares estimation algorithm employs U-D

cofactorization to guarantee numerical robustness. The estimator data is prefiltered to

attenuate high frequency noise and low frequency disturbances to ensure that the

parameter estimates are not biased. A dead-zone is also included in the estimation

algorithm to prevent bursting due to parameter drifting. The adaptive PID algorithm is

simulated and is shown to perform well for both setpoint tracking and disturbance

rejection applications.

iv

ACKNOWLEDGEMENTS

I would like to express my deep appreciation to my advisor, Dr. Malcolm Daniels,

for his direction and leadership in bringing this project to a conclusion. Dr. Daniels has

been a tremendous source of encouragement and inspiration and sets a standard of

excellence to which I will always strive to attain.

I also wish to express my thanks to my family for their patience and understanding during

the past two and a half years. First of all, I want to thank my parents for their unending

help and encouragement; to my mother, for her willingness to take the children to provide

me with much needed solitude, and to my father, who instilled within me a love of

learning. I would also like to thank my mother and father in-law for their support, not

only to me, but to my wife during this period. Most of all, I wish to express my deepest

appreciation to my wife for the countless sacrifices she has made in my many absences and

for her proofreading of the documents contained herein. And to my three children,

Jeremy, Jonathan and Jenna, I will do my best to someday repay the time that they gave to

their father during the period of this project.

v

TABLE OF CONTENTS

ABSTRACT... iii

AKNOWLEDGEMENTS...v

LIST OF FIGURES.. viii

LIST OF TABLES... xiii

LIST OF SYMBOLS..xiv

LIST OF ABBREVIATIONS... xvi

CHAPTER

I. INTRODUCTION...1

Introduction to PID Control
Introduction to Adaptive Control
Adaptive PID Control
DSP-based Control Implementation
Statement of the Problem
Thesis Organization

II. DEVELOPMENT OF THE DISCRETE-TIME PID ALGORITHM................. 19

Introduction
Development of the PID Terms
Development of the PID Controller Structure
Discretization of the PID Algorithm
Designing with PID Controllers
PID Implementation Issues
Chapter Summary

vi

ffl. PE) CONTROLLER IMPLEMENTATION.. 47

Introduction
Using a DSP Chip for Control
An Overview of the Motorola DSP56000
The PID Controller Structure
The Real-Time Plant Model
Testing the PID Algorithm
Real-Time Test Results
Chapter Summary

IV. DEVELOPMENT OF THE ADAPTIVE PID ALGORITHM......................... 94

Introduction
Open-Loop Parameter Estimation
Identification in Closed-Loop
The Adaptive Control Law Design Mechanism
Stability and Convergence of Self-Tuning Regulators
Chapter Summary

V. SIMULATION OF THE ADAPTIVE PID CONTROLLER.......................... 135

Introduction
The Pseudo-Random Binary Sequence
Testing the U-D RLS Algorithm in Open-Loop
Simulation of the SSTC Controller
Simulation of the SSTC PID Algorithm
Chapter Summary

VI. CONCLUSIONS AND RECOMMENDATIONS...203

Project Overview
Real-Time Testing of the Regular PID Algorithm
Performance of the U-D RLS Algorithm
Performance of the SSTC PID Controller
Implementation of Adaptive PID on the DSP56000
Viability of the SSTC PID Algorithm
Recommendations for Future Work and Concluding Remarks

APPENDIX... 220

REFERENCES.....'.. 227

vii

LIST OF FIGURES

1. SISO error driven controller block diagram...1

2. Block diagram of Self-Oscillating Adaptive System...6

3. Block diagram of control system with Gain Scheduling..7

4. Block diagram of Model Reference Adaptive Controller...8

5. Block diagram of Self-Tuning Regulator...11

6. Block diagram of system with proportional feedback.. 23

7. Graph depicting predictive action of derivative term..25

8. Simplified block diagram of classical PID structure... 26

9. Block diagram of PI controller..26

10. Block diagram of Derivative-of-Output PID model...27

11. Magnitude responses of filtered vs. unfiltered derivative terms.................................. 29

12. Block diagram of modified PID controller..29

13. Parameters obtained from Ziegler-Nichols Step Response Method........................... 37

14. Block diagram of Motorola DSP56000.. 52

15. Block diagram of DSP56000 Data ALU... 53

16. Programming model for Motorola DSP56000..57

17. Motorola DSP56000 Peripheral Ports... 59

18. Block Diagram of SCI baud rate generator..60

19. Block diagram ofDSP56ADC16 Evaluation Board...63

20. Flowchart of DSP56000 PID controller program... 65

viii

21. Simplified flowchart of plant model program...73

22. Test of PI algorithm on Motorola DSP56001.. 75

23. Test of derivative action on Motorola DSP56001... 78

24. Anti-integral windup test on Motorola DSP56001.. 80

25. Block diagram of controller-plant test configuration hardware.................................. 81

26. Bode plot of continuous-time plant model..82

27. Bode plot of discrete-time plant model used in real-time test.....................................83

28. Open-loop step response of plant used in real-time test.. 84

29. Plant and controller outputs with Ziegler-Nichols parameters.....................................87

30. Plant and controller outputs with Hagglund-Astrom parameters................................ 89

31. Plant output for N= 16.. 91

32. Plant output for N = 4.. 91

3 3. Plant output for N = 2...91

34. Plant output for N = 1.. 91

35. Magnitude response of disturbance annihilation filter 114

36. Example of pseudo-random binary signal.. 138

37. Autocorrelation function of pseudo-random binary signal of Figure 36...................138

38. Autocorrelation function of a binary maximum length sequence................................140

39. Simplified flowchart of U-D RLS test program.. 141

40. Pseudo-random binary sequence used as input to the plant....................................... 142

41. 0(t) for 2 = 1.0... 144

42. 0(/) for 2 = 0.999... 144

43. 6<Z) for 2 = 0.995..144

44. $(?) for 2 = 0.95..144

45. £(Z)for2 = 1.0... 145

46. s(t) for 2 = 0.999..145

ix

47. e{t) for 2 = 0.995 .. 145

48. s{t) for 2 = 0.95.. 145

49. Magnitude and phase responses of three test plants.. 146

50. Graph of parameter vector &(Z)tracking time-varying plant parameters...................147

51. Magnitude and phase plots of actual Plant 1 and estimated Plant 1...........................148

52. Magnitude and phase plots of actual Plant 2 and estimated Plant 2...........................148

53. Magnitude and phase plots of actual Plant 3 and estimated Plant 3.......................... 149

54. Elements of information matrix U(Z).. 150

55. Elements of covariance matrix D(Z).. 150

56. Plant output y(t) with added noise..151

57. Estimated parameters with noise present...152

58. Frequency response of estimated and actual Plant 1 with noise................................. 152

59. Frequency response of estimated and actual Plant 2 with noise................................. 153

60. Frequency response of estimated and actual Plant 3 with noise................................. 153

61. Magnitude response of second-order Butterworth filter Hf..................................... 154

62. Estimated parameters obtained with unfiltered estimator data................................. 155

63. Magnitude response of plant model obtained with unfiltered data.......................... 155

64. Estimated parameters obtained with filtered estimator data...................................... 156

65. Magnitude response of plant model obtained with filtered data............................... 156

66. Plant and control outputs using SSTC control algorithm with fixed parameters ... 158

67. Plant and control outputs of second-order SSTC controller with 2 = 0.95160

68. Estimated plant parameters for second-order SSTC with 2 = 0.95 161

69. Parameter error for second-order SSTC with 2 = 0.95 ...162

70. U(Z)for second-order SSTC with 2 = 0.95 .. 162

71. D(Z)for second-order SSTC with 2 = 0.95 .. 163

72. L(Z) for second-order SSTC with 2 = 0.95 .. 164

x

73. Plant and control outputs of second-order SSTC controller with 2 = 0.99........... 165

74. 2nd-order SSTC step with 2 = 0.99.. 166

75. 2nd-order SSTC step with 2 = 0.95.. 166

76. Estimated parameters for 2nd-order SSTC with 2 = 0.99 167

77. Plant output for 2nd-order model...168

78. Plant output for 5th-order model.. 168

79. Plant output for 9th-order model.. 168

80. Plant output for 15th-order model.. 168

81. Effect of higher model orders on output response.. 168

82. Pole-zero locations of true plant...169

83. Pole-zero locations of second-order model at t = 200 .. 170

84. Pole-zero locations of fifteenth-order model at t = 200 .. 170

85. 2nd-order model with noise added... 172

86. 3rd-order model with noise added... 172

87. 5th-order model with noise added... 172

88. 7th-order model with noise added... 172

89. Estimated parameters for 2nd-order model with noise added.................................... 173

90. Estimated parameters for 3rd-order model with noise added..................................... 173

91. Extended simulation of plant output for 2 = 0.95 ...174

92. Extended simulation of parameter estimates for 2 = 0.95 175

93. Extended simulation of plant output for 2 = 0.99... 176

94. Extended simulation of parameter estimates for 2 = 0.99..176

95. Simulation of first-order SSTC controlling second-order plant............................... 177

96. Example of bursting with first-order SSTC controller...178

97. Estimated parameters during bursting with first-order SSTC controller..................179

98. Plant output under control of first-order SSTC controller with dead-zone.............180

xi

99. Magnified view of parameter error with dead-zone enabled...................................... 180

100. Plant output under SSTC PID control...182

101. Estimated parameters under SSTC PID control...183

102. Plant output under SSTC PID control with 0(0) = 2.0...184

103. Plant and control outputs under SSTC PID control with 0(0) = 1.0.........................184

104. Tuned step response of SSTC PID control with 0(0) = 1.0.................................... 185

105. Stabilized step response of SSTC PID control with 0(0) =1.0 185

106. Parameter estimates of SSTC PID control with 0(0) =1.0186

107. Magnitude responses of true plants G, (z_1) and G2 (z~})...187

108. Output of time-varying plant under SSTC PID control.. 188

109. Output of SSTC PID controller with time-varying plant.. 188

110. Plant and controller outputs at time of transition of plant parameters...................... 189

111. Estimated parameters for SSTC PID control of time-varying plant..........................190

112. Simulation of SSTC PID controller with added noise..190

113. Disturbance rejection capability of the SSTC PID algorithm....................................192

114. Response of parameter estimates to D.C. load disturbances.....................................192

115. Plant and controller outputs with dead-zone activated... 193

116. Magnitude responses of plant and band-pass filter...195

117. SSTC PID control with dead-zone and band-pass filter... 195

118. Magnified SSTC PID controlled plant with dead-zone and band-pass filter............196

119. Estimated parameters for controller with dead-zone and prefiltering....................... 197

120. Prefiltered input and output signals to estimator..197

121. Plant input and output under SSTC PID Control with added noise..........................198

122. Adaptive controller model with supervision and coordination levels........................ 214

xii

LIST OF TABLES

1. Phase and gain error from backward rectangular rule.. 32

2. Phase and gain error from bilinear transform... 32

3. Ziegler-Nichols step response method parameters.. 37

4. Ziegler-Nichols frequency response method parameters... 38

5. Calculated vs. actual results of PI algorithm test..76

6. Calculated vs. actual results of derivative term test... 78

7. PID parameters from Ziegler-Nichols frequency response method.............................86

8. PID parameters from Hagglund-Astrom auto-tuner..88

9. Effect of N on derivative term coefficients..90

10. Order of persistence of excitation of various signal types...104

11. Effect of relative weighting of the forgetting factor A... 107

12. Parameters of true Plants 1, 2 and 3.. 146

13. Estimated and actual parameters for test of time-varying system.............................. 147

xiii

LIST OF SYMBOLS

<4(<?)
B(q)
D(Z)
D{k)
d
d,
4
e(Z)
/(*)
gif)
I(k)
K
K'
L(Z)
TV
P(Z)
7

7?(Z)

R(Z)

j
T
T„
T,

Tr
U(Z)
zz(Z)
W
w(Z)

denominator of discrete plant model
numerator of discrete plant model
covariance matrix in U-D cofactorization
discrete derivative term
dimension of parameter vector Q(t)
discrete derivative term coefficient
discrete derivative term coefficient
error signal
Ur(Z-l)«S(Z)
D(Z-1)/(Z)
discrete integral term
continuous-time proportional gain
discrete-time proportional gain
estimator gain matrix
maximum derivative gain
7r’(z)
quantization step size
backward shift operator
covariance matrix

scalar feedforward term in SSTC algorithm
sampling interval
derivative time
integral time
rise time
information matrix in U-D cofactorization
controller output
least-squares cost function
reference input

xiv

y(t) plant output
a, least-squares weighting coefficient

P e~*

AO ^ + fT^g(t)

AO parameter or modeling error
AO regression vector formed from observed data
<MO autocorrelation function

Z/
r o /

/T
rtf) measurement noise
2 exponential forgetting factor
AO load disturbance
0 parameter vector of unknown coefficients

AO recursive estimate of 0 based on data up to time t
Nyquist frequency (rad/sec)
relative damping

XV

LIST OF ABBREVIATIONS

A/D analog-to-digital
ADM Application Development Module
AGU address generation unit
ALU arithmetic-logic unit
ARMAX autoregressive moving average with exogeneous input
ARX autoregressive with exogeneous input
D/A digital-to-analog
DSP digital signal processing
EVB Evaluation Board
ISR interrupt service routine
LTI linear time-invariant
LTV linear time-varying
MAC multiply-accumulator logic unit
MRAC model reference adaptive control
PID proportional-integral-derivative
PRBS pseudo-random binary sequence
RLS recursive least-squares
SCI serial communications interface
SISO single-input, single-output
SSI synchronous serial interface
SSTC simplified self-tuning control
STR self-tuning regulator
VLSI very large scale integration

xvi

CHAPTER I

INTRODUCTION

1.1 Introduction to PID Control

In recent years, significant advances have been made in the field of automatic

control theory. Sophisticated computer-based design tools now allow even large scale

multivariable control designs to be developed in a relatively short amount of time. A large

number of processes, however, are still controlled by single loop, single-input, single­

output (SISO) control systems. A block diagram of a basic SISO control loop is shown in

Fig. 1,

Figure 1. SISO error driven controller block diagram

where w(Z) is the reference input, e(Z) is the error signal, w(Z) is the control output, y(t)

is the plant output, and v<7) is a load disturbance on the output. For many years, the

1

2

most widely used SISO controller has been the proportional-integral-derivative

controller, commonly referred to as a PID controller. Its name is derived from the fact

that the PID control algorithm is composed of three terms (the proportional term, the

integral term and the derivative term) that are added together to form the control output

signal, w(Z). The equation for the controller output is given as:

de(t)e(‘) + 7 je(s)<*+
u(t) = K\

dt
(1.1)

where: K is the controller gain

7? is the integral time

Td is the derivative time.

PID controller implementation has gone through many stages of development

over the years. The earliest controllers developed in the mid-193 Os were pneumatic

devices that used pressure capsules or vapor temperature bulbs for sensors and a

combination of mechanical linkages and needle valves for adjusting the proportional,

integral and derivative times. These pneumatic instruments were later replaced with

electronic designs that eventually relied on operational amplifier circuits. With the advent

of digital computers, and more recently, microprocessors, virtually all new PID controllers

are implemented digitally.

PID control has proven to be robust and is used in a wide variety of commercial,

industrial and military applications. PID control can be used in large-scale industrial

applications where a single large computer controls hundreds of individual control loops.

More commonly, however, PID controllers are implemented as stand-alone devices using

microprocessors. General purpose PID controllers are commercially available off-the-

shelf, equipped with options that allow them to be interfaced to a wide variety of sensors

and actuators. PID algorithms are also frequently employed in embedded control

applications, where the controller is designed into a larger system to perform a specific

3

function. Regardless of the application, the PID controller must be tuned to produce the

desired closed-loop response in the plant output. As seen in equation (1.1), three

parameters must be adjusted in order to tune the PID controller. They are the controller

gain K, the integral time Tt and the derivative time Td. Equation (1.1) may be

expressed in Laplace transform form as:

(1.2)

The controller transfer function may then be expressed as:

(1.3)

Equation (1.3) shows what takes place mathematically in the s-plane when the PID

controller is tuned. The controller provides one pole at the origin (for removal of d.c.

offsets) and two zeros that the designer can position by adjusting the parameters Tt and Td.

The two controller zeros are frequently used to cancel the dominant poles of a second-

order plant.

PID controllers are normally used to control plants that are assumed to be linear

and time-invariant. If a model of the plant is available, standard design methods such as

pole-placement may be used to determine suitable PID controller parameters. If an

accurate plant model is not available, empirical methods such as the Ziegler-Nichols

(1942) techniques have been developed for optimally tuning PID controllers. Ziegler-

Nichols procedures are often not employed in practice, however, as they can be time-

consuming and can require operation of the plant near its stability limits. Many plants are

therefore tuned by trial-and-error methods that can result in poorly controlled processes.

Even if the controller is properly tuned, many plants that are assumed to be time-invariant

are actually not. Plant parameters can change due to aging, component failure or

environmental changes. Changes in the plant parameters may also be inherent to the

process, as in some chemical reactions or an aircraft changing altitude in flight. Even

4

though changes in the plant parameters may occur at a relatively slow rate, the

performance of the system can eventually degrade to the point where it is no longer

acceptable. In some instances, the controller can be manually retuned to compensate for

changes in the plant parameters. In other applications, however, the controller may not be

accessible after it has been initially tuned, as in embedded control applications. In order to

ensure robustness in cases where the system is not available after the initial tuning, the PID

controller is detuned to compensate for changes in the plant parameters. This can result in

suboptimal system performance. In situations where the plant is time-varying and

constant-gain feedback control does not provide an acceptable solution, it would be

desirable for the controller to adapt to changes in the plant parameters by continually

updating its own parameters without any operator intervention. The solution to this

problem is known as adaptive control.

1.2 Introduction to Adaptive Control

Research into the area of adaptive control began in the 1950s with the design of

autopilots for high performance aircraft. Ordinary constant-gain feedback had difficulty

dealing with the wide range of speeds and altitudes that such aircraft may have to operate

in. Interest in adaptive control was somewhat diminished, however, after a disaster

occurred in a flight test where adaptive control was employed. In the 1960s, the

development of state space and stability theories broke down many of the barriers that

impeded adaptive control research. Bellman's (1957) work on dynamic programming and

Feldbaum's (1960) introduction of dual control theory also aided in the advancement of

adaptive control theory. The idea that learning and adaptive control could be described in

a common framework of recursive equations was put forth by Tsypkin (1971) during this

period as well. Another extremely important area of research that was key to the

5

development of adaptive control theory in the 1960s was the subject of system

identification and parameter estimation. A survey paper by Astrom and Eykhoff (1971)

serves as an excellent reference to the research on system identification conducted during

that period. In the 1970s, interest in adaptive control continued to increase as many

different estimation schemes were combined with a variety of control law design methods

to form adaptive controllers. In the late 1970s and early 1980s, correct proofs for stability

of certain adaptive control models began to appear, although under very restrictive

assumptions. The 1980s saw many applications of adaptive control systems even while

the theory continued under development. According to Astrom (1987), by the spring of

1986, several thousand adaptive regulators were already in industrial use. With the

development of stability proofs for the ideal case in 1980, the main thrust of the research

shifted in the mid-1980s to robust adaptive control. Research in the area of stochastic

adaptive control also intensified during that period. Today, adaptive control continues to

be the subject of much research, as evidenced by the number of international conferences

and journals dedicated to the subject.

Several different approaches to adaptive control have been proposed in the

literature. Many of the concepts of the early adaptive schemes, such as the General

Electric autopilot proposed by Marx (1959) and Marsik's (1970) adaptive regulator, are

used in many of the later approaches. There are four heuristic schemes that encompass

most of the current work in the field of adaptive control:

• Self-Oscillating Adaptive Systems

• Gain Scheduling

• Model Reference Adaptive Systems

• Self-Tuning Regulators

6

Each of these approaches will be explained briefly in the following paragraphs.

Self-oscillating adaptive systems represent some of the earliest work in adaptive

control. A block diagram of the self-oscillating system proposed by Minneapolis-

Honeywell (see Schuck, 1959) for an autopilot is shown in Figure 2.

Figure 2. Block diagram of Self-Oscillating Adaptive System

The idea behind the system of Figure 2 is to have a feedback loop whose gain is as high as

possible combined with feedforward compensation to produce the desired response to

command signals. The high loop gain is maintained by the relay in the feedback loop. It

can be shown that for signals whose frequencies are much lower than the limit cycle

oscillation, the equivalent amplitude margin is approximately equal to 2. The system

therefore continuously adjusts itself to yield an acceptable amplitude margin. The self-

oscillating adaptive system has been used successfully in flight control systems for many

different missiles. It has the drawback, however, in that experience has shown that pilots

will usually notice the limit cycle, thus limiting its application to unmanned flight.

Attempts have been made to reduce the amplitude of the limit cycle, but if the relay

amplitude is too small, the response to command signals may be too slow. Other

attempts have been made to quench the relay oscillations by the use of a dither signal with

limited success.

A second method commonly used for adaptive control is gain scheduling. Like

self-oscillating adaptive systems, gain scheduling was originally applied to the

*7

development of flight control systems. It has also been successfully applied, however, in

numerous industrial applications. A block diagram of a typical gain scheduling system is

shown in Figure 3.

Figure 3. Block diagram of control system with Gain Scheduling

The system of Figure 3 monitors certain characteristics of the process denoted as

operating conditions that relate to changes in the process dynamics. Regulator

parameters are determined for a number of different operating conditions. Different sets

of regulator parameters can then be activated as the operating conditions change. One of

the advantages to gain scheduling is that the controller parameters can be changed very

quickly in response to process parameters. The major drawback of gain scheduling,

however, is that the control design process must be repeated for the number of parameter

sets in the schedule. When extensive simulations are involved, this can be a time-

consuming process. There has also been some controversy as to whether or not gain

scheduling should be considered as a truly adaptive method, as the parameter changes are

made in open-loop. Gain scheduling remains a viable solution, however, to many control

problems, and it is easily implemented in computer-based control systems. It is still

commonly used in flight control systems and has been used for controlling industrial

robots and in various process control applications.

8

The third adaptive control scheme that will be considered is the Model Reference

Adaptive Controller. The Model Reference Adaptive Controller (MRAC) was originally

proposed by Whitaker (1958) at the Massachusetts Institute of Technology. A block

diagram of the system is shown in Figure 4.

Figure 4. Block diagram of Model Reference Adaptive Controller

The MRAC model is essentially composed of two loops. The inner loop is an ordinary

feedback loop consisting of an adjustable controller and the plant. An additional outer

loop has been added to the system, which includes a reference model and a controller

parameter adjustment mechanism. A reference model is chosen that produces the

specified system response characteristics. As the actual controlled plant output differs

from the output of the reference model, a model error signal eft) is generated. The model

error eft) drives an on-line adjustment mechanism that updates the parameters #(/) to the

adjustable controller in attempting to drive e(t) to zero. The adjustment mechanism is the

key to the entire system and determining an appropriate one is not a trivial task. The

parameter adjustment mechanism in Whitaker's original proposal has come to be known as

the "MIT-rule".

9

Whitaker's original "MIT-rule" is given as:

' •^p = -*«O)grad;,£(Z) (14)

where: 0(f) is the controller parameter vector

£■(/) is the model error

and k determines the parameter adaptation rate.

The "MIT-rule" given in equation (1.4) assumes that the controller parameters 0(t)

change at a much slower rate than the other system variables. (This assumption is almost

always made in the analysis of adaptive control systems.) In order to make the model

error s(f) small, the parameters are changed in the direction of the negative gradient of

^(Z). The "MIT-rule" has been shown to perform well if the parameter k is small.

Difficulties arise, however, if k is too large relative to the size of the reference input. The

stability of the system using the "MIT-rule" cannot therefore be guaranteed. Parks (1966)

proposed an alternative adjustment mechanism based on Lyapunov's second method to

deal with the stability problem of the "MIT-rule". In another important work, Monopoli

(1973) eliminated the need to determine the derivative of the plant output that was

required in Parks' work by using an augmented error signal instead of using the model

error directly. A good bibliography on the subject of model reference adaptive control is

given in Astrom and Wittenmark (1989).

MRAC was originally conceived for continuous-time systems. In fact, the first

design of a MRAC for discrete-time SISO systems was not proposed until 1977 (Ionescu

and Monopoli, 1977). In 1980, several important proofs of global stability for both

continuous-time and discrete-time MRAC systems were presented by Egardt (1979,

1980), Goodwin, et. al. (1980), Morse (1980) and Narendra, et. al. (1980). These works

10

proved that if the plant is linear and time-invariant with unknown parameters, it can be

stabilized based on the following assumptions:

• the plant zeros are stable

• the plant relative degree is known exactly and matches that of the
reference model

• the sign of the high frequency gain is known

• an upper bound for the order of the plant is known.

Once proof of global stability for the ideal case had been established, much of the research

in the 1980s concentrated on relaxing the above assumptions, making MRAC design more

robust. Model reference adaptive control is generally considered to be one of the two

most important branches of adaptive control and remains the subject of considerable

research.

The last adaptive control scheme to be considered is known as the self-tuning

regulator. The self-tuning regulator (STR) ranks with model reference adaptive control in

importance in the adaptive control community. The STR was first conceived by R. E.

Kalman (1958). Kalman divided the control design procedure into three basic steps:

I. Measure the dynamic characteristics of the process.

II. Specify the desired characteristics of the controller.

III. Put together a controller using standard elements
which has the required dynamic characteristics.

Kalman's goal was "to design a machine which, when inserted in the place of the controller

... will automatically perform steps (I-III), and set itself up as a controller which is

optimum in some sense." Armed with the dream of developing a machine that would

eliminate the need for a control designer, Kalman designed a special-purpose computer to,

11

implement the controller, but the project was plagued by hardware problems. His concept

went on to serve as a model, however, for what is now known as the self-tuning regulator.

A block diagram of the self-tuning regulator may be seen in Fig. 5.

Figure 5. Block diagram of Self-Tuning Regulator

Like the model reference adaptive controller, the STR model is comprised of two loops

with the inner loop consisting of the regulator and the process. The outer loop, however,

is significantly different in the two approaches. In the model of Figure 5, the outer loop

consists of a parameter estimator and an on-line controller design mechanism labeled

"Control Law Synthesis" in the figure. The function of the estimator is to select

parameters that best fit a preconceived prejudice model of the plant. The parameter

updates are based on the dynamic characteristics of the plant as determined from the plant

input and output signals. The certainty equivalence principle is then applied in which the

uncertainties of the estimated parameters are ignored and the estimated parameters are

assumed to be the true parameters of the plant. The estimated plant parameters are then

used in a design calculation to determine the updated parameters for the controller. It is

sometimes possible to reconfigure the controller so that the estimator parameters become

12

the controller parameters themselves, thus eliminating any intermediate calculations. This

is referred to as a direct implementation. If intermediate calculations are required to

obtain the controller parameters from the parameter estimates, it is referred to as an

indirect implementation.

One of the advantages of the STR approach is that it offers considerable flexibility

in implementation. Kalman's (1958) discrete-time design used a stochastic least-squares

parameter estimation scheme with a deadbeat control law. Astrom and Wittenmark

(1973) proposed a deterministic least-squares estimator used in conjunction with a

minimum variance controller. Wellstead (1978) proposed using pole-zero assignment for

STRs, an idea that was also expanded upon by Astrom and Wittenmark (1980). By the

late 1970s, the STR had caught the interest of many researchers. Most of the estimators

proposed for self-tuning controllers have included some sort of least-squares based

algorithm. Stemby (1977) provided the first general proof for the convergence of the

least-squares algorithm based upon martingale theory. Several years later, his work was

extended to include adaptive control systems (see Stemby and Rootzen, 1982). To prove

convergence of the estimated parameters, the later work employed a probabilistic

approach known as "Bayesean embedding" which assumed the plant parameters to be

random variables. The proof assumed, however, that the system is excited by white,

Gaussian noise. Almost all of the other stability and convergence analyses have been

based on finding a "stochastic Lyapunov function" (Kumar, 1990); however, the method

has only been successful in a few isolated cases when the parameter estimator is either a

stochastic gradient algorithm or a modified least-squares algorithm, and the control law is

of the minimum variance type (see Goodwin, et. al. (1981), Becker, et. al. (1985), Kumar

and Praly (1987) and Sin and Goodwin (1982)).

Kumar (1990) points out that even today, very little is known about the behavior

of recursive least-squares parameter estimate based adaptive control schemes from an

13

analytical perspective. While stability and convergence theories have been developed for

idealized conditions, these conditions are often unrealistic in practice. Difficulties such as

non-linearities, unmodeled dynamics and actuator saturation can arise that violate the

assumptions made in the theoretical stability proofs making it necessary to circumvent the

theoretical limitations when implementing self-tuning control. Much of the research on

self-tuning control in the last decade has therefore been focused on ad hoc methods for

making self-tuning algorithms more robust.

1.3 Adaptive PID Control

Due to the complexity of the algorithms involved, adaptive control research was

severely hampered by a lack of adequate hardware in the 1950s and 1960s. As digital

computers became less expensive and more powerful in the 1970s, adaptive control

research began to flourish. Research again intensified as microprocessors appeared on the

scene in the 1980s. The advent of the microprocessor offered the potential for widespread

use of adaptive control in many of the applications where PID controllers have performed

poorly due to non-linearities, time-varying plant parameters or inadequate tuning by

process operators. Although the general adaptive methods described previously, such as

MRAC and self-tuning control, could be readily implemented in microprocessors, many

plant engineers and technicians have found the adaptive algorithms difficult to understand

and have, hence, tended to reject them. For this reason, adaptive control algorithms have

been developed that conform to a PID-like structure.

The development of adaptive PID algorithms has been approached in two

fundamentally different ways. The first approach is to develop a controller that

automatically tunes itself to the plant, either on a power-up condition or upon operator

initiation. After the initial tuning-in period, the controller tuning parameters are fixed until

14

the automatic tuning process is manually reinitiated. Controllers designed for this type of

application are known as auto-tuning controllers. The advantage of this method is that

considerable time is saved in the tuning process and the system is often better tuned than

when it is tuned by an operator. Astrom and Hagglund (1984b) proposed an automatic

tuning method that uses relay feedback to determine the critical point on the Nyquist curve

of the open-loop transfer function of the controlled plant. Once the critical point has been

determined, any of several methods may be used to choose appropriate PID tuning

parameters (see Astrom and Hagglund (1984a), Astrom and Hagglund (1988) and

Hagglund and Astrom (1985)). This method has been used in many of the so-called auto­

tuning PID controllers that are on the market today. Krause and Myron (1984) proposed

a method involving pattern recognition of the process reaction curve of the open-loop

system. The Foxboro EXACT controller is based on this technique. These and several

other industrial implementations of auto-tuning PID control have been compared by

Radke (1987). Although auto-tuning PID controllers have been extremely effective and

are widely used in industry today, they cannot be considered truly adaptive controllers,

since once the controller has been tuned, albeit automatically, the controller parameters

are thereafter fixed. Human intervention is required to retune the controller if the process

changes over time. The application of these devices is, in fact, limited to the same

applications where conventional PID control is appropriate. The manual tuning process is

merely eliminated.

The alternative approach to auto-tuning PID controllers is to employ one of the

adaptive models described earlier, i.e., the MRAC or the STR model. The control law is

modified, however, to conform to a PID-like structure. Established PID design

techniques, such as pole-placement, can then be used to modify the controller design

based on the current values of the estimated parameters. A number of variations of this

approach have been proposed in the literature, most of which fall into the self-tuning

15

regulator category. Normally, some form of recursive least-squares algorithm is used to

estimate the parameters of the plant on-line, and any one of a number of available control

law design methods can be employed. One method used in the implementation of adaptive

PID control employs a deadbeat control strategy. Such a design was proposed by Kurz,

et. al. (1980). This method is suitable for low-pass processes with small dead times;

however, it suffers the same limitation as conventional deadbeat control, i.e., the control

output is directly dependent on the sample time. If the size of the control output must be

limited, the sample time must be made proportionally large to compensate. Pole-

placement techniques, such as those proposed by Wittenmark (1979), Astrom and

Wittenmark (1980) and Wittenmark and Astrom (1980), are also used in adaptive PID

applications. They provide the designer the advantage of being able to control the system

response by selecting the locations of the closed-loop poles. Wittenmark and Astrom

(1980) proposed still another adaptive PID method utilizing pole-zero cancellation.

Similar approaches have been proposed by Lammers (1982) and Banyasz and Keviczky

(1982). The pole-zero cancellation approach is a direct implementation and is thus,

computationally efficient; however, it is limited to plants that can be modeled well by

second-order, that are without dead time and that have stable poles and zeros.

Warwick, et. al. (1987) proposed a parameter adaptive control methodology

which is essentially a pole cancellation method whose primary objective is servo tracking.

Since the technique does not result in the cancellation of the process zeros, it can be

applied to non-minimum phase systems as well. The technique, known as simplified self-

tuning control (SSTC), is flexible enough to allow the basic algorithm to be modified into

several interesting variations, one of which is an adaptive PID algorithm. A standard

recursive least-squares algorithm is used as the parameter estimator. (An extended least-

squares algorithm could be used if colored noise were present, but the authors contend

16

that the ordinary least-squares approach usually works sufficiently well, even if the noise is

colored.)

The STR model has been shown to allow considerable flexibility in the

implementation of parameter estimation algorithms and control law synthesis

methodologies. In each case, however, it is necessary to impose certain restrictions on the

plant model to accommodate the PID-like controller structure. If the plant can be

adequately modeled under the restrictive assumptions, adaptive PID algorithms offer a

potentially simpler solution to the adaptive control problem than some of the more general

approaches.

1.4 DSP-based Control Implementation

Most adaptive control applications require parameter-based plant models, and

most parametric identification schemes involve some form of a least-squares algorithm,

although specific computation methods vary widely. Least-squares based techniques

require iterative solutions that must be implemented on a digital computer. The

algorithms can be math intensive and require considerable processing power if an iteration

is to be completed during each sample interval. Some algorithms may require hundreds of

multiplications and divisions in a single iteration, depending on the model order assumed.

Until recently, microprocessor-based adaptive control was limited to applications requiring

relatively slow sample rates, such as temperature control or control of chemical processes.

Recent advances in very large scale integration (VLSI) methods have allowed integrated

circuit manufacturers to develop a special class of microprocessors for processing digital

signals. Features such as fast clock speeds (40 Megahertz), multiple large accumulators

(up to 96 bits), hardware multipliers and Harvard architectures provide these processors

with the ability to perform high precision operations at very high speeds. Consequently,

17

these special function microprocessors, known as DSP chips, are ideal candidates for

adaptive control applications that require significantly faster sampling rates than are

possible using general-purpose microprocessors.

1.5 Statement of the Problem:

A large number of SISO processes are currently controlled by PID controllers.

PID controllers have proven to be robust in many applications and they are easily

understood by control engineers and technicians. It may therefore be desirable in many

cases for adaptive controllers to conform to a PID-like structure. Although conformance

to a PID model puts constraints on control system performance, PID control remains a

viable alternative for many adaptive applications. In addition, DSP chips offer many

advantages over general-purpose microprocessors for the implementation of adaptive PID

algorithm. The problem to be investigated may therefore be stated as follows:

Is it possible to implement an adaptive PID controller on a digital signal

processing chip?

The results of the investigation of this problem are presented in this thesis.

18

1.6 Thesis Organization

The remainder of the paper is organized as follows: First, a practical discrete-time

PID algorithm is developed in Chapter 2. A number of enhancements to the classical PID

control algorithm given in equation (1.1) are incorporated to make the algorithm more

robust. Several methods for designing with PID controllers are also explained. In

Chapter 3, the discrete PID algorithm is implemented on the Motorola DSP56000 digital

signal processing chip. The basic architecture and instruction set of the DSP56000 are

explained, and the DSP56000 implementation of the PID algorithm is also analyzed. The

PID control program is then tested in real-time using a Motorola ADS56000 development

system tied to an Intel 80386-compatible computer modeled as the plant. The Zenith

80386-based computer is equipped with a National Instruments AT-MIO-16 analog I/O

board that serves as the input/output interface for the plant. In Chapter 4, an adaptive

PID control algorithm based on a self-tuning regulator model is developed. A recursive

least-squares algorithm is selected for the parameter estimator. The parameter estimator is

then incorporated into a PID version of the SSTC controller presented by Warwick, et. al.

(1987). The estimation algorithm includes several ad hoc improvements to make it more

robust. The adaptive PID algorithm is then simulated, the results of which are presented

and analyzed in Chapter 5. The recursive least-squares parameter estimator is tested,

followed by simulations of the general SSTC algorithm. The SSTC algorithm is then

forced into a PID-like structure, which is also simulated and analyzed. Finally,

conclusions are drawn in Chapter 6 and recommendations are made for future work.

CHAPTER II

DEVELOPMENT OF THE DISCRETE­

TIME PID ALGORITHM

2.1 Introduction

Equation (1.1) described the classical form of the PID algorithm as:
#(0 = Je(Z)+| je(s)<&+ T„■

Although the classical PID control law yields a controller that is suitable for a wide variety

of applications, implementation in that form can result in some difficulties. Several

enhancements to the basic algorithm have been proposed over the years to deal with some

of the difficulties.

One problem arises from the fact that each of the terms of equation (1.1) acts on

the error signal, e(Z), which is the difference between the reference input, w(Z), and the

plant output, y(t). The control law treats a change in the reference input or a disturbance

on the output in an identical fashion. A large, sudden change in the setpoint will generate

a large error signal from the derivative term known as derivative kick that could possibly

drive the plant into a non-linear region. Derivative kick can be addressed by modifying the

structure of the controller so that the derivative term is only acted upon by the plant

19

20

output and not the setpoint. The proportional term can also contribute to excessive

overshoot in response to large setpoint changes. The problem of proportional kick can

also be dealt with by modifying the controller structure so that the proportional term is

also only acted upon by the output and not the error. The disadvantage of this method is

that responses to setpoint changes can be somewhat sluggish. Another common difficulty,

known as integral windup, occurs when a large setpoint change causes the control output

to remain saturated for an extended time. The integral term continues to grow larger even

after the output has saturated. When the output finally reaches the setpoint value and the

error changes signs, it takes some time for the integral term to unwind and allow the

control output to change signs as well. This results in a large overshoot in the plant

output. Modification of the classical PID structure, combined with the addition of a non­

linear limiting function, is one of the simpler methods for dealing with integral windup.

Using the derivative term in its classical form can also lead to difficulties. In the form of

equation (1.1), the nature of the derivative term, Td —e(/), (or in Laplace transform form,
dt

sTde(s)), is that its gain increases with frequency. The derivative term tends to amplify

higher frequency measurement noise, possibly leading to erratic behavior in the control

output. The derivative term is therefore often filtered in order to limit its gain at high

frequencies.

Once a suitable model has been developed for the PID controller, it must be

converted to discrete-time form before it can be digitally implemented. Many different

methods have been developed for approximating a differential equation by a difference

equation. Each method possesses certain advantages and disadvantages over the others in

how the frequency response of the discrete model compares to the frequency response of

the continuous model. When considering control applications, a key criterion for

evaluating the different methods is the amount of phase error generated by the

discretization, as the stability of a control loop is directly related to the phase margin. A

21

discretization method commonly employed in control applications is a numerical

integration technique known as the bilinear transformation, or Tustin's approximation. A

major benefit of using the bilinear transformation is that it produces zero phase error in the

discrete-time model. There are side effects, however, that become apparent when

applying it to the derivative term, i.e., it can cause ringing in the output if Td is too small.

Frequently, therefore, the derivative term is converted using the backward difference

integration method, while the bilinear transformation is employed to convert the

proportional and integral terms to discrete-time form.

After developing a discrete-time PID model, the PID parameters must be selected

to produce the desired response in the plant output. A number of different design

methods have been developed for determining appropriate PID parameter values. Most of

the techniques require working in the 5 - plane and then converting the continuous-time

controller model to discrete form. If the process model is of a low enough order, the

controller design can also be done directly in the z- plane using discrete-time pole-

placement techniques. Discrete pole-placement requires a discrete-time model of the

plant, however. Direct digital design methods are commonly used in implementing

adaptive controllers since the parameter estimation algorithms are usually based on

discrete-time models. Direct digital design methods do have a drawback, however, in

that it can be difficult to translate the discrete-time control law to a PID structure.

There are a number of other issues that must be addressed when implementing a

digital PID controller. As with any sampled data system, it is crucial to select an

appropriate sampling rate for the controller. Too slow a sampling rate can result in poor

control of the plant or even aliasing. Too fast a sampling rate can lead to numerical

difficulties. A number of guidelines have been proposed for selecting appropriate

sampling rates for digital controllers. Another important issue to consider when designing

a digital control system is quantization. Analog signals must be quantized before they can

22

be processed by a computer or microprocessor. Too few bits in the A/D converter, for

instance, can lead to problems such as limit cycling. Not only are signals quantized in

digital control systems, but coefficients and parameters must be quantized as well.

Quantization can be modeled as a noise source in the control system and may need to be

considered in the design of the controller. Also, the length of the storage words in the

computer memory must be considered. Too few bits in a memory word can result in an

offset between the setpoint and the plant output. The word length required to achieve a

given steady-state error can be calculated if the PID parameters and the sampling

frequency are known.

In this chapter, a continuous-time PID algorithm is developed that incorporates

many of the modifications discussed. The continuous-time algorithm is converted to

discrete-time using the bilinear transformation and the ramifications of the conversion are

discussed. Several PID controller design methods are also explained and some advantages

and disadvantages of each method are pointed out. Finally, some key PID controller

implementation issues are explored, including selection of an appropriate sampling rate

and analysis of quantization error.

2.2 Development of the PID Terms

Proportional action can be described by the control law:

m(Z) = Ke(t).

The control output, w(Q, is proportional to the error e(t). To analyze the closed-loop

behavior of the proportional term, consider a model of a linear time-invariant plant under

simple proportional feedback. A block diagram of the system with a load disturbance v(Q

and measurement noise is shown in Figure 6.

23

If K is the D.C. gain of the plant, then the steady-state output of the plant is given as:
KK

(w- rj) +
1 + KK 1 + KK.

(2-1)
p p

Astrom and Hagglund (1988b) make the following observations from equation (2.1):

1. A high controller gain,/C, is desirable to make the plant output y' as close

as possible to the setpoint, w.

2. A high controller gain, K, makes the system less sensitive to the load

disturbance, v.

3. A high controller gain, A?, makes the process more sensitive to the

measurement noise 77.

4. Measurement noise, 77, responds to the system in the same way as the setpoint,

w.

Although equation (2.1) does not address the dynamics of the system, it does point out

that unless K or Kp =00, there will always be an offset between the output and the

setpoint. In order for K or Kp to equal infinity, either the controller or the plant must

contain an integrator. Since it is rare for a plant to contain an integrator, it is usually

necessary for the controller to contain the integrator in order to remove the offset.

24

Referring again to equation (1.1), the control output resulting from the integral

term being added to the proportional term is expressed as:
(1 ' A

«(0 = ^ e(Z) +— (2.2)

Assuming the system is in steady-state with w(Z) = w0 and e(t) = e0, equation (2.2)

becomes:
(e

u0=K e0+-±t .
V A 7

As long as e0 does not equal zero, u0 will never remain constant. A positive error, no

matter how small, always yields an increasing control output, and a negative error always

causes a decreasing control output. Integral action, therefore, guarantees zero steady-

state error for a step disturbance with the offset being removed in a time proportional to 7^

(The smaller 7J is, the faster the integral removes the offset).

The use of integral control alone frequently leads to an unstable closed-loop

system, as it adds 90 degrees of phase lag to the forward path. Integral control, therefore,

is almost always used in combination with proportional control. Proportional plus integral

control (commonly known as PI control) generally leads to a stable closed-loop system,

providing 7? is appropriately chosen. However, even when used in combination with the

proportional term, the integral term adds a degree of instability to the system. It is often

necessary to add a stabilizing influence to counteract the effects of the integrator. This is

accomplished with the addition of a derivative term.

Very often, process dynamics are such that there is a time lag from when a change

is made in w(Z) to when a change is noticeable in the process output, y(t). The response

could be improved if the controller predicted changes in the process output. This is the

function of the derivative term of equation (1.1). As explained by Astrom and Hagglund

(1988b), the prediction is made by extrapolating the error along the tangent to the error

curve, as seen in Figure 7.

25

Figure 7. Graph depicting predictive action of derivative term

Derivative action is often required to control plants with excessive phase lag, such

as processes of order greater than three or processes with large dead times (Clarke, 1984).

The derivative term adds phase lead and therefore stability into the system. It is used less

than the other PID terms in practice, however, as it can be difficult to tune and tends to

amplify noise at high frequencies. This is one of several practical problems that must be

addressed when implementing PID controllers. As stated earlier, the solution to many of

these difficulties lies in the modification of the basic PID structure given in equation (1.1).

26

2.3 Development of the PID Controller Structure

A simplified block diagram of the classical PID structure is shown in Figure 8.

Some of the difficulties encountered when implementing a PID controller in the form of

Figure 8 have already been discussed. In this section, a practical PID controller structure

is developed that addresses many of those difficulties.

Figure 8. Simplified block diagram of classical PID structure

The proportional and integral terms from the classical PID algorithm given in

equation (1.1) can be used to form a PI controller described by:
(1 + sr}

Gc(s) = £
sT sT

(2-3)1 + = K
i y

Equation (2.3) can be drawn as a simple lag in positive feedback as shown in Figure 9.

In order to avoid the problem of derivative kick, the derivative term should only be

acted on by the output and not the setpoint. One way of accomplishing this, referred to by

'll

Astrom and Wittenmark (1990) as a derivative-of output controller, is shown in the model

of Figure 10.

Figure 10. Block diagram of Derivative-of-Output PID model

Assuming D(s) = K(f + sTd), the control output from Figure 10 is determined to be:

z . (1 + 5^)
u(s) = Ky

sT
\+2j^+rjj£

sT,
(2.4)K y(s)

From equation (2.4), it can be seen that the reference input drives a PI response from the

controller. The derivative term, however, is acted upon only by the output and derivative

kick is thus avoided. The parameters of equation (2.4) relate to the parameters of the

classical PID model, K', Tl, Td\ in the following manner:
K'=K

(2.5)T'=2Tl 1

The parameters of the derivative-of-output controller are similar to those of the classical

controller, as seen in equation (2.5). The parameters 7J and Td do not interact as they do

in the some interacting forms (see Clark, 1984).

The derivative-of-output controller is an improvement over the classical PID

structure in that it eliminates derivative kick without introducing interaction between the

Tt and Td terms. It does not, however, address the problem of excessive overshoot

resulting from proportional kick. An alternative model, referred to by Astrom and

28

Wittenmark (1990) as the setpoint-on-l-only controller, addresses proportional kick by

changing the PID model so that, like the derivative term, the proportional term is acted

upon only by the output and not the setpoint. The setpoint-on-I-only controller can be

tuned to react quickly to load disturbances; however, the controller's reaction to setpoint

changes can be somewhat sluggish, relying only on the integration of the error signal to

drive the plant.

The derivative term from the derivative-of-output PID model can be expressed as:

»As) = -KsTdy{s) (2.6)

The gain of the derivative term given in equation (2.6) is expressed as:

|-X/<y7;| = KcoTd (2.7)

From equation (2.7), it can be seen that the gain of the derivative term grows without

bound as co increases. This implies that for large co (i.e., outside the bandwidth of the

plant), process and measurement noise are the dominating factors in driving the derivative

term. This problem is somewhat alleviated by filtering the derivative term to limit its gain

at high frequencies. A common method of filtering the derivative term is given in equation

(2-8):
(A

sT,
D(s) = -K T

1 + 5 —
NJ

(2.8)

where N is the maximum allowable gain of the derivative term. (Astrom and Wittenmark

(1990) report that A is typically set in the range of 3-20.) The magnitude response of the

filtered derivative term with K=\, A = 10 and Td - 0.1 is shown compared to the

unfiltered derivative term response in Figure 11.

29

Figure 11. Magnitude responses of filtered vs. unfiltered derivative terms

The cutoff frequency of the filtered term occurs at radians with a maximum gain of

20 dB (N=l 0.0). Figure 11 demonstrates how limiting the gain of the derivative term at

high frequencies minimizes the effect of measurement noise on the control output. A

block diagram of the modified continuous-time PID model is shown in Figure 12.

Figure 12. Block diagram of modified PID controller

The PID model of Figure 12 is a derivative-of-output controller in which the

derivative term is acted upon only by the output, thus eliminating the problem of

30

derivative kick. The derivative term filter also minimizes the effect of measurement noise

on the control output.

2.4 Discretization of the PID Algorithm

In order to digitally implement a continuous-time system, it must first be converted

to discrete-time form. Many approaches have been developed for converting continuous­

time transfer functions to discrete equivalents. Franklin, Powell and Workman (1990)

have divided these methods into three categories:

1

2

3

hold equivalence

zero-pole mapping

numerical integration.

In essence, the goal of each of the approaches is identical; i.e., to convert a differential

equation to a difference equation that approximates the differential equation. Franklin,

Powell and Workman (1990) analyze the merits of each procedure in terms of its

application to digital control. The most common methods for discretizing continuous-time

controller models come under the heading of numerical integration. Three approaches are

commonly used to approximate an integral numerically. They are the forward rectangular

rule, the backward rectangular rule and the trapezoidal rule, referring to how the

incremental value of the area under the curve is calculated in each case. With forward

integration, the left half of the s-plane maps onto the entire z-plane, including the area

outside the unit circle defined by |z| = 1. A stable continuous-time system can therefore be

made unstable using the forward rectangular rule. The backward rectangular rule,

however, maps the left half of the s-plane into a region entirely within the unit circle in the

31

z-plane, thus guaranteeing stability in the transformation. The trapezoidal rule (also

known as the bilinear transformation} is unique in that the left half of the s-plane maps

into the entire stable region of the z-plane, i.e., inside the unit circle. The jco axis in the s-

plane maps directly onto the unit circle in the z-plane. This leads to a significant amount

of distortion, since the jco axis in the s-plane ranges from -oo to + oo while the unit circle

in the z-plane ranges from 0 to 2?r. The frequency distortion resulting from this

transformation can be significantly reduced by employing a technique known as pre-

yvarping. (Franklin, Powell and Workman (1990) discuss the methodology at some

length.) This method can only be applied, however, if the critical frequency is known in

advance.

Although any of these approaches may be used to convert a continuous-time

controller model to discrete-time form, the methods most generally used for control

applications are the backward rectangular rule (sometimes referred to as the backward

difference) and the bilinear transformation, since both methods guarantee stable poles in

the z-plane if the poles in the s-plane are stable. Clarke (1984) analyzes the frequency

response characteristics of the two methods in terms of a normalized frequency. If only

frequencies up to the Nyquist frequency are considered, i.e.,
71

the frequency with respect to the Nyquist frequency can be normalized by letting

x = where x is the normalized frequency ranging from 0-^1. The gain and phase

error for 0 < x < 1 are summarized in Table 1.

32

Table 1. Phase and gain error from backward rectangular rule

Freqx Gain error Phase error

0.1 .9959 -9

0.25 .9745 -22.5

0.50 .9003 -45

0.75 .7842 -67.5

1.00 .6366 -90

Table 1 demonstrates the criticality of the sampling rate relative to gain and phase error.

The phase error becomes significant for <y > 0.1<yw , indicating that sampling rate should

be at least ten times the Nyquist frequency. The gain and phase error resulting from the

bilinear transform are summarized in Table 2.

Table 2. Phase and gain error from bilinear transform

Freq x Gain error Phase error

0.1 1.0083 0

0.25 1.0548 0

0.50 1.2732 0

0.75 2.0492 0

1.00 00 0

In Table 2, the phase error is zero up to the Nyquist frequency, and the gain error does not

become significant until a> > 0.5<vN. Since phase error is generally more important than

gain error in control applications, the bilinear transformation appears to be the better

33

choice for conversion of the continuous-time controller to discrete-time. Having

developed a practical PID model and selected the bilinear transformation as the method of

discretization, the continuous-time PID model must now be transformed to a discrete-time

model.

The following development follows Clarke (1984). From the PI regulator given in

equation (2.3), the integral term from Figure 9 is given as:
1/

1 /T
h(s) = TTV = -iZ^1 + xTy y_ + 5

Solving for the exact z-transform of H(x) yields:

H(z) = (l-z“')Z- H(s)

(l-e'^)z'1

1-e /’z"1
. . -VSubstituting p for e /Ti gives:

H(z) = (!-£)* -1
(2-9)

\-Pz~'

Equation (2.9) is the exact z-transform of the integral term of Figure 9. Placing equation

(2.9) in feedback with gain K' yields:

(2-10)£/(z-‘) = K'E(z-') + U(z-').

Solving for U(z 1) gives:

U(z~') = K'\ (l-^)z-1

(1-Z-)
)£(z-‘). (2.11)

•••H(z-1) =

1 +

Equation (2.11) is an expression for the exact z-transform of the PI controller where

The PI controller from Figure 9 can be expressed in Laplace transform form as:

Ge(«) = ^(
sT,

34

Applying the bilinear transformation to Gc yields:

Gc(z"') = ^

1+2(1 z)
T(i+r') '

2(1 -z-')

r(2?;+T)

27;

f 2Tz"'
[(27’ + T)(l-z-1) '

T(l+z_1) '

(2.12)

Comparing equation (2.11) to (2.12):
2T

(!-£) =
27-T

;.p=--i—- andK' = K H 2Z + T
a2t;+ta

27?
= 7C 1+T

27? (2-13)
(27?+ T)

Equation (2.12) is an approximation of the exact z-transform of the PI controller

expressed in equation (2.11) with equation (2.13) giving the discrete approximation for p.

From equation (2.10):

U(z~') = K'E(z~') + U(z-')
\-/3z-' . (2.14)

U{z~') = K'E(z-') + z~'U(z~') - K'Pz-'E{z~')

Taking z_1 as the backwards shift operator, equation (2.14) becomes:

u(k) = K' e(k) + u(k -1) - K' Pe(k -1). (2.15)

The control output in equation (2.15), w(£), can be split into the proportional part:

i 7

P(k) = K'e(k),

and the integral part:

I{k) = u(k-\)-K'Pe(k-\)

Simplifying the integral term gives:
I(k) = K' e(k -1)+I(k - pK' e(k -1)

= /?/(£-l) + (l-/7)w(£-l)

(2-16)

(2-17)

or,

I(k +1) = pi(k) + (1 - P)u(k). (2.18)

Equation (2.18) then becomes an expression for the integral term in terms of p, which can

then be approximated to any degree one desires.

Next, the derivative term is transformed to discrete-time form. The filtered

derivative term was given previously as:

35

D(s) = -K
sT,

T1 + 5^
< NJ

(2-19)

Applying the bilinear transform to equation (2.19) yields:
2r/i-z-')

D(z') = -K T(l + z~')
-i\\

1 + ^- 2(1-Z-)
r(z-’)

Letting y = ^-,

£>(z"') =-------A~'2^1 z)—y(z-')

N (. N J

1 + 2 Jn}^ H1 “ 2) = -*’ 2 z^z*1) + £' 2 jz"1 7(z-’).

Taking z 1 as the backwards shift operator yields:

2j7-ll/N J 2K' y
W) = kT >-..^(k -1) + 7/,/-[X* -1) - X*)] •

2y+i
/#+1

Setting:

2r/^ 2r/^
gives:

2^+'

<T(l + z-')J

D(k) = d0D(k - V)+d}[y(k -1) -X*)]• (2.20)

Equation (2.20) is the discrete-time expression for the filtered derivative term in terms of
7L

Z = —•
T

The complete PID algorithm can now be formed by combining equations (2.16),

(2.18) and (2.20) to give:
u(k) = P(k)+I(k) + D(k)
u(k) = K'e(k) +I(k)+d0D(k -1) +d}[y(k -1) -X*)] ('

with:

36

I(k +1) = pl(k) + (1 -P)u(k) (2.22)

where:

It only remains to determine the appropriate values for the parameters K, 77, Td, T and

N.

Many different methods have been developed for selecting PID controller

parameters to yield a specified plant performance. Some of the more commonly used

approaches to PID controller design are discussed briefly in the next section.

2.5 Designing with PID Controllers

PID control is used for a wide variety of applications. A PID algorithm may be

used in a custom design to control a specific plant. In such cases, a mathematical model

of the plant is developed and the controller parameters are obtained using a model-based

design method, such as pole-placement. PID controllers may also be purchased off-the-

shelf for use in an industrial application. In such cases, the engineer determines the

controller parameters empirically. Undoubtedly, the most significant contribution to the

area of empirically-based PID design has been made by Ziegler and Nichols (1942).

Ziegler and Nichols proposed two different techniques for developing optimum controller

parameters that remain widely used. Both methods share a common criteria in that they

are designed to achieve a 1/4 decay ratio in the response of the output of the controlled

process to a step change, but the methods differ in their implementation.

The first method proposed by Ziegler and Nichols defines the process dynamics

from the open-loop step response of the system. The open-loop step response is

37

characterized by two parameters: the maximum slope of the response curve and the

process time delay. These two parameters are obtained graphically by drawing a tangent at

the point where the slope of the curve is at a maximum as shown in Figure 13. The

distance from the intersection of the tangent line to the x and y axes are labeled L and a,

respectively. The values L and a are used to calculate the controller parameters as given

in Table 3.

Figure 13. Parameters obtained from Ziegler-Nichols Step Response Method

Table 3. Ziegler-Nichols step response method parameters

Controller K r, T

P 1/
/a

PI .9/
/a 3L

PID i.y
/a 2L

L/
/2

The Ziegler-Nichols frequency response method is based on the knowledge of a

single point on the Nyquist frequency response curve, i.e., the critical point. (The critical

point is where the Nyquist curve intersects the negative real axis.) This point can be

38

obtained experimentally by controlling the process with purely proportional feedback and

increasing the controller gain until the process output begins to oscillate. At this point, the

controller output and the plant output are 180° out of phase. The gain required to bring

the system to the point of oscillation is referred to as the ultimate gain, kc, and the period

of oscillation of the resultant output is called the ultimate period, tc. Table 4 gives the

recommended PID parameters for the Ziegler-Nichols frequency response method.

Table 4. Ziegler-Nichols frequency response method parameters

Controller K T,

P Q.5kc

PI 0.4^ Co

00o
’

PID 0.6A, 0.5<„

The Ziegler-Nichols criteria are designed for cases where the primary control

objective is disturbance rejection (the regulator case) as opposed to set-point tracking (the

servo case). The gain obtained from the two Ziegler-Nichols methods is relatively high in

order to meet this objective. It can be shown that a decay ratio of 1/4 equates to a relative

damping £=0.22 which causes a rather large overshoot for setpoint changes. Other

empirically-based tuning criteria have also been proposed that offer improved performance

over Ziegler-Nichols techniques. Miller, Lopez, Smith and Murrill (1967) compare the

most significant of the empirically based tuning criteria (including Ziegler-Nichols) and

conclude that controller tuning methods that use an integral error criteria are superior to

the other techniques.

It is not always possible, or even desirable, to use empirical methods to obtain PID

controller parameters. If a model of the plant is available, the parameters can be derived

using pole-placement. Consider a plant characterized by the second-order model:

39

GM = (i+sr)(i+.s£)

If the transfer function of the PID controller is given as:
A'(l+s7’ + s27'7^)

Gc(s) =----------- - ----------
sT

the characteristic equation of the closed-loop system can be determined to be:
kK

s3 + s2 1 1 kpKTa
T T TT LJ1 72 21J2 J

_L+M
^2. TTT

= 0. (2.24)+ 5 + •

If the desired closed loop characteristic equation can be described as:
(5+ aco)(s2 + 2£cos+ co2) = 0, (2-25)

the controller parameters can be determined by substituting equation (2.25) into equation

(2.24) and comparing like powers of 5. A more detailed description of the continuous­

time pole-placement procedure is given in Astrom and Hagglund (1988b).

The response of many SISO systems can be characterized by a pair of complex

poles, commonly referred to as the dominant poles. Whereas the Ziegler-Nichols (1942)

techniques are based on the knowledge of one point on the Nyquist curve, Astrom and

Hagglund (1988b) have developed a procedure for designing a controller based on the

knowledge of two points on the Nyquist curve. The dominant pole design method

estimates the locations of the dominant poles of the closed-loop system from the Nyquist

curve of the open-loop system. A complete development of the method is given by

Astrom and Hagglund (1988b).

A number of PID design methods are based on the concept of selecting controller

parameters so that the dominant poles of the plant are canceled. These methods are

simple to implement and yield a system that responds well to setpoint changes; however,

Astrom and Hagglund (1988b) contend that the response of these systems to load

disturbances is poor, as it includes the dynamics of the canceled poles. The closed-loop

system will therefore respond to load disturbances similarly to the response of the open-

40

loop system. The same effect occurs if the cancellation of the poles is not exact. These

methods should therefore be avoided in practice if the controller is going to be used

primarily as a regulator.

All of the design methods mentioned so far have been based on continuous-time

models of the controller and the plant. The controller parameters obtained must be

converted to discrete-time before applying the method. It is also possible, however, to

position the closed-loop poles of lower-order discrete-time models directly. A thorough

treatise on the subject of discrete-time pole-placement is given by Astrom and Wittenmark

(1990).

Some of the more common techniques for designing with PID controllers have

been presented, but many other methods have also been developed. As long as the sample

rate is relatively fast, the controller design can be done in continuous-time and the

parameters obtained can be converted for use in the discrete-time algorithm. The

controller design may also be done directly in discrete-time, although it may be more

difficult to force the resulting controller into a PID structure.

2.6 PID Implementation Issues

Once the PID control algorithm has been developed and the method for selecting

the controller parameters has been determined, several important issues remain to be

addressed before the PID algorithm is implemented. A key consideration in any digital

control design is the selection of the appropriate sampling rate. Sample rates that are too

fast can lead to numerical difficulties, and sample rates that are too slow can result in a

poorly controlled process, or even aliasing. In this section, some guidelines are given for

selection of a sampling frequency that is appropriate for the application. Quantization

error and word length also play an important role in the implementation of digital

41

controllers, particularly in the selection of the controller hardware. Both hardware

quantization and computational quantization are discussed briefly in this section. Word

lengths that are too short can result in problems such as integration offset or limit cycling.

A method for determining the minimum requirements for memory elements is also

presented.

Sample rate selection

Selection of an appropriate sampling interval is critical for the controller to be able

to meet the design specifications. The effect of sample rate on frequency response has

already been discussed briefly in Section 2.4. The constraining factor in the selection of

the sampling rate is found in Shannon's sampling theorem, which states that "a continuous­

time signal with a Fourier transform that is zero outside the interval (-<u0, a>0) is given

uniquely by its values in equidistant points if the sampling frequency is higher than 2a>0"

(Astrom and Wittenmark, 1990). The frequency 2<x?0 is referred to as the Nyquist

frequency. Simply stated, a continuous signal can be completely recovered after sampling

if the signal is sampled at a rate at least twice the highest frequency component of the

signal. If this rule is not adhered to, the original continuous-time signal cannot be

recovered. This effect is known as aliasing. Anti-aliasing filters are often used to filter

the input signal before sampling to remove the high frequency components. Anti-aliasing

filters must be used carefully in control applications, however, as they introduce additional

phase lag into the system which, in turn, causes instability. The additional phase lag may

have to be factored into the control design if it is significant. This can be done by

approximating it as a simple time delay.

42

It is often assumed that the sampling rate should be as high as possible, particularly

if the control design is performed in continuous-time and then converted to discrete-time.

Faster sampling leads to a discrete equivalent that more closely approximates the analog

model. Clarke (1984) points out, however, that there are cases where high sampling

frequencies can lead to difficulties. Problems can arise, for instance, in cases where

derivative action is employed and relatively long integral and derivative times are required

for a given plant. Middleton and Goodwin (1990) demonstrate how too rapid sampling

can also lead to numerical difficulties. Because word lengths are fixed by hardware

limitations in digital systems, as the sampling rate is increased, the maximum

computational error also increases. Middleton and Goodwin (1990) recommend that the

sampling rate be selected to be approximately ten times the closed-loop bandwidth of the

system; however, they do state that sampling rates up to fifty times the closed-loop

bandwidth are often acceptable when implemented in high-precision hardware. Clarke

(1984) states that in most cases, there is little point in selecting the sampling interval T

such that there are more that ten to twenty samples during the ninety-five percent rise time

of the step response. Astrom and Wittenmark (1990) recommend a sampling rate of ten

to thirty times the closed-loop bandwidth of the closed-loop system. If Nr is the number

of sampling periods per rise-time:

where Tr is the rise time. Astrom and Wittenmark (1990) recommend choosing Nr to be

between four and ten for a first or second-order system.

43

Quantization and word length

Quantization errors are the result of having to store digital numbers in memory

elements with a finite accuracy. Quantization errors can be introduced in several ways.

Quantization occurs in hardware devices such as analog-to-digital (A/D) converters.

Quantization also occurs when performing numerical computations on parameters or

coefficients that result in overflow, underflow and roundoff. The consequences of

quantization depend on the structure of the feedback control system that is used. Detailed

analysis of quantization leads to a very complicated non-linear model that is difficult to

analyze. Some insight can be gained, however, by examining some simple cases using

linear analysis.

Quantization of parameters or signals can cause three different effects; bias, noise

and limit cycles. Bias is caused primarily through truncation. In two's complement

arithmetic, truncating a positive number or a negative number results in a bias in the same

direction, i.e., trunc(x) < x for both positive and negative x. If the quantization step is

defined to be q, the maximum error resulting from truncation is q, which results in a bias

It can be similarly shown that the maximum error resulting from roundoff is %

which yields a bias of 0. Rounding is therefore preferred over truncation.

Quantization error can also appear in the form of noise. Hanselmann (1987)

presents a model for handling quantization error as noise. Assuming two's-complement

arithmetic and a quantization step of q, the mean and variance of the quantization noise

can be determined to be:

mean:

p = 0 for rounding

These expressions assume a uniform quantization error distribution in the interval q,

which has been shown to be a valid assumption under some conditions. It also assumes a

44

continuous amplitude input into the quantizer. This is true for A/D converters, but is not

valid in considering internal computations. If the quantization is done as truncation, the

error is equally distributed over the interval (o,</). If quantization is performed as

rounding, the error is equally distributed over the interval . Astrom and

Wittenmark (1990) also show how quantization error can be modeled using linear

analysis, treating the quantization error as a stochastic input. The linear models serve only

as an approximation, however, and do not completely describe all aspects of quantization

error. Another technique for analyzing quantization error using describing function

analysis is given by Astrom and Wittenmark (1990). Describing function analysis can be

used to predict limit cycles due to quantization and roundoff.

The necessity of roundoff when dealing with finite precision machines raises the

question of what computer word length is required for the application. A problem known

as integration offset can arise when the length of the storage element for the integral term

is too short. The expression for updating the integral term was given as:

I(k +'l) = pi(k) + (l~P)u(k)

where p was determined for the bilinear transformation to be:

The correction term, (l - p)u(k), is normally much smaller than the integral term pi(k).

If the word length is too short, the correction term will be rounded off causing an offset in

the output. In a processor that utilizes fixed-point fractional arithmetic, the maximum

value of w(A:)is limited to 1. For example, let T =.01 sec and f = 10 sec. This results in

P=0.9990005 and (1 - p) = 0.0009995. In order to obtain less than 5 percent error in

the integral term, the minimum number of bits required can be calculated to be:
log[(0.0009995)(0.05)]

number of bits =------ b------------------------ -
log(2)

= 14.28 » 15 bits.

45

2.7 Chapter Summary

In this chapter, basic PID control theory has been presented. The action of the

PID terms was individually explained. It was noted that the classical version of the PID

control law presents some difficulties in practical implementation. For instance, the

problem of derivative kick stems from the derivative term being driven by the error signal

which changes suddenly in response to a setpoint change or a load disturbance. A solution

was proposed whereby the controller structure is modified so that the derivative term is

only acted upon by the output and not the setpoint. This allows for quick response to load

disturbances without generating a large overshoot from a change in setpoint. The problem

of integral windup was also addressed by the addition of a limiting function at the output

of the integral term. Another difficulty with the classical controller was found in the

derivative term. The pure derivative term was shown to have a gain that increased

without bound with the frequency, resulting in controller sensitivity to measurement noise.

The problem was lessened by incorporating a filter into the derivative term that limited its

gain at high frequencies.

After the continuous-time PID controller was developed, the discretization of the

algorithm for digital implementation was discussed. The backward rectangular rule and

the trapezoidal rule were selected as the primary methods for discretizing a continuous­

time control system, and some frequency response considerations of the two methods

were analyzed. Since the bilinear transformation caused no phase error in the

discretization, it was selected as the means of discretizing the continuous-time controller

model. The continuous-time PID model was then discretized and developed for

implementation.

Having developed a discrete-time PID algorithm, some of the more popular

methods for designing with PID controllers were briefly discussed. The Ziegler-Nichols

46

step response and frequency response methods were explained. Also, the dominant pole

design method of Astrom and Hagglund (1988b) was explained, as well as a continuous­

time pole-placement technique. In addition, a discrete-time pole placement method was

briefly discussed for performing direct digital design.

Two important implementation issues were then presented. The ramifications of

the sampling frequency on the control system were discussed and some guidelines for

selecting an appropriate controller sampling frequency were presented. Also, the issues of

quantization and word length were explored. Some of the difficulties of signal and

computational quantization were explained and several methods were referenced for

analyzing quantization errors. In addition, the issue of memory word lengths was

discussed.

CHAPTER III

PID CONTROLLER IMPLEMENTATION

3.1 Introduction

A discrete-time version of the PID algorithm was developed in Chapter 2. The

derivative-of-output model was selected for implementation and the bilinear

transformation was chosen as the method for conversion of the continuous-time model to

discrete-time. In this chapter, the PID algorithm is coded in Motorola DSP56000

assembly language and tested on the Motorola ADS56000 development system. An Intel

80386-based Zenith computer running a Microsoft QuickBASIC program is used as a

plant model. The Motorola ADS56000 development system acting as the PID controller

is physically linked to the Zenith computer via a National Instruments AT-MIO-16 A/D

board installed in the computer backplane. A Motorola DSP56ADC16 Evaluation Board

serves as the interface for the control output and the feedback input to the DSP56000.

The purpose of this chapter is to discuss the implementation of the PID control algorithm

on the DSP56000 and to demonstrate the performance of the PID algorithm operating in a

real-time environment.

DSP chips offer a number of hardware and software advantages over general-

purpose microprocessors. In this chapter, the features of DSP chips that are of particular

47

48

importance for control applications are described first. Next, a brief overview of the

Motorola DSP56000 is presented, with both architectural issues and significant hardware

and software features being discussed (The knowledgeable reader may wish to omit this

section). The development and organization of the PID algorithm in DSP56000 assembly

code is then explained, including both the supervisory code (such as DSP chip

initialization, peripheral port programming and sample rate control) and the actual PID

algorithm. In addition, some of the more important features of the National Instruments

AT-MIO-16 A/D board and DOS LabDriver software that serve as the plant input and

output interface are discussed. The discussion includes an explanation of the real-time

plant model and the program written to implement it.

Following the explanation of the hardware and software used to implement the

PID controller and the plant, the results of testing the PID controller are presented and

analyzed. First, the actions of the proportional, integral and derivative terms are tested

and compared to analytical results for the same conditions. The PID controller is then

tested operating in a closed-loop with the 80386-based plant. Two sets of controller

parameters are selected to test the performance of the controller. The first set of

controller parameters is obtained empirically by performing the Ziegler-Nichols (1942)

frequency response test on the actual plant. The second parameter set is taken from a

simulation by Hagglund and Astrom (1985) of their auto-tuning PID controller based on

the dominant pole design method. Finally, the performance of the PID controller from the

perspective of processing speed is evaluated.

49

3.2 Using a DSP Chip for Control

A key issue to consider when designing a microprocessor-based control system is

which microprocessor to use in the implementation. Several factors must be considered

before the microprocessor can be selected. Ahmed (1991) categorizes these factors as:

• Architecture

• Performance

• Peripheral Integration.

Probably the most important of the three categories is architecture. The processor

architecture not only has a direct effect on the resolution and bandwidth of the control

system, but it also plays a vital role in system performance. Architecture affects signal and

coefficient quantization levels, as well as numerical factors such as truncation, roundoff

and overflow. For instance, insufficient register and memory element word lengths can

cause excessive quantization noise, limit cycling and integration offset. Truncation can

cause bias in the system output, and register overflow can cause positive numbers to

become negative and vice-versa with potentially catastrophic results. Architecture also

plays a vital role in minimization of computational overhead, which greatly affects

performance. The traditional Von-Neuman architecture used in general-purpose

microprocessors creates a bottleneck where instructions and data share the same data bus.

Also, in most general-purpose microprocessors, multiplication is accomplished through

repeated addition. Only recently have hardware multipliers become available on the

central processor chip, and they are not usually an integral part of the arithmetic-logic

unit.

The second criteria to consider when evaluating microprocessors for control

applications is performance. It has been stated that the sampling rate of the controller

should normally be between 10 and 20 times the bandwidth of the system. The maximum

50

sampling rate of the control system is dependent on the speed at which the processor can

execute instructions. This could be a non-issue in cases where sampling rate is on the

order of seconds, or even minutes. In many control applications, however, very high

sampling frequencies are required. Performance can become even more critical when a

more sophisticated control strategy is necessary, such as adaptive control, where orders of

magnitude more instructions must be executed in each sampling interval. Performance is

also important in the consideration of computational delay. If the control system is

designed so that there is no direct feedthrough of the controller input to the controller

output, there will be a delay from the time the plant output is measured to when the new

control output is calculated. This time period is referred to as computational delay.

Computational delay will introduce additional phase lag into the system and can degrade

system performance if it is significant. Processor throughput, therefore, will directly

impact computational delay.

The third factor to consider when selecting a microprocessor is peripheral

integration. If external hardware can be minimized by on-chip peripherals, both cost and

space requirements can be reduced. If the control system is to be used in a mobile

application, such as in an aerospace or automotive application, board real estate can

become a critical issue. In a control application, the microprocessor will need to interface

with A/D converters to monitor the feedback signals from the plant outputs and possibly

monitor one or more reference inputs. The interfacing to the controller output signals is

normally handled with D/A converters. The microprocessor may also be required to

interface with a host computer for monitoring purposes. The number and type of on-chip

peripherals available on the processor will determine how much external hardware will be

required to perform the above functions, and thus have a direct bearing on implementation

cost and space requirements.

51

The field of digital signal processing has stimulated the development of dedicated

VLSI chips specifically designed to handle the demands of processing digital signals.

These dedicated microprocessors, known as digital signal processing, or DSP chips, offer

architectural and performance advantages over general-purpose microprocessors. They

also address many of the difficulties encountered when using general-purpose

microprocessors. In addition, they frequently incorporate on-chip peripherals that can

reduce implementation cost and minimize board space requirements. The Motorola

DSP56000 offers many features that make it suitable for control applications, and it has

therefore been selected for implementation of the PID controller in this project. Although

Texas Instruments offers competitive hardware, the Motorola chip has been selected

because a DSP56000 development system is available for use at the University of Dayton.

Some of the key features of the DSP56000 that are significant for control applications are

examined in the following section.

3.3 An Overview of the Motorola DSP56000

The DSP56000 architecture

The Motorola DSP56000 has been specifically designed to maximize processor

throughput for signal processing applications. The DSP56000 is referred to by Motorola

as "dual-natured" (Motorola, 1990). This refers to the fact that the DSP56000 has two

independent memory spaces, two address generation units (AGUs), and a data arithmetic

logic unit (ALU) having two accumulators and two shifter-limiter circuits. The dual-

natured architecture makes the DSP56000 ideally suited for digital signal processing that

requires many successive multiply and add operations. A block diagram showing the dual

bus structure of the DSP56000 is given in Figure 14. The two independent memory

52

spaces are denoted as x-memory and y-memory. Each memory space has its own address

generation unit and its own data bus. The program memory functions independently of

the data memory and also has its own address generation unit and data bus. This structure

allows the next instruction to be fetched while the current instruction is executing, thus

minimizing the number of clock cycles per instruction cycle. It also permits parallel data

moves in a single instruction cycle.

YAB
PORT

B OR
HOST

15

ADDRESS
GENERATION

UNIT

■X&B.
PAB

ON-CHIP
PERIPHERALS

HOST,SSI
SCI,PAR IO

PROGRAM

ROM

X MEMORY Y MEMORY

RAM RAM

ROM ROM

IYDB

PORT C
AND/OR
SSI,SCI

INTERNAL
BUS SW.

& BIT
MANIP
UNIT

XDB

PDB

EXTAL

CLOCK
GENERATOR

I XTAL

3E GDB

V SZ
PROGRAM CONTROLLER

EXTERNAL
ADDRESS

BUS
SWITCH

ADDR

BUS 7

CONTROL

EXTERNAL DATA

DATA BUS <F=>J
SWITCH

PORT A

DATA ARITHMETIC LOGIC UNIT
(ALU)

16 BITS
24 BITS

□z

A

Figure 14. Block diagram of Motorola DSP56000

All arithmetic and logical operations in the DSP56000 are performed in the ALU.

A block diagram of the ALU is shown in Figure 15. The ALU can perform any of the

following operations in a single instruction cycle:

• 24-bit by 24-bit multiplication

• Multiply-accumulate with positive or negative accumulation

• Convergent rounding

• Multiply-accumulate with positive or negative accumulation
and convergent rounding

53

• 56-bit addition

• 56-bit subtraction

• A divide iteration

• A normalization iteration

• Shifting

• Logical operations

x DATA BUS

Figure 15. Block diagram of DSP56000 Data ALU

54

The structure of the ALU shown in Figure 15 is referred to as a Harvard architecture.

The dual accumulators combined with independent data buses allow for parallel data

moves. Data for the next operation can be loaded into the input registers in the same

instruction cycle that the current operation is executing. The multiply-accumulator/logic

(MAC) unit within the ALU performs rounding of the accumulators if requested in the

instruction. The rounding method used is called convergent rounding, which rounds

down if the number is odd and rounds up if the number is even, eliminating any possibility

of introducing a bias.

Many of the difficulties normally encountered when using general-purpose

microprocessors for control applications have been amply addressed in the architecture of

the DSP56000. In addition to the features already mentioned, the 24-bit wide registers in

the ALU result in quantization levels that allow for fast sampling rates without introducing

limit cycling or integration offset. The 48-bit accumulators combined with the 8-bit

extension registers allow for 24 by 24 bit multiplication without loss of precision, reducing

the possibility of cumulative errors. Although the structure of the DSP56000 is

specifically designed for digital signal processing, the architecture is well suited for control

applications as well.

Arithmetic considerations

An important issue that must be addressed when specifying a microprocessor is the

formatting of data. The two most common data formats are fixed-point and floating­

point. Floating-point representation offers a large dynamic range compared to the rather

limited dynamic range of fixed point representations. Floating-point numbers also reduce

the risk of overflow, underflow and truncation errors. There is a significant hardware cost

55

disadvantage to process floating-point numbers, however, and for a given number of bits,

floating-point numbers are less accurate than fixed-point representations. Floating-point

processors are also typically slower, require more memory and consume more power than

their fixed-point counterparts.

The DSP56000 uses a fixed-point fractional two's complement representation of

data. As in the case of most fixed-point formats, two's complement numbers are used

primarily because they require very simple hardware for addition and subtraction. Unlike

most general-purpose microprocessors, however, the DSP56000 uses fractional numbers

rather than integers. Fractional numbers are preferred in digital signal processing because

multiplication of two fractions always yields a fraction, thus eliminating the possibility of

an overflow condition when performing a large number of successive multiplications. The

least significant bits of the product are simply truncated (or rounded) and the resulting

number is an approximation of the actual product to within the accuracy of the number of

storage bits available. Fractional representation thus trades precision for control of

number growth. Integer representations, on the other hand, are always accurate, but at

the increased risk of a multiplicative overflow.

In order to eliminate the potential for an overflow caused by storing a 56-bit

accumulator in a 24-bit memory location, the DSP56000 has the ability to perform

saturation arithmetic. The accumulators in the DSP56000 are equipped with 8-bit

extension registers that allow numbers up to 255.9999998 to be represented. In a general-

purpose microprocessor, if a number greater than $7FFFFF is transferred to a 24-bit

register or memory location, an overflow occurs and the number in the 24-bit register is

interpreted as being negative. Using saturation arithmetic, the DSP56000 automatically

substitutes the maximum positive (or negative) number (e.g., $7FFFFF) for the number in

the accumulator when data is stored to a 24-bit register or memory location, thus

minimizing the error.

56

The DSP56000 instruction set

The Motorola DSP56000 has an instruction set containing 62 instructions. In this

section, a few of the more significant features of the instruction set will be highlighted.

The programming model for the DSP56000 is shown in Figure 16. The DSP56000 can be

viewed as consisting of three functional units: the data arithmetic logic unit (ALU), the

address generation unit (AGU), and the program controller. These three units essentially

operate in parallel. The instruction set is designed to keep each of the units busy each

instruction cycle in order to maximize processor performance. Because of the parallelism

designed into the DSP architecture, up to three data transfers can be specified in a single

instruction; one on the X data bus (XDB), one on the Y data bus (YDB) and one within

the data ALU itself. Of the 62 instructions in the set, 30 allow for parallel data moves.

Another powerful feature of the DSP56000 is the number of addressing modes

available to the programmer. The addressing modes are divided into three main

categories: register direct, register indirect, and special. Within these three categories are

18 specific addressing modes. The indirect addressing modes that utilize the address index

registers are of particular importance As the name implies, the offset registers allow the

address registers to be offset. The modifier registers specify whether the offset is to be

applied as a straight linear addition, or whether a special arithmetic offset is to be applied,

such as modulo arithmetic. In addition, the address registers can be automatically

incremented or decremented before or after the instruction is executed.

The DSP56000 also offers several other instructions that minimize the amount of

code required and maximize the speed of operation. A hardware "DO LOOP" is available.

Multiply and multiply-and-add instructions can be selected with or without rounding. X-

memory and y-memory can be treated as long words if double precision (48-bits) is

57

DATA ALU
Input Registers

4747 X 0

56 A
| A2 | Al

Y1 YO

Accumulator Registers
0 56 B

AO | | B2 | BI
0

BO

ADDRESS ALU

Modifier Registers
15 0

PROGRAM CONTROLLER

Program Counter
15 0

Loop Address
15 0

Status Register
15 0

MR | CCR

Loop Counter
15 o

Operating Mode Register
23 8 7 6 5 3 2 1 0

* |ea|sd | * |de |mb |ma~|

System Stack
31 16 15

•
•
•

_ •
•
•

Stack Pointer
5 0

Y 0

Figure 16. Programming model for Motorola DSP56000

58

required. A one-bit hardware divide instruction can also be used to develop a full division

subroutine. In summary, the DSP56000 instruction set provides the programmer with a

powerful set of tools for developing fast, efficient code for control applications.

On-chip peripherals

The DSP56000 contains three ports that provide the hardware link to off-chip

devices. Port A is the memory expansion port that can be used for memory expansion or

for memory-mapped I/O. Port B is a dual-purpose I/O port that can serve one of two

different functions. It can be used as a general-purpose parallel I/O port, with 15 pins that

can be individually configured as inputs or outputs, or it can serve as an 8-bit bi­

directional host interface (HI). Port C is a 9 pin I/O port that can be configured in one of

three ways. With the first option, the 9 pins can be set up as parallel I/O that can be

configured as inputs or outputs. The second option is to configure three pins as the serial

communications interface or SCI. When set up in this manner, the other six pins can be

configured as general-purpose parallel I/O. If the third option is selected, Port C can be

configured as the synchronous serial interface or SSI. A block diagram of the

configuration and pin-outs of the three ports is shown in Figure 17.

The SCI: The SCI provides full-duplex serial communication to other DSPs,

microprocessors, or peripheral devices. Communication can be selected to be

synchronous or asynchronous. The SCI uses three pins denoted as transmit data (TXD),

receive data (RXD) and the SCI serial clock (SCLK). The SCI uses industry standard

baud rates and protocols. The SCI consists of separate transmit and receive sections

which operate independently. It also contains an internal programmable baud-rate

59

generator which can double as a general-purpose timer when not being used by the SCI.

A block diagram of the SCI internal baud rate generator is shown in Figure 18.

DEFAULT
FUNCTION

ALTERNATE
FUNCTION

24

A0-A15

D0-D23

PS

DS

X/Y

RD

WR

BR/WT

BG/BS

PB0-PB7

PB8

PB9

PB10

PB11

PB12

PB13

PB14

PCO

PCI

PC2

PC3

PC4

PC5

PC6

PC7

PC8

H0-H7

HAO

HA1

HA2

HR/W

HEN

HREQ

HACK

RXD

TXD

SCLK

SCO

SCI

SC2

SCK

SRD

STD

Figure 17. Motorola DSP56000 Peripheral Ports

By setting the clock divider bits (CD0-CD12), the clock prescaler bit (SCP), and

the clock out divider (COD), the desired baud rate can be selected knowing the oscillator

clock frequency, fo , which is normally 20.5 megahertz. In addition to controlling baud

rates for transmission and reception of data, the SCI clock can also be used as a timer to

60

generate periodic interrupts of the DSP. (This will prove to be useful for controlling the

sampling rate of the PID controller.)

fosc

TO SCLK

Figure 18. Block Diagram of SCI baud rate generator

The SSI: The SSI provides a full-duplex serial port that can communicate with a

number of different devices, including codecs, other DSPs, microprocessors and peripheral

devices. In the SSI, all serial transfers of data are synchronized to a clock, with one word

61

being transferred per period in normal mode or up to 32 words per period in network

mode. It can also function in an on-demand mode.

The on-chip peripherals provide the DSP56000 with the flexibility to interface with

external peripheral devices, other DSPs, or a large number of other intelligent devices.

The brief explanation given provides only an overview of the operation of the peripherals.

Detailed explanations are available in the DSP56000ZDSP56001 Digital Signal Processor

User's Manual (Motorola, 1991). In this project, the SCI timer is used to control the

sampling frequency of the PID controller. The SSI provides the interface from the DSP to

the A/D converter that serves as the PID controller's feedback input. The SSI also serves

as the interface to the D/A converter that is used as the control output of the PID

controller.

The DSP56000ADS Application Development System

In order to develop, debug and evaluate microprocessor-based applications, it is

essential to have a development system that provides the designer with a window to the

inner workings of the microprocessor. A development system should also provide the

designer with a means of interfacing to the microprocessor so that the design can be tested

in a real-time environment. Motorola has provided the DSP56000ADS for developing

DSP56000 applications. The DSP56000ADS consists of three major components. The

first component of the system is the Application Development Module (ADM). The ADM

is a stand-alone circuit board containing a DSP56001 processor and related control

circuitry. The second component of the DSP56000ADS is a HOST-BUS interface board.

The HOST-BUS interface board physically resides in the host computer and provides the

interface between the host computer and the ADM. The third element of the

DSP56000ADS is the software program that serves as the operator interface to the ADM.

62

The DSP56000ADS has been used to develop the PID controller for this project. For a

more detailed description of the function of the DSP56000ADS, refer to the

DSP56000ADS Application Development System User's Manual (Motorola, 1989).

The DSPADC16 evaluation board

The DSP56000ADS allows the DSP-based PID controller to be operated in a real­

time environment. The ADM board provides the DSP56001 processor and the necessary

support circuitry, but separate hardware is required for the A/D and D/A converters

required for the controller's input-output interface. The Motorola DSPADC16 Evaluation

Board (EVB) is used for this purpose.

The DSPADC16 EVB is an A/D and D/A conversion system that can be used

either in a stand-alone mode or in conjunction with the DSP56000ADS. The EVB utilizes

the Motorola DSP56ADC16 16-bit 100 KHz sigma-delta A/D converter and the Motorola

PCM-56 D/A converter. The DSP56ADC16, which is manufactured with an on-chip

serial interface, can be directly linked to the SSI receiver port of the DSP56001 located on

the ADM board. The PCM-56 is also equipped with a serial interface and ties directly to

the SSI transmitter port of the DSP56001 on the ADM. A block diagram of the EVB is

shown in Figure 19.

The DSP56ADC16 is a sigma-delta A/D converter that utilizes oversampling of

the analog input signal. In principal, a series of coarsely quantified (1-bit) data are

obtained by oversampling of the input. A digital-domain decimation process is then used

to compute a more precise estimate of the analog signal at a lower sampling rate. In the

case of the Motorola EVB, the input sampling frequency (i.e., the 1-bit sampling done at

the input of the converter) is 2.8244 MHz, which is one-half the frequency of the on-board

63

oscillator. The output sampling rate, i.e., the rate at which reconstructed digital data is

available from the A/D converter, is 48 KHz. The Nyquist frequency for the A/D

converter is therefore 24 KHz. (In reality, the practical bandwidth of the EVB is about 22

KHz due to other hardware constraints.) A more detailed explanation of sigma-delta A/D

conversion and a list of references is given by Park (1990).

EVB BOARD ADM BOARD--------- ■

Figure 19. Block diagram of DSP56ADC16 Evaluation Board

The EVB can be configured for either a fully differential input or a single-ended

input. The EVB is configured for differential operation for this application because an AC

coupling circuit that blocks d.c. levels is activated when the board is configured for single-

ended operation. The maximum peak-to-peak differential input signal to the board is

approximately four volts.

64

3.4 The PID Controller Software

The PID algorithm developed in Chapter 2 has been implemented in DSP56000

assembly language. The DSP assembly language program is named "PID64B.asm" and is

listed in the appendix. A simplified flowchart of the program is given in Figure 20. A

brief explanation of the program operation follows.

DSP initialization

In the first section of the program, the DSP registers mapped to x-memory are

assigned variable names and the program variables are assigned to addresses in either x-

memory or y-memory. The Interrupt Priority Register (IPR), the Bus Control Register

(BCR), the SCI and the SSI are initialized and the historical variables are cleared.

Next, the SSI is set up for operation with the EVB. The Port C control register

(PCC) is initialized to set up Port C to function as the SSI. The SSI is set to operate in

normal mode with an external continuous synchronous clock. It is also set for a data

word length of 16-bits and the frame synch is set to be one word long.

The program uses the SCI timer to control the sample rate of the controller by

interrupting the DSP at periodic intervals. When an interrupt is generated by the SCI

timer, the program flow is redirected via an interrupt vector to an interrupt service routine

(ISR). The ISR then becomes the main code for the PID algorithm. Once the algorithm

has been completed for one sampling interval, the ISR is exited and the program loops

until the next timer interrupt occurs. As shown in Figure 18, bits CD11-CD0 and bit SCP

in the SCCR are used to determine the time base according to the formula:
f

Interrupts/sec = —-r—,--------- °sc v---------r64(7(SCP) + l)(CD +1)

where fosc is 20,500,000 in this case.

65

Figure 20. Flowchart of DSP56000 PID controller program

Although the operating conditions of the SSI have been initiated in the DSP, the

SSI is not enabled to transmit and receive data until the SCI timer interrupt routine has

been initiated. Once powered up, the EVB continuously samples the input of the A/D

66

converter and transmits data across the SSL If the DSP does not read the data in the

receive data register (RX), the next time the receive data shift register is filled, it will not

be able to transfer the new data to the RX register. The SSI will then generate a receiver

overrun error (ROE). In order to keep this from happening, the DSP would have to be

reading the SSI receive data register at a frequency of 48 KHz. The SSI is therefore not

enabled until the SCI timer interrupt service routine has been initiated. It is disabled again

before control is returned to the main program.

The reference input

For this project, the reference input w(^) is assumed to be a fixed setpoint as

opposed to a dynamic reference signal to be tracked. The setpoint value is stored in an x-

memory location. In order to test the system's response to setpoint changes, the reference

input w(k) is switched between a positive and a negative value at selected intervals. An

address register RO serves as a sample counter to control the switching of the setpoint.

Coefficient scaling

As discussed previously, the DSP56000 utilizes two's complement, fixed-point

fractional arithmetic. It has been noted that the 24-bit words in the DSP have a numeric

range of $800000 to $7FFFFF hexadecimal, or -1 to .99999988 decimal. It is therefore

necessary that all PID controller coefficients be scaled to fit within that range. The

discrete-time control law was given previously in equation (2.31) and is repeated here as:
u(k) = P(k)+I(k) + D(k)
u(k) = K'e(k)+I(k) + d0D(k -l)+d, [y(k -1) -X*)] ‘

The integral term was given previously in equation (2.32) and is repeated here as:

/(£ n) = /?/(£) Hi-/W)- (3.2)

67

The discrete-time coefficients of equations (3.1) and (3.2) are determined from the

coefficients of the classical continuous-time PID algorithm to be:

The coefficients that must be considered for scaling are therefore:

K',p,d0 and dv

In order to determine an appropriate scaling factor for K' , a limit must be set on

K’. An arbitrary limit of 64 is selected for K' in order to be able to achieve a good

response in relatively slow plants. The parameter K' had to therefore be prescaled by

to insure that its scaled value would not exceed one. From equation (3.3), since 7?

and T are always assumed to be positive, the variable p will always be less than one and

thus does not have to be scaled. Likewise, the quantity (1-/?) will also always be less than

one.

In solving for the derivative term, dx is multiplied by K'. From equation (3.3), dQ

is given as:

^o =
AT

AT

The term dQ will always be less than one and does not require scaling. From (3.3), the

term dx is given as:

4 =

Assuming T«N, the term

(NT+2Td\

2K'TdN
(NT + 2Td)

68

is limited by KN. K has already been limited to a value of 64, so if an arbitrary limit of 16

is imposed on N, the maximum value of dx becomes (64)(16)=1024. The term dx must

therefore be prescaled by /!/j/q24 •
In summary, the coefficients of the PID controller that must be prescaled and their

respective scaling factors are given in equation (3.4).
v — 1/

■‘'"scaled / 64
d -Vd
^1 scaled ~/1024Mi

(3-4)

By limiting K to a maximum of 64 and N to a maximum of 16 and applying the scaling

factors shown in equation (3.4), the coefficients of the PID algorithm will be assured of

staying within the limits of the two's complement fractional representation of the

DSP56000.

Calculation of the control output

The calculation of the control output u(k) is detailed in the following paragraphs

(refer to the flowchart in Figure 20). First, the error term is calculated as e(&)=w(&)-X&)

andX^) is stored &sy(k-f) to be used in the next sampling interval. Next, the solution for

the derivative term is calculated. (It proved to be prudent to solve for the derivative term

first in order to minimize program overhead.) From equation (3.1), the derivative term is

determined to be:

D(k) = d,D(k -1) +rf, [X* -1) - X*)]

From the previous section, it was determined that dx is prescaled by //jo24 ' Therefore,

before adding the two terms comprising D(k), the term dQD(k -1) must also be divided by

1024. However, since the derivative term will be added to the proportional term which is

already scaled by it is convenient to divide d0D(k -1) by and to multiply the

term dx [X# -1) - T W] by 16 before adding them together. This results in D(k) being

69

scaled by ^4, making it the same scale as the proportional term, P(k). The term D(k) is

stored using limiting, or saturation arithmetic. This is to eliminate the possibility of

overflow when storing the 56-bit accumulator in a 24-bit memory location.

Next, the proportional term P(fc) is calculated as:

P(k) = K'e(k)

where K' has been prescaled by . P(k) and D(k) are then added together. The

integral term that was computed in the previous sampling interval is then scaled by J/^4

and added to the sum of P(k) and D(k). The sum of P(k), I(k) and D(&)is then

multiplied by 64, completing the calculation of u(k).

Once the completed control output, u(k), is calculated, it is multiplied by a

hardware scaling factor. The control output is then moved to the SSI transmit/receive

data register. The SSI status register is polled until the transmit data enabled bit (TDE)

is set to one, indicating that the data has been transferred to the transmit data shift

register. The data remains in the transmit data shift register awaiting the next SSI frame

synch to be transmitted to the D/A converter. After the control output has been sent to

the D/A converter, the next value of the integral term is precalculated for the next

sampling interval in order to minimize the computational delay. The expression for the

integral term is given in equation (3.2) as:

/(Jt + l) = /7/(Jl) + (l-y9)M(A:).

I(k +1) is then stored (with limiting) at full scale as I(k) to be used in the calculation of

u(k) during the next sampling interval.

70

3.5 The Real-time Plant Model

The plant hardware

A QuickBASIC program running on an Intel 80386-based 33 MHz Zenith

computer is used to emulate a plant in order to test the PID controller in a real-time

environment, A National Instruments AT-MIO-16 analog I/O board installed in the

computer backplane serves as the input-output interface for the plant. The AT-MIO-16 is

equipped with a 12-bit, 25 //sec A/D converter that can be multiplexed as 16 single-ended

A/D channels or 8 differential channels that can sample at selected frequencies up to 91

KHz. The A/D channels can be configured for several input ranges with programmable

gains. The AT-MIO-16 also has two 12-bit D/A converters, three 16-bit counter/timers

and eight digital I/O lines available. For this project, the AT-MIO-16 has been configured

as follows:

• Differential, bipolar analog input

• ±10 volt analog input range

• Internal ±10 analog output voltage reference

• Two's-complement mode for analog output.

The AT-MIO-16 is capable of generating internal clock frequencies up to 1 MHz

(1 //sec resolution). Experiments indicated that sampling frequencies up to 10 KHz are

achievable before the software (i.e., the computational delay} becomes the constraining

factor. Numerical difficulties are encountered, however, for sample intervals less than 1

msec as the coefficients for some relatively slow plant models become extremely small.

An internal clock frequency of 1 KHz has therefore been selected to produce a timebase of

71

1 millisecond for the sample counter, thus allowing sampling intervals to be selected in 1

millisecond increments.

The plant model

For this project, an adaptive control scheme has been selected that is based on a

parametric system identification algorithm. The algorithm attempts to identify parameters

in a polynomial representation of the plant by minimizing a least-squares error cost

function. A polynomial representation is therefore selected for the plant model to facilitate

later testing of the controller parameter estimator.

Many different parametric models have been developed to represent dynamic

systems. A commonly used polynomial model is the autoregressive with exogenous input

(or ARX) model, given as:

A(q)y(k) = B(q)u(Jc-nk)+e(Jk) (3.5)

where e(k) is assumed to be white noise sequence. Equation (3.5) can also be expressed

as:

X*) = <?(<?)«(*)+ #(</>«
where: G(q) = q^ and H(q) = —i—

A(q) A(q)

A(q) = 1 + a}q~} + ••• anaqna

and: B(q) = 1 + b}qA + • • • bnbq~nh.

The variables na and nb are the orders of polynomials A(q) and B(q), respectively, and

nk is the number of unit delays from the input w(^)to the output y(k). Also, q~}

represents the backward shift operator.

72

From the perspective of the plant, no noise is to be injected into the model;

therefore, a deterministic version of the ARX model is selected to be used as the plant.

The plant model can thus be expressed as:

A^k^q^B^k). (3.6)

It was also assumed that nk > 1, resulting in the model:
rt„\ = = be/' +b2^~2+ +b^~nb (t, 7-,

A(q) \ + axq~' +a2q~2 + - +amq~"° '

A practical limitation must be imposed on the orders of A(q) and B(q). According to

Astrom and Haaglund (1988b), "PID control is sufficient for processes where the

dominant dynamics are of second order". Isermann (1982) demonstrates that for a plant

to be identifiable in a closed-loop, if the controller is second-order (e.g., PID), then the

plant cannot exceed fourth-order (This subject will be examined more thoroughly in

Chapter 4). Therefore, na and nb are both limited to four in the program emulating the

plant model given in equation (3.7).

The plant software

A set of software drivers from National Instruments called DOS LabDriver

provides the link between the plant program and the AT-MIO-16 board. The DOS

LabDriver function library is linked to the compiled QuickBASIC program, allowing

function calls to be made to the AT-MIO-16. A simplified flowchart of the plant program

is shown in Figure 21. Several features are incorporated into the plant program to

facilitate testing of the PID controller. Coefficients for five different plants can be stored

within the program. A constant load disturbance can be added to the plant output at a

selected sample number to test the disturbance rejection capability of the controller. Also,

plant input and output data can be stored to a computer file for later analysis. Data

73

storage can start and terminate at any sample number. In order to minimize the

computational delay, the value of the plant output is calculated in advance for the next

sample interval. An on-board timer/counter is used to control the sampling frequency of

the plant. After the next y(k) is calculated, the counter is polled until the counter value

Figure 21. Simplified flowchart of plant model program

74

reaches the sampling interval preset value. The counter is reset and reinitiated and the

main loop repeats until a key on the computer keyboard is pressed.

The DOS LabDriver software provides an extensive library of functions that act as

the interface between the QuickBASIC program and the AT-MIO-16 board. The

initialization of the AT-MIO-16 is performed via function calls, as well as writing and

reading data to and from the A/D and D/A converters. Details for all of the functions are

available in the DOS LabDriver User Manual (National Instruments, 1991). The

operation of the plant software has been tested by generating step responses from a

number of discrete-time models and comparing them to simulation results obtained from

Program CC for the same models. The test results demonstrate that the plant model

software accurately reproduces the plant models as specified.

3.6 Testing the PID Algorithm

Testing the proportional, integral and derivative terms

Before testing the PID controller in a real-time environment, the operation of the

various parts of the DSP PID code are checked under controlled conditions for numerical

accuracy. A technique suggested by Astrom and Steingrimsson (1991) is used to test the

computation of the proportional and integral terms. The test consists of applying a

symmetrical square wave with an amplitude of ±0.1 and a period of 400 samples as the

feedback input to the controller and recording the calculated control output at each sample

interval. The control output computed by the DSP can then be compared to theoretical

values. The following continuous-time PID controller parameters are chosen for the test:

75

£ = 0.6
27 = 2.2

Td =0
T = 0.1 sec

From equation (3.3), the discrete-time parameters are calculated as:

£'=0.6136364
/?=.9555555.

The ADS56000 development system allows the DSP56001 on the ADM board to read

and write data to files on the computer hard drive. An input file is created containing 200

samples of +0.1 followed by 200 samples of -0.1. An output file is then opened from the

ADS56000 to store the control output samples. The proportional and integral action of

the controller can be seen in Figure 22.

0.3

0,7 0 100 200 300 400
k

Figure 22. Test of PI algorithm on Motorola DSP56001

With the reference input w(&) held constant at zero, when y(k) is changed from

0 to +0.1 at k = 1, a constant error of e(k) = -0.1 is generated. The proportional term

responds to the error by producing an effect on u(k) equal to:

76

K'e(k) = -0.6136...

Since e(k) remains constant at e0 = -0.1, the integral term causes w(A?) to ramp in the

negative direction at a rate of:
%-lc = -0.04545*.

T,

At k = 200, a step change in y(k) of -0.2 results in an error e(k) = +0.2. The

proportional term again reacts by increasing u{k) by approximately 1.2. With the error

e(k) becoming positive, the integral term causes u(k) to ramp in the positive direction.

Theoretical values have been calculated for several values of k and compared with the

actual data obtained from the test of Figure 22. The results of the comparison are shown

in Table 5.

Table 5. Calculated vs. actual results of PI algorithm test

k ^(^)theoreticaJ % efrof

1 -0.1 -0.613636 -0.613637 0.00016

2 -0.1 -0.640909 -0.640911 0.00031

3 -0.1 -0.668182 -0.668185 0.00045
e • * •

100 -0.1 -0.331364 -0.331375 0.00332

200 -0.1 -0.604091 -0.604114 0.00381

The actual values closely approximate the values obtained from hand calculations,

demonstrating that the algorithm is functioning correctly, although there appears to be a

very small cumulative error as k increases.

77

The derivative term is also tested using a procedure followed by Astrom and

Steingrimsson (1991). Two impulses of magnitude +0.1 and -0.1 and lasting one sampling

period are applied to the controller input at times t = 1 sec and Z = 3 sec. The continuous­

time PID controller parameters are set as follows:

£ = 0.6
27 = 2.2
2; =0.5
A = 8

T = 0.1 sec

where N is the maximum derivative gain. The discrete-time parameters are calculated

from equation (3.3) to be:
£’=.6136364
£=.9555555
d0 = 0681818
J, =2.727273.

The resulting controller output is shown in Figure 23. The derivative term reacts to the

rate of change in the controller input, e(k). When the input to the controller is forced to

+0.1 for one sample at k = 10, the derivative term reacts as predicted by causing a large

negative pulse in u(k). When e(k) changes direction on the very next sample (k = 11),

the derivative term drives the control output u(k) in the opposite direction. Again, the

actual values calculated by the DSP56001 are compared to theoretical values. The results

are given in Table 6.

78

Figure 23. Test of derivative action on Motorola DSP56001

Table 6. Calculated vs. actual results of derivative term test

k 4*) % error

10 +0.1 -.3340909 -.3340902 -0.00021

11 +0.1 .2392837 .2392830 -0.00029

12 +0.1 .0137735 .0137733 -0.00145

13 +0.1 -.0016022 -.0016024 +0.01248

14 +0.1 -.0026506 -.0026509 +0.01132

15 +0.1 -.0027220 -.0027224 +0.01469

: *

30 -0.1 .3313636 .3313620 -0.00048

31 -0.1 -.2420110 -.2420105 -0.00021

32 -0.1 -.0165007 -.0165012 +0.00303

33 -0.1 -.0011250 -.0011257 +0.06222

34 -Q.l -.0000767 -.0000774 +0.91265

79

The results from Table 6 show that the actual values of the control output are very close

to the theoretical values. The percentage of error remains less than 0.1% until k = 34.

Only when the values approach zero does the percentage of error become significant.

Testing the anti-integral windup feature

If the error term remains large for a long period of time (as may occur after a large

setpoint change), the integral term can continue to grow long after the output has

saturated. One method of eliminating the problem of integral yvindup is the use of a

limiting function as shown in Figure 12. The limiting function is given as:
If “min =>“ = "'

if u'<u ■ =>w = w . (3.8)min min v 7

if w'>w av =>w = wav.max max

If Mmm and wmax are set t0 the minimum and maximum limits respectively of the DSP56000

fractional number range, equation (3.8) can be implemented by storing w' using the

limiting function of the DSP56000. The function given in equation (3.8) is tested in the

DSP56000 program by applying an input of magnitude +0.1 to the controller for 600

samples, allowing the integral term to grow in the negative direction until the controller

output saturates at -1.0. After a delay, the input to the controller is changed to -0.1,

causing the error term to change signs and the controller output to integrate in the

opposite direction. The input sequence to the controller is read from an input file from the

ADS56000 system and the control output is stored in a file on the computer hard drive.

The PID controller parameters are set the same as in the derivative test of the previous

section with the sample rate set at T = 0.1 seconds. The results of the test are shown in

Figure 24.

80

Figure 24. Anti-integral windup test on Motorola DSP56001

The control output u(k) integrates in a negative direction until both the control output

and the integral term are saturated at a value of -1.0. When the controller input y(k)

changes signs at k = 601, (Z = 60.1 sec), u(k) immediately responds positively. The

dashed line in the figure shows the effect of integral windup. If the integral term had not

been limited, the control output would have remain saturated for more than 200 additional

samples (20 seconds) causing excessive overshoot in the plant output y(k). (The values

of the control output were calculated for several samples and compared to the actual

values and the actual values compared closely to the theoretical values.)

The tests of the proportional and integral terms, the derivative term and the anti­

integral windup function have demonstrated that the DSP56000 PID control algorithm

functions properly and that the PID calculations are numerically accurate. In each case,

data was read from a computer input file to ensure predictable results, and the control

output was written to an output file so that the actual values could be compared to

theoretical results. The DSP56000-based PID controller is now ready for testing in a real­

time environment.

81

3.7 Real-Time Test Results

System Configuration

The purpose of this section is to demonstrate the capability of the DSP-based PID

controller operating under real-time conditions. The data for the graphs displayed in this

section are taken in real-time from the plant input and output of the AT-MIO-16 board via

the plant simulation program. The PID controller setpoint is automatically cycled between

a positive and negative value to check the step response of the system. The setpoint is

limited to ±0.1 in the experiments so as not to clip the controller output signal. A

simulated d.c. load disturbance of -0.1 (equal to the setpoint) is placed on the plant output

in the plant simulation program in order to check the disturbance rejection capability of the

controller. A block diagram of the test configuration hardware is shown in Figure 25.

Figure 25. Block diagram of controller-plant test configuration hardware

82

A fourth-order model was selected as the plant. The continuous-time plant model

is expressed in Laplace transform form as:

G„(s) =---------------- *---------------- ■ (3.9)f (l + s)(l+.2s)(l+.05.s)(l+.01s)

Astrom and Hagglund (1988b) used the transfer function of equation (3.9) to analyze

several different methods for designing PID controllers. Data from their work proved

helpful in analyzing the DSP-based controller in this project. The Bode plot of the

continuous-time model is shown in Figure 26.

w rad/sec

Figure 26. Bode plot of continuous-time plant model

The continuous-time model is converted to discrete-time using the zero-order hold

equivalent. The zero-order hold yields a discrete-time transfer function that fits the

prescribed model of the plant as described by equation (3.5). A sample time of 0.004

seconds was selected for the plant. (Experimentation revealed that sample times less than

0.004 seconds produce discrete models with extremely small coefficients that lead to

83

numerical difficulties.) The sampling frequency of 250 Hz (1570.8 rad/sec) yields a

Nyquist frequency of 785.4 rad/sec, well beyond the significant bandwidth of the plant.

The discrete-time model of the plant is determined to be:

Equation (3.10):
G k _ (9.662176 E-08)z~1 +(9,639456 E-07)z~2 +(8,716264 E-07)z~3 +(7.141308E-Q8)z 4

P^Z ' " l-(3.569643)z_1 +(4.7440286)z-2 -(2.7784929)z~3 +(0.604109335)z-4

The magnitude and phase plots of the discrete model given in equation (3.10) are shown in

Figure 27.

Figure 27. Bode plot of discrete-time plant model used in real-time test

The magnitude response of Figure 27 is identical to the response of the continuous-time

model up to the Nyquist frequency. There is a small phase lag in the discrete-time model,

84

however, that becomes apparent as the frequency exceeds about 10 rad/sec, which is

typical of the zero-order hold equivalent.

A sampling frequency of 100 Hz is selected for the controller. (When a sampling

frequency of 10 Hz was attempted, the controller proved to be unable to control the

dynamics of the plant.) The controller is able to adequately control the plant with a

sampling rate of 0.01 seconds. The sampling rate of the plant is therefore 2.5 times faster

than the controller's sampling rate. The open-loop step response of the plant operating

with a sampling frequency of 250 Hz is shown in Figure 28. The plant exhibits a

monotonic step response, making it a suitable candidate for PID control.

Figure 28. Open-loop step response of plant used in real-time test

85

Test overview

Four experiments are conducted to test the operation of the PID controller under

real-time conditions. In the first two trials, the response of the controller to setpoint

changes and load disturbances is tested using two different sets of controller parameters.

The first set of controller parameters is obtained by performing the Ziegler-Nichols (1942)

frequency response test on the actual plant operating in closed-loop with the DSP-based

controller. The second set of controller parameters is obtained from a simulation of

Hagglund and Astrom's (1985) auto-tuning PID controller based on the dominant pole

design method. In both cases, continuous-time parameters are discretized using the

relationships given in equation (3.3). The parameters are also scaled for use in the

DSP56000 as described in Section 3.4.

In the third test, the effect of the derivative filter on the controlled plant is

observed. The proportional gain K, the integral time T(and the derivative time Td are

held constant while the maximum derivative gain N is adjusted to four different values. In

the fourth test, the maximum sampling rate of the DSP-based controller is determined.

PID controller test using Ziegler-Nichols Frequency Response Method

In this test, the controller parameters are determined using the Ziegler-Nichols

(1942) frequency response method performed on the actual plant. With the integral and

derivative terms set to zero in the controller, the controller gain is gradually increased until

the plant output begins to oscillate. From the experiment, the critical gain, kc, is

determined to be 21.145 and the critical period, tc, is 0.75848 seconds. (The critical gain

must be determined by working backwards from the discrete-time controller gain, which is

what is actually being varied.) The controller sample rate is set at T = 0.01 seconds and

86

the maximum derivative gain is set at N= 16. The continuous and discrete-time

parameters determined from the critical gain and critical period are listed in Table 7.

Table 7. PID parameters from Ziegler-Nichols frequency response method

• • : Con tin u ous-Time

Parameters

Discrete-Time •

: Parameters IS

K 12.687 K' 0.2008479

T, .37924 p 0.9739746

Td .0910176 d, 0.0644238

d2 0.1068936

The reference input is switched between -0.1 and +0.1, and a d.c. load disturbance of-0.1

is introduced at k = 3000 (Z = 12 sec). The resultant plant and controller outputs are

shown in Figure 29.

The plant output exhibits a rather large overshoot (approximately 40%) in

response to the change in the reference input. Ziegler-Nichols (1942) tuning rules are

designed to give superior disturbance rejection and quarter-amplitude damping with

^=0.22, but the step response of Figure 29 is somewhat more underdamped than the

classic Ziegler-Nichols response. One explanation for this behavior is the discretization of

the PID controller using the bilinear transformation. Although the bilinear transform does

not produce any phase lag, Astrom and Steingrimsson (1991) report that if the derivative

term is discretized using the bilinear transformation, it produces a ringing response in the

output for small values of Td. (The value of Td from Table 7 is .0910176.) Although the

plant output is somewhat underdamped, it does respond quite well to a relatively large

disturbance (v= -0.1) at k = 3000.

87

Figure 29. Plant and controller outputs with Ziegler-Nichols parameters

Also notice that the control output is slightly clipped in the first peak of the

response. (Recall that the voltage on the EVB card ranges from -2.0 to +2.0 volts.)

Some large impulses can be seen in the control output as well. The impulses are due to

the response of the derivative term to noise on the output. (An investigation into the

source of the noise revealed that it is primarily due to quantization of the 16-bit A/D

converter.) For this test, the gain of the derivative filter is set to the maximum value of

16. Further testing showed that the size of the impulses can be significantly reduced by

decreasing the value of N. The effect of N is analyzed further later in this chapter.

88

PID controller test using Hagglund-Astrom (1985) auto-tuner parameters

The plant model expressed in equation (3.9) is used by Hagglund and Astrom

(1985) in a continuous-time simulation that tests the auto-tuning PID controller algorithm

based on the dominant pole design method. The PID parameters obtained from the

continuous-time simulation of Hagglund and Astrom (1985) are used to test the DSP-

based PID controller further. The continuous-time parameters of Hagglund and Astrom

and their scaled, discrete-time equivalents are given in Table 8.

Table 8. PID parameters from Hagglund-Astrom auto-tuner

Co«ti»im«s-Time

Parameters

Discrete-Time

Parameters

K 9.62 K' 0.15184

T, .492 p 0.97988

Td .123 d, 0.2118

d2 0.092

The proportional gain K' in Table 8 is smaller than the value of K' obtained using

Ziegler-Nichols (1942), and the derivative terms dx and d2 in Table 8 are larger than the

previous values Again, with N= 16, the resultant outputs are shown in Figure 30. The

plant response is considerably improved over the previous test. The overshoot is smaller

(down from 40% to 25%), there is less ripple in the steady-state output and the

disturbance rejection response is better damped. The smaller proportional gain and the

larger derivative terms produced a response that is more damped than in the previous case.

89

Figure 30. Plant and controller outputs with Hagglund-Astrom parameters

Testing the derivative term filter

The previous two trials have demonstrated the capability of the DSP-based PID

controller to respond to changes in the reference input and to reject disturbances on the

output. In both tests, rather large impulses were observed on the control output as a

result of the derivative term reacting to measurement noise. Testing indicated that the size

of the impulses could be reduced by decreasing N, the maximum derivative gain. In this

section, the derivative term filter is evaluated. The controller parameters will remain the

same as in the previous case. Again, a disturbance is introduced at k = 4000. The effect

of N on dx and can be seen in Table 9.

90

Table 9. Effect of N on derivative term coefficients

d2 .

16 0.211823 0.092002

8 0.509202 0.057289

4 0.720279 0.032651

2 0.849264 0.017553

1 0.921875 0.009119

Recalling that the derivative term, D(k), is expressed as:

D(A) = d,D(k -l)+d2[y(k -1) - X*)],

as N is increased, the previous value of D(k) becomes more heavily weighted, effectively

filtering D(k) from higher frequencies. Figures 31 through 34 show the plant output for

N = 16, 4, 2 and 1, respectively. Although there is some difference in the response

between N = 16 and N= 4, the response of the plant begins to seriously degrade at N = 2.

Obviously, the selection of N must be made carefully as it represents a tradeoff between

filtering unwanted noise and impeding the action of the derivative term. The results do

indicate, however, that the derivative filter is functioning as predicted.

Establishing the maximum controller sampling rate

One of the primary reasons for using a DSP chip for control is increased processor

throughput to achieve the maximum possible sampling frequency. In the final test of the

DSP56000-based PID controller, the maximum sampling rate is determined. A function

generator is attached to the input of the controller. An oscilloscope is attached to the

91

Figure 31. Plant output for N = 16 Figure 32. Plant output for N = 4

Figure 33. Plant output for N = 2 Figure 34. Plant output for N = 1

controller output so that the sampling frequency of the controller can actually be

measured. The sampling frequency of the controller is controlled by the SCI timer that

generates interrupts to the processor. The maximum frequency that the SCI timer can be

set to operate at is :

This corresponds to a sample interval of 3.12 //see. With the SCI timer set at the

maximum frequency, the controller's sampling frequency is measured to be approximately

48 KHz. This is the output sampling frequency of the DSP56ADC16 A/D converter,

indicating that the A/D converter is the limiting factor. As a check, the number of

92

oscillator cycles required to execute the main loop of the PID program is calculated to be

200. At 20.5 MHz, this estimates the execution time of the PID code to be roughly

10 //sec, which corresponds to a sampling frequency of 100 KHz, approximately double

the sampling frequency measured on the controller output. The limiting factor on

controller sampling frequency is therefore the DSP56ADC16. Higher sampling

frequencies are theoretically achievable (up to 100 KHz) if a faster responding A/D

converter is used.

3.8 Chapter Summary

In this chapter, the PID algorithm developed in Chapter 2 was implemented on the

Motorola DSP56000. The question of why to use a DSP chip for control was addressed.

The Harvard architecture of the DSP was shown to provide a number of advantages over

the Von Neuman architecture of most general-purpose microprocessors. The hardware

and software features of the Motorola DSP56000 that make it attractive for control

applications were also discussed. The function of the on-chip peripherals was explained as

well. Included in the discussion were the use of the SCI timer interrupt to control

sampling rate, and the operation of the synchronous serial interface (SSI) used to interface

with the DSP56ADC16 A/D converter.

The PID algorithm was implemented in Motorola DSP56000 assembly language.

A simplified flowchart of the program was presented and a brief explanation of the

program was given. The need for scaling of the PID controller coefficients for DSP56000

implementation was pointed out and appropriate scaling factors were determined for the

controller coefficients. The program was organized to minimize the effect of

computational delay and was written to take advantage of the numerical stability of a

93

parallel computational structure, forming each of the three PID terms independently and

then summing them to form the control output.

The development of the plant model used for real-time testing of the PID

controller was presented as well. A deterministic version of the ARX model was selected

for the plant. The National Instruments AT-MIO-16 A/D, D/A converter board was

examined, and the DOS LabDriver software to drive it was briefly covered. The program

written to implement the plant model was also explained.

The DSP56000-based PID controller was then tested. The function of the three

PID controller terms was first tested in a controlled mode where each of the three

controller terms could be evaluated independently and compared to theoretical data. The

numerical accuracy of each of the three controller terms was established, and the function

of the anti-integral windup feature was verified. The PID controller was then tested in

real-time connected to a functioning plant. Two sets of controller parameters were

selected to test the effect of the controller parameters on the response of the plant. The

action of the derivative filter was also tested in a real-time mode. Finally, the maximum

sampling rate of the DSP56000-based controller was established.

In conclusion, the PID controller implemented on the DSP56000 functioned as

designed in all cases.

CHAPTER IV

DEVELOPMENT OF THE

ADAPTIVE PID ALGORITHM

4.1 Introduction

Having developed a working, practical PID controller on the Motorola DSP56000,

the question remains as to how to make the PID controller adaptive. The concept of

adaptive control was introduced in Chapter 1 and an overview of the most commonly

employed adaptive control schemes was presented. Gain scheduling is currently being

successfully implemented and could easily be implemented using a PID controller;

however, it does have several drawbacks. Gain scheduling requires that a suitable model

of the plant be available. Even if a good model of the plant is available, several sets of

controller parameters must be obtained for the different ranges of variation of the plant

parameters. The procedure can be time-consuming and is also prone to transition

problems between gain sets. Self-oscillating adaptive systems have proven to be robust

and are commonly used in flight control systems for missiles. The application of self-

oscillating adaptive systems is somewhat limited, however, in that a limit cycle oscillation

is usually discernible in the output. Also inherent in the concept is a trade-off between the

94

95

amplitude of the induced limit cycle and the system's ability to respond to command

signals. It also does not lend itself well to adaptive PID control. Model reference

adaptive control (MRAC) remains a subject of great interest to researchers in the field of

adaptive control. The concept has been extended to include non-minimum phase systems,

multivariable systems and nonlinear systems. MRAC is rarely implemented in a PID-like

structure, however, although Clarke and Gawthrop (1975) proposed an adaptive PID

controller that applied a model reference controller using least-squares estimation.

A survey of the literature indicates that a considerable amount of work has been

done using a self-tuning regulator structure for adaptive PID control. A key to the

successful design of a self-tuning regulator is the selection of an appropriate parameter

estimation method. Since the parameter estimator must function on-line in an adaptive

controller, the estimation algorithm must perform recursively. Most recursive estimation

methods are derived from an off-line counterpart. The off-line method is extended to

perform the calculation one iteration at a time using a newly acquired data element at each

iteration. Several different recursive estimation schemes have been developed, including

recursive least-squares (RLS), recursive extended least-squares (RELS), recursive

maximum likelihood (RML) and recursive instrumental variables (RIV). By far, the most

widely used recursive estimation method is recursive least squares. Actually, all of the

above methods are based on some variation of the RLS algorithm. Ljung and Soderstrom

(1983) go so far as to state that "There is only one recursive identification method. It

contains design variables to be chosen by the user".

For a system to be identifiable, some restrictions must be placed on the input signal

to the parameter estimator. The input signal must have sufficient frequency content to

adequately excite all modes of the system. An input that meets this requirement is said to

be persistently exciting. It can be shown that if the input is persistently exciting and the

parameter errors are uncorrelated with each other and with the input signal, the least

96

squares-estimates will converge to the true values of the parameters. Severe numerical

problems can occur, however, when the input is not persistently exciting. Some of the

matrices used in the calculation of the estimated parameters can become singular or near

singular causing the estimation algorithm to fail. Numerical difficulties can also occur

when numerical inaccuracies develop in the computations due to roundoff. Variations of

the basic least-squares method, called square root algorithms have been successfully used

to overcome some of these numerical difficulties. By using the square root of the

covariance matrix in the calculations, the effective dynamic range of the calculations is

limited. One such method proposed by Bierman (1977) is known as U-D cofactorization.

Other modifications to the least-squares algorithm have been proposed as well. Astrom

and Wittenmark's (1973) original self-tuning regulator assumes that the plant parameters

remain constant, which is why they refer to it as self-tuning as opposed to adaptive. The

idea has been extended, however, to include plants with time-varying parameters. A

forgetting factor can be introduced into the least-squares algorithm that discounts the

effect of past data on the calculations, thus allowing the algorithm to track time-varying

parameters.

Other difficulties must also be considered when implementing recursive parameter

estimation. It can be shown that disturbances in the input-output data to the estimator

result in biased estimates. Filtering of the data may therefore be required, as disturbances

will disguise the true dynamics of the plant to the estimator. The effects of measurement

noise in the data can be minimized by low-pass filtering. Several different techniques,

including the use of high-pass filters, may be used to remove offsets and low frequency

disturbances from the input and output signals. Very often, a band-pass filter is used to

filter the estimator data. The allowable bandwidth of the filter depends on the bandwidth

of interest of the plant being identified. The filter must be designed specifically for the

97

plant in question; therefore, some knowledge of the plant dynamics must be known in

advance if data filtering is to be utilized.

Special considerations must also be made when parameter estimation is performed

on a plant under closed-loop control. A criterion for being able to identify a plant is that

the input signal to the estimator must be independent of the residuals (estimation errors).

Although this is typically true in an open-loop case, it is not necessarily true in a closed-

loop situation. In fact, it can be demonstrated that when simple proportional feedback is

used, the controller output and the residuals are correlated. Assuming the reference input

is constant, once the controller has brought the plant output to equilibrium, no new

information about the plant dynamics is provided to the estimator. If a forgetting factor

has been introduced into the algorithm, the estimator will then tend to forget what it has

learned about the plant dynamics and the covariances of the parameters will begin to

increase exponentially, a condition known as estimator wind-up. When new information

about the plant becomes available to the estimator, as is the case when the plant

parameters change, the covariance matrix is saturated and the estimator is unable to

identify the changes in the parameters. Several methods have been proposed to deal with

estimator windup, such as covariance resetting, time variable forgetting factors, constant

trace algorithms and directional forgetting. Probably the simplest method is to reset the

covariances to some initial values if a limit is reached, although this may introduce a time-

lag from when the parameters change to when the estimator responds, depending on when

the estimator covariances were last reset. A related problem, known as bursting, can also

occur when attempting identification of a plant operating in a closed-loop. When the plant

reaches equilibrium due to feedback and the input to the estimator is no longer sufficiently

exciting, the estimated parameters may drift, causing instability in the output. As the

output becomes more unstable, the input to the estimator is excited to the point where the

estimator is again able to identify the plant parameters. The controller can then bring the

98

plant back under control and the process repeats itself indefinitely. One way to deal with

bursting is to turn off the estimator when the parameter error becomes sufficiently small.

A dead-zone is thus introduced into the algorithm that allows the estimator to work only

when the parameter error becomes significant. The size of the dead-zone is another

parameter that must be adjusted and depends on the noise floor of the given application.

As evidenced in the previous discussion, recursive parameter estimation is not a

trivial task, particularly when attempted in a closed-loop, and many ad hoc methods have

been developed to alleviate some of the inherent difficulties encountered. The second

main element of the self-tuning controller is the on-line control design mechanism. The

minimum variance controller originally proposed by Astrom and Wittenmark (1973) was

extended by Clarke and Gawthrop (1975) who proposed a technique known as

generalized minimum variance control. The work of Astrom and Wittenmark and Clarke

and Gawthrop spawned development into many other control law design variations,

including pole-placement and LQG design. When the controller is to conform to a PID-

like structure, the number of options for choosing an underlying design principle becomes

somewhat limited. To accommodate a PID controller structure, generally some type of

pole-placement algorithm is used, and the model order of the parameter estimator is

limited to second-order. Imposing a limit on the model order of the estimator limits its

application to plants that can be adequately modeled assuming lower order dynamics only.

Another factor to consider is the computational complexity of the design mechanism. If

the controller will be required to operate at high sampling rates or if the algorithm is to be

implemented on a microprocessor or a DSP chip, some of the pole-placement techniques

that require on-line solution of simultaneous linear equations may not be suitable. The

algorithm should also be robust, in the sense that it should be able to perform in presence

of random disturbances.

99

Warwick, Karam and Tham (1987) proposed a self-tuning controller algorithm

that meets most of the controller objectives just mentioned. The proposed control law

design mechanism uses the estimated plant model parameters directly in the control law

and is thus considered an implicit or direct realization. The algorithm is computationally

efficient, making it suitable for implementation on a microprocessor or DSP chip. The

primary objective of the algorithm is setpoint tracking, and the controller design is based

on a deadbeat control strategy that attempts to cancel the dominant process poles, but not

the process zeros. This allows the controller to be used with non-minimum phase plants.

The algorithm is also versatile, in that it can be easily modified to work with a number of

different control strategies. For instance, although the proposed self-tuning controller is

not specifically designed for PID control, a PID-like controller can be realized by imposing

specific limitations on the general controller structure.

The disadvantage of the algorithm proposed by Warwick, et. al. is that the closed-

loop dynamics of the system are fixed by the pole cancellation of the deadbeat control

strategy. Cancellation of the plant poles may allow for good reference input tracking, but

the response to load disturbances may be less than optimal. Pole-placement offers an

advantage over deadbeat control in that the locations of the closed-loop system poles can

be arbitrarily selected. Some of the early work on self-tuning PID controllers based on

pole-placement was done by Wittenmark (1979) and Astrom and Wittenmark (1980).

McInnis, et.al. (1985) modified the pole-placement algorithm of Astrom and Wittenmark

(1980) so that the two extra closed-loop zeros are placed at the origin, simplifying the

calculations required in the implementation.

In this chapter, an adaptive PID algorithm is developed. A recursive least-squares

estimator using U-D cofactorization as proposed by Bierman (1977) is used for the

parameter estimator. The estimation scheme incorporates exponential forgetting and

resetting for tracking time-varying parameters. In order to deal with estimator windup

100

and bursting, the estimator also includes a dead-zone that causes it to shut-off when the

parameter error drops below a given threshold. Two different control law design

mechanisms are also presented in the chapter. First, the simple self-tuning control

(SSTC) algorithm proposed by Warwick, Karam and Tham is developed. The basic SSTC

algorithm is modified to accommodate a PID-like controller structure by imposing certain

constraints on the algorithm. The second control law design mechanism presented is a

pole-placement algorithm proposed by McInnis, et. al. The pole-placement method allows

for a setpoint-on-I-only PID structure which minimizes proportional and derivative kick.

The remainder of the chapter deals with the development of the two outer loop sections of

the adaptive controller: the parameter estimation algorithm and the control law design

mechanism.

4.2 Open-Loop Parameter Estimation

Development of the recursive least-squares algorithm

A critical step in the system identification process is the definition of a suitable model for

the plant. One of the most commonly used parametric models in system identification is

the autoregressive moving average with exogenous input (ARMAX) model. The

ARMAX model is defined as:

A(q)y(t) = B(q)u(t) + C(q)e(t)

A(q) = l+a,q-' + +a„q-"

B(q) = b,q-'+ ■■■ +bflq~n

C(q) = l + ctq~' + ■■■ + criq"

where:

101

e(t) is a sequence of uniformly distributed, independent random disturbances, q 1 is the

backward shift operator and t are samples taken in discrete time. The ARMAX model

allows for modeling of non-white noise by the inclusion of a coloring filter, C(q).

However, if the noise, , is assumed to be white, a simplified version of the ARMAX

model, called the ARX model, can then be used. The ARX model is defined as:

^(tf W) = B(q)u(t) + s(t) (4.1)

where :
A(q) = l+a,q~'+ ••• +

B(q) = btq~'+ - +bmq-\

Equation (4.1) can also be written in a familiar form as:

X0+a\y(f -1)+— +«„X' - «) = *,«(«-1)+- • • +b„u(t -m) + e(t). (4.2)

By assuming e(t) to be white noise, the ordinary least-squares estimator can then be used

to estimate the parameters of the model. The ensuing development of the recursive least-

squares algorithm follows Ljung and Soderstrom (1983).

A parameter vector 6 is defined as:

and a regression vector is defined as:

<pT (f) = [-X* -1). ..-X' -«)»(<--™)] •

Equation 4.2 can then be written as:

X0=^X0+X0.

Having defined the model structure, the problem is to estimate the parameter vector, 0.

One way to do this is to minimize what is left unexplained by the model, i.e., e(t). A cost

function can thus be constructed as:

=“X [xo - xo] (4.3)

102

where VN(0} is minimized with respect to#. (at is a series of positive numbers that allow

different weights to be given to different observations. Setting at equal to one gives all

the data equal weight.) Since (#) is a quadratic in #, it can be minimized analytically.

The least squares estimate of 0 is defined as #(W)and can be determined to be:

^a,<p(t)<pT (t) 22“<xoxo. (4.4)
Z=1 /=!

In order to solve equation (4.4) recursively, a new vector, R(t), is defined as:

Then from equation (4.4):

22 ai^)yW = R(t-1)61(7-1).
fc=l

Therefore:

R (Z -1) = R (Z) - at XOX (0

which yields an expression for #(/):
W = a(z -1)+R-' [xo - 0 -1) X0]

with:

7?(Z) = A(Z-l) + a,X0XX).
If R(Z) is defined as:

R(Z) = yfl(Z),

then it can be shown that:
R(Z) = R(Z -1)+| [«,X0X (0 - R(< -1)],

thus giving:
<V) = tf(z -1)+;R-' (Z)xo[xo -&«- OXO]

1 (4-5)

R(Z) = R(Z -1) +y[a,X0X« - R(<-1)]-

Unfortunately, equations (4.5) are not well suited for on-line computations as they require

the inversion of R(Z) at each sampling interval. A new variable is therefore introduced:

103

P(Z) = 7?i(Z) = |r,(Z).

The matrix inversion lemma is given as:
[A + BCD]'= A1 - A‘b[da‘B + C*]dA’ . (4.6)

Applying the lemma of (4.6) to equation (4.5) with:

A = P(Z-1), B = p(Z), C=<z,, D=^r(Z)

gives:
P(Z) = [p “* (z -1) + <p(t) a, <pT (z)] ‘

P(Z-1)^Z)/(Z)P(Z-1). (4.7)

+^(Z)P(Z-1)«<Z)

The result of equation (4.7) is that the inversion of a square matrix is replaced by the

inversion of a scalar. The recursive least-squares algorithm for determining 0(t) is thus

determined to be:

fl(z) = d(z -1)+L(Z)[^(Z) - (z - 1KZ)]

P(<-l)<zV)L(z) =
a. + ^>T(z)P(z-i)<e<z)

(4.8a)

(4.8b)

P(z) = ^/-L(Z)(»r(Z) P(z-l) (4.8c)

It is seen in algorithm (4.8) that initial conditions $(0)and P(0) must be established for

the vectors #(Z)and P(Z). The correct initial values would be obtained if the recursion of

algorithm (4.8) did not begin until time to = dim <p(t) - dim 6 (which is when R(Z) of

equation (4.5) becomes invertable). However, since the estimation normally begins at

time t = 0, some arbitrary values for #(0) and P(0) must be selected. According to Ljung

and Soderstrom (1983), it can be shown that as P"’(0) —> 0, the value of the recursive

estimate approaches the value of the off-line estimate. The initial conditions for #(Z) and

P(Z) are therefore typically chosen to be:

104

P(0) = al where a is a large constant

and 6(0) = 0.

The question now arises as to how the algorithm behaves as the number of samples

grows large. It can be shown that the recursive least-squares estimate of the parameters

0(f) will converge to the true parameters 0(t) under the following conditions:

1. The input {u (t)} is persistently exciting

2. The residuals {f(/)}are independent

3. The input sequence {m(z)} is independent
of the disturbance sequence {«(/)}•

Ljung and Soderstrom (1983) define persistently exciting as follows:

Let {w(Z)} be such that the limits
I v A

lim — Vu(t)uT(t- j)=r(j) exist for all 0< j <n.
N

Form the n x n block matrix Rn whose i,k block entry is r(i - k). The sequence

{w(/)}is then said to be persistently exciting of order n, if Rn is nonsingular.

Astrom and Wittenmark (1989) investigated the persistence of excitation of several special

signals of interest. Their conclusions are presented in Table 10.

Table 10. Order of persistence of excitation of various signal types

Signal Type Order n of Persistence of Excitation

Pulse Not PE for any n

Step PE of order 1

Sinusoid PE of order 2

Periodic Signal with period n At most, PE of order n

Random signals PE of any order

105

It can be shown that a signal that is persistently exciting of order n has a spectral density

that is non zero at least n points. Persistence of excitation, therefore, implies that the

signal contains sufficient frequency content to excite all of the modes of the system in

question.

Tracking time-varying parameters

The recursive least-squares algorithm expressed in algorithm (4.8) assumes that

the system being identified is time-invariant. One of the primary reasons for using

adaptive control, however, is to compensate for system parameters that vary slowly over

time. The least-squares cost function was given in equation (4.3) as:

^w(6') = ^a,Z[X0-^X')] ■

If the parameters are time-varying, the criterion of equation (4.3) gives an estimate of the

average behavior over the interval from 1 to N. The criterion of equation (4.3) can be

modified to discount older data and thus provide an estimate of the current values of the

parameters. The modified criterion is given as:

<4-9>
1

where 2 is referred to as the forgettingfactor. If 2 = 1, all of the data is weighted

equally; however, if 2 < 1, recent data are weighted more heavily and an exponential

forgetting profile is imposed upon the least-squares cost function of equation (4.3). If

R(t) is redefined to be:

k=l

the recursive least squares algorithm can be redeveloped as:

106

d(0 = 0(z -1)+L(z)[x0 - (z - oxo]
p(z-i)XOL(Z) =

a,
+ /(Z)P(Z-1)XO

1/ _
/a. L(Z)pr(O P(Z-l)

(4.10a)

(4.10b)

(4.10c)

Observation of algorithm (4.10) reveals that the normal RLS algorithm (4.8) is merely a

special case of algorithm (4.10) with 2 = 1. In the standard RLS algorithm, as the

estimates converge, P(Z) tends to go to zero. Making 0 < 2 < 1 has the effect of keeping

P(Z), and thus L(Z), relatively large. The algorithm will then remain active, able to track

the time-varying parameters. The final value at which L(Z) converges will ultimately be a

compromise between tracking ability and noise sensitivity. Ljung and Soderstrom (1983)

state that it is impossible to track rapidly varying parameters; however, slowly varying

parameters can often be tracked reasonably well. If some prior knowledge of the variation

of the parameters is available, 2 can be made to be dynamic as 2(Z); however, if prior

knowledge of the variability of the parameters is not available, the forgetting factor is

generally be chosen to be a constant. Assuming ak is equal to one, equation (4.9) can be

expressed as:

t=\

When 2 is close to one,

2' - e'1"2 - gfln(A-l+l) ^(A-l)

which results in an exponentially decaying time constant of:

where To is referred to as the memory time constant. To should be chosen to coincide with

the expected rate of variation of the parameters. According to Isermann (1982), 2 must

107

be maintained between 0.95 < 2 < 0.995 in most cases. Table 11 shows the effect of the

relative weighting of the forgetting factor over a 50 sample interval for 2 = 0.99 and 2 =

0.95. The current sample k = 50 is given a relative weight of one in both cases. For the

case where 2 = 0.99, the earlier sample of k = 40 is given a relative weight of 0.90. The

sample taken fifty samples earlier at k = 1 still carries a weight of 0.60. On the other hand,

for the case where 2 = 0.95, the data at k = 1 will be weighted by a factor of 0.08, making

its effect on the estimate almost negligible.

Table 11. Effect of relative weighting of the forgetting factor 2

k I 1111 111!!! 30 40 Bill 48 49 . 50

A = 0.99 0.61 0.67 0.73 0.82 0.90 0.97 0.98 0.99 1

2 = 0.95 0.08 0.13 0.21 0.35 0.60 0.85 0.90 0.95 1

A recursive least squares algorithm has now been developed that is suitable for

estimating parameters of linear time-varying (LTV) systems. The algorithm in its present

form, however, may be subject to numerical difficulties due to model mismatching, noise

and computer roundoff. In the next section, a more robust estimation approach will be

developed that exhibits better stability than the standard RLS algorithm without imposing

a penalty on the number of computations performed.

U-D Cofactorization

It has been demonstrated (see Ljung and Soderstrom, 1983) that if the input to the

estimator {w(f)} is not persistently exciting, the matrix P(Z), which is referred to as the

covariance matrix, may become singular causing a failure of the RLS algorithm.

Additionally, it is well established that computer inaccuracies, primarily due to roundoff,

108

can also lead to numerical difficulties in the computation of the Kalman filter and likewise,

the RLS algorithm. One possible solution to the problem is to ensure that the

measurements and the dynamic model are sufficiently noisy to prevent near singularities

from occurring. This approach, however, could lead to inaccuracies in the estimation

process as the true dynamic characteristics of the system will be masked by the noise.

Another possible solution is to perform some of the computations using extra-precision

arithmetic. This option, however, requires additional memory elements and may suffer

from performance degradation due to the additional computational effort required. A

third, and undoubtedly more attractive alternative is to replace the RLS algorithm with

one that is numerically better conditioned. The square root algorithm presents such an

alternative. Bierman (1977) contends that methods involving square root algorithms have

numerical properties that are superior to the alternative methods. The use of square root

matrices preserves symmetry and assures non-negative eigenvalues for the covariance

matrix. Square root algorithms also effectively reduce the dynamic range of the numbers

used in the computations of the covariance matrix. Roughly speaking, computations in the

range of 10A to 10 v are reduced to the range of 10 to 10^. This essentially halves

the word length requirements for computing the covariance matrix. Bierman (1977)

presents a method whereby the covariance matrix P(Z) is factored in the form:

P(Z) = U(Z)D(Z)Ur(Z),

where U(Z) is an upper triangular matrix with ones on the diagonal and D(Z) is a diagonal

matrix. The recursions are therefore performed in U(Z)and D(Z) as opposed to P(Z).

The use of triangular matrices involves fewer computations and the factorization process

avoids the necessity of computing time-consuming square roots. According to Bierman

(1977), using factorization guarantees that P(Z) will remain positive definite. The

following development follows Bierman (1977):

109

Assume at in equation (4.10c) is equal to one. Then:
PQ-l) P(<-1MO/(QP(<-1) 1 (41]

A X+ <pT 2

Also, assume P(Z -1) is factored as U(z - 1)D(Z - l)Ur (Z -1) where U(Z) is upper

triangular with all diagonal elements equal to one, and D(Z) is a diagonal matrix. Let:

/(Z) = Ur(Z-l)p(Z)

g(Z) = D(Z-l)/(Z)

AO = A + / (Z)P(Z -1) <p(f) = A + f T (t)g(f).

Substituting into equation (4.11) gives:

U(Z)D(Z)Ur(Z) U(Z-l)D(Z-l)Ur(Z-l)-
U(Z-l)g(Z)gr(Z)U(Z-l)

AO
(4.12)

u(z)d(z)ut(z) = u(z-i) D(Z-l)-
g(Qgr(0

AO

2
2

Now let:
D(Z-l)-^^^ = U(Z)D(Z)Ur(z) (4.13)

where,
U(Z) = U(Z —l)U(Z)

°(0 = D(zX

Now it remains to find the factorization of equation (4.13). Let:
ut,2 - u„'

1 :

where d = dim 0. And let:

110

D(0 =
d,

o D.

D(Z-1) =
^i o A

D.dj

and let et be the zth unit vector. Then equation (4.13) can be expressed as:

i=l i=l P

Now let /. be equal to the zth component off Then:

a=^=^+2/«> c4=4 vd=g-
»=1 p

Then (4.13) can be rewritten as:

i=l i=l A
(4.14)

Now and Ui can be determined from equation (4.14) given /?, and Vd.

matrix:

Consider the

Md = DdUdUd - Ddeded +—VdVj.

Denoting Vdj as the zth component of the column vector Vd, by choosing:
K2

Dd=Dd- d,d

A
Ud,d = 1

U,.d=-=±-Vd, ' =
^dPd

the last column of Md will be made equal to zero. With:

yd,l

y^ =
d,d-1

0v u)

Md can then be written as:

Md =
y- ly d.d 1+ •

A

A# A J

Now if the £th value of p is determined to be:
A=*+£/&

y=i

then equation (4.12) can be used to determine:
-^-+—= 1

V VTy d-V d-\

P& Pd Pd.}

Ill

and
D<=Ddpd-/f,4’ u‘-*=-{fd/pd28' <415>

Now returning to equation (4.14):
W! = Y^--Md =YDteP-~^-VdJp (4.16)

i=l i=l j=1 Pd-\

provided that Ud and Dd are chosen according to equation (4.15). Notice that equation

(4.16) is exactly the same form as equation (4.14) except that t/been decreased to d -1.

The same procedure can therefore be used to find Dd_x, Ud_x, etc. The algorithm to find

U(Z) and D(Z)can then be used to determine:
U(/-l)D(/-l)Ur(Z-1)^(0

L(Z) =
AO

uq-i)g(O

AO

Ljung and Soderstrom (1983) summarize Bierman's complete U-D Cofactorization

Algorithm as follows:

112

1.

2.

3.

Initialize U(0) and D(0) at time t = 0, U(0)D(0)Ur(0) = P(0).

At time Z, compute L(Z) and update U(Z -1) and D(Z -1) by
performing steps 1-6.

Compute/:=UT(Z-1)^Z), g: = D(Z-l)/, /?0=2.

For y = do steps 3-5.

Compute:

P^’

vi~S,,

4. For i = 1,..., j -1, do step 5 (If 7 = 1, skip step 5).

5. Compute:

U(0,J:=U(Z-l)i,.+viM/,

v(:=v,.+U(Z-l)sv/

Bierman (1977) points out that the number of computations required for the U-D

cofactorization algorithm is roughly the same as for the conventional Kalman filter. Yet,

factorization of the covariance matrix P(Z) greatly enhances the numerical stability of the

estimation process. In addition, Bierman's U-D algorithm does not require square root

extractions that are required in some other square root algorithms, making the U-D

cofactorization more suitable for use in microprocessors or DSP chips. The use of a

square root algorithm alone, however, does not make for robust parameter estimation.

Several other issues need to be considered before the estimator can be practically

implemented.

113

Data filtering

Generally speaking, real-world processes are always more complicated than the

models used to describe them. Often, however, information about the process is available

a priori for incorporation into a prejudice model. The purpose of the parameter estimator

is to determine the parameters that best fit the prejudice model. Normally, disturbances

are included as part of the prejudice model. The disturbances can either be described as

stochastic, as in a random noise sequence, or as deterministic disturbances, such as levels,

ramps, sinusoids, etc. Ljung (1987) gives some insight into the frequency domain

interpretation of the least squares estimation problem as follows: Assuming an ARX

model described as:

A(q)y(t) = B(q)u(t) + e(t),

the least squares estimate can be expressed as:

=argmn^£(?f(?)X0-W>"(0)

which, as N qo , becomes,
7T

$ - arg min fgp-b^
*3 J

-7 ' A(q)
■|4(<y)p<y (4.17)

where Gp represents the true plant. In equation (4.17), the magnitude of A is small at the

poles, which are the frequencies of interest in the estimation process, but A becomes large

at higher frequencies. In the presence of measurement noise, the least-squares estimator

produces biased estimates that tend to be weighted toward the higher frequencies. The

bandwidth of interest in control applications, however, is around the crossover frequency,

not at higher frequencies. Low pass filtering of the input and output data is therefore

typically required to improve the accuracy of the estimates around the crossover

frequency.

114

Assume the process can be modeled as:

(4-18)

where e(t) is a sequence of independent, zero mean random variables (Gaussian white

noise) and v(Z) is a deterministic signal of known form but unknown amplitude. If(a
------- 1, the noise is no longer white and the elements of {f(/)} are no longer
£>(?)

independent; therefore, the least-squares estimate will again be biased. If the prior

estimates of C(^) and D(q) are known, then the regression vector <p(t) can be filtered by

Hf - an(i the regular RLS algorithm can still be used. If C(q) and D(q) are not
v?)

known, a model such as in equation (4.18) can be assumed and an alternative estimation

procedure, such as extended least-squares, can be implemented.

The presence of deterministic disturbances (represented by v(t) in equation

(4.18)) in the input-output data will also lead to biased estimates. Wittenmark (1988)

discusses the need for an appropriate disturbance annihilation filter to eliminate

deterministic disturbances. Offsets, drift and other low frequency disturbances can be

dealt with by filtering the data through a high pass filter, whereas, sinusoidal disturbances

can be filtered with an appropriate notch filter. In order to deal with high frequency noise,

offsets and low frequency drift, Wittenmark (1988) recommends a filter of the form show

in Figure 35.

Xft

rad/sec

Figure 35. Magnitude response of disturbance annihilation filter H^q)

115

Astrom and Wittenmark (1989) recommend that a>fl be at least one decade below the

desired crossover frequency and that co^ be set at 2-10 times the crossover frequency. Of

course, the higher the desired bandwidth of the closed-loop system, the larger the

bandwidth of the filter needs to be. Astrom and Wittenmark (1989) recommend that

Hf (q) be of the form:

(?-«)

where |a| < 1. (It is assumed that the controller will be designed to compensate for the

disturbances filtered out of the data to the estimator.)

Unmodeled dynamics

As discussed previously, the prejudice model is an attempt to model the complex

dynamics of the true process by a simple linear model. Not only will disturbances

adversely influence the accuracy of the parameter estimates, unmodeled dynamics can lead

to problems as well. Unmodeled dynamics can drive the parameter estimates to inaccurate

or even unreasonable values that can cause poor or possibly catastrophic controller

performance. Astrom and Wittenmark (1989) use averaging analysis to show that data

filtering as described above can make the estimator less sensitive to unmodeled dynamics.

The effect of unmodeled dynamics can also be reduced by increasing the complexity of the

plant model. A general family of model sets can be defined as:

= + (4.19)
F(q) D(q)

The family of model sets of equation (4.19) allows for a rather complicated description of

the plant; however, Ljung and Soderstrom (1983) point out that overparameterization of

the model can lead to singularity problems. Singularity occurs in the model of equation

(4.19) when:

116

There is a factor common to all of A, B and C,

B and F have a common factor,

C and D have a common factor.

Ljung and Soderstrom (1983) show results of extensive simulations in the presence of

colored and uncolored noise using 11 different model sets derived from the family of

models described by equation (4.19). They have drawn several important conclusions

from their work, three of which are summarized as follows:

1. Most of the model sets show very similar results, with a few exceptions.

2. There is no advantage to using the complex model set of equation (4.19). In fact,
most of the other less complex models yield superior results.

3. If the signal-to-noise ratio is relatively high, the model set assuming C = D = 1 and
either T7 = 1 or = 1 (as in the case of the ARX model) is usually the best choice.

The third conclusion noted above is extremely important, as that assumption allows for the

use of the ordinary RLS algorithm when the noise level is relatively low, as opposed to

one of the more complicated algorithms, such as extended least-squares.

After the model set has been selected, the appropriate model order must also be

selected. In an off-line identification problem, the model order can simply be increased

until it proves to be of no advantage to do so further; however, the on-line problem

presents a more difficult situation. Unless several estimation algorithms using different

model orders are run in parallel, the model order must be selected ahead of time. When

using a RLS algorithm in the presence of noise, a relatively high model order might be

required to obtain satisfactory results. Ljung and Soderstrom (1983) point out that when

the model polynomials are of a higher order than the minimal description of the plant at

117

the convergence point of 0, overparameterization may result. High model orders also

tend to emphasize the influence of measurement noise in the estimation process, causing

the model to be inaccurate at higher frequencies. Too high a model order can also lead to

false local minima in the estimation process, resulting in biased estimates. If the controller

design is constrained to a pole-placement method using a PID-like structure, the order of

the estimator model will also necessarily be constrained. Assuming the input is

persistently exciting, the performance of the estimator in the case of a reduced order

estimator will depend on the level of the noise present and on how well the data to the

estimator is prefiltered.

Estimator windup

The equation for updating the covariance matrix P(Z) in the RLS algorithm was

given in equation (4.11) as:
pf) = r^-1) _ P(;-1W/(QP(*-1). I

2 A + <pT(tyP(t-1)^(/) 2

The potential of P(Z)becoming singular or near singular has already been discussed. P(Z)

can become singular due to:

• Lack of persistence of excitation on the input signal,

• Overparameterization of the plant model,

• Computer roundoff errors.

The risk of singularity due to computer round off can be virtually eliminated by using a

square root factorization method, as per Bierman (1977). Overparameterization can be

controlled by ensuring that a model set is selected that is not overly complex (e.g., an

118

ARX model) and that a model order is chosen that adequately approximates the dynamics

of the plant. Unless an external perturbation signal is applied, however, it is difficult to

guarantee that the input to the plant (and the estimator) will remain general enough so that

the regression vector is persistently spanning (i.e., spans the entire vector space). The

problem becomes especially difficult when the estimator is operating on a plant in a

closed-loop configuration and the controller drives the output of the plant to equilibrium.

The update equation for P(Z) was given in equation (4.10c) as:

p«4 1/ _
/a,

L(Z)/(Z) P(Z-1) =
P(Z-l) P(Z-1)L(Z)/(Z)

Aat 2
(4.20)

Since P(Z) contains the covariances of the regression vector <p(t), as (p(t) tends to

contain no new information, the product P(Z - \}(pT (t)—>0. Assuming at = 1, if no new

information is contained in the measurements, equation (4.20) reduces to
P(Z-l) (4-21)

Equation (4.21), and thus P(Z), will tend toward infinity at a rate of In an adaptive

control application, in order to ensure stability of the controller, P(Z) must be guaranteed

to remain bounded and positive definite at all times.

One way of ensuring that P(Z) remains bounded and positive definite is to

constantly add a positive definite matrix to P(Z). This is known as the Levenberg-

Marquardt regularization method. Ljung and Soderstrom (1983) propose a similar

concept for the U-D factorization algorithm by limiting the elements of the matrices

U(Z) and D(Z). Unlike Levenberg-Marquardt, however, the modification is only applied

when an eigenvalue is tending to zero. Ljung and Soderstrom (1983) show that since

det U(Z) = 1, the elements of U(Z) will always remain bounded; therefore, limits need only

be imposed on D(Z). The second calculation in step 3 of the U-D cofactorization

algorithm given previously is thus changed to:

D(Z)..:=min C, (4.22)

119

where C is a positive number that bounds the elements of D(Z). Providing the input

sequence is well behaved, the upper bound of C in equation (4.22) is never reached. If an

element of D(Z) becomes too large, it is bounded by C. Limiting the elements of D(Z)

ensures that estimator does not fail due to singularity problems if the input is not

persistently exciting, as will be the case in an adaptive control problem when the reference

input and the plant output have reached steady-state and the noise level is insufficient to

adequately excite the system.

Although the modification given in equation (4.22) prevents the estimation

algorithm from failing by limiting the size of the elements of D(Z), difficulties may be

encountered if the covariances are allowed to remain large over time. The covariances

grow large when the system is not persistently excited. When a disturbance does finally

arrive after the estimator gains are large, the estimates can move very rapidly, causing the

controller to behave poorly during that period. Also, if the covariances remain large, the

algorithm becomes excessively sensitive to noise. It is therefore advantageous to

automatically reset the covariances to some smaller values (e.g., U(0) and D(0)) once

they have reached the bound of C given in the modification of (4.22).

Several other approaches for dealing with estimator windup have also been

successfully implemented. Some of the most common are:

• time-variable forgetting factors,

• constant trace algorithms,

• directional forgetting,

• conditioning techniques.

Estimator windup is only one of several difficulties that can be encountered when

attempting parameter estimation of a plant operating in a closed-loop system. The criteria

120

for being able to identify a system in closed-loop and some of the other difficulties that can

be encountered when attempting closed-loop identification are discussed in the next

section.

4.3 Identification in Closed-Loop

Although the basic RLS algorithm has been made more robust by the

modifications discussed above, the success of the algorithm depends to a large degree on

the generality of the input signal. If the input ceases to be persistently exciting, an ill-

conditioned covariance matrix results and the algorithm will fail to produce an accurate

model of the plant. Problems can also be encountered when the identification is

performed on a plant under closed-loop control. Feedback of sufficiently low order will

introduce linear dependencies among the elements of the regression vector (p(t) which

means that a unique solution to the least-squares algorithm will not exist, making the

system unidentifiable. This problem disappears if the feedback is of sufficiently high order,

or if a time-varying controller gain is used. Isermann (1982) develops the conditions for

identifiability in a closed-loop as follows:

Assume a plant is described by the model:

where:

r)=B(9)/-'«(/) +

•••

+ b„q-

D(q~}) = \+d}q} + -

And let:

121

W)_-, and Gc(q~') =
W)

Assume that the plant is placed in a feedback loop with a controller described by the

transfer function:
G (a') _ »(f) _ _ s0+s,q-'+--+svq-'’

c e(t) R(q~') r^r,q-'+-+rltq-f‘

where the error is defined as e(Z) = w(Z) -y(f) and w(Z) is the reference input into the

controller. Also assume that the only excitation to the plant is unmeasurable stochastic

noise, <?(Z). The non-recursive least-squares algorithm is based on the equation:

y(t)= 6f(p(t) + €(t) (4.23)

where:

<pT(f) = [-y(t-l)...-y(t-m) u(t-d-V)...u(t-d-m)].

Because of the feedback, if w(Z) = 0, the input and output signals are related by:
u(t-d-\) = -rxu(t-d-2)~ ••• -ruii(t-p-d-1)

(4.24)

(4-25)

The element u(t-d-1) from the regression vector (pT(t) in equation (4.24) is shown in

equation (4.25) to be linearly dependent on the other elements of (pT (Z) if /z < m-1 and

v< m - d -1. There is therefore no unique solution for the parameter vector, 0,

however, if p > m or v> m-d, the linear dependency is removed and the system will be

identifiable. The relationship between the output signal and the noise input can be

determined to be:
X0
f(Z)

The polynomials R(q ’) and S(q ’) are assumed to be known and relatively prime. If the

transfer function Gid (q~l) contains p common poles and zeros, then in order for the

system to be identifiable in closed-loop, the order of the controller must be:

max{/z; v+t/}, -p>m. (4 26)

122

According to Isermann (1982), if the condition given in equation (4.26) is not met,

identifiability can still be obtained by either applying a controller with a time-varying gain,

or by applying an extra perturbation signal that is persistently exciting of order m to the

closed-loop, but not between the measured signals w(Z) and >»(/). In addition to the above

criteria, Isermann (1982) also shows that in order for the plant to be identifiable in closed-

loop, the order m and the dead time d of the process must be known a priori.

Even if the above criteria are met, other difficulties may arise when attempting to

identify a plant under closed-loop control. The RLS algorithm given in equation (4.10b)

can be expressed as:
6(z) = 6(t-1)+ F(< ;[X0-('- l)«V)]

Va +(/(/)?(/-!)?(/)1 j (4.27)

Substituting equation (4.23) into equation (4.27) yields:

&(z)= fl(/-l) + -
(4.28)

The term on the right hand side of equation (4.28) represents the change in the parameter

#(/) from the last sampling interval. If (p(t) and s(f) are correlated, as will normally be

the case when the plant is under closed-loop control, the term <p(f)s(f) in (4.28) will

cause Q(t) to drift. The problem becomes even more significant when the input, and

consequently (p(t), is not persistently exciting. Assuming the reference input is constant,

when the estimated parameters converge to some reasonable values, the control law will

force the system into a steady-state condition. The input to the plant, and thus the

regression vector p(t), will cease to be persistently exciting and the parameters will drift.

Eventually, the parameter estimates become poor enough that the control law no longer

behaves satisfactorily, causing instability in the output. The system is excited by the

variation in the output causing the parameter estimates once again to converge to

123

reasonable values and the process repeats itself. This phenomenon is known as bursting.

(The same problem may also be experienced in the case of an undermodeled plant.)

According to Middleton and Goodwin (1990), the best way to deal with bursting that is

currently known is to incorporate a dead-zone into the algorithm that stops the parameter

vector and covariance matrix update when the parameter error reaches a threshold value.

The switching threshold of the dead-zone is established based on the expected level of the

measurement noise that manifests itself in the parameter error. Not only will the dead-

zone prevent parameter drift when the input ceases to be persistently exciting, but it also

helps to minimize estimator windup. Of course, the addition of the dead-zone into the

algorithm introduces another application specific parameter into the estimation process.

Rey, et. al. (1990) point out that in order for a dead-zone to be effective in the avoidance

of bursting, it must be "properly tuned"; i.e., the parameter error threshold must be

properly adjusted. They further state that the current level of understanding about the

behavior of dead-zones is not even sufficient to assertion in an actual implementation

whether the dead-zone is properly tuned or not. There is also no way to predict from the

data when a system is going to burst. Although it is an ad hoc approach to the problem,

at this time, the use of the dead-zone appears to be one of the better alternatives to control

bursting.

The first major component of the self-tuning controller, the parameter estimator,

has now been developed. Several important modifications have been proposed to make

the basic RLS algorithm more robust. The other major component in the outer loop of the

adaptive controller is the control law design mechanism. The underlying design principal

and the development of a control law design mechanism suitable for an adaptive PID

application are presented in the following section.

124

4.4 The Adaptive Control Law Design Mechanism

One of the attractive features of the self-tuning regulator structure is the flexibility

gained in the selection of a control law design mechanism. A number of different

approaches to the development of an adaptive control law design mechanism for self­

tuning regulators have been proposed in the literature. Kalman's (1958) indirect self­

tuning controller used a least-squares estimator in conjunction with a deadbeat controller.

Astrom and Wittenmark's (1973) original self-tuning regulator was designed for a

minimum variance control problem, and a self-tuning regulator using a generalized

minimum variance controller was proposed by Clarke and Gawthrop (1975). A linear

quadratic Gaussian version of the self-tuning regulator was presented by Peterka and

Astrom (1973). Some of the earliest work in self-tuning regulators based on pole-

placement algorithms was reported by Wellstead (1978). Wellstead's work primarily dealt

with the regulator case, whereas, Astrom and Wittenmark's (1980) work on pole-

placement algorithms focused strictly on the servo-mechanism case. If the controller

design is to be constrained to fit a PID-like structure, the number of options for the choice

of a control law design mechanism is significantly more limited.

The vast majority of self-tuning regulators in the literature that adhere to a PID

controller model are based on some type of pole-placement technique, although there are a

few exceptions (see Radke and Isermann, 1984). Warwick, Karam and Tham (1987)

proposed a self-tuning control strategy with the goals of:

1. Computational efficiency

2. Robustness

3. Versatility

4. Good steady-state servo tracking.

125

They refer to their controller algorithm as a simple self-tuning controller (SSTC) due to

the reduced complexity of the direct adaptive control strategy employed compared to

some other pole-placement techniques requiring many more computations. The SSTC is

versatile in that it is not restricted to a plant model of any particular order. In addition, the

basic controller can be modified to accommodate control laws of different structures,

including pole-placement and deadbeat control strategies. The controller is also shown to

be robust, in that it can be applied to processes with variable time delays and to non­

minimum phase systems. They also demonstrate how the controller can perform well in

the presence of random disturbances. The basic control strategy is that of a deadbeat

controller that attempts to cancel the process poles with the controller zeros. An option

that does not cancel the process zeros is also presented, which allows the controller to be

applied to non-minimum phase systems. The SSTC is developed following Warwick,

Karam and Tham (1987).

Assume the plant is defined by the model:

^(7"‘)X0 = •f’Btq-')u(t) + C(q")e(t) (4.29)

where:

)=>+«,<7 + -

C(?’1) = l + c,9’1+ •• • +<W'

and £•(/) is a sequence of zero mean random inputs that are uncorrelated with the input

and output signals, u(t) and y(t). The integer d is the time delay of the plant expressed as

an integer multiple of the sampling time. Also, assume that d > 1 such that b0 * 0, the

roots of A(q~') lie in the unit circle of the z-plane and 5(1) 0.

Defining w(Z) as the reference input and s as a scalar feed forward term, the error

e(t) is defined as:

e(O = sM'(')-X0-

126

An error controller is defined as the transfer function:
= G(^)

e(/) F(^’)

where F(q~x) is monic, in the same form as A(q~x) of equation (4.29).

(4-30)

The characteristic equation of the closed-loop system is determined to be:

A(q~') F(q~x) + z~d B(q~')G(q~x) = 0.

The desired closed-loop performance is achieved by the proper selection of the

polynomials, F(q~x) and G(q~x). A simple form of the controller that follows a deadbeat

control strategy is obtained by selecting:

G(^1) = ^-1)

and F{q~x) = \-z-dB(,q-x).

The control signal is obtained from equation 4.30 as:

w(Z) = A(q~x >(Z) + B(cTx)u(t -d). (4.31)

In this case, the coefficients of the plant polynomials A(q~x) and B(qx) make up the

parameters of the controller. Substituting (4.31) into (4.29) yields:
F(q-x)C(q~x)S(t)-i-y(t) = z~dB(q~i)sw(t) + (4.32)

To achieve zero steady-state error, s must be selected as:

As stated in the objectives, one of the primary goals of this controller is good steady-state

servo tracking. Assuming the error term, s(f), is made up of two components, a

zero mean white noise sequence, and v, which is a d.c. bias, the disturbance can be

redefined as:

f(Z) = ^(Z) + v.

The tracking error of the controller is therefore expressed as:

tracking error-------------------- .

127

The expected value of the tracking error is then determined to be:

^{tracking error} = . (4.33)

Equation (4.33) shows the inability of the controller to achieve zero steady-state error in

the presence of a d.c. bias. However, by changing the definitions of the controller

polynomials to:

F(q~') = B(])-q~‘lB(q~'),

the control output can be recalculated to be:
„(,) = ^(g~')g(0 + B(<1-d) (4.34)

5(1) 5(1)

and the closed-loop output is determined to be:
q-dB(q-')sw(t) [5(1) - q~dB(q~')]C(^')e(Z)

X<) =
5(1) G(q~'}

(4.35)

Now, steady-state tracking can be obtained by setting 5 = 1. Since:
[B(l)-g-'B(9-,)]=0

in the steady-state, the effect of the d.c. bias v is eliminated. Notice that in equation

(4.35), the process zeros are not canceled. Therefore, when controlling non-minimum

phase systems, unstable poles will not be introduced into the closed-loop equation.

The control law just developed can be extended to models of any order. The

method can also be modified to conform to a PID-like structure by imposing certain

limitations on the algorithm. Assume a classical PID controller is converted to discrete­

time using a backward difference giving:

»(<) = e(z) (4.36)

Equation (4.36) can be rewritten as:

(1 -)»(0 = K(q-')[w(Z) - XO]

where

128

K(q-') = k,+k2q~' +k,q~z,

k,=Kp + K,+Kd,

k2 = -(Kp+2Kd),

k, = Kd.

Equation (4.34) can be rearranged as:

[5(1) -q-“B(q-')>(/) = A(q~')[w(Z) - j(0] • (437)

In order for equation (4.37) to take on the form of equation (4.36), the following

conditions must be true:

5=1

K(q-')=A(z-')

5=1

B(1) = 5(9-‘) = Z.o.

(1
u(t) = w(/-l) +

By restricting the assumed plant model to second-order with no zeros and by forcing the

time delay of the plant to be equal to one (a single sampling interval), the SSTC can be

forced to exhibit a PID-like structure. The resultant control output is determined to be:
+ «lg~l+«2g"2)[W(0-

The controller described by equation (4.38) has the advantage of being a direct

implementation, as the controller parameters are obtained directly from the plant model

parameters without requiring .any intermediate calculations. The method is somewhat

limited, however, by the deadbeat-like control design strategy that cancels the poles of the

plant. This restricts the ability of the designer to control the dynamics of the closed-loop

system by arbitrary placement of the closed-loop system poles. Pole-placement methods

offer an alternative control law design method that allows for control of the dynamics of

the closed-loop system.

129

McInnis, et.al. (1985) proposed a pole-placement PID algorithm for controlling

left ventricular bypass lift devices. The controller design is based on a setpoint-on-I-only

PID structure that incorporates filtering of the derivative term. By also adding the same

filter to the integral term, the two extra closed-loop zeros are forced to be located at the

origin in the z-plane, simplifying the calculations. The resulting controller structure is

given in equation (4.39).

w(Z) = -KP~
0-g~')

1 + Kq-'
y(‘)+

K,
(1-<?-')(! +tty-)

—[W(Z)-XZ)] (4.39)

The control law give in equation (4.39) can be formulated as:

P(q~>)u(t) = Lw(t)-S(q~')y(t) (4.40)

where

S(q'1) = s0+slq-' + s2q~2,

L = S(i) = K„

and

5o ~ Kp + + Kd>

s,=^(r-l)-2^,

s2 = ^ - kKp.
If the plant model is assumed to be:

A(q~')y(f) = B{q~')u(t) + £(?)

then the closed-loop relationship is determined from equation (4.40) to be:

[A(q-')P(q ') + B(q-')S^-')>(Z) = L ■ Btq'W) + P{q')e(t). (4.41)

If the plant model is forced to be second-order, the relationship of equation (4.41) shows

that four closed-loop poles of the desired model, can be arbitrarily positioned,

assuming that:

130

the plant model is second-order,

?1(<7_1) and B(q~}) are coprime,

B(q~}) does not have the zero q - +1.

By equating coefficients of Am(q ') and A(q])P(q }) + B(q ')S(q '), the parameters

50, 5, and s2 can be determined assuming the parameters of the plant model are known.

By applying the certainty equivalence principle, the estimated plant parameters are then

substituted into the relationship of equation (4.41) in place of the actual plant parameters.

Let the second-order plant model be defined as:

^(?’l) = l+a1?‘1+a2?‘2

= +M"2

and let the desired closed-loop polynomial be defined as:

4(?-') = +amtq~' +am2q~2 +am3q^ +aMq^.

Then,

4 (?■■)= A{q~')P(q~') + B(q~')S(q~')

which leads to:

0 ” A

+ K- a, (k -1) - a2) - Z>, (aml - (K-1) - a,)c - ---
b„b,

, . a„4 +a2K

2 *> '

Now the parameters of equation (4.42) can be substituted into equation (4.40) to give the

control law:

w(Z) = (1 - K)u{t -1) + Ku{t - 2) + K^{t) - sQy(t) - sxy(t -1) - s2y(t - 2). (4.43)

Thus, by specifying the desired closed-loop dynamics as the four pole locations of

Am(q_1), and by substituting the estimated plant parameters into equation (4.42), the

control output given in equation (4.43) can be determined. The on-line control law design

(4.42a)

(4.42b)

(4.42c)

131

mechanism in this case is explicit, or indirect, as the control law design requires an

intermediate calculation between the estimation of the parameters and the control law

design.

4.5 Stability and Convergence of Self-Tuning Regulators

The fact that adaptive control systems are non-linear makes stability analysis a

nontrivial task. Nonlinear systems can be analyzed for Lyapunov stability, i.e., stability of

a particular solution, but establishing global stability is difficult. According to Astrom and

Wittenmark (1984b), some stability and convergence proofs for simple algorithms under

ideal conditions were proposed as early as 1979. But they also state that there have not

been any proofs based on more realistic assumptions. Astrom and Wittenmark (1989) did

prove that for a direct adaptive pole assignment algorithm, given a number of critical

assumptions, the estimates are bounded and the normalized prediction error converges to

zero. They did not prove, however, that the parameter estimates converge. Astrom and

Wittenmark (1989) point out that parameter convergence is not necessary for error

convergence in direct algorithms. This is not the case, however, in indirect schemes where

parameter convergence is essential to acceptable controller performance.

According to Kumar (1990), "...very little is known regarding the behavior of

recursive least-squares parameter estimate based adaptive control schemes. For example,

whether the original minimum variance self-tuning regulators of Peterka and Astrom and

Wittenmark actually self-tune has been an open question for more than 15 years. Also, no

conclusive results are available for certainty equivalent control laws which are of pole-zero

placement type, or based on LQG design, etc." In what are considered two very

important papers, Stemby (1977) and Rootzen and Stemby (1984) introduced a procedure

known as "Bayesian embedding," which proves that for systems excited by white,

132

Gaussian noise of a sufficient magnitude, the parameter estimates generally converge.

Kumar (1990) expands on the work of Rootzen and Stemby to prove the stability and

convergence of least-squares based adaptive control schemes under the condition that the

additive noise to the system is white and Gaussian, and that the true system is strictly

minimum phase. Although the proofs are too involved to be included here, the results of

Kumar's work are summarized as follows:

Theorem 1: The parameter estimates, and thus the adaptive control law, both

converge asymptotically stable.

Theorem 1 is based on two important conditions. First, the additive noise entering the

system is required to be white, Gaussian noise. Second, the convergence result may not

be valid on an exceptional set of true parameter vectors of Lebesgue measure zero.

Theorem 2: The overall adaptively controlled system is stable in an averaged

squared sense whenever the estimated parameters are used in a

certainty-equivalent fashion to design a control law which is stable

for the estimated parameters, and the true system is of

minimum phase.

Kumar goes on to give convergence and stability proofs for specific cases based on

Theorem 1 and Theorem 2. But given the above constraints, the convergence of the

estimated parameters and the stability of the overall adaptive control system can be

guaranteed.

133

4.6 Chapter Summary

In this chapter, the self-tuning regulator has been presented as a solution to an

adaptive control problem. The basic structure of the self-tuning regulator consists of two

loops: an inner loop consisting of a regular feedback controller and an outer loop made up

of a parameter estimator and a control law design mechanism. An on-line parameter

estimation algorithm has been developed based on recursive least-squares. The basic RLS

algorithm has been modified to be able to track time-varying parameters by the addition of

an exponential forgetting factor. Also, U-D cofactorization of the covariance matrix has

been incorporated to improve the numerical stability of the RLS algorithm. Some of the

practical implementation issues of parameter estimation, such as data filtering and

estimator windup, have also been presented. The covariance matrix P(Z) is bounded in

the event the input ceases to be persistently exciting, and covariance resetting of P(Z) is

also employed to keep the algorithm from becoming overly sensitive to noise and to keep

the estimator gains from becoming excessively large.

Two different options for the control law design mechanism have also been

presented. The first option, proposed by Warwick, Karam and Tham (1985), is referred

to as a simple self-tuning controller. The SSTC is based on a control strategy that seeks

to cancel the process poles without canceling the process zeros. The SSTC is a direct

structure that is computationally efficient, but is limited in that the closed-loop system

poles cannot be arbitrarily positioned. The basic idea, however, can be expanded to

include a pole-placement scheme and it can be used in a PID-like controller structure by

limiting the model order to two. The second option is a pole-placement method as

proposed by McInnis, et.al. (1985). Although it is an indirect structure and requires more

computations than the SSTC to implement, it allows for the closed-loop system poles to

be chosen arbitrarily. The pole-placement method also very easily conforms to a PID

134

structure. It can, in fact, be adapted to PID structures of different types. The

convergence and stability of the adaptive controller was also established for certain limited

conditions based on the work of Kumar (1990).

CHAPTER V

SIMULATION OF THE ADAPTIVE

PID CONTROLLER

5.1 Introduction

An adaptive PID controller has been developed based on the self-tuning regulator

(STR) model. A recursive least-squares parameter estimator identifies the parameters of a

second-order ARX model of the plant. The estimation algorithm includes a forgetting

factor that allows the controller to work with linear time-varying (LTV) systems, and U-

D cofactorization is incorporated into the algorithm to improve the numerical conditioning

of the calculation of the covariance matrix. Several ad hoc improvements, such as

covariance resetting and a dead-zone on the parameter error, have also been included in

the algorithm to mitigate some of the difficulties encountered when attempting to identify

a plant under closed-loop control. Two different control law design techniques have also

been presented. The first method, referred to as simplified self-tuning control (SSTC), is

a direct approach that employs a deadbeat control strategy. The SSTC attempts to cancel

the poles of the plant model, but not the plant zeros. Although SSTC is not specifically

designed for PID control, it can be readily modified to conform to a PID-like structure by

imposing certain constraints on the algorithm. The method is somewhat limited, however,

135

136

in that the dynamics of the closed-loop system are inherent in the deadbeat-like controller

structure and cannot be modified by the designer. The second control law design method

presented is a pole-placement technique that is derived from a discrete-time PID controller

model. The method allows for four closed-loop poles to be arbitrarily positioned while

fixing two closed-loop zeros at the origin of the z-plane. Although the method is an

indirect controller implementation, the additional intermediate calculations required are

minimal.

The PID version of the SSTC controller has been selected for testing the concepts

presented in Chapter 4. Although the SSTC solution to the adaptive control problem

possesses certain inherent limitations, it contains a control law design mechanism that is

easily implemented and will simplify the testing of the U-D RLS algorithm under closed-

loop conditions. The adaptive control law may then be modified to incorporate a number

of different control law design approaches. Several computer programs have been written

to test the SSTC algorithm developed in the previous chapter. In this chapter, those

programs will be briefly explained and simulation results will be presented in order to

evaluate the performance of the algorithms. First, the RLS parameter estimation

algorithm employing U-D cofactorization is tested in open-loop using a pseudo- random

binary sequence (PRBS) as the input to the plant. The PRBS will be shown to

approximate white noise in its frequency spectrum and thus meets the requirement that the

input to the plant be persistently exciting. The RLS algorithm is then incorporated into

the SSTC algorithm in a second program, and the SSTC adaptive control algorithm is

simulated. Finally, the SSTC algorithm is constrained to a PID-like structure to produce

an adaptive PID controller. The PID version of the SSTC controller is also simulated and

analyzed in this chapter.

137

5.2 The Pseudo-Random Binary Sequence

In order to evaluate the U-D RLS algorithm, an input signal must be provided to

the plant that is persistently exciting of a suitable order. In Chapter 4, it was shown that

random signals are known to be persistently exciting of any order and would therefore be

an ideal source of excitation to the plant. White noise is a realization of a random signal

that contains constant power per unit bandwidth for all frequencies. (A signal can be

considered to be white if its power density spectrum is flat over a frequency range that is

much greater than the bandwidth of the system being considered.) The present value of a

white noise signal is completely independent of all past values of the signal. It can be

shown that the autocorrelation function1 of white noise is an impulse of height o2 (the

mean square value) at r= 0 (i.e., ^(0)), and zero for all other values of t. White noise

can thus be considered persistently exciting of any order.

A pseudo-random noise signal has the same type of autocorrelation function as

white noise (i.e., an impulse function) but it is repeated with a period T. The

autocorrelation function of a pseudo-random signal is given as:
1 r

0

Davies (1970) presents a method for generating pseudo-random noise using a binary

signal as shown in Figure 36.

’The Autocorrelation Function of a signal is a statistical measure of the degree to which future and past
values of a signal are dependent on the current value of the signal. It is defined as:

<t> (r) = Lim—
2T

T

Jx(Z)x(Z + T}dz.
~T

138

-*) AtH-
1 1 i i 1 I -1 1

4At
1 1

7At
1

12
1

At t

Figure 36. Example of pseudo-random binary signal

If the signal of Figure 36 repeats itself every 11AZ units of time, the autocorrelation

function of the signal will be a periodic function as depicted in Figure 37.

Figure 37. Autocorrelation function of pseudo-random binary signal of Figure 36

Davies (1970) presents several rules that must be adhered to in order to ensure that a

pseudo-random binary signal approximates a truly random signal:

1. The signal must be periodic with period 7’ can only take on two constant values, ±a,

and can only change from one state to another at discrete times, kkt, where Az is a

constant and k is an integer.

2. The number of +a states should be approximately equal to the number of -a states

(the difference should not exceed one).

139

3. In every period, runs of consecutive +a states or — a states should frequently occur,

with short runs being more frequent than long runs, e.g., 1/2 of the runs of length one,

1/4 of the runs of length two, 1/8 of the runs of length three, etc. Also, for each run

length, the +a states should equal the -a states.

4. The autocorrelation function of the signal should be two-valued, peaking in the middle

and flat toward the ends.

Davies states that any binary sequence with all of the above properties can be defined as a

pseudo-random binary signal (PRBS).

A PRBS can be generated using a shift register with a modulo-2 gate in a feedback

loop. For a given number of stages in the shift register, there is a maximum number of

digits that occur before the sequence repeats itself. This is referred to as the maximum

length sequence. Not every feedback connection will result in a maximum length
sequence. The largest possible period for an «-stage shift register is (2” -1). Therefore, if

a given output sequence has a period:

A = 2M-1,

the sequence is a maximum length sequence. Since the maximum length sequence is a

square wave, its autocorrelation function can be written as:

^) = yZ*OW+*)-

The autocorrelation function of the binary maximum length sequence is shown graphically

in Figure 38. A slight d.c. component can be seen in the figure, but for large N, Davies

(1970) asserts that this can be safely neglected.

140

Provided the feedback operation in the shift register is restricted to addition, the

shift register generator is a linear device. The possible feedback combinations that

produce maximum length sequences can thus be determined algebraically and can be

implemented in a digital computer program. Davies (1970) has produced a table that

includes all the possible feedback connections that produce maximum length sequences up

to n = 10. Based on Davies' (1970) results, a routine was written to generate a pseudo­

random binary sequence with N = 1023 to be used as a persistently exciting input signal

with which to test the U-D RLS algorithm. The open-loop test results are presented in the

next section.

5.3 Testing the U-D RLS Algorithm in Open Loop

A QuickBASIC program has been written to test the parameter estimation

algorithm to be used as part of the adaptive PID controller. A simplified flowchart of the

program is shown in Figure 39. The PRBS that serves as the input to the simulated plant

is generated from within the program. The PRBS generated by the program may be seen

in Figure 40. A frequency divider is built into the PRBS routine the allows the PRBS

141

Figure 39 Simplified flowchart of U-D RLS test program

sampling interval to be made a multiple of the plant sampling interval. The PRBS will

have different frequency characteristics depending on the sampling interval selected. The

program also simulates the response of the true plant using an ARX model. The input and

142

output of the simulated true plant are used to form the regression vector used in the U-D

RLS algorithm. The covariance matrix D(&) is bounded in the program and will

automatically reset to D(0) if the estimator winds up to the upper bound Dmax. The RLS

algorithm also includes a forgetting factor and the program allows the plant parameters to

change in the middle of the simulation to test the ability of the algorithm to track time-

varying parameters. The plant input and output, u(t) and y(t), the parameter error £•(/),

the covariance and gain matrices, U(/),£>(Z) and L(Z), and the estimated parameters,

0(f) are all saved to files on the computer hard drive for later analysis.

Figure 40. Pseudo-random binary sequence used as input to the plant

The first test of the U-D RLS algorithm determines how the forgetting factor 2

affects the convergence rate of the parameter vector 0(f). A second-order approximation

of the plant used in the trials of Chapter 3 is selected for the test. The plant is described

by the transfer function:

G'(5)_(l+sXl+.26s)' (5.1)

143

The continuous-time model of equation (5.1) is discretized using the zero-order hold

equivalent with a sampling interval of T = 1 sec. The resulting discrete-time model is

given as:
_i W1) = 0.5103711#"1+0.1082462ff~2

1-0.3892412?"1+0.0078585tf’2' 1

The true plant parameters to be estimated are thus:

a, =-0.3892412
a2 = 0.0078585

• (5-3)
b} =0.5103711

b2 =0.1082462

The forgetting factor 2 is set to 1.0, 0.999, 0.995 and 0.95 for four trials. Due to the

relatively slow dynamics of the plant, the sampling rate of the PRBS is multiplied by 10 in

order to adequately excite the slower modes of the system. The covariance matrix D(£)

is limited to Dmax = 106 and resets to its initial value of D(0) = 10 if the upper bound Dmax

is reached. The results of the four trials are shown in Figures 41, 42, 43 and 44.

The parameter convergence appears exponential in each case, which is

characteristic of the RLS algorithm. The differences in the parameter convergence rates

are most evident in the parameter a,. In Figures 41 and 42, a} converges slower than in

Figure 43. In fact, ax does not reach steady-state in any of the first three trials. In Figure

44, however, a} appears to have completely converged by Z = 600. In the four trials, as

the forgetting factor 2 is decreased, the parameters converge faster.

144

Figure 41. Q(t) for >3, = 1.0

f(t)

........A................

A

Aa
2

L

A
a,

—
0 200 400 600 800 1000

Figure 43. 0(f) for 2 = 0.995

f(t)
0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

.......t.............

A

\
L............

/\a
2

L

A
a

0 200 400 600 800 1000

Figure 42. 0(f) for 2 = 0.999

Figure 44. $(/) for 2 = 0.95

The parameter error e(t) is shown for each of the above cases in Figures 45, 46,

47 and 48. In the deterministic case, the parameter error s(t) is a measure of the accuracy

of the estimated model relative to the true plant as given by:

For 2 = 1.0 and 2 = 0.999, s(f) is still significant even after 2000 samples. For

2 = 0.995, s(i) converges to nearly zero after 1500 samples; however, for 2 = 0.95, s(t)

becomes insignificant relatively quickly (in less than 250 samples). Analysis of frequency

response plots reveals that for $(2000), the case where 2 = 0.95 produces a slightly more

145

accurate model than do the other cases. As 2 decreases in value, however, the estimates

become more susceptible to noise.

Figure 45. £■(/) for 2 = 1.0
s (t) 0.8

0.6

0.4

0.2

0.0

-0.2
0 1000 2000

t

Figure 47. £'(/) for 2 = 0.995

Figure 46. e(t) for 2 = 0.999
S (I) U.8 1

Parameter Error
0.6 • for 2= 0.95

0.4 - -

0.2 -

0.0

1-0.2'------------------------ *------------------------
0 1000 2000

Figure 48. s(t) for 2 = 0.95

t

The next trial assesses the ability of the U-D RLS algorithm to track time-varying

parameters. A 3000 sample test is performed with the parameters of the true plant

changing at t = 1000 and at t = 2000. The parameters for the original plant model of

equation (5.2) (Plant 1) and for the two modified plants (Plant 2 and Plant 3) are shown in

Table 12:

146

Table 12. Parameters of true Plants 1, 2 and 3

parameter Plant 1 Plant 2 Plant 3

-0.3892412 -0.50 -0.60

a2 0.0078585 -0.01 -0.05

0.5103711 0.40 0.30

b2 0.1082462 0.08 0.005

The magnitude and phase plots of the original plant (Plant 1) and the two modified plants

(Plant 2 and Plant 3) are shown in Figure 49.

Figure 49. Magnitude and phase responses of three test plants

The forgetting factor 2 is set at 0.95 and the upper bound on D(Z) is set at 106. A graph

of the estimated parameters 0(t) vs. time for the simulation is shown in Figure 50.

147

Figure 50. Graph of parameter vector #(/) tracking time-varying plant parameters

The values of the estimated parameters at t = 1000 and at Z = 2000 and are listed in Table

13.

Table 13. Estimated and actual parameters for test of time-varying system

e. Plant 1

(actual)

Plant 1

(estimated)

Plant 2

(actual)

Plant 2

(estimated)

Plant 3

(actual)

Plant 3

(estimated)

-0.3892412 0.4876259 -0.50 -0.5850750 -0.60 -0.5022256

a2 0.0078585 0.0536163 -0.01 0.0379177 -0.05 -0.1144118

0.5103711 0.5105271 0.40 0.3992493 0.30 0.2997126

b, 0.1082462 0.5546293 0.08 0.0431978 0.005 0.0342870

148

Table 13 indicates that the estimated parameters do not converge to the actual parameters

of Plants 1, 2 or 3. However, the magnitude and phase plots of Figures 51, 52 and 53,

respectively, show that the frequency responses of the estimated models are nearly

identical to those of the actual plants.

Figure 51. Magnitude and phase plots of actual Plant 1 and estimated Plant 1

Figure 52. Magnitude and phase plots of actual Plant 2 and estimated Plant 2

149

1 : ----!-- ! !—!—! ! T~!-------’----’ ' ’—’—1 ' 1
i i i 3

• Magnitude

i i ; : i= estimate

IO'1 10° io1
© (rad/sec)

Figure 53. Magnitude and phase plots of actual Plant 3 and estimated Plant 3

The Bode diagrams demonstrate that the estimator is capable of accurately tracking time-

varying parameters for the noise-free case. A graph of the elements of the information

matrix U(Z) for the trial is shown in Figures 54. (Recall that U(Z) is upper triangular with

ones on the diagonal, and for the second-order model, it can be described by six elements.)

Although the elements of U(Z) vary widely, they do remain bounded as predicted. A plot

of the elements of the covariance matrix D(Z) is shown in Figure 55. The regularization

of D(Z) is evident in the figure. The effect of automatic covariance resetting is also

apparent as the elements of D(Z) are reset to D(0) when the upper bound of Dmax =106 is

reached.

150

Figure 54. Elements of information matrix U(Z)

Figure 55. Elements of covariance matrix D(Z)

151

The above simulations demonstrate that the U-D RLS estimation algorithm

performs well for the deterministic case. The algorithm is now tested with measurement

noise present in the system. For the simulation, the noise, denoted as is generated

using a PRBS and is introduced to the true plant by the relation:

^(?)XO = 5(?)»(O+’j(O- (5-4)

The 3000 sample simulation presented above is repeated with the true plant changing from

Plant 1 to Plant 2 at t = 1000 and from Plant 2 to Plant 3 at Z = 2000. For this trial,

however, noise with a mean of zero and a variance of 0.05 is added to the system by the

relation given in equation (5.4). A sample output of the plant response with noise added

is shown in Figure 56.

Figure 56. Plant output y(t) with added noise

With the forgetting factor 2(Z) set to 0.95, the resulting estimated parameters are shown

in Figure 57.

152

Figure 57. Estimated parameters with noise present

The behavior of the parameters is significantly more erratic with noise present. The added

noise prevents the parameters from converging with 2 = 0.95. In order to evaluate the

accuracy of the estimated plant models, the frequency responses of the estimates at

t - 1000, 2000 and 3000 are shown in Figures 58, 59 and 60 respectively. It is evident

that the presence of added noise in the system has caused the estimates to be biased.

Figure 58. Frequency response of estimated and actual Plant 1 with noise

153

Figure 59. Frequency response of estimated and actual Plant 2 with noise

Figure 60. Frequency response of estimated and actual Plant 3 with noise

The effect of the noise on the estimates can be reduced if the input and output data

to the parameter estimator are prefiltered with a low-pass filter. Consider a second-order

154

Butterworth filter with a cutoff frequency coc = 3 rad / sec, discretized using the bilinear

transformation with a sampling interval of one second. The discrete-time filter transfer

function is determined to be:
0.4188914+ 0.8277828Z"1 + 0.4188914z~2

- 1 + 0.4654349z-1+0.2101308z-2
(5.5)

The magnitude response of the filter is shown in Figure 61.

Two 3000 sample simulations are performed with the true plant remaining fixed as Plant 1

and the forgetting factor 2 set at 0.95. In the first simulation, noise is added to the system

and the estimator data is not filtered. In the second simulation, the estimator data is pre­

filtered through Hf. The results of the two simulations are presented in Figures 62

through 65.

155

Figure 62. Estimated parameters obtained with unfiltered estimator data

Figure 63. Magnitude response of plant model obtained with unfiltered data

156

Figure 64. Estimated parameters obtained with filtered estimator data

Figure 65. Magnitude response of plant model obtained with filtered data

Filtering of the data has caused the behavior of the estimated parameters in 0{t) to be less

erratic. In each case, the presence of noise slows the convergence rate of the parameter

estimates compared to the noise-free case presented earlier. Filtering the estimator data

has also improved the accuracy of the magnitude response of the estimated plant,

particularly in the high frequency region. The two preceding simulations have shown the

importance of data filtering when attempting parameter estimation in the presence of

noise.

157

The tests performed in this section have demonstrated the capability of the U-D

RLS estimation algorithm to generate accurate models when the plant is properly excited

in the open-loop case. The estimator is able to accurately track time-varying parameters,

and with proper filtering, can provide an accurate model of the plant even in the presence

of low level noise.

5.4 Simulation of the SSTC Controller

A deterministic assessment

The U-D RLS algorithm is now incorporated into a program that simulates the

Simplified Self-Tuning Controller. To test the operation of the SSTC control law design

mechanism, a simulation is run with the estimated plant parameters held constant. A

second-order ARX model is assumed for the plant, given as:

-2

-2’\+afl + a2q

The parameters of the true plant being controlled are assumed to be:

ax =-0.3892412
a2 =0.0078585
bx =0.5103711
b2 =0.1082462

which correspond to Plant 1 of the previous section. For the purposes of this test, the true

plant parameters are used in the control law calculation as the controller parameters. The

control law for the SSTC controller was given in Chapter 4 as:

158

= ^(g'XO + W')»('-«
B(l) 5(1)

which for the second-order plant model is determined to be:

u(t) =
e(t) + axe(t -1) + a2e(t - 2) + b} u(t -1) + b2u(t - 2)

bx + b2
(5-6)

The resulting plant and controller outputs in response to the reference input switching

between plus and minus one may be seen in Figure 66.

The plant output is typical of the deadbeat-like control strategy used in the SSTC

algorithm, indicating that the control law design algorithm is functioning properly.

The U-D RLS algorithm is now enabled in the SSTC simulation program, making

the controller truly adaptive. The program allows the plant model to conform to an ARX

model of any order. In this simulation, the plant model is assumed to be second-order,

requiring the estimation of four plant parameters. The true plant is left the same as in the

previous simulation, given as:

159

_i 0,5103711^-1+0.1082462^~2
pW ~ 1-0.3892412^'+0.0078585<f2 '

Since the SSTC conforms to a direct adaptive control structure, this implies that there are

four controller parameters to be established as well. Several other controller parameters,

such as U(0), D(0), Dmax, #(0) and 2, must also be specified before running the

simulation. Pre-testing of the algorithm indicated that the selection of U(0) and D(0) is

somewhat arbitrary, as they only affect the estimates for the first few samples. Ljung and

Soderstrom (1983), however, suggest that they be set to a relatively large value.

U(0) and D(0) are set to 10 for this simulation. The selection of Dmax, the upper bound

on the covariance matrix D(Z), becomes a trade-off between the sensitivity and accuracy

of the estimated plant parameters. If Dmax is fixed at too large a value, the estimates tend

to be unstable and overly sensitive to noise in closed-loop estimation. Too small a value

of Dmax, on the other hand, can produce less accurate estimates. Pre-testing indicated that

Dmax = 105 achieves an acceptable balance in this case. In testing the open-loop estimator

in the previous section, $(0) was set to zero; however, examination of equation (5.6)

reveals that the sum of parameters bx and Z>2 cannot be permitted to be equal to zero. An

initial value of 0.5 is arbitrarily selected for the elements of the parameter vector 0(t). If

the parameters b} and b2 should ever go to zero during the simulation, the program is

designed to change the control law to be:

w(Z) = u(t-1)

to ensure controller stability until the parameters return to acceptable values. Since the

open-loop trials yielded the best results with the forgetting factor^ = 0.95, 2 was also set

at 0.95 for this simulation. The results of a 500 sample simulation may be seen in Figure

67.

160

H Plant Output
A ft LV

ft._____ k_____If V f

r r

« Control Output
<1 „

-

a L L_____

______________ _______________

y(t) 2.0

1.0

0.0

-1.0

-2.0

u(t) 2.0

1.0

0.0

-1.0

-2.0

0 100 200 300 400 500
t

Figure 67. Plant and control outputs of second-order SSTC controller with 2 = 0.95

After only two or three cycles of the reference input, the controller has tuned itself to the

point where the overshoot of the plant output is less than 10% and the settling time is less

than 10 seconds. The optimal solution of Figure 66 yielded an output with no overshoot;

however, the overshoot observed in Figure 67 is attributed to modeling error due to a lack

of a persistently exciting input to the plant, since the only excitation in this case is the

change in the reference input. At t = 250, the overshoot significantly increases. The

reason for this can be seen in the behavior of the elements of the resultant parameter

vector shown in Figure 68. The parameters appear to have converged at around t - 100.

Subsequently, the estimates make relatively large changes each time the reference input is

cycled. Again, this is attributed to the lack of excitation to the plant and the forgetting

factor 2 being set to heavily weight the most recent data to the estimator. The simulation

indicates that the forgetting factor X needs to be set higher to make the estimator less

sensitive to sudden changes in the reference input.

161

Figure 68. Estimated plant parameters for second-order SSTC with 2 = 0.95

In the deterministic case, the parameter error represents the modeling error of

the estimated plant versus the true plant. The parameter error s(t) for the simulation

above is shown in Figure 69. The parameter error eventually converges to zero when the

plant output is in steady-state following each change in the reference input. s(t) jumps to

higher levels, however, during changes in the reference input. This indicates that the

estimated model is accurate at low frequencies, but is less accurate at higher frequencies.

Since the plant is only excited every 50 samples when the reference input changes signs,

the model tends to be biased toward the lower frequencies.

The behavior of the information and covariance matrices U(Z) and D(Z) for the

simulation may be seen in Figures 70 and 71, respectively.

162

Figure 69. Parameter error for second-order SSTC with 2 = 0.95

Figure 70. U(Z)for second-order SSTC with 2 = 0.95

163

Figure 71. D(Z)for second-order SSTC with 2 = 0.95

The elements of U(Z) remain bounded as predicted. The tendency of the covariance

matrix D(Z) to become singular when the plant is not sufficiently excited was discussed in

Chapter 4. One of the difficulties encountered in closed-loop estimation when employing

a forgetting factor is that the covariance matrix P(Z) (or in this case, U(Z)D(Z)Ur(Z)) is

governed by the relationship:
P(Z-l)

P(Z) = (5.7)
A

when no new information is contained in the measurements. The exponential effect of

equation (5.7) is seen in the elements of D(Z). Covariance resetting has been

incorporated into the SSTC algorithm to reset U(Z) and D(Z) to U(0) and D(0) when

D(Z) reaches the limit Dmax = 105. The elements of the estimator gain matrix L(Z) are

plotted in Figure 72.

164

Figure 72. L(Z) for second-order SSTC with 2 = 0.95

The estimator gains achieve very small values (less than 0.05) in a few samples,

demonstrating the rapid convergence rate of the U-D RLS algorithm. When the

parameters diverge at around 150 samples, the gains become large during the transients as

the estimator attempts to minimize s(t).

The first simulations indicate that the second-order SSTC algorithm functions as

predicted. The U-D RLS estimator yields suboptimal, yet reasonable parameters when

operating on a plant in closed-loop, even though the input is not persistently exciting, thus

allowing the SSTC controller to generate a control law that performs acceptably.

Covariance resetting also prevents the covariance matrix from generating an overflow

condition in the computations. Although a forgetting factor 2 of 0.95 produced excellent

results in the open-loop trials run previously, it seems to cause the estimated parameters to

be overly sensitive when the only source of excitation to the plant is an occasional change

in the reference input.

165

L A
Plant Output

A....................A

If V If f

To test this hypothesis, the forgetting factor is set to 0.99 and the simulation is run

again with all of the other parameters remaining the same as before. The resulting plant

and controller outputs are shown in Figure 73.

y(t)

1.0

0.0

-1.0

-2.0

u(t) 2.0

1.0

0.0

-1.0

-2.0
0 100 200 300 400 500

t

I. Control Output

.........................

A.
r

_ ______________ ______________

Figure 73. Plant and control outputs of second-order SSTC controller with 2 = 0.99

The plant output with 2 = 0.99 is more stable than the output with 2 = 0.95; however, the

simulation with 2 = 0.95 produces a better step response, at least until the parameters

diverge. Step responses obtained with 2 = 0.99 and 2 = 0.95 are shown in Figures 74 and

75, respectively.

166

Figure 74. 2nd-order SSTC step with 2 — 0.99 Figure 75. 2nd-order SSTC step with X = 0.95

The overshoot and the settling time in Figure 75 is less than that of Figure 74. On the

other hand, the response with 2 = 0.95 begins to degrade in the next cycle after the

response depicted in Figure 75, whereas, after the tuning-in period, the response with

2 = 0.99 remains virtually unchanged for the full 500 samples.

A graph of the estimated parameters for the simulation with 2 = 0.99 is shown in

Figure 76. The averaging effect of the larger forgetting factor is evident in the figure.

Although the parameter jumps at the changes in the reference input are still evident, they

are much smaller and the parameters are significantly more stable than with 2 = 0.95. The

averaging effect of the larger forgetting factor, however, somewhat limits the accuracy of

the estimates.

In the absence of a persistently exciting input to the plant, the estimated

parameters have been shown to be prone to drift. The value of the forgetting factor that

produces the best results in the open-loop trials is less suitable when the estimation is

performed on a closed-loop plant assuming a second-order plant model. The parameters

do converge rapidly, but then drift as the level of excitation to the plant input decreases as

the control output stabilizes.

167

Figure 76. Estimated parameters for 2nd-order SSTC with 2 = 0.99

To investigate the effect of the model order of the estimated plant on the

performance of the controller, several trials are run assuming higher order plant models.

All other parameters are kept the same as the previous tests. The results of the

simulations are shown in Figures 77 through 80. In each of the figures, the output remains

stable for the duration of the simulation. As the assumed model order is increased, the

overshoot decreases and the settling time increases as the output becomes more damped.

This is seen more clearly in Figure 81, which shows an enlarged view of the outputs of the

simulation taken at t = 200.

168

y(t)
2.0
1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

Plant Output assuming 2nd Order Model

ft ___ .
V 1

L 1H

100 200 300 4000 500
t

Figure 78. Plant output for 5th-order modelFigure 77. Plant output for 2nd-order model

Figure 79. Plant output for 9th-order model Figure 80. Plant output for 15th-order model

Figure 81. Effect of higher model orders on output response

169

Figure 81 reveals how increasing the assumed model order affects, and can even improve,

the performance of the adaptive system. It also indicates that a higher order model is not

a substitute for a persistently exciting input signal. Increasing the model order can

improve system performance to a degree. However, too high a model order requires extra

computational effort for little or no improvement in performance, and can actually

adversely affect system performance in closed-loop estimation.

It is also revealing to examine the locations of the poles and zeros of the estimates

of the models of different orders. The values of the parameters at t = 200 are selected and

the locations of the poles and zeros of the true plant, the second order model and the

fifteenth-order model are plotted in Figures 82, 83 and 84, respectively.

Figure 82. Pole-zero locations of true plant

170

Figure 83. Pole-zero locations of second-order model at t = 200

Figure 84. Pole-zero locations of fifteenth-order model at t = 200

The second-order estimate yields two poles and one zero on the real axis, although the

estimated poles and zeros are not near the true pole and zero locations. The fifteenth-

order model, on the other hand, yields poles and zeros positioned symmetrically around

the unit circle, with all but two of the poles (denoted in Figure 84 with the black arrows)

171

being effectively canceled out by a zero. This illustrates how the U-D RLS estimator

responds to overmodeling. The additional poles and zeros from the higher order model

that have little or no bearing on the system response are positioned to effectively cancel

out the effect of one another.

A stochastic assessment

The effect of random disturbances on the SSTC algorithm is examined in this

section. The same plant model is used as in the previous simulations; however, a PRBS is

added to the measurement of the plant output y(t) to approximate zero-mean white noise.

The simulation with 2 = 0.95 is repeated here assuming plant models of orders 2, 3, 5 and

7, and noise with a variance of 0.1 has been added to the measurement signal. The output

responses are plotted in Figures 85, 86, 87 and 88. The ability of the SSTC algorithm to

function well in the presence of a significant amount of noise is evident in the figures. As

with the deterministic case, as the model order is increased, the overshoot decreases and

the settling time increases. Also, as the model order is increased, the SSTC controller

compensates for the noise, as evidenced by the decreasing variability of the plant output

with increasing controller model order. Figure 85 exhibits similar behavior to the noise-

free simulation of the second-order model shown in Figure 77, in that, after the first two

or three cycles of the reference input, the output response somewhat degrades.

Examination of the parameters in Figure 89 reveals why.

172

t t

Figure 85. 2nd-0rder model with noise added Figure 86. 3rd-Order model with noise added

Figure 87. 5th-order model with noise added Figure 88. 7th-order model with noise added

Figure 89 is almost identical to the plot of the parameter estimates for the noise-free case

in Figure 68, indicating that low level noise does not exert a major influence on the

estimates. (Recall that the plant input and output data are pre-filtered through a low pass

filter.) For comparison purposes, the parameters of the third-order model are presented in

Figure 90. The estimated parameters still make sudden jumps in response to the changes

in the reference input, but they are not nearly as severe as with the second-order model.

173

Figure 89. Estimated parameters for 2nd-order model with noise added

Figure 90. Estimated parameters for 3rd-order model with noise added

The SSTC algorithm has been shown to perform well in the presence of low level

noise. In fact, with the estimator data being pre-filtered, the noise seems to make little

174

impact on the controller performance. The simulations have been of fairly short duration,

however. The algorithm is now tested for an extended time period. A second-order

model is assumed for the simulation and zero-mean noise with a variance of 0.1 is added

to the output measurement. 2 is set at 0.95 and the other parameters are set to be the

same as in the previous simulations. (Due to limitations of the plotting package, only

every tenth sample is stored. The transient responses of the output are therefore not

accurately portrayed in the graph.) The results of the simulation are shown in Figure 91.

t

Figure 91. Extended simulation of plant output for 2 = 0.95

The output continues to remain stable even after 10,000 samples with the reference input

changing signs every 50 samples. A graph of the estimated parameters for the test is given

in Figure 92.

175

Figure 92. Extended simulation of parameter estimates for A = 0.95

With the forgetting factor set at 0.95, the parameter estimates behave erratically for the

entire simulation period; however, the output remains stable and under reasonable control

despite the parameter variations.

The same simulation is rerun with 2 = 0.99. The results of the simulation are

shown in Figure 93. As in the previous case, the output remains stable. The estimated

parameters are plotted in Figure 94. The parameter estimates are much less erratic than

those with 2 = 0.95. Although they fluctuate throughout the simulation, the estimates

remain bounded and appear to have converged around some mean values. Comparing

Figure 94 with the noise-free case of Figure 76, the presence of noise destabilizes the

parameter estimates significantly.

176

Figure 93. Extended simulation of plant output for 2 = 0.99

Figure 94. Extended simulation of parameter estimates for 2 = 0.99

177

Controlling bursting with a dead-zone

For the cases investigated so far, the SSTC algorithm has performed well when the

assumed model of the plant is at least as high of an order as the true plant. One of the

conditions for identifiability in a closed-loop system proposed by Isermann (1982) is that

the order and the deadtime of the process to be controlled be known a priori. This is

necessary to ensure that the estimator is of at least as high of an order as the process to be

controlled. The case where the model is of a lower order than the actual plant is examined

in this section. The estimator attempts to identify a second-order plant assuming the first-

order model:

----- 1 I-----------------------

Simulation of SSTC with First-Order
- Model Controlling Second-Order Plant -

- -

- -

- -

For the simulation, the forgetting factor 2 is set to 0.95 and all of the other parameters are

left the same as in the previous simulations. The resultant output of the plant is shown in

Figure 95.
y(t) 500

400

300

200

100

0

-100
Q 500 1000 1500 2000

t

Figure 95. Simulation of first-order SSTC controlling second-order plant

178

The output of Figure 95 is an example of bursting. The same graph is shown at a smaller

scale in Figure 96.

t

Figure 96. Example of bursting with first-order SSTC controller

Although the plant output rapidly achieves a reasonable response, after a few cycles of the

reference input, the response degrades as the parameters drift, as shown in Figure 97.

Eventually, the estimated parameters drift past a stability threshold and the controller can

no longer control the plant. The erratic output during the burst excites the plant input

sufficiently to bring the parameter estimates back to reasonable levels. The plant output

shown in Figure 96, however, appears to be diverging again toward the end of the

simulation. Although bursting can also be caused by other factors, such as allowing D(Z)

to grow too large, the simulation demonstrates the danger of undermodeling, particularly

when attempting closed-loop estimation. This illustrates the necessity for Isermann's

(1982) criterion for closed-loop identification that the model order of the plant to be

identified must be known a priori.

179

Estimate
------------------------- ,p—, ■
1 Parameters for First-Order SSTC with Bursting

ft,
4 -t —t- 4. -4- -4- -L —

- -

- -

- -

0 500 1000 1500 2000

Figure 97. Estimated parameters during bursting with first-order SSTC controller

In Chapter 4, the incorporation of a dead-zone in the parameter estimator was

proposed to deal with the problem of bursting. The dead-zone is designed to shut off the

parameter estimator when the absolute value of the parameter error e(t) remains below a

threshold value for a given number of samples. The estimator reactivates if £■(/) increases

above the threshold for another preset number of samples. The previous simulation is

repeated with a dead-zone incorporated into the algorithm. For this trial, the parameter

threshold is set at ±0.001 with the estimator shut-off time set at 30 samples. The resultant

plant output is shown in Figure 98. With the addition of the dead-zone, the estimator

shuts off at t - 540 when |f(/)| <0.001 for 30 samples. The parameter vector

remains constant thereafter. A magnified view of the parameter error e(t) for the

simulation is shown in Figure 99.

180

y(t) 3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

Plant Output Assuming lst-Order Model with Dead-Zone

0 500 1000 1500
t

Figure 98. Plant output under control of first-order SSTC controller with dead-zone

Figure 99. Magnified view of parameter error with dead-zone enabled

The parameter error e(t) fell below the threshold of 0.001 after the transients decayed

from the change in-the reference input at t = 500. After the estimator shuts off at t = 540,

the steady-state parameter error remains below the threshold of ±0.001 for as long as the

dead zone inhibits the operation of the parameter estimator.

181

5.5 Simulation of the SSTC PID Algorithm

A time-invariant plant assessment

It was noted in Chapter 4 that the SSTC control algorithm could be modified to

conform to a PID-like structure. The control law for the PID version of the SSTC

algorithm was given as:
+a,0~' +<M~:

u(t) = u(t -1) +
(1)[w(0-X0]

which can be expressed as:

u(t) = u(t-Y) +
e(t) + axe(t -1) + a2e(t - 2)

b0
(5.8)

From equation (5.8), it can be seen that three parameters must be estimated for the SSTC

PID algorithm. The SSTC simulation program is modified to accommodate the change in

the estimation algorithm and the revised control law of equation (5.8). A simulation is run

to test the performance of the adaptive PID algorithm. To meet the model order criterion

for identification in a closed-loop, the true plant is modified to be the same order as the

PID estimator. The model of the true plant is described as:
G f -i, = 0.6186173?-1

p{q ' 1-0.3892412^“’+0.0078585^“2

In the simulation, the forgetting factor is set to 2 = 0.95 and the remaining estimator

parameters are set the same as in the previous SSTC simulations. The resultant plant

output is shown in Figure 100.

182

Figure 100. Plant output under SSTC PID control

The results of the first SSTC PID controller simulation are not encouraging. If the

simulation is continued past 1000 samples, the output becomes unstable. The estimated

parameters for the simulation are shown in Figure 101. The parameters exhibit extremely

erratic behavior throughout the simulation. An investigation into the problem revealed

that the instability was caused by the initial values of the elements of the parameter vector,
A.
#(/), which for all of the previous simulations were arbitrarily fixed at 0.5. The control

law expressed in equation (5.8) contains a single term b0 in the denominator of the term on

the right hand side of the equation. Setting bQ (0) to a value less than one causes the

control law to drive the plant into instability, at least in this particular case. (This may not

be true for other plants.)

183

Figure 101. Estimated parameters under SSTC PID control

The initial parameter estimates are changed to 2.0 and the simulation is repeated.

The output of the plant is displayed in Figure 102. The output response is considerably

improved. The controller is able to bring the plant from a highly unstable initial state to a

reasonable level of control in a relatively short time. Although the output is stable after the

parameters have converged, it remains significantly underdamped. A third trial is thus

performed with #(0) = 1.0. The resultant plant and control outputs are shown in Figure

103.

184

Plant Output under SSTC PID Control with (0) =1.0

L_..__ ____

—If

__

y(t) 4.0

3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

-4.0
0 200 400 600 800 1000

t

Figure 102. Plant output under SSTC PID control with 0(0) = 2.0

y(t) 3.0
2.0

1.0

0.0

-1.0

-2.0

-3.0

u(t) 3.0
2.0

1.0

0.0

-1.0

-2.0

-3.0
0 200 400 600 800 1000

t

Figure 103. Plant and control outputs under SSTC PID control with #(0) = 1.0

With $(0) = 1.0, the output adapts within four or five cycles of the reference input. The

tuned response has an overshoot of less than three percent and a settling time between five

and eight seconds, as seen in the magnified view of Figure 104.

185

Figure 104. Tuned step response of SSTC PID control with 0(0) = 1.0

The output response degrades somewhat on the next cycle of the reference input, as seen

in Figure 105.

-2.0

y(t) 2.0

1.5

l.o h

0.5

0.0

-0.5

-1.0

Stablized Response of y(t)
with^f (0) = 1.0

r\
/

1000 1010 1020 1030990 1040
t

Figure 105. Stabilized step response of SSTC PID control with 0(0) = 1.0

A graph of the estimated parameters for the simulation is shown in Figure 106.

186

t

Figure 106. Parameter estimates of SSTC PID control with 0(0) = 1.0

At first glance, it would appear that the degradation of the response from Figure 104 to

Figure 105 is caused by the parameters changing to less optimal values around t = 400.

This seems to violate the nature of the RLS algorithm to cause the parameters to seek the

most optimal values (i.e., those values that produce the minimal parameter error, £•(/)) for

a given level of input excitation. Further investigation revealed, however, that the

response of Figure 105 cannot be reproduced with the parameter values of either Z = 399

or t - 401. Rather, the response of Figure 105 is a transient due to the rapidly changing

parameter vector #(Z) at Z = 400 (with 2 = 0.95) that occurs when the reference input

cycles.

The parameter estimates shown in Figure 106 are also quite different from those of

Figure 101. Their behavior is characteristic of earlier simulations using the regular SSTC

algorithm. They are not erratic as in the previous simulation with $(0) = 0.5 and they

converge to stable steady-state levels. The simulations of the SSTC PID algorithm

187

illustrate the sensitivity of the reduced-order algorithm to the initial value of the parameter

vector, $(/).

A time-varying plant assessment

In the previous section, the plant model was assumed to be time-invariant. In a

practical sense, the SSTC PID algorithm must be tested when the true plant parameters

are time-varying. To test the ability of the SSTC PID algorithm to track a linear time-

varying plant, an 1800 sample simulation, where the parameters of the true plant are

changed at t = 900, is evaluated. The following two plant models were selected to

represent the true plant:
.5Z'1

G2(z-')

(5.9a)

,7z-1
1—.5z-'+.2z-2

(5.9b)

The magnitude plots of the two models are given in Figure 107.

Figure 107. Magnitude responses of true plants G, (z_1) and G2(z-1)

188

In the simulation, the true plant is G,(z 1) for 0 < t < 900 and G2(z 1) for 900 < t < 1800.

The forgetting factor A is maintained at 0.95 and the other controller parameters are kept

the same as in the previous simulations. The resulting plant output y(t) and the controller

output u(t) are shown in Figures 108 and 109, respectively.

Figure 108. Output of time-varying plant under SSTC PID control

Figure 109. Output of SSTC PID controller with time-varying plant

In simulation, the controller has converged and the plant output has stabilized at about

t = 500. When the true plant changes from Gx(z~x) to G2(z_1) at t = 900, the plant

189

-

——----- —

K

—----------------------- ,------- -...----- 1------------
Plant Output atTransition of True Plant

L L______
r

1/
r r If

_______ _______ _______ —

L
Controller Output at Transition
of True Plant

IV-----

r IT-----
—True plant changes from

GiCz'1) to at t =900

r

output reacts with a large overshoot for one cycle. By the next cycle of the reference

input, the plant output is back under control. A close-up view at the point of transition

between plant parameters is shown in Figure 110. The controller rapidly adapts to the

change in plant parameters at t = 900.

y(t) 3.0
2.0

1.0

0.0

-1.0
-2.0
-3.0

u(t) 3.0

2.0

1.0

0.0

-1.0
-2.0
-3.0

700 800 900 1000 1100 t

Figure 110. Plant and controller outputs at time of transition of plant parameters

The estimated parameters for the simulation are plotted in Figure 111. With the

forgetting factor 2 set to 0.95, the parameters converge to new values in a few samples

after the plant changes. It is generally assumed that the plant parameters vary slowly in

relation to the plant dynamics. In that case, the forgetting factor could be set to a larger

value and still be able to track the parameter variations in the plant.

190

Figure 111. Estimated parameters for SSTC PID control of time-varying plant

Next, the SSTC PID algorithm is tested in the presence of noise. The previous

simulation is repeated with zero-mean noise with a variance of 0.075 added to the system.

The plant output resulting from the simulation is shown in Figure 112.

Figure 112. Simulation of SSTC PID controller with added noise

191

The system behaves satisfactorily at relatively low noise levels. In testing performed at

higher noise levels, however, the output becomes unstable after the plant is changed from

G, (z_1) to G2 (z-1).

An assessment of the SSTC PID disturbance rejection capability

The simulations performed so far have focused on the servo tracking ability of the

SSTC PID controller and have assumed that the reference input is changing at regular

intervals. In the next (and final) set of simulations, the regulation capability of the SSTC

PID controller is tested. The SSTC PID program is modified to allow the reference input

to cycle a predetermined number of times in order to allow the controller to tune itself to

the plant. The reference input is then held constant and three separate d.c. disturbances

are added to the plant. The forgetting factor 2 is set to 0.95 and all of the other

controller parameters are set the same as the previous simulations. The plant is assumed

to be time-invariant in this case and is the same model used previously, given as:
0.61861737"’

(5.10)
l-0.38924127"’+0.00785857"2

The results of the first simulation are shown in Figure 113.

The controller adapts to the plant by approximately t = 400 when the reference

input is held constant. The controller removes the first offset of -0.25 at t = 500 without

difficulty; however, shortly after that, the output destabilizes. When the second

disturbance of +0.25 is encountered at t = 700, the output becomes oscillatory up through

the third disturbance of -0.25 at t - 900, after which it stabilizes again. The parameter

estimates for the simulation are shown in Figure 114.

192

X02.0

1.0

0.0

-1.0

-2.0
w(X)3.0

2.0

1.0

0.0

-1.0

-2.0

-3.0

i —

ri

|/v-

P

200

rn

Plant Output with d.c. disturbances:

-0.25 at Z= 500
+0.25 at f= 700
-0.25 at t= 900

Control Output with d.c. disturbances:
-0.25 at t= 500

+0.25 at t= 700
-0.25 at 900

400 600 800 1000 1200

t

Figure 113. Disturbance rejection capability of the SSTC PID algorithm

1200
t

Figure 114. Response of parameter estimates to D.C. load disturbances

193

Figure 114 reveals why the behavior of the plant output is so erratic. When the d.c.

disturbance of -0.25 is introduced at t - 500, the estimator is no longer receiving accurate

information about the dynamics of the plant and, consequently, produces biased estimates.

The biased estimates lead to errant controller parameters resulting in poor system

performance. One possible solution to the problem is to incorporate a dead-zone into the

estimation algorithm. The simulation just run is repeated with the dead-zone enabled.

The dead-zone is adjusted so the estimator shuts off when:

|^(/)| < 0.002 for 25 samples

and the estimator reactivates if:

|s(Z)| > 0.002 for 250 samples.

The plant and controller outputs with the dead-zone incorporated into the estimation

algorithm are shown in Figure 115.

Figure 115. Plant and controller outputs with dead-zone activated

194

The dead zone disables the estimator at t = 387 when the parameter error e(t) drops

below the threshold value of 0.002 for 25 samples. The controller compensates for the

first disturbance of -0.25 at Z = 500 and the second disturbance of +0.25 at t - 700. In

order to allow the estimator to track time-varying parameters, however, the estimator

must be reactivated if s(t) grows too large. As seen in Figure 115, the estimator is

reactivated at t = 750. By the time the third offset of -0.25 is imposed on the output, the

estimator has been reactivated and is producing biased estimates due to the load

disturbance, resulting in the unstable output at Z = 900.

Although the dead-zone provides a temporary solution to the disturbance rejection

problem by disabling the estimator when the error is small, a disturbance on the output

may produce a large enough error to reactivate the estimator. The presence of the

disturbance will then lead to biased parameter estimates. In Chapter 4, it was suggested to

prefilter the estimator data to remove low frequency disturbances. A first-order high pass

filter is therefore combined with the low pass filter given in equation (5.5) to form a band

pass filter with the transfer function:
„ z 0.6018139+ 0.601814z ‘-0.601814z~2 - 0.6018139z-3
HBP (Z) =---------------- ;-------------9------------- a--- (5.11)' l + 0.2l8625lz’’-0.6l2l637z~2 -0.3657355z-3

The magnitude plot of the transfer function given in equation (5.11), along with the

magnitude plot of the true plant described in equation (5.10), is shown in Figure 116. The

band-pass filter rejects frequencies outside the band ranging from co = 0.1 to n rad I sec.

The previous simulation is repeated with the dead-zone enabled, but this time the data to

the estimator is prefiltered through HBP (z~l). The resultant plant and controller outputs

are shown in Figure 117.

195

co (rad/sec)

Figure 116. Magnitude responses of plant and band pass filter

t

Figure 117. SSTC PID control with dead-zone and band-pass filter

196

Prefiltering the estimator data through HBP (z~]) solves the disturbance problem by

preventing the estimator from reacting to the disturbances. It has also improved the

response of the controller in general, which can be seen in more detail in Figure 118.

Figure 118. Magnified SSTC PID controlled plant with dead-zone and band-pass filter

The response of the plant output is significantly improved over the previous simulations.

The controller adapts much more quickly than before and the step response exhibits less

overshoot. A plot of the parameter vector is shown in Figure 119. Unlike the parameter

estimates from the previous simulations, the estimates remain nearly constant after the

initial adaptation period. The dead-zone disables the estimator when |fi(/)| < 0.002 for 25

samples, and the band-pass filter removes the d.c. disturbances before the estimator can

reactivate. The effect of the filter on the input and output data is seen in Figure 120.

197

0(t) 1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

T--------------1--------------1--------------r-... "i"
Parameter Estimates Using Prefiltered Data

zs
bn

0 (t) with d.c. disturbances of:
-0.25 at t = 500
+0.25 at t = 700
-0.25 at t = 900

-0.4

-0.6
0 200 400 600 800 1000 1200

t

Figure 119. Estimated parameters for controller with dead-zone and prefiltering

Figure 120. Prefiltered input and output signals to estimator

198

The filtered input and output signals shown in Figure 120 hardly resemble the unfiltered

signals shown in Figure 117 since the low frequency content of the signals has been

removed. The filtered signals do, however, contain the frequency information that the

U-D RLS algorithm requires to develop a reasonable model of the plant. The band-pass

filter removes the d.c. disturbances from the data before the parameter error is able to

reactivate the estimator. The turn on time of the dead-zone must be set to be longer than

the settling time of the filter in order to give the filter time to remove the disturbances.

Combining the band-pass filter with the dead-zone provides an effective

mechanism for dealing with low frequency disturbances, at least in the deterministic case.

In the final simulation of this chapter, the adaptive PID controller including the dead-zone

and the estimator data filter is tested in the presence of noise. The results of the

simulation are shown in Figure 121.

1200

Controller Output with Added Noise

MWW J
WWW#

u(t) 3.0

2.0

1.0

0.0

-1.0

-2.0

3*#

200 400 600 800 1000 1200

I

Figure 121. Plant input and output under SSTC PID Control with added noise

199

The noise injected into the system has negligible effects on the performance of the SSTC

PID controller. The controller is able to adapt to the plant very rapidly, after only one or

two cycles of the reference input. The controller also exhibits good setpoint tracking and

disturbance rejection capabilities.

5.6 Chapter Summary

In this chapter, the SSTC PID controller has demonstrated both the ability to track

a reference input and to regulate a steady-state output. The key to the operation of the

SSTC PID controller is the U-D RLS estimation algorithm, which was tested first. The

algorithm was tested in open-loop with the input to the plant being excited by a pseudo­

random binary sequence. The PRBS was shown to meet the criteria for persistent

excitation and proved to be easily implemented in software. The U-D RLS algorithm

demonstrated the ability to produce accurate plant models when the plant input was

sufficiently rich in frequency content. To track time-varying parameters, the U-D RLS

algorithm employed a forgetting factor to weigh the more recent estimator data more

heavily than the older data. The effect of the forgetting factor on parameter convergence

was tested and analyzed. The estimation algorithm was also tested in the presence of

higher frequency noise, which produced biased parameter estimates. A digital

implementation of a second-order Butterworth low pass filter was added to the estimation

algorithm to filter out the noise before the data was passed to the estimation algorithm,

improving the accuracy of the estimated plant model.

The U-D-RLS algorithm was combined with the SSTC control law design

mechanism to produce the Simplified Self-Tuning Controller proposed by Warwick,

Karam and Tham (1987). The control law design mechanism was tested first by disabling

the estimator and fixing the values of the estimator parameter vector $(/) to equal the

200

known actual values of the true plant. Simulations showed that the control law functioned

as predicted when the parameter estimates were equal to the true plant parameters. The

estimator was then activated and the completed SSTC controller was tested in closed-loop

with a second-order plant. Assuming a second-order model in the controller, the

controller functioned well; however, the optimum response obtained in the test with fixed

estimates could not be duplicated. With the excitation to the plant being a square wave on

the reference input, the plant was not sufficiently excited to allow the estimator to produce

an unbiased model of the plant. With the forgetting factor set to a relatively low value

(0.95), the parameters converged rapidly, but tended to drift and were susceptible to

noise. Larger values of 2 produced more stable estimates at the expense of somewhat

reduced accuracy.

Next, the effect of using higher order models in the controller algorithm was

tested. The same second-order plant was tested with SSTC model orders ranging from

two to fifteen. The higher order models generated less overshoot in the output of the

plant, but tended to increase the settling time. Also, the locations of the poles and zeros

of the higher order models were examined. Higher order models tended to create poles

and zeros that canceled out the effect of one another. The SSTC controller performance

was evaluated for an extended time period. In a 10,000 sample simulation, the controller

remained stable, with or without noise in the system. It was demonstrated, however, that

a larger forgetting factor produced more stable parameter estimates in extended

simulations. The effect of undermodeling was also tested. A second-order plant was

controlled using a first-order model in the SSTC algorithm. The simulation results

demonstrated how undermodeling can lead to bursting in the plant output. A dead-zone

was incorporated into the algorithm to shut off the estimator when the parameter error

converged to a relatively small value. The dead-zone eliminated bursting in the output.

201

The control law of the SSTC algorithm was constrained to conform to a PED-like

structure. The PID version of the SSTC controller required that only three parameters be

estimated by the U-D RLS algorithm. When the SSTC PID algorithm was tested using

the same values of the controller parameters used in the regular SSTC controller, the PID

version of the algorithm became unstable. It was discovered that the SSTC PID algorithm

exhibited significant sensitivity to the initial values of the parameter vector Q(t) that was

not observed in the regular SSTC algorithm. Acceptable results were finally obtained by

setting #(0) to be equal to 1.0. The ability of the SSTC PID algorithm to track time-

varying parameters was also tested. The simulation was performed by changing the values

of the parameters of the true plant in the middle of the test. The SSTC PID controller was

able to quickly respond to the sudden change in the plant parameters with minimal

disruption in the plant output.

The ability of the SSTC PID controller to provide disturbance rejection was also

tested. In the simulations performed, the reference input to the controller was cycled a

few times to allow the controller to tune itself to the plant. The reference input was then

held constant while three d.c. disturbances were imposed on the plant output. The

addition of the first disturbance caused the estimator to produce biased estimates which

caused a significant amount of instability in the plant output. A dead-zone was used to

shut off the estimator when the parameter error fell below a threshold value for a

predetermined number of samples. However, the d.c. disturbances caused the parameter

error to increase to the point where the estimator was reactivated, again generating biased

estimates. A first-order high pass filter was added to eliminate the low frequency

disturbances from the estimator data. The filter eliminated the level disturbances before

the estimator was reactivated, allowing a constant steady-state output to be maintained.

The disturbance rejection capability of the controller was also tested in the presence of

202

low level, high frequency noise, and the adaptive PID controller was able to function

without difficulty.

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Project Overview

The objective of the work presented in this paper was to design an adaptive PID

controller for implementation on the Motorola DSP56000. In Chapter 2, the concept of

PID control was first examined from a continuous-time perspective. The classical PID

algorithm was developed and some of the difficulties encountered with the classical form

of the algorithm were explained. The derivative-of-output PID model was presented as an

alternative to classical algorithm. A practical discrete-time PID algorithm was then

developed from the continuous-time derivative-of-output model. Several important PID

control design methods were also examined, including both empirical and model-based

design techniques.

The discrete-time algorithm was implemented in Motorola DSP56000 assembly

language and tested. The test results were reported in Chapter 3. The idea of using a DSP

chip for control was examined and an overview of the DSP56000 architecture and

instruction set was presented. The DSP56000-based PID control algorithm was then

tested in the laboratory. A Motorola ADS56000 development system was connected to

an Intel 80386-based computer via a National Instruments AT-MIO-16 analog I/O board.

203

204

The personal computer served as the plant for real-time testing of the PID controller. The

DSP56000-based controller functioned as expected in all of the tests performed.

The development of an adaptive PID control algorithm was presented in Chapter

4. A recursive least-squares algorithm based on Bierman's (1977) U-D Cofactorization

method was selected for the parameter estimator. The parametric estimation algorithm

incorporated a forgetting factor for tracking linear time-varying plants and covariance

resetting was used to mitigate the problem of estimator wind-up. The algorithm also

employed a dead-zone to prevent the parameter estimates from drifting if the plant input

ceased to be persistently exciting. Achieving a persistently exciting input proved to be a

problem when the estimation was performed on a plant operating in a closed-loop, which

was the case when the U-D RLS algorithm was used as part of an adaptive controller.

The U-D RLS algorithm was combined with a pole-cancellation control law design

scheme to form the Simplified Self-Tuning Controller proposed by Warwick, et. al.

(1987). The control law of the SSTC algorithm was modified to conform to a PID

controller structure by constraining the plant model to a specific second-order model. An

alternative control law design based on a pole-placement technique was also presented in

Chapter 4.

In Chapter 5, the SSTC adaptive control algorithm was simulated. The U-D RLS

algorithm was first tested in open-loop. A discrete-time version of a second-order

Butterworth filter was incorporated into the algorithm to deal with biased parameter

estimates caused by high frequency noise. The U-D RLS algorithm produced accurate

models when the input to the plant was persistently exciting, even in the presence of low

level noise, provided the signals to the estimator were prefiltered. The U-D RLS

algorithm was then combined with the SSTC control law design mechanism to form an

adaptive controller. Several important aspects of the SSTC algorithm were tested,

including the effect of the forgetting factor on the convergence rate of the parameter

205

estimates and the performance of the algorithm assuming high model orders. Bursting

was also observed in an investigation of undermodeling. The SSTC algorithm performed

well in simulation, even when the plant input was not persistently excited.

The SSTC algorithm was then modified to form an adaptive PID controller. The

SSTC PID controller was able to track time-varying parameters and performed well in

both servo tracking and regulation simulations. Some difficulties were manifested in the

PID version of the SSTC algorithm, however, that were not evident in the regular SSTC

algorithm. The SSTC PID algorithm exhibited sensitivity to the initial values of the

parameter vector whereas #(0) seemed to have a negligible effect on the regular

SSTC algorithm. The SSTC PID controller also reacted poorly to a series of constant

load disturbances on the output until a high-pass filter was incorporated into the

algorithm. The high-pass filter eliminated the load disturbance effects from the estimator

data allowing the adaptive controller to maintain control of the plant. Although a number

of difficulties were encountered, in general, the simulations in Chapter 5 proved the SSTC

PID algorithm to be functional when applied within the prescribed limitations of the

algorithm.

In this chapter, some conclusions are drawn based on the results of the preceding

chapters. Some issues regarding the performance of the real-time testing of the normal

PID algorithm on the DSP56000 are discussed. After that, performance issues related to

the U-D RLS estimation algorithm are considered. The practical viability of the SSTC

PID algorithm is then examined. Issues regarding the implementation of an adaptive PID

control algorithm on the DSP56000 are also reviewed, and finally, recommendations for

future work are presented.

206

6.2 Real-Time Testing of the Regular PID Algorithm

A practical discrete-time PID algorithm was developed and implemented on the

Motorola DSP56000. The performance of the DSP56000-based PID controller was

tested in real-time using two different sets of controller parameters. When the controller

was tested with parameters obtained using the Ziegler-Nichols (1942) frequency response

method, the response of the plant output was generally underdamped. The Ziegler-

Nichols (1942) experiment yielded continuous-time parameters were discretized for use in

the DSP56000. In Chapter 2, the discretized derivative term was determined to be:

D(k) = dQD(k -1) + rf, [X* -1) - X*)] (61)
with the coefficients dQ and J, given as:

2T̂--1
AT
2T ,------ h 1
AT

and
2ATrfN
NT + 2T/d0 =

A disadvantage of using the bilinear transform on the derivative term is that as the

continuous-time coefficient Td —» 0, the discrete-time coefficients </0 —> — 1 and —» 0.

For small Td., this produces a ringing effect on the output as equation (6.1) reduces to:

D(£) = -£>(£-!).

From the Ziegler-Nichols (1942) experiment, the continuous-time derivative term was

determined to be Td =0.0910176. The response of the plant output was significantly

improved when the controller was tested using parameters from Hagglund and Astrom's

(1985) auto-tuner simulation, which provided a larger derivative term of Td = 0.123. Even

though the plant response was improved in the second trial, Hagglund and Astrom's

(1985) results could not be duplicated. This is due to the fact that Hagglund and Astrom's

continuous-time plant model was discretized using a zero-order hold equivalent for the

real-time tests of Chapter 3. A significant phase lag was therefore introduced in the

207

discrete-time model of the plant which led to a plant response with slightly more

overshoot than experienced by Hagglund and Astrom (1985). The tests in Chapter 3 did

demonstrate, however, that the DSP56000-based PID algorithm functioned as designed.

6.3 Performance of the U-D RLS Algorithm

In the simulations of Chapter 5, the U-D RLS algorithm produced accurate models

when the identification was executed on an open-loop plant with a persistently exciting

input. The estimated models were almost indistinguishable from the true plant in terms of

frequency response. When the identification was attempted on the plant operating in a

closed-loop configuration with a feedback controller, however, the resulting parameter

estimates were biased, causing the controller to perform at suboptimal levels. One of

Hermann's (1982) criteria for identifiability in the closed-loop case is that the order of the

denominator of the controller transfer function must be greater than or equal to the order

of the numerator and denominator of the plant model in order to eliminate the linear

dependence between the input and output signals. Although this criterion was met in

simulations of both the SSTC algorithm and the SSTC PID algorithm, the U-D RLS

algorithm still produced biased estimates when operating in a closed-loop scenario. The

estimated models were sufficiently close to the actual plant, however, to allow the

controller to bring the plant to a reasonable level of control in most of the cases studied.

Stability in a self-tuning controller can only be guaranteed if the estimated

parameters eventually converge to reasonable values. According to Kumar (1990), for a

self-tuning controller utilizing a recursive least-squares algorithm, this condition can only

be guaranteed if the system is strictly minimum phase and if the system is externally

perturbed with Gaussian white noise of sufficient magnitude. The plants studied in

Chapter 5 met the criterion of being strictly minimum phase, but no noise was added to the

208

plant input. Of the simulations run in Chapter 5, the output remained stable in all but three

of the cases. In the first case, the output became unstable when the initial value of the

parameter vector 6(t) was set to 0.5. In the second case, the output became unstable

when the SSTC PID algorithm attempted to control a plant of a higher order than the

assumed model. In the third case, the output was driven into instability when certain high

pass filter designs were attempted. In each case, the instability was not caused by a failure

of the control law, but rather by the failure of the estimator to produce estimates that

converged to reasonable values. In the disturbance rejection simulations where the

reference input was held constant after an initial tuning-in period, the only excitation to the

plant was the presence of disturbances on the output fed back through the controller. If

Kumar's (1990) assertions are correct, if the random disturbances on the output do not

sufficiently excite the plant, global stability cannot be assumed without the addition of an

external perturbation on the plant input. The potential use of additive noise is a subject to

be considered for future work . Some questions that remain to be answered are:

1. What should be the spectral qualities and the magnitude of the additive noise?

2. What effect will additive noise have on estimate biasing?

3. What are the limitations for which global convergence can be assumed, even

when additive noise is used?

Another estimation issue to be considered is the use of the dead-zone to solve the

problem of drifting parameters, particularly once the output has stabilized in the regulation

case. The parameter error represents the effect of modeling error plus the effect of

random disturbances. Since the dead-zone is configured to disable the estimator when the

parameter error drops below a threshold value, when noise is present in the system, the

threshold must be set to a level higher than the noise floor. The determination of an

209

appropriate threshold value is therefore significantly more difficult with noise present on

the output. If the threshold value is set too high, the estimator is disabled before the

parameter estimates have converged, resulting in suboptimal controller performance. If,

on the other hand, the threshold value is set too low, the estimator never shuts off and the

parameters may drift. The noise level must therefore be determined a priori to properly

fix the level of the shut-off threshold. Even if the dead-zone threshold is properly adjusted

initially, it would have to be readjusted if the noise level changes significantly. Hysteresis

may also be required in the dead-zone to prevent the estimator from prematurely

reactivating if an impulse occurs in the parameter error (as takes place with a sudden

change in the reference input or with a load disturbance). In Chapter 5, a time window

was utilized to filter out such impulses. The time window allowed the parameter error

transients to decay before the estimator was reactivated.

Selection of the dead-zone thresholds in Chapter 5 was accomplished through

extensive trial-and-error attempts in numerous simulations. Even in a simulation

environment where the behavior of the noise was carefully controlled, establishment of

appropriate threshold values proved to be a time-consuming task. Reiterating the

assertions of Rey and Johnson (1990), ”... in order for leakage and dead-zones to be

effective in the avoidance of bursting and preservation of stability, they must be properly

tuned. Further, our current understanding about them is not sufficient even to assert in

actual implementation whether they are appropriately tuned." Middleton and Goodwin

(1990), however, present the dead-zone as a viable solution to avoid potentially

"catastrophic behavior in the presence of undermodeling and poor excitation." The use of

the dead-zone as a solution to the problem of bursting remains controversial. At this time,

however, it appears to be one of the better solutions for addressing the problems of

undermodeling and lack of persistent excitation.

210

Another important issue is the necessity of prefiltering the estimator data to

remove low frequency disturbances from the parameter vector to prevent biased estimates.

Several methods have been proposed in the literature for removing level disturbances from

the estimator data (see Isermann, 1982), one of which is the use of a high-pass filter. In

the simulation in Chapter 5, the estimator data was prefiltered using a first-order high-pass

filter with a cutoff frequency of 0.1 rad/sec. A number of other filters, with cut-off

frequencies as low as 0.0001 rad/sec and of order as high as 8, were also attempted, the

results of which were not included in the discussion. Two problems were encountered

that precluded the use of the other filters. The first problem was that when very low cut­

off frequencies were attempted (e.g., coc =.0001 or a>c =.001), small filter coefficients led

to numerical difficulties in the calculations. The other difficulty encountered was the

inability of estimator to identify the plant when the alternative filters were attempted. The

exact explanation for this is not known at this time. In any case, for the filters to be

properly designed, the frequency response of the plant must be known a priori. Further

study of the effect of prefiltering of the estimator data is another topic for future work.

One positive observation from the simulations of Chapter 5 is that the U-D RLS

algorithm proved to be numerically robust. In all of the simulations performed, no

computational problems occurred (i.e., singularity of the information and covariance

matrices) that could be attributed to numerical difficulties with the U-D RLS algorithm.

6.4 Performance of the SSTC PID Controller

Another issue brought to light in the simulations of Chapter 5 is the sensitivity of

the PID version of the SSTC algorithm to the initial value of the parameter vector 0(t).

The selection of #(0) has little effect on the general SSTC algorithm. When the control

law is changed from:

211

<')*(<) ' B(g-)»(f-rf)
B(l) B(l)

to:

«(<) =
»(<-l)+(l+a,g-’ +a2g~2)e(Q,

*o
(6.2)

the selection of fl(0) becomes critical. Improper selection of Z>0(0) drives the plant into

instability before the estimator has an opportunity to generate a reasonable estimate of the

parameter. Although the algorithm functioned when bo(O) was set to 1.0, it is not known

whether this value for Z>0(0) is appropriate for other plants. The problem was never

observed in simulations where the order of the numerator and the order of the

denominator of the control law were the same, even when a first-order plant model was

assumed. Further investigation into the selection of $(0) is therefore recommended.

The PID version of the SSTC algorithm is derived by placing certain constraints on

the general SSTC algorithm. While the regular SSTC control law allows for models of

any order to be assumed, the PID version of the algorithm assumes a specific second-

order plant model, given as:

GAg-') = l + a,q~'+a2q
(6.3)-r? ■

The model of equation (6.3) can be derived from a continuous-time plant given as:

c2s +cxs + c0

using the backward difference transformation and assuming a time delay of 1 sample.

Although it is not uncommon to assume a reduced-order plant model when employing

PID control, constraining the plant to fit the model of equation (6.3) severely limits the

application of the SSTC PID algorithm. In addition to the model order, the PID version

of the SSTC algorithm assumes a delay time of one sample. Several unsuccessful

simulations were attempted assuming the controller model of equation (6.3) with a plant

having a transfer function with a second-order numerator. (The algorithm was not tested

212

using plants with longer timer delays.) It appears, therefore, that the plant must be able to

be accurately modeled by equation (6.3) for the SSTC PID algorithm to function properly.

Another factor potentially limiting the application of both the regular SSTC

algorithm and the PID version of the SSTC algorithm is that the designer cannot adjust the

controller to modify the dynamic response of the plant. As mentioned previously, the

deadbeat-like control strategy used by the SSTC family of algorithms inherently fixes the

response of the plant output for a given set of parameters. In simulation, the output

typically exhibited some degree of overshoot as a result of modeling error in the closed-

loop estimation. Although the basic SSTC strategy provides no opportunity to design the

response to eliminate the overshoot, Warwick, et. al. (1987) present a pole-placement

version of the algorithm that allows the response of the reference input to be defined by

selection of target locations of the closed-loop system poles. The SSTC pole-placement

algorithm, however, does not conform to a PID-like structure. The pole-placement

algorithm presented in Chapter 4 offers the ability to select the locations of the closed-

loop system poles while conforming to a standard PID controller model.

6.5 Implementation of Adaptive PID on the DSP56000

The implementation of the PID controller in Chapter 3 and the simulation of the

adaptive PID controller in Chapter 5 indicate that implementation of an adaptive PID

controller on the Motorola DSP56000 is quite possible. Several issues remain to be

addressed, however, before the adaptive PID control algorithm can be implemented. In

the proposed adaptive PID control algorithms, the uncertainties of the estimated

parameters were ignored by applying the certainty equivalence principle. In order to

prevent computational overflow and underflow in the DSP56000, the maximum values of

the estimated plant parameters must be estimated a priori to ensure that they remain

213

bounded. Since the DSP56000 uses fractional arithmetic, the bounds on the estimated

parameters must be normalized. Experiences from Chapter 5 indicate that the parameter

estimates generally remain less than one. There were occasions, however, when the

parameters diverged to much larger values. When the parameter estimates are scaled, the

question of word length becomes an issue, as available bits in the word are used up in the

scaling process. Parameter estimates can become quite small if higher order models are

assumed. Parameter scaling not only introduces the increased potential for modeling

error, but it also increases the risk of singularity of the covariance matrix, as less bits

become available for the computations. Tan and Kyriakopoulos (1988) recommend

simulation of the algorithm over a wide range of operating conditions on a large word-

length general-purpose computer using floating-point arithmetic to determine the proper

scaling factors for the variables. Ideally, however, the range of the parameters should be

determined statistically using Monte Carlo simulations.

The simulations of Chapter 5 demonstrated that adaptive control can work well if

all of the theoretical pre-conditions are met and if all of the design parameters are properly

selected. In the real world, however, pre-conditions may be violated and the proper

design parameters may not necessarily be chosen. Placing bounds on the estimates, for

instance, could compromise system stability if improperly handled. Noise levels may

suddenly change, rendering dead-zone thresholds ineffective. Even the selection of initial

values of some controller parameters has been shown to be critical in some cases. These

factors all point to the need for some type of supervisory control in the final DSP

implementation of the algorithm. Knapp and Isermann (1990) have proposed the addition

of two levels of control, called the supervision level and the coordination level. The

incorporation of these levels into the self-tuning regulator adaptive controller model is

shown in the block diagram of Figure 122.

214

Figure 122. Adaptive controller model with supervision and coordination levels

Knapp and Isermann (1990) have given the following functions for the two additional

levels:

SUPERVISION LEVEL

• monitoring the parameter estimates

• detecting a process model mismatch

• decision making, what has changed?

• monitoring the controller design

• monitoring the closed-loop behavior

215

COORDINATION LEVEL

• performing a start-up procedure

• switching on/off parameter estimation

• choosing the most suitable control algorithm

• decision making, what sort of controller parameters will be

used

The details of the above functions are beyond the scope of this paper, but the lists provide

a general idea of what sort of supervisory functions might be required in a real-world

implementation of adaptive PID control.

6.6 Viability of the SSTC PID Algorithm

This project has focused on the development of an adaptive PID controller. The

results of Chapter 5 raise some serious questions, however, as to whether the benefits of

using a simplified controller model outweigh the disadvantages of constraining the

algorithm to a PID-like structure. It has been noted that assuming the SSTC PID model

of equation (6.3) significantly limits the application of the SSTC PID controller. The

difficulties encountered with the PID version of the SSTC algorithm not encountered in

the general SSTC algorithm have also been discussed. The benefits of using the PID

version of the SSTC controller can be summarized as follows:

• Reduced computational burden over the general algorithm

• A well established structure that is easily understood by operators.

216

The computational advantage using the SSTC PID algorithm over the general SSTC

algorithm when constrained to a second-order model is not significant. But the addition of

the second parameter (b}) in the general SSTC algorithm eliminates the sensitivity of the

algorithm to #(0). Also, the advantage of using a well established controller structure is

only gained if the controller must be periodically readjusted by the operator. The very

purpose for using adaptive control, however, is to eliminate the need for readjustment of

the controller parameters. Therefore, the limitations imposed by forcing the SSTC

controller into a PID-like structure, and the difficulties encountered in simulation of the

SSTC PID algorithm in Chapter 5, appear to outweigh any advantage gained by using the

PID version of the SSTC algorithm over the general SSTC algorithm.

The advantages of using a pole-placement algorithm over the SSTC algorithms

have also been discussed. Pole-placement gives the designer the ability to compensate for

modeling errors introduced by biased parameter estimates by re-selecting target locations

of the closed-loop system poles. The pole-placement algorithm presented in Chapter 4

assumed a second-order ARX model for the plant, rather than the more restrictive model

of equation (6.3). Also, the adaptive pole-placement controller of Chapter 4 allows for

the selection of four closed-loop poles, giving the designer much more flexibility than with

the SSTC algorithms. Adaptive PID using pole-placement appears to have greater

practical potential than the SSTC PID algorithm proposed by Warwick, et. al. (1987).

6.7 Recommendations for Future Work and Concluding Remarks

Several recommendations for future work have already been suggested to. In this

section, those recommendations, along with some others, are summarized and some

concluding remarks are made.

217

1. Code and simulate the adaptive pole-placement algorithm:

The limitations of the SSTC algorithms have been stated earlier. Although the

SSTC approach to adaptive control is computationally efficient and easy to

implement, its potential for application is limited. The pole-placement algorithm

derived in Chapter 4 should therefore be simulated.

2. Develop guidelines for development of estimator data filters:

The simulations of Chapter 5 made it clear that prefiltering of estimator data is

essential. However, selection of filters that did not impede the operation of the

estimator proved to be difficult. The area of estimator data filtering needs to

be investigated more thoroughly.

3. Investigate the use of external perturbation signals:

The requirements for convergence of the parameters to ensure stability have been

discussed at length. In many applications, it may be difficult to guarantee that the

plant input is persistently excited. In those cases, external perturbation of the plant

may be required. This entire area warrants further study.

4. Determine Supervisory-Coordination level needs for DSP implementation:

The level of supervision and coordination for implementation of the adaptive PID

algorithm on the DSP56000 needs to be determined. At a minimum, some method

of monitoring the estimated parameters must be developed to ensure that they

remain bounded and that the controller remains stable when the parameter

boundaries are reached.

218

5. Develop the adaptive PID algorithm for implementation on the DSP56000:

Once the above steps have been completed, the simulation program must be

converted for DSP56000 implementation. The program can be tested in the

ADS56000 development system using the real-time plant model running on the

80386-based computer.

In conclusion, implementation an adaptive PID controller on the Motorola

DSP56000 appears to be feasible. The use of DSP chips for control applications have

been shown to offer a number of advantages over conventional microprocessors. Although

DSP chips were develop primarily for signal processing applications, the Harvard

architecture of the DSP56000 allows for increased throughput and consequently,

decreased computation time which results in increased sampling rates. This additional

processing power becomes extremely important when faced with the extra computations

required in an adaptive control application.

Adaptive control offers a number of advantages over other control methods,

particularly when dealing with time-varying plants. It is apparent from the work presented

in this paper, however, that adaptive control is not a universal solution to all control

problems. Since adaptive control is inherently non-linear, stability and robustness analyses

are extremely difficult. Although stability proofs have been given for a few specific cases,

they are generally subject to unrealistic constraints and assumptions. In addition, the

whole area of robustness theory as applied to adaptive control is still under development.

The success and failure of the adaptive control algorithm, especially the self-tuning

regulator variety, hinges on the performance of the parameter estimator. Although the

recursive least-squares algorithm is considered to be one of the more robust approaches to

parametric estimation, its ability to accurately estimate the plant parameters depends

entirely on the level of excitation provided to the plant. This can become a problem when

219

the plant is operating in a closed-loop, particularly when the primary function of the

controller is regulation. Although several ad hoc approaches have been proposed for

dealing with problems such as lack of excitation and the presence of disturbances on the

output, solutions to these problems remain the subject of much debate.

Very often, the concept of a self-tuning controller is thought to eliminate the work

of the control designer, since the controller tuning parameters are derived automatically

on-line. It is evident from the work presented here that this is by no means the case. It is

true that the parameters used in the control law are derived on-line; however, the

implementation of adaptive control is a complex process requiring the selection of a host

of other parameters, most of which are application specific. With the need for prefiltering

of estimator data, it may be difficult to implement an adaptive controller without having a

priori knowledge of the plant. In microprocessor or DSP-based applications, extensive

simulations must be run to determine the bounds of the parameter estimates to allow for

scaling of the estimated parameters. Accurate noise models must be available for the

selection of dead-zone threshold values. Depending on the control algorithm employed,

even the selection of the initial value of the parameter vector can be critical. As stated by

Astrom (1987), "An adaptive regulator, being inherently nonlinear, is more complicated

than a fixed gain regulator. Before attempting to use adaptive control it is, therefore,

important to first examine if the control problem cannot be solved by constant gain

feedback." Adaptive control does, however, offer a viable solution to control problems

where fixed-gain feedback is not a viable option.

APPENDIX

.***
; file PID64B.ASM *

*

; This program implements a PID control algorithm in DSP56001 *
; assembly language using the SCI clock interrupt to control the *
; sample rate. The controller algorithm is given as follows: *

*
; 1. KP = [K*(l+h/2/Ti)]/64 *
; 2. Beta = (2*Ti - h)/(2*Ti + h) *
; 3. Gamma = Td/h *
; 4. dl = (2*Gamma/N - 1.0)/(2*Gamma/N + 1.0) *
; 5. d2 =Kp/16 * (2*Gamma)/(2*Gamma/N +1.0) *
; 6. input y(k) *
; 7. e(k) = w(k) - y(k)
; 8. D(k) = dl*D(k-l) + 1024*d2*[y(k-l)-y(k)] *
l 9. y(k) => y(k-l) *
; 10. if D(k) > HHJMTT, D(k) = HILIMIT *
; 11. if D(k) < LOWLIMIT, D(k) = LOWLIMIT *
; 12. P(k) = Kp*e(k) *
; 13. I(k) = I(k)/64 *
; 14. u(k) = P(k) + I(k) + D(k) *
; 15. if u(k) > IHLIMIT, u(k) = HILIMIT *
; 16. if u(k) < LOWLIMIT, u(k) = LOWLIMIT *
; 17. u(k) = u(k)*64 *
; 18. output u(k) *
; 19. I(k+1) = Beta*I(k) + (1-Beta)*u(k) *
; 20. if I(k+1) > HILIMIT, I(k+1) = HILIMIT *
; 21. ifl(k+l) < LOWLIMIT, I(k+1) = LOWLIMIT *
; 22. I(k+1) => I(k) *
; 23. go to step 6 *

*J.***

220

221

; Written by M. DePoyster 7/18/92
; Revised 8/25/92
; Revised 9/12/92
; Revised 9/19/92
; Revised 1/01/93

page 80

J
; Define DSP Registers *

IPR equ $FFFF ;(x:mem) Interrupt Priority Register
BCR equ $FFFE ;(x:mem) Bus Control Register
SCCR equ $FFF2 ;(x:mem) SCI Clock Control Register
SCR equ $FFF0 ;(x:mem) SCI Control Register
RX TX equ $FFEF ;(x:mem) SSI TransmitZReceive Data Register
SSISR equ $FFEE ;(x:mem) SSI Status Register
CRB equ $FFED ;(x:mem) SSI Control Register B
CRA equ $FFEC ;(x:mem) SSI Control Register A
PCC equ $FFE1 ;(x:mem) Port C Control Register

Define Variables & Constants
5

w equ $0000 Reference input (setpoint)
e equ $0001 ;error term storage
I equ $0002 integral term storage word
temp equ $0003 temporary storage
ykml equ $0004 previous value of y(k), y(k-l)
yk equ $0005 ;current sample of y(k)
D equ $0006 ;derivative term storage word
Kp equ $0007 ;K*(l+h/2/Ti)/64 ... Kp is prescaled by 1/64
Beta equ $0008 ;(2*Ti-h)/(2*Ti+h)
Betam equ $0009 ;1-Beta
dl equ $000A ;(2Td/Nh - l)/(2Td/Nh + 1)
d2 equ $000B ;Kp*(2Td/h)/(2Td/hN+ 1)/16 .. D2 scaled 1/1024
timfact equ $000C ;SCI interrupts/sec =

;fosc/(64*(7(SCP)+l)*(CD+l))
;(fosc=20,500,000 in our case)
;($002fa3 yields 10 Hz

preset equ $000D ;samples before switching setpoint

222

.**
; START PROGRAM *
J

org p:$40

; Initialize Variables, I(k), D(k) and y(k-l) *
**

clr a
move a,x:I
move a,x:D
move a,x:ykml
move a,x:temp

; Initialize IPR, BCR, SCI and SSI *

; Initialize IPR to allow interrupts to occur
; Set SSI to Level 2 and SCI to Level 1

movep #$C000,x:IPR ;allow SCI interrupts only

; Set up ADS board in case of force break instead of force reset

movep #0,x:BCR
movec #O,sp
movec #O,sr

;set bcr to zero
;init stack pointer
;clear loop flag/interrupt mask bits

; Set up the SSI for operation with the DSP56ADC16EVB
; The following code sets port C to function as SCI/SSI

move #$0,a0 ;zero PCC to cycle it
movep aO,x:PCC

move #$000 Iff, aO
movep aO,x:PCC ;write PCC

; The following code sets the SSI CRA and CRB control registers for external
; cont. synchronous clock, normal mode.

223

move #$004000,aO
movep aO,x:CRA
move #$000200,aO
movep aO,x:CRB

;CRA pattern for word length=16 bits

;CRB pattern for cont. ck,synch,normal mode
;word long frame synch, external clock and frame
;synch

; Set Up SCI Timer

movep #$2000,x: SCR
movep x:timfact,x:SCCR;
andi #$FC,MR

;Enable SCI Timer Interrupt
;Set clock to 20kHz (.05ms Ts)
;Enable interrupts

; Initialize set-point counter *

move x: preset, aO
move aO,rO

; Loop until interrupt ”

self jmp self ;looping waiting for interrupt

SCI TIMER INTERRUPT SERVICE ROUTINE *
*

Main Control Loop *

Enable SSI to Transmit and Receive Data *

timer move #$003000,xl
move x:CRB,a
or xl,a
move al,x:CRB

;Set up XI for OR instruction
;Move SSI CRB to Acc A
;Tum on RE and TE
;Move Acc A back to SSI CRB

5
; Wait for A/D word to be clocked in *
; then move it to Acc A. *

224

polll jclr #7,x:SSISR,polll
move x:RX_TX,a
move a,x:yk

;Loop until RDF bit=l
;Read A/D data
;store y(k)

5
; Check counter to see if time to switch
; setpoint (reference) polarity *

clr b ;Clear Acc B
move rO,bO
move (rO)-
tst b

;Move current count to B

jne go jump to "go" if count not = 0
move x:preset,bO
move bO,rO

;else: 1. reset counter = preset

move x:w,b
neg b
move b,x:w

; 2. change polarity of w

; Store input y(k) and solve for *
; error term, e(k)=w(k)-y(k) *

go clr b
move x:yk,a
move a,yl ;y(k)=>Yl
neg a x:w,xl ;Negate y(k)... w(k) => XI
add xl,a x:ykml,b ;e(k)=w(k)-y(k)... y(k-l) => Acc B

; Store e(k), solve for y(k-l)-y(k) and *
; store y(k) as y(k-l) *

move yl,x:ykml
sub yl,b a,x:e
move x:dl,xl

;y(k)=>y(k-l)
;y(k-l)-y(k) => Acc B..store e(k)
;dl => XI

5

; Solve for the Derivative Term, D(k) *

225

move x:D,yl ;D(k) => Y1
mpy xl,yl,a b,xl ;dl*D(k)=>Acc A ... Acc B => XI
rep #6
asr a ;divide dl*D(k) by 64
move x:d2,yl ;d2 => Y1
mpy xl,yl,b ;d2*[y(k-l)-y(k)]
rep #15 ;repeat next instr. 15X
mac xl,yl,b ;16*[d2*(y(k-l)-y(k))] (scaled)
add b,a x:e,xl ;D(k) ... e(k) => XI
tfr a,b ;Move D(k) to Acc B for scaling
rep #6 ;Multiply D(k) by 64
asl b
move b,x:D ; Store D(k) (with limiting)

5
; Solve for Proportional Term, P(k) *

move x:Kp,yl ;Kp => Y1
mpyxl,yl,b ;P(k)=Kp*e(k)

; Add P(k) and D(k) together for storage 51

add b,a ;P(k)+D(k)=>Acc A
clrb
move x:I,b

; Scale Integral Term by 1/64 *

rep #6 ;Repeat next instr 6X
asr b ;I(k)/64

J
; Form Complete PID Term *
.**

add b,a ;P(k)+I(k)+D(k) scaled by 1/64

226

rep #6
asl a
move a,x:temp

;Repeat next instr 6X
;PID(k)*64
;store u(k) temporarily

5

; Send Control Output to D/A converter *

move x:temp,xl
move #$529fbe,yl
mpy xl,yl,a ;Multiply u(k) by scaling factor

;of .6455 before outputting
move a,x:RX TX

po!12 jclr #6,x:SSISR,poll2
;Move PID(k) to RXTX w/ limiting
;Loop until TDE bit = 1

; Solve for next value of I(k), I(k+1) *

move x:Betam,yl
mpyxl,yl,a x:I,yl
move x:Beta,xl
mac xl,yl,a
move a,x:I

;(1-Beta)*u(k).. I(k)=>Yl
;Beta => XI
;I(k+l) = Beta*I(k) + (1-Beta)*u(k)
;I(k+l) => I(k) (with limiting)

rti

org p:$001c
jsr timer

;SCI Timer interrupt vector

end

REFERENCES

Ahmed, Irfan (1991): Digital Control Applications with the IMS320 Family. Digital
Signal Processing - Semiconductor Group, Texas Instruments, Inc.

Astrom, K. J. (1987): "Adaptive Feedback Control," Proc.of the IEEE, vol. 75, no. 2.

Astrom, K. J. (1983): "Theory and Applications of Adaptive Control - A Survey,"
Automatica, vol. 19, pp. 471-486.

Astrom, K. J. and P. Eykhoff (1971): "System Identification - A Survey," Automatica, vol.
7, pp. 123-162.

Astrom, K. J. and T. Hagglund (1984a): "Automatic tuning of simple regulators with
specifications on phase and amplitude margins," Automatica, vol. 20, no. 5.

Astrom, K. J. and T. Hagglund (1984b): "A frequency domain method for automatic
tuning of simple feedback loops," Proc. 23rdIEEE Conference on Decision and
Control, Las Vegas, NV, USA.

Astrom, K. J. and T. Hagglund (1988a): "A new auto-tuning design," Proc. IFAC
Adaptive Control of Chemical Processes, Copenhagen, Denmark.

Astrom, K. J. and T. Hagglund (1988b): Automatic Tuning of PID Controllers. Research
Triangle Park: Instrument Society of America.

Astrom , K.J. and H. Steingrimsson (1991): "Implementation of a PID Controller on a
DSP". Digital Control Applications with the TMS320 Family, Texas Instruments Digital
Signal Processing - Semiconductor Group.

Astrom, K. J. and B. Wittenmark (1990): Computer Controlled Systems, Theory and
Design. Prentice Hall, Englewood Cliffs, New Jersey 07632.

Astrom, K. J. and B. Wittenmark (1989): Adaptive Control. Addison Wesley Publishing
Company, Reading, Massachusetts.

227

228

Astrom, K. J. and B. Wittenmark (1984): "Automatic Tuning of Simple Regulators with
Specifications on Phase and Amplitude Margins," Automatica, vol. 20, no. 5.

Astrom, K. J. and B. Wittenmark (1984b): "Practical Issues in the Implementation of
Self-tuning Control," Automatica, vol. 20, pp. 595-605.

Astrom, K. J. and B. Wittenmark (1980): "Self-tuning controllers based on pole-zero
placement," Proc. Inst. Elec. Eng., Part D, vol. 127, pp. 120-130.

Astrom, K. J. and B. Wittenmark (1973): "On self-tuning regulators," Automatica, vol. 9,
pp. 185-199.

Banyasz, Cs. and L. Keviczky (1982): "Direct methods for self-tuning PID regulators,"
Proc. 6thIFAC Symp. Ident. Washington, DC. Pergamon Press, Oxford.

Becker, A., P. R. Kumar and C. Z. Wei (1985): "Adaptive control with the stochastic
approximation algorithm: Geometry and convergence," IEEE Trans. Automat. Contr.,
vol. AC-30, no. 4, pp. 330-338.

Bellman, R. (1957): Dynamic Programming. Princeton University Press, Princeton, New
Jersey.

Bierman, G. J. (1977): Factorization Methods for Discrete Sequential Estimation.
Academic Press, 111 Fifth Avenue, New York, New York 10003.

Clarke, D. W. (1984): "PID algorithms and their computer implementation," Trans InstM
C, vol. 6, no. 6.

Clarke, D. W. and P. J. Gawthrop (1979): "Self-tuning control", Proc. Inst. Elec. Eng.,
vol. 126, pp 633-640.

Clarke, D. W. and P. J. Gawthrop (1975): "A Self-tuning controller", Proc. Inst. Elec.
Eng., vol. 122, pp 929-934.

Davies, W. D. T. (1970): System Identification for Self-Adaptive Control. Wiley-
Interscience, a division of John Wiley and Sons, Ltd. New York.

Egardt, B. (1979): "Stability of Adaptive Controllers," Lecture Notes in Control and
Information Sciences, p. 20. Springer-Verlag, Berlin.

Egardt, B. (1980): "Stability analysis of continuous-time adaptive control systems," SIAM
J. Control Optimiz., vol. 18, pp. 540-557.

229

Feldbaum, A. A. (1960): "Theory of dual control theory I-IV," Automat. Remote Contr.,
vol. 21, pp. 874-880; vol.21, pp. 1033-1039; vol. 22, pp. 1-12; vol. 22, 109-121.

Goodwin, G. C., P. J. Ramadge and P. E. Caines (1980): "Discrete multivariable adaptive
control," IEEE Trans. Aut. Control, vol. AC-25, pp. 449-456.

Goodwin, G. C., P. J. Ramadge and P. E. Caines (1981): "Discrete time stochastic
adaptive control," SIAM J. Contr. Optimiz., vol. 19, pp. 829-853.

Hagglund, T. and K. J. Astrom (1985): "Automatic Tuning of PID Controllers Based on
Dominant Pole Design," Proc. IFAC Workshop on Adaptive Control of Chemical
Processes, Frankfurt, FRG.

Hannselmann, H. (1987): "Implementation of Digital Controllers - A Survey",
Automatica, vol. 23 no. 1, pp 7-32.

lonescu, I. and R. V. Monopoli (1977): Discrete model reference adaptive control with
an augmented error signal," Automatica, vol. 13.

Isermann, R. (1982): "Parameter Adaptive Control Algorithms - A Tutorial",
Automatica, vol. 18, Sept. 1982, pp. 513-528.

Kalman, R. E. (1958): "Design of a Self-Optimizing Control System," Trans. ASME, vol.
80, no. 2, pp. 468-478.

Knapp, T. and R. Isermann (1990): "Supervision and Coordination of Parameter-Adaptive
Controllers," Proc. 1990 Automat. Contr. Conf, pp. 1632-1637.

Kosut, R. L. (1992): "System Identification for the User: Modeling, Filtering, Detection,
Adaptive and Robust Control," Notes from IEEE tutorial workshop at 1st IEEE Conf, on
Control Applications, 1992.

Kraus, T. W. and T. J. Myron (1984): "Self-Tuning PID Controller Uses Pattern
Recognition Approach," Control Engineering, June, 1984.

Kumar, P. R. (1990): "Convergence of Adaptive Control Schemes Using Least-Squares
Parameter Estimates," IEEE Trans. Automat. Contr., vol. 35, no. 4, pp. 416-424.

Kumar, P. R. and L. Praly (1987): "Self-tuning trackers," SIAM J. Contr. Optimiz., vol.
25, no. 4, pp. 1053-1071.

Kurz, H., R. Isermann and R. Schumann (1980): "Experimental comparison and
application of various parameter adaptive control algorithms," Automatica, vol. 16, pp.
117-133.

230

Lammers, H. C. (1982): *'A simple self-tuning controller," IEEE Conf. Applic. Adaptive
and Multivariable Control, Hull. Cotswold Press, Oxford.

Lopez, A. M., J. A. Miller, C. L. Smith, and P. W. Murrill (1967): "Controller Tuning
Based on Integral Performance Criteria," Instrumentation Technology, November,
1967.
Ljung, Lennart (1987): System Identification, theory for the user. Prentice Hall,
Inc., Englewood Cliffs, New Jersey 07632.

Ljung, L. and T. Soderstrom (1983): Theory and Practice of Recursive Identification.
The MIT Press, Cambridge, Massachusetts, London, England

Marsik, J. (1970) : "A simple adaptive controller," \nProc. 2ndIFAC Symp. on
Identification and Process Parameter Estimation, (Prague, Czechoslovakia).

Marx, M. F. (1959): "Recent adaptive control. Work at the General Electric Co.," in
P.C.Gregory, Ed., Proc. Self-Adaptive Flight Control Systems Symp., WADC Tech. Rep.
59-49 (Wright Air Development Center, Wright Patterson Air Force Base, Dayton, Ohio.

McInnis, B. C., Z. Guo, P.C. Lu and J. Wang (1985): "Adaptive Control of Left
Ventricular Bypass Assist Devices," IEEE Trans, on Automat. Contr., vol. AC-30, pp.
322-329.

Middleton, R. H. and G. C. Goodwin (1990): Digital Control and Estimation; A
Unified Approach. Prentice-Hall, Inc. A Division of Simon and Schuster, Englewood
Cliffs, New Jersey 07632.

Monopoli, R. V. (1974): "Model reference adaptive control with an augmented error
signal," IEEE Trans. Automat. Contr., vol. AC-19, pp. 474-484.

Morse, A. S. (1980): "Global stability of parameter adaptive control systems," IEEE
Trans. Aut. Control, vol. AC-25, pp. 433-439.

Motorola (1989): DSP56000ADS Application Development System User's Manual,
version 2.00, January 23, 1989. Semiconductor Products Sector, Phoenix, Arizona.

Motorola (1989): DSP56ADC 16 Evaluation Board User's Manual, revision 1.0.
Semiconductor Products Sector, Phoenix, Arizona.

Motorola (1990): DSP56000/DSP56001 Digital Signal Processor User's Manual.
Semiconductor Products Sector, Phoenix, Arizona.

Narendra, K. S., Y. H. Lin and L. S. Valavani (1980): "Stable adaptive control design,"
IEEE Trans. Aut. Control, vol. AC-25, pp. 440-448.

231

National Instruments (1990): AT-MIO-16 User Manual. August, 1990 Edition, Part
Number 320146-01. National Instruments Corp. Austin, Texas.

National Instruments (1991): DOS LabDriver Software Reference Manual, Version 4.0.
April 1991 Edition, Part Number 320273-01. National Instruments Corp. Austin, Texas.

Park, S. (1990): Principles of Sigma-Delta Modulation for Analog-to-Digital
Converters. Publication No. APR8/D, Motorola Semiconductor Products Sector, Phoenix,
Arizona.

Parks, P. C. (1966): "Liapunov Redesign of Model Reference Adaptive Control Systems,"
IEEE Trans. Automat. Contr., vol. AC-11, pp. 362-367.

Peterka, V. and K. J. Astrom (1973): "Control of multivariable systems with unknown but
constant parameters," 3rd IF AC Symposium on Identification and System Parameter
Estimation, pp. 535-544, The Hague, Netherlands.

Radke, F. (1987): "Microprocessor Based Adaptive PID Controllers," Proc. of the ISA
International Conference and Exhibit, vol. 42, no. 3.

Radke, F. and R. Isermann (1987): "A Parameter-adaptive PID-controller with Stepwise
Parameter Optimization," Automatica, vol. 23, pp. 449-457.

Rey, G. J., R. Johnson, Jr., and R. Bitmead (1990): "Nonlinear Interactions between
Signals and Parameters in Robust Adaptive Control," Proc. 1990 Automat. Contr. Conf.,
pp. 1064-1069.

Rootzen, H., and J. Stemby (1984): "Consistency in least squares: A Bayesian approach,"
Automatica, vol. 20, pp. 474-475.

Schuck, O. H. (1959): "Honeywell's history and philosophy in the adaptive control field,"
in P. C. Gregory, Ed., Proc. Self-Adaptive Flight Control Systems Symp., WADC Tech.
Rep. 59-49 (Wright Air Development Center, Wright Patterson Air Force Base, Dayton,
Ohio.

Sin, K. and G. Goodwin (1982): "Stochastic adaptive control using a modified least
squares algorithm," Automatica, vol. 18, pp. 315-321.

Smith, C. L. and P. W. Murril (1966): "A More Precise Method for Tuning Controllers,"
ISA Journal, May, 1966.

Stemby, J. (1977): "On consistency for the method of least squares using martingale
theory," IEEE Trans. Automat. Contr., vol. AC-22, pp. 346-352.

232

Sternby, J. and H. Rootzen (1982): "Martingale theory in Bayesean least squares
estimation," Proc. 6th IF AC Symposium on Identification and System Parameter
Estimation, Arlington.

Tan, J. and N. Kyriakopoulos (1988): "Implementation of a Tracking Kalman Filter on a
Digital Signal Processor," IEEE Transactions on Industrial Electronics, vol. 35,
no. 1.

Tsypkin, Y. Z. (1971): Adaptation and Learning in Automatic Systems. Academic Press,
New York, New York.

Warwick, K., K. Z. Karam and M. T. Tham (1987): "Simplified Parameter Adaptive
Control," Optimal Control Applications & Methods, vol. 8, pp 37-48.

Wellstead, P. E. (1978): "On the self-tuning properties of pole-zero assignment
regulators," Report 402, Control Systems Centre, The University of Manchester Institute
of Science and Technology, Manchester, England.

Whitaker, H. P., J. Yamron, and A. Kezer (1958): "Design of Model Reference Adaptive
Control Systems for Aircraft," Rep. R-164, Instrumentation Laboratory, MIT,
Cambridge, MA.

Wittenmark, B. W. (1988): "Implementation and Application of Adaptive Control," IFAC
Adaptive Control of Chemical Processes, Copenhagen, Denmark.

Wittenmark, B. W. (1979): "Self-tuning PID-controllers based on pole placement," Dept.
Automat. Contr., Lund Inst. Technol., Lund, Sweden, Tech. Rep. CODEN:
LUTFD/(TERT-7179)/l-037, 1979.

Wittenmark, B. W. and K. J. Astrom (1980): "Simple self-tuning controllers," Proc.
Symp. Methods and Applications in Adaptive Control, Bochum, F.R.G.

Ziegler, J. G. and N. B. Nichols (1942): "Optimum Settings for Automatic Controllers,"
Trans, of the ASME, November, 1942.

