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ABSTRACT

The thesis derives a technique based on an adaptive Multiple Signal 

Classification (MUSIC) algorithm for the estimation of the angle of arrival 

of a monopulse system in the presence of mainlobe jamming. A large 

number of simulations demonstrate that the statistical properties of the 

algorithm are comparable to those obtained using the Maximum 

Likelihood Estimator, which is the contemporary method for estimating 

the angles. The general problem we investigate is the 2-D estimate of 

arrival angles of a target signal in the presence of main-beam jamming 

using the monopulse array.
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CHAPTER 1

INTRODUCTION

Angle estimation is a crucial task to be performed by airborne radar. The antenna behind 

the radome in the nose cone of the aircraft is usually configured to give the four sum and 

difference beams of a monopulse system. The angle estimation must therefore be based 

on the signals available in this beam space. Indeed, standard monopulse based angle 

estimation system proved to be very successful. However, in the presence of main-beam 

jammer angle estimates based on monopulse are so biased as to be worthless. The 

objective of the investigation presented in this thesis is to devise a technique that works 

well even in the presence of jammer.

The standard approach to angle estimation of a signal arriving from an antenna is the 

Maximum Likelihood Estimator (MLE) [1], which is only one technique of many 

[2,3,4,5]. Compton [6] explores the use of an adaptive maximum likelihood angle 

estimator for a monopulse antenna where he relates the bias in the angle estimates to the 

signal parameters. Compton’s approach is based on the original work of Brennan, Reed 

and Davis [7]. The MLE technique has the advantage of minimal variance with unbiased 

estimates; however, it requires necessary multidimensional search to determine the angle
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estimates. A number of authors have developed alternative methodologies: the ESPIRIT

algorithm [8] and adaptive arrays [9].

The methodology presented in this thesis is a novel idea for monopulse antenna angle 

estimation, combining adaptive signal processing for jammer cancellation and Multiple 

Signal Classification (MUSIC) for high-resolution angle estimation.

A fair amount of research has been directed towards ameliorating the adverse effects due 

to the presence of main-lobe jammer. Lin and Kretschmer [10] calculated calibration 

curves from the adapted sum and difference beam weightings and these were used to 

correct the adapted monopulse estimates. Theil [11] suggested solving detection and 

angle estimation problems separately, using an adaptive array and super-resolution 

methods. Nickel [12] derived the correction values for the slope and bias of the adaptive 

monopulse array. Toulgor and Turner [13] used a two step process of first eliminating the 

jammer component, using a projection matrix based approach and then carrying out angle 

estimation. They used the MUSIC [14] method.

The technique presented in this thesis is basically a two step process. The first step 

consists of estimating and eliminating the jammer component. The technique used for this 

purpose is different from that used in [13]. The jammer component in each of the beams 

is eliminated, by using one of the other beams as an “auxiliary beam”. The “clean” 

beamspace signals obtained in this fashion are then used to estimate the angle of arrival 

using the MUSIC algorithm. It turns out that the MUSIC pseudo-spectrum produces a 

peak corresponding to the target signal as well as the vestigial jammer. In order to 

distinguish between these two peaks, least squares analysis is used to estimate the true 

power associated with these peaks in the MUSIC spectrum. The peak with the higher true
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power is declared to correspond to the target. An extensive simulation based on the theory 

presented here is used to evaluate the statistical properties of this new estimator. The

estimator yields results comparable to those obtained using the Maximum Likelihood 

approach but without having to search through the rather complex surfaces associated

with the MLE.

The thesis outline is as follows: Chapter 2 reviews the background literature on angle 

estimation. Section 3 describes the MUSIC algorithm and presents the basic theory 

behind the algorithm. Section 4 documents the results. Finally Section 5 summarizes the 

results obtained in this investigation and concludes with future work directions.
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CHAPTER 2

ANGLE ESTIMATION

In an airborne interceptor (AI) radar it is necessary to track the movements of one or more 

targets. Keeping the antenna trained on the target, tracking, requires the sensing of 

angular pointing errors. In earlier radars a technique called sequential lobing was used to 

detect these errors. Sequential lobing is performed by sequentially placing the centerline 

of the beam on one side and the other and above and below the boresight line during 

reception only. However, because the lobing is sequential, fast changes in the strength of

the target echoes can introduce large differences in the returns received through the two

lobes and so degrade the tracking accuracy. This problem can be avoided by using an 

antenna that produces the lobes simultaneously. In modem radars, lobing is 

accomplished simultaneously by splitting the beam into four overlapping lobes during 

reception. Because all of the necessary angular tracking information is obtained from one 

reflected pulse, this technique is called monopulse operation.

This chapter is based largely on information presented in [15] and [16],
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2.1 Monopulse Radar Background

Mechanically scanned pencil beams were used in early AI radars used for search and 

track modes. A single beam can be switched to different positions, and although several 

beam-switching methods are possible, the most common method of time sharing a single 

beam is conical scan. In conical scan the beam is moved continuously in a circular

pattern, as shown in Figure 1. The target return is amplitude modulated by the beam

motion.

TARGET »

TARGET 2

Figure 1. Conical Scan. Courtesy of [16]

The measurements required for tracking can be achieved by moving only the receive 

beam. However, the usual conical scan implementation moves the transmit beam in 

space, also. The conical scan frequency is disclosed to the target that, if unfriendly, can 

use this information to disrupt tracking. Therefore, most military radars no longer use 

conical scan. Some systems use schemes that move only the receive beam to produce a 

received signal that resembles that of a conical scan system. The methods are called lobe 

on receive only or silent lobing.
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Conical scan was eventually replaced by monopulse using split apertures which obtained

error signals on a single dwell, thus removing target scintillation noise. Mechanically 

scanned antennas have been replaced by electronically scanned array (ESA) antennas in 

search allowing track while scan modes of operation. The most common configuration

used for tracking is electronic scan with four-aperture monopulse.

The monopulse angle estimation array works very well when there is no jamming present.

However, when jamming is present, particularly in the mainlobe of the sum beam of the

monopulse output, the performance of the monopulse system is severely degraded. 

Indeed, the system declares the jammer bearing to be that of the target bearing. Thus, for 

reliable angle estimation, the monopulse output must be rid of the jammer component.

This must be done adaptively. Recently it was found that multiple apertures and beam 

clusters could be used adaptively to reduce main beam jamming, and that with space-time

adaptive processing (STAP), targets could be detected in clutter. This makes possible the

detection of low flying aircraft and slowly moving ground vehicles from almost all angles 

of attack. A penalty for using the spatial degrees of freedom for interference reduction is 

that the resulting beam amplitude and phase are distorted which in turn makes angle 

estimation in the usual way impossible.

Tracking is done to improve the estimates of target position and velocity relative to those 

that can be provided in the search mode. During tracking, in angle, range, or doppler, the 

target response must be measured at two or more positions, again in angle, range or 

doppler. The two measurements can be achieved by using a single beam, time-shared at
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various positions (sequential lobing or conical scan) or by using multiple simultaneous

beams (monopulse operation).

Angle measurements are made using either amplitude comparison or phase comparison.

Amplitude comparison is illustrated in Figure 2. Two similar beams are produced, that

are separated in angle by a fraction of a beamwidth. The angle at which the amplitudes of

the two beams are equal is called the angle zero reference point. The voltages produced

in the two beams by a point source we denote as vl and v2. A calibration curve of

voltage ratio (vl/v2) in dB verses the angle that is independent of target signal strength is

used to determine angle error. When (vl/v2) is measured, the angle away from boresight

is determined using the calibration curve. The angle-off measurement is used to correct 

the antenna position to drive the angle-off to zero.

AMPLITUDE COMPARISON 
MONOPULSE

A

Eire
x. 4

Figure 2. Amplitude Comparison. Courtesy of [16]

The most common antenna configuration in airborne systems is the monopulse planar 

array. Monopulse indicates the ability to derive angle error from a single pulse. A planar 

array is made up of a number of radiating slots cut in a plane surface. The planar array is 

subdivided into quadrants that are fed by a microwave sum and difference network. First 

consider a planar array subdivided into two sections: A and B, as shown in Figure 3. The 

microwave sum and difference network creates, from the two lobes A and B, two beams
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sum (Z) beam and difference (A) beam. The A = A + B and Z = A - B. The gain and

beamwidth of both the A and Z patterns are determined by the total aperture, (A + B).

The null of the A pattern occurs at the peak of the Z pattern.

LOBE A -

LOBE A ■

A

D

ELTIME,

A B

1
AZ«ME2

• LOBE3 <—

* LOBE 9

I

4 tffti mo
I

Figure 3. Planner Array. Courtesy of [16]

A calibration curve can be used that is analogous to the amplitude comparison system.

The ratio A/Z is used, which is independent of target strength. The magnitude of the A 

pattern is symmetrical about zero angle error but is in phase with the sum channel on one 

side of zero and 180 out of phase on the other. By subtracting the output of one feed

from the output of the other, an angular tracking error signal is produced. The sum of the 

two outputs is used for tracking.

Figure 4 shows a four-quadrant monopulse antenna that can track in azimuth and 

elevation. By dividing the antenna into quadrants, so that the feed design produces four 

lobes instead of just two, simultaneous lobing can be achieved in both azimuth and 

elevation. These four antenna ports are connected to a manifold, a device for combining

the receiver RF signals, to obtain sum (Z), difference-azimuth (Aaz), difference-elevation

(Ael) and, difference-difference (AA) beam outputs. The four beams, Aaz, Ael, AA, and Z,
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each use the entire aperture. Aaz = A-B+C-D Ael = A+B-C-D, AA = A-B-C+D, and Z =

A+B+C+D. The antenna pattern for the Aaz and Ael ports will exhibit a null directly

between the beams while the AA port will exhibit two nulls. The patterns for the sum

port however, will exhibit a peak directly center the beams. This makes pencil-beam

tracking and/or angle measurement with very high precision possible.

Traditional monopulse, using amplitude comparison, duplicates sequential lobing with

simultaneously formed lobes A, B, C and D. Because the lobes point in slightly different

directions, if a target is not on the boresight line of the antenna, the amplitude of the 

return received through one lobe differs from the amplitude of the return simultaneously 

received through the other lobe. The difference is proportional to the angular error.

U9BE * * tOBE 9 «—

LOBE A * ICBE 9

A B

Figure 4. Four-Quadrant Monopulse Antenna. Courtesy of [16]

By continuously sensing the tracking errors with monopulse operation and continuously 

correcting the pointing direction of the antenna so as to reduce the errors to zero, the 

antenna can be made to follow the movement of a target with extreme precision.

A monopulse radar measures the azimuth and elevation angles of the line-of-sight vector 

from the aircraft to the target. The basic vector geometry defining the azimuth angle (a)
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and elevation (e) angle are shown below in Figure 5. Here, the azimuth angle is defined 

to be the angle between a vector pointing along the antenna frame y-axis and the line-of- 

sight vector. The elevation angle is defined to be the angle between a vector pointing 

along the antenna frame z-axis and the line-of-sight vector. The antenna frame is defined

in detail in the next section of this thesis.

Figure 5. Vector Geometry. Courtesy of [16]

Many airborne radar systems include a monopulse radar mode. In operation, the

monopulse processor measures the azimuth and elevation angles for target tracking. The

angles a and e are known only after operator designates target range Doppler cell.

2.2 Geometry of Monopulse Radar Azimuth and Elevation Angle Measurements

The geometry defining the azimuth angle (a) and elevation (e) angle is shown in Figure 6 

below.
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= Isotropic element

I = element spacing

a = azimuth

£ = elevation

= Signal

y
4

V =4port

V4

Figure 6. Geometry of Four-Port Monopulse Array.

Consider the unit vectors upy and upz which point in ya and za directions, respectively. 

These vectors are expressed in the antenna coordinates as

U;y=[0 10]T (1)

U;z=[0 0 1]T (2)

and may be converted to the navigation frame by employing coordinate transformations:

Ujy = Cb Upy = (^ Upy (3)

ujz = upz = C"a UpZ (4)

The relationship between a and e (quantities measured by the radar) and the unit vectors 

of interest are given by:

cos(a)= (uJ)T ujy (5)

cos(e)= (up)T upz (6)

Solving for a and e yields

a = cos-1 [(uJ)T ujy] (7)

e = cos-1 [(uJ)T u"z] (8)

where both a and e lie in the interval [-rc/2, rc/2] radians.
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A CW signal incident on this array from azimuth angle a and elevation angle e will

produce the following element voltages

= ^kuk

’ /,(«„£,) e^1 e'V1 
_ f2(ak,£k) e>Pkx*2

k ~ ^Ph^3 e^W3
/4(at,£t) e^***4 e^4

(9)

(10)

Pkx — k — 1,2,K
Pky = k=l,2,...,K

uk = ak(f) eja>kt

J\(ak,£^ dPk^x e^yl
_ /2(at’et) e'^2 e'^y2

k f3(ak,ek) e^***3 e^*yy3 
f4(ak,£k) e?Pk**4 e^*yy4

(ID
(12)

(13)

ak(t) e jc°kt k= 1,2, (14)

(15)

- [ X, X2 ] . “l
«2

+ V noise (16)

Equations (15) and (16) represent the Conventional Four Port Signal Model used in our

analysis whereas equation (18) and Figure 7 show the Monopulse Signal model which is

obtained from (16) through the monopulse transformation matrix M, defined by

■ 1 1 1 1 “
1 1 -1 -1
1 -1 1 -1

_ 1 -1 -1 1 _
(17)
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V =
mp

L^d

Monopulse

Figure 7. Monopulse Signal Model.

v,-v2

V1 + v2 + v3 + v4 
Vi + v2 - v3 - v4 
V, - V, + V, - V,

V3 + V4

■ 1 1 1 1 ■ ’ V! “

==
1 1
1 -1

-1 -1
1 -1 •

v2
V3

_ 1 -1 -1 1 J _ v4 _

(18)

2.3 Targeting with Monopulse Measurements

In general, targeting algorithms need three pieces of information to compute a target's 

location, namely range, range rate (doppler), and height above the target. As shown in 

Figure 8, the intersection of the sphere of constant range, cone of constant range rate 

(centered about the aircraft velocity vector), and the plane of constant height above target 

defines the location of the target.

Figure 8. Range-Doppler Target Location Geometry.
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Range and range rate are inherently measured and stored for each cell in a Doppler 

processed SAR image. The height above target, can be computed from the range 

measurement and the precise angle measurements of a monopulse radar. Recall that

monopulse radar is capable of measuring the azimuth angle, a, and the elevation angle e.

Similar to the SAR measurements, the monopulse radar measurements are also corrupted 

by a number of errors. As a result, they may be expressed as the sum of the true value 

and the measurement errors. For an electronically scanned array antenna (ESA), which

we now assume, the measured azimuth angle, denoted

A A

a and, elevation angle, denoted e, are modeled by the following equations:

a = a +error (19)

e = e + error (20)

Potential errors in the azimuth and elevation angle measurement, which are not modeled 

here, include atmospheric bending effects, temperature errors, mechanically steering 

errors, flexure errors, positioning errors, phase quantization and phase shifter errors, 

monopulse slope and, quantization errors.
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CHAPTER 3

ADAPTIVE MONOPULSE MUSIC

In this chapter, the theory pertaining to the new technique, “Adaptive Monopulse 

MUSIC” is discussed. This technique has three salient features:

1) The jammer in each of the sum and difference beams corresponding to the range bin

under test estimated and subtracted. This jammer estimation is based on the 

measurements of signal in the adjacent range bins which is presumed to be target free 

but whose clutter is correlated to the jammer in the range bin under test. This process 

results in a substantial reduction in jammer but does not eliminate it altogether.

Section 3.1 discusses this issue.

2) Using the outputs of these adapted monopulse beams, the angles of arrival are 

estimated using the MUSIC algorithm. Since the jammer is not eliminated, the 

MUSIC algorithm produces a peak in the pseudo spectrum corresponding to the 

jammer as well as the target signal.

3) Sorting of the peaks of the pseudo spectrum into the target peak and jammer peak is 

carried out next. This is accomplished by estimating the actual powers associated 

with the peak using lease squares technique. The peak corresponding to the higher 

power is declared to be the target.
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3.1 Adaptive Monopulse

The monopulse array works very well when there is no jamming present. However as 

shown in Figure 9, when jamming is present particularly in the mainlobe of the sum beam 

of the monopulse output, the performance of the monopulse system is severely degraded 

due to the distortion of the adapted sum and difference beams. Indeed, the system 

declares the jammer bearing to be that of the target bearing. Thus, for reliable angle 

estimation, the monopulse output must be rid of the jammer component. This must be 

done adaptively. This is accomplished as follows, using the concept of the adaptive

sidelobe canceler.

| JAMMING

Figure 9. Distortion of Monopulse Antenna Pattern (Jamming).

We define rfAMP the adaptive monopulse output as follows 
S

^AMP ~
De
L^d J

= V - V =mp wt

” s ' ^as^e
d& wadrfd

wesJd
- - - WedS -

~ ^mp ' W AMpM AMP
mp (21)
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(22)

L “d J

V =F u'f

Was^e 
Wad^d 
^es^d

1_ V

^AMP~

0 0 10 
0 0 0 1 
0 0 0 1

L 1 0 0 0

(23)

(24)

W^p =

Was
0
0
0

0
wad
0
0

0
0

wrr AC

0
0
0

0 w,ed -

(25)

The elements of this vector are defined as follows:

5 = j-wasxJe 
Da = d& - wad X dd
De = ‘ Wes X dA
Dd =dd- Wds X S

(26)
(27)
(28) 
(29)

Adaptive Monopulse
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The weights, w^, wad, wes, and wds are chosen in such a way that the component of the

jammer power in the monopulse output is minimized. The signal model is shown in 

Figure 10.

To compute these weights let us consider the mechanics of weight computation. As an 

example, let us consider the determination of was which helps null out the jammer from 

the sum output, s. For this purpose we use the output of the delta elevation beam dr as 

an auxiliary. Since the target is in the vicinity of the null, the difference beam output dt

has only a small component of the target signal and largely consists of jamming. The 

weight was is so chosen that waj x dr cancels the jammer component of the sum beam

output to the greatest extent possible. To the extent there is a signal component in de,

however small, it results in signal cancellation. In the context of radar, it is possible to 

avoid this signal cancellation completely. This is accomplished by using the outputs of 

range bins adjoining the target range bin. The jammer signal in these range bins is 

approximately the same as that in the target range bin. Thus, the quantity to be 

minimized is the residual power:

E [ ISjl2] = E [ (Sj - was x dej) (s* - x </*) ]

This is a straightforward problem and the solution is given by:

E[ Sj x </ej]
“'“= E[idy2]

The minimum residual power is given by:
^residual — E [ I Sy I - X t/ej X Sj - Wjj X Sj X t/ej + I I X I I ]

(30)

(31)
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^residual E [ I SjJ2 ] - 2 x Re { E [was x dej x s* ]} +1 vvas I2 x I dej I2

Substituting for was from above, we get

^M,d = £[lSjl2]-2xRe'
£[Sjx4] £[ Sj x d* ]
£[ lrfqP] x£KiX^]j £[ ldejl2]

x I 4, I2

(32)

(33)

,r.,P1 ,Jg[s,x4]i\ i£[s,x4]i2
1 J J"2 £[UeJl2] E[Wejl2]

= e[|sP] JE[S*X<]P
-£Lis,ij+ £[k/e.|2]

Thus, the jammer power E [ I Sj I2 ] is reduced by the factor I £[sj x dej] |2 / £[ k/ejl2].

The residual power may be close to zero but not necessarily zero. The weights are given

by,

E [s(/aw + aofae)^eQaw + nofee)]

Wad =

E [^aQom -I- noise)^d(jam + wofre)]

E [ ^d(/am + noise)' ]

wds =

E [%'aiii + noise)^a(jarn + nofee)]

E[ Wa(/««+nofee)1 2]

E ^d(/am + nofee)^(/an» + nofee)]

E[ + nofee)1 ]

(34)

(35)

(36)

(37)
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(Range & Doppler Detection]

s(j+»)

1

^a(j-i-n)

r i r 1 f 1

JWr as
k i
™ad Wes

k 4
Wds

W :™AMP = diag[was wa, wes
''..J

Weight Calculation

Figure 11. Weight Computation.

where,

E[ ^(jam+noise)! 2] ” E [ (S(jam+noise) ~ was<4(jam+noise)) (S(jam+noise) " ^as^jam+noise)) ] (38)

and,

jam + noise '

(jam + noise)

7
+ noise)

7
v(jam + noise)

(39)

xd(/<lam + noiseise) —
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Jamming before ASLC 
Jamming after ASLC 
target

noise

Figure 12. Data Samples for ^jam + noise

The adaptive monopulse output is given by

S — 5 - X dt(jam +

D& ~~ “ ^ad ^d{jam + noise)

— dQ~ wes X d&(jam + now)

^d “ ^d ” ^ds * s(jam + noise)

These equations may be expressed compactly using matrix notation as follows.

adap r mono r corr r noise

Where the correlation voltages ^corr are given by,

=

(40)
(41)
(42)
(43)

(44)

^as X de(jam + woijC) 

^ad X ^d(/am + noise) 

^es X d(j(jam + noije) 

Wds X S(jam + noise) _

= ^adap^adap ^(j,
am + noise ) (45)

where,
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’ Was 0 0 0 ■ ■ 1 -1 1 -1"
0 Wad 0 0 1 -1 -1 1
0 0 wes 0 and Madap 1 -1 -1 1
0 0 0 wds _ _ 1 1 1 1 _

or written as:
s

De
L^d -I

V - V =F mp wt

s " Wast/e "
d& Wad^d

d. Wes^d

I- C?
-

1_ - Wed-V _

mp (46)

w.
VAMP

L “d J

ad

0
0

Wes
0

0
0
0

Wed

”00 1 0“ s
0 0 0 1 da

• 0 0 0 1 • de
_ 1 0 0 0 _

(47)

AMP ~

0
0
0

0

0
0

= K-^AUpMAUPV,

3.2 The Multiple Signal Classification (MUSIC) Algorithm

Subspace methods, such as MUSIC, yield a resolution beyond the limit specified by the 

Rayleigh Criterion and therefore are sometimes called “super resolution” methods. 

Subspace methods can be used to compute the “pseudo-spectrum” for both the temporal 

and spatial signals and both are based on the eigen-decomposition of the correlation 

matrix. We will first consider the direction of arrival (DOA) estimation problem. 

Consider a linear array illuminated by K-plane waves. We consider these sources to be 

uncorrelated. Writing expressions for the signals at the outputs of the antenna elements, 

x j(t), X2(t),... ,xm(t). It is possible to express these in a very compact form using the

matrix notation. In order to discern the underlying pattern, it is simpler to start with the 

two sources, up u2 for k = 2 and then generalize to the cave when there are any, say k,

number of sources. Then,
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xj(t) = ui(t)e+jPdlc°s<t>l + U2(t) + nj(t)

X2(t) = ui(t)e+jP<^2C0S<l>l + U2(t) + n2(t) (48)

• •• •
xm(t) = uitQe+jPdm00^! + U2(t) e+jP^rncos(})2 + nm(t)

This set of equations may be very compactly expressed as follows:

1

X
 X s—

z

__
__

1 e+jPdicos<t>i
e+jpd2cos<|>1

e+jPdlcos(t>2 “ 
e+jPd2cos<|>2 r u,(t) ■

nt(t)
n2(t)

_ xm(t) _ e+jPdmcos<|>i e+jPdmcos<t>2 _

L U2(0 . +

_ nm(t) _

Now, we use the following definitions:

Xi(t)
-> x2(t)
x =

_ xm(t) _

(50)

e+jPdicos<t>i f n,(t) I
e+jPd2cos<|>1 ' Uj(t) ' n2(t)

e+jPdmC0S<t>l _
. U2<0 .

+

_ nm(0 _

(51)

[ A ] = t ^(Pi) 2(P2) ]

Pl = Pcos<t»l

p2 = pcos^

(52)

(53)

(54)
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u = (55)

n =

U1
u

(56)

2 J

L. nm

Now we can write,

—> A —>x =A u + n (57)

Here x is (Mxl), A is (Mx2), u is (2x1) and n is (Mxl). To generalize this to any

number of sources, say, k-sources is quite simple. The A matrix is now (M x k) and u

vector is (R x 1). That is,

[ A] = ( a(|3i) 2(p2) a(Pk) ] (58)

and

u =

Ul
u2

(59)

L uk J

Hence, for the general care, the array output vector is given by,

---- A ----------------x = A u + n (60)
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Incidentally, n is the noise vector and we consider noise signals in different array

elements to be uncorrelated.

Now let us determine the correlation matrix corresponding to the vector x

RJ= E[ x xH ] (61)

Rx= e[ (A"? + "n )(A"u +"i?)H ] (62)

Since the signals and noise are uncorrelated,

e[ a77H ] = OandE(. 'n(A'u)H ] = 0 (63)

Rx = 4 (A •?) (A 7)H ] + 4 ] (64)

Rx - A 7? ] + E[ ■/■'H ] (65)

R^ = A R^ Ah + a2I (66)

when = E[ u>H ] is a k x k matrix and is of rank k. Matrix A, which is an M x k

matrix is also of rank K. Since all the sources are uncorrelated. (It is assumed here

M>K). Since A and R"^ are of rank K, AR^A is also of rank k, even though it is an

MxM matrix.

Let us denote AR^A by R, which is MxM but has a rank of K (<M) and we have shown

R5? = R + a2I

Since R is only of rank K, it has K non-zero eigen values Ui > |12 • • •> Uk and (M-k)

zero eigenvalues. Let the eigenvectors of R be designated by q j , i = 1,2 ... m. Then,
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(67)

Rqj = (ijqj i = 1,2 ... m and gj = 0 i = k+l,k+ 2 ... m

Now, let us consider R^q j:

R^qj = (R + a2I) qj

Therefore, q j, the eigenvectors of R are also the eigenvectors of R x and the eigenvalues

of R^ are Aq > A,2 .. .> Am and are given by

Aj = gj + g2 (68)

2 2Thus, the lowest (M-k) eigenvalues all have the same value of G . That is, Aj = G i =

k+1, k+2... M. Let us now consider the eigendecomposition of R x .

M

R"x = =Qa(3H
1 = 1

whereQ = [qj <32 ••• qm ]andA = diag[ ^1 ^2 ••• \n ]

Now, for any i>k, we have

R^qj =^i9i = a^Qi fori=K+l,K+2...M

2
However, since R^ = (ARUA^ + g I)

R^qi = (ARuAH + cA) q j

Rx Qi = ARUAH q{ + a2qj = G2qt 

ARUAH qf= 0

(69)

(70)

(71)

(72)
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aH^. =0 (73)

Since ARU is an M x k matrix of full rank, we get

or stated differently

oH(3l) 

aH (P2)

_ (3m) _

9i =0 (74)

~a^ (3/) = 0 f°r any /=l,2..k and i=k+l,k+2...M

This remarkable result states simply that the direction vectors, or “steering vectors,”

(fy) for any corresponding to actual direction of arrival are orthogonal to the

eigenvectors associated with the lowest, repeating eigenvalues of the correlation matrix.

The (M-k) dimensional subspace spanned by the eigenvectors [ Qk+1 Qk+2 • • • 

is called the noise subspace N and every direction vector associated with the true arrival

angle is orthogonal to the entire subspace. This noise subspace N is orthogonal to the k 

dimensional subspace spanned by [ q j q 2 • ■ • Qk J which is designated by S and is 

called the signal subspace.

We use these remarkable properties to determine the direction of arrival. Let us define

the “direction vector” or the “search vector”

a(Pl) = [ e+j3dicos())1 e+jPd2cos<}>1 . e+j3dmcos<l>1 ]T

Where, the MUSIC pseudo-spectrum is given by:
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1
MUSIC “ N (75)

When p corresponds to the true direction of arrival, then the denominator approaches zero 

resulting in a sharp peak of the function P(P). Note that the peaks occur irrespective of 

the separation between the actual angles of arrival. Thus, this estimator, in principle, can 

resolve arbitrarily close targets.

3.3 AMP MUSIC System Model

By combining the Adaptive Monopulse (AMP) technique and Multiple Signal 

Classification (MUSIC) Algorithm, angle estimation in a mainbeam jamming 

environment can be accomplished. The pseudo-spectrum (P Surface) is defined as:

P(a,e) = —------- -----------  (76)
x 2|<7; a(a,e)

where,

q s eigenvector «(a,e) = direction vector
A, s eigenvalue P(a,e) = MUSIC Spectrum
P = QAQH = Covariance

a (Pz) = 0 for any/= 1,2,..., k, and i = k+1, k+2,...,N

Since each of these signals is orthogonal to the noise subspace, the denominator goes to

zero when:

q" a (|3,) = 0 (77)
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(78)

for any I = 1,2,..., k, and i = k+l, k+2,..., N

Pz = a/,ez

For a monopulse system N = 4 and k = the size of the noise space. Giving the following 

equations:

Px= sin(a)cos(e) 

py= sin(e)

(79)

(80)

a(a,e) =

e'^1 e^yi 
e^2 ^2

e/^y4 _
(81)

The monopulse P Surface is defined as:

P(a,e) = —

I
i = k+ I

1 (82)
_>H
qi Ma(a,e) 2

where M is the monopulse transformation matrix. The AMP MUSIC system model is

shown in figure 13 below.
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Adaptive Monopulse

Weight Calculation

Figure 13. System.

The number of jammers is determined through correlation and eigenvalue analysis. The 

size of the noise space k is determined by examining the relative size of the eigenvalues. 

Noise space eigenvalues will be considerably lower in magnitude than signal space 

eigenvalues as shown in figure 14.

1-1 I I__ ».
Aj A3 A4
1—t k___ I

Signal space Noise space 
eigen values eigen values

Figure 14. Signal and Noise Values.
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The noise subspace eigenvectors corresponding to the noise subspace eigenvalues X,

(recall that <=> X,) are used in the P surface equation. They are calculated from the

correlation matrix Ry , which is, calculated from rfAMP which is the voltage output of

the adaptive monopulse system.

q = eigenvector X = eigenvalue

The eigenvector matrix Q and eigenvalue matrix L are both reordered by eigenvalue 

magnitude as in figure 14 and the noise subspace is used to calculate P.

^VAMP ~ ^AMP ^AMP] (83)

(84)8 = 1 Q\ ]

(85)

The AMP MUSIC method involves projection of the signal onto the entire noise subspace 

to calculate P. However, the AMP MUSIC Pseudo-spectrum (P Surface) only provides 

us with signal location and does not indicate which peak corresponds to the target and 

which peak corresponds to the nulled jammer.

AMP MUSIC pseudospectrum

Figure 15. AMP MUSIC Spectrum.

target

True spectrum
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3.4 Signal Power Estimation

The true powers corresponding to the two peaks in the pseudo spectrum are computed 

using the least square estimation of signal amplitudes. The signal with the highest power

is declared to be the target signal. The rationale for such a decision is that the jammer

signal is severely attenuated by the adaptation process leaving the target signal to be the 

dominant component. The peak locations of the pseudo spectrum yield two angle 

estimates leading to two steering vectors, //,(/*) and u2(tk) which can be used to define

this following signal model at time instant tk :

' S(tk)
DM
DM

DM -

= [ a/X, a/X2 ].
«, (f*) 

U2^k) J (86)+ e

Here e is the modeling error. [ AfX, AfX2 ] are the unknowns. Note that the frequencies 

of operation, ft), and Cfy may be unknown and are clubbed together with the phases

and ifo •

’ “l ('*)" 
. U2(lk) _ = = [(MW]1 (M')hV(^mp

M' = [MX,mX2] (87)

After determining which peaks corresponds to target and jammer, the jammer peak can be 

ignored or removed and angle estimation can be made.
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CHAPTER 4

RESULTS

The theory presented earlier is used to develop an extensive simulation running under

MATLAB environment. This simulation is used to evaluate the statistical properties of

the newly developed estimator. The procedures used in the analysis presented in this 

chapter were set fort in [6] and [17]. Baseline sets of simulations have been carried out to

record the performance of the estimator in the absence of jamming. In addition an 

extensive sequence of simulations are carried out to examine the following issues:

i) Effect of SNR

ii) Effect of covariance matrix estimation losses.

iii) Effect of JNR

iv) Effect of the proximity of jammer.

The statistics of the estimates shown in this thesis are based mostly on 100 trials.

We examine the ideal case of no jamming first. Figure 16 shows a typical plot of P(a,e)

X
over the range -100° < a,£ < 100° for ad = ed = 0°, SNR = 10 dB, yd = 0° and I = As

may be seen, P(a,e) is a smooth flat surface with a single sharp peak at the desired signal 

angles. Figure 17 shows a contour plot of this surface. Figure 18 shows another example
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of P(a,e) with no jamming, for ad = ed = 20° (and SNR = 10 dB, v|/d = 0°). The

corresponding contour plot is shown in Figure 19. Note that the peak broadens in width

but is accurate in angle estimate.

The peak of P(a,e) always occurs at (ocd , ed). By finding the peak of P(a,e) for

each, we can plot the estimated angles as functions of the actual angles.

Surface Amplitude Plot of AMP MUSIC, SNR = 10dB; #jammers = 0

Figure 16. AMP MUSIC Spectrum for ocd = ed = 0, no jamming and L = 8.
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Contour dB Plot of AMP MUSIC; SNR = 10dB; #jammers = 0; JNR = -10000dB;

Figure 17. Contours of constant Px in a,e-plane for ad = ed = 0, no jamming and L = 8.
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Surface Amplitude Plot of AMP MUSIC, SNR = 10dB; jammers = 0
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Figure 18. AMP MUSIC Spectrum for ocd = ed
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= 20, no jamming and L = 8.
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Contour dB Plot of AMP MUSIC; SNR = 10dB; #jammers = 0; JNR = -10000dB;

Figure 19. Contours of constant Px in a,e-plane for ad = ed = 20, no jamming and L = 8.

Now we examine some Monte Carlo run examples. First, Figure 20 shows a typical set

of azimuth estimates obtained in 100 Monte Carlo trials when the SNR is = 10 dB, the

signal arrives cy = ej = 1° , there is no jamming, and L = 8 signal vectors are used in the

covariance matrix. Note that this SNR is low. As may be seen, the estimates are right on

aj = 1° with occasional estimates having large error. The reason for these bad estimates

is that the search routine used to locate the peak of P(a,e) found a local maximum, due to 

noise, instead of the global maximum. Since AMP MUSIC estimation requires a search 

to find the peak of P(a,e), this problem can sometimes occur. Naturally, when the search
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finds the wrong peak, the error is very large. This problem is rare at high SNR as shown 

in Figure 21. Figure 21 shows a set of 100 estimates obtained when the SNR = 10 dB and 

the other parameters are the same as in Figure 20. A SNR of 10 dB is considered low but 

shown here to demonstrate performance increase.

Given a set of N estimates such as those in Figure 20, we define the sample

average of the set to be

1 N
Av(otd) = ^aa(n) (88)

n=l

where Od(n) denotes the estimate in the set. The sample bias of the set is then

Av(ctd) - aj

and the sample standard deviation is

1 N
^-{JtOd-AvCaa)]} (89)

n=l

E the SNR is reduced, the estimates become noisier. Note that some of the estimates in

Figure 21 still have very large error. When the SNR is too low, the estimates no longer 

have much relationship to the actual angle.

38



Estimated Target azimuth angles for AMP MUSIC, SNR = OdB; #jammers = 0; JNR = -10000dB;
2
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Figure 20. Estimated azimuth angles for 100 Monte Carlo trials with £d = 0 dB, ad = ed = 
1, no jamming and L = 8.
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Estimated Target azimuth angles for AMP MUSIC, SNR = 10dB; #jammers = 0; JNR = -10000dB;

Figure 21. Estimated azimuth angles for 100 Monte Carlo trials with = 10 dB, ad = ed 
= 1, no jamming and L = 8.

4.1 The Effect of SNR

How the desired signal SNR (^j) affects the performance of the estimates is shown in

Figures 22-25. Figure 22 shows the azimuth bias (the average error in cy) vs. the desired

signal SNR when the desired signal arrives from cy = y = 1° and there is no jamming.

Figure 23 shows the standard deviation of cy, and Figures 24 and 25 show the bias and

standard deviation of the elevation estimate ej all as functions of the SNR. The curves in
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Figures 22-25 were obtained by averaging the results of 100 independent trials for each 

SNR. For each trial, the covariance matrix was computed from L = 8 signal vectors. 

Because the biases and standard deviations shown in Figures 22-25 are computed from a 

finite number of trials, they are themselves estimates of the true biases and standard 

deviations. In general, the more trials used to form the estimates, the less the variance of

these estimates. To see how the number of trials affects these curves, Figures 26-29 show

the biases and standard deviations of oy and ej obtained when 400 trials are averaged and

L = 24. Note that the curves are much smoother in this case. Most of the results in this

thesis have been obtained by averaging 100 Monte Carlo trials. We note from Figures

22-25 (or 26-29) that the bias and standard deviation of ej are essentially the same as

those for oy. As expected high SNR yields low to zero bias and standard deviation.
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Figure 22. Azimuth bias vs. SNR for a = e = 1, no jamming and L = 8. Curve is 
computed from 100 trials.
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Target Azimuth angle standard deviation vs. SNR
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Figure 23. Azimuth standard deviation vs. SNR for ocd = ed = 1, no jamming and L = 8. 
Curve is computed from 100 trials.
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Target Elevation angle bias vs. SNR
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Figure 24. Elevation bias vs. SNR for ad = ed = 1, no jamming and L = 8. Curve is 
computed from 100 trials.
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Figure 25. Elevation standard deviation vs. SNR for ad = ed = 1, no jamming and L = 8. 
Curve is computed from 100 trials.
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Target Azimuth angle bias vs. SNR
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Figure 26. Azimuth bias vs. SNR for ocd = ed = 1, no jamming and L = 24. Curve is 
computed from 400 trials.
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Figure 27. Azimuth standard deviation vs. SNR for ocd = ed = 1, no jamming and L = 24. 
Curve is computed from 400 trials.
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Target Elevation angle bias vs. SNR
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Figure 28. Elevation bias vs. SNR for ad = ed = 1, no jamming and L = 24. Curve is 
computed from 400 trials.
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Target Elevation angle standard deviation vs. SNR

Figure 29. Elevation standard deviation vs. SNR for ad = ed = 1, no jamming and L = 24. 
Curve is computed from 400 trials.

4.2 The Effect of L

Now we look at how the bias and standard deviation of cy and ej are affected by a

number of signal vectors L used to form the covariance matrix. The curves in Figures SO-

33 are computed for an SNR of = 30 dB, oy = ej =1° and no jamming. Note that

since the covariance matrix is a 4 x 4 matrix, L must be at least 4 to make M nonsingular. 

In Figures 30-33, the means and variances of aj and ej are shown for 1 < L < 20. These

curves show that the standard deviations of aj and ej do not improve for L larger than
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about 5or 6. Reed, Mallett and Brennan [18] stated that L should be twice the number of

adaptive channels, or in this case 8. For most curves in this thesis, we have used L=8.

However, it is interesting to see what happens if more trials are used to compute the bias 

and standard deviation. Figures 34 and 35 show the standard deviations of cy and ej

computed from 400 Monte Carlo trials. These curves show that the standard deviation 

becomes negligible at about L = 6 not necessarily L = 5. The explanation for this 

difference appears to be that with 100 trials, the variance in the computed standard 

deviation is large enough to mask any improvement for L>5. However, with 400 trials, 

the variance in the computed standard deviation is smaller so the improvement for L>5

can be seen.
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Figure 30. Azimuth bias vs. L for = 30 dB, ad = ed = 1, and no jamming. Curve is 
computed from 100 trials.
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Figure 31. Azimuth standard deviation vs. L for £d = 30 dB, ad = ed = 1, and no 
jamming. Curve is computed from 100 trials.
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Target Elevation angle bias vs. Number of Samples L
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Figure 32. Elevation bias vs. L for = 30 dB, ocd = ed = 1, and no jamming. Curve is 
computed from 100 trials.
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Target Elevation angle standard deviation vs. Number of Samples L
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Figure 33. Elevation standard deviation vs. L for £d = 30 dB, ocd = ed = 1, and no 
jamming. Curve is computed from 100 trials.
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Target Elevation angle standard deviation vs. Number of Samples L
3

Figure 34. Elevation standard deviation vs. L for £d = 30 dB, ad = ed = 1, and no 
jamming. Curve is computed from 400 trials.

4.3 The Effect of Jamming

Now we will introduce jamming and examine its effects on the system. Figures 35-38 

show the biases and standard deviation of aj and ej as functions of the SNR when the

desired signal arrives from aj = ej = 1° and a jammer arrives from otj = ej = 30° with a 

JNR of E,j = 40 dB. Figures 35-38 are computed from 100 trials with L = 8. Comparing

these curves with Figures 22-25 shows that the jamming causes two changes:

(1) a higher SNR is required to reduce the bias to zero
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(2) the standard deviation of oy and ej is increased by more than an order of

magnitude.

Figure 35. Azimuth bias vs. SNR for ocd = ed = 1, = 40 dB, ocj = ej = 30 and L = 8.
Curve is computed from 100 trials.
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Target Azimuth angle standard deviation vs. SNR
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Figure 36. Azimuth standard deviation vs. SNR for ad = ed = 1, = 40 dB, aj = ej = 30
and L = 8. Curve is computed from 100 trials.
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Target Elevation angle bias vs. SNR
0

Figure 37. Elevation bias vs. SNR for ad = ed = 1, £j = 40 dB, aj = ej = 30 and L = 8. 
Curve is computed from 100 trials.
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Figure 38. Elevation standard deviation vs. SNR for ocd = ed = 1, = 40 dB, aj = ej = 30
and L = 8. Curve is computed from 100 trials.

4.4 The Effect of JNR

Figures 39-42 show the biases and standard deviations of oqj and ej as functions of the

JNR when the SNR is^j = 30 dB, ocj = ej = 1°, aj = ej = 30°. One hundred trials are

averaged with L = 8. There is a curious jump in the angle bias, Figures 39 and 41, at JNR 

= 25 dB most notable in elevation but also in azimuth. The largest change seems to occur

between a JNR of -20 dB to 20 dB. We do not know the reason for this curious behavior.
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Figure 39. Azimuth bias vs. JNR for £d = 30 dB, ad = ed = 1, aj = ej = 30 and L = 8. 
Curve is computed from 100 trials.
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Figure 40. Azimuth standard deviation vs. JNR for £d = 30 dB, ad = ed = 1, aj = ej = 30 
and L = 8. Curve is computed from 100 trials.
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Figure 41. Elevation bias vs. JNR for £d = 30 dB, ad = ed = 1, aj = ej = 30 and L = 8. 
Curve is computed from 100 trials.

61



Target Elevation angle standard deviation vs. JNR

Figure 42. Elevation standard deviation vs. JNR for £d = 30 dB, ad = ed = 1, aj = ej = 30 
and L = 8. Curve is computed from 100 trials.

4.5 The Effect of Target Position

The bias and standard deviation of a^ and ej as the desired signal azimuth angle aj is

varied over the range are shown in Figures 43-46. 100 trials were averaged with L = 8. 

Figures 43-46 show that the bias and the standard deviation of both Od and ej are

considerably small to zero at ad = ed = 0 and increase dramatically as aj approaches aj. 

This occurs because the peak of the P-surface is pulled away from the correct desired
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signal angle due to incomplete jammer nulling and noise variations. This causes a high 

standard deviation in the estimates. A similar problem occurs when ej is near ej.

Figure 43. Azimuth bias vs. ad for ^d = 30 dB, ed = 1, £j = 40 dB, aj = ej = 30 and L = 8. 
Curve is computed from 100 trials.
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Target Azimuth angle standard deviation vs. Desired signal azimuth (degrees)
45

Figure 44. Azimuth standard deviation vs. ad for £d = 30 dB, ed = 1, = 40 dB, aj = ej
= 30 and L = 8. Curve is computed from 100 trials.
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Figure 45. Elevation bias vs. ocd for = 30 dB, ed = 1, £j = 40 dB, aj = ej = 30 and L = 
8. Curve is computed from 100 trials.
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Target Elevation angle standard deviation vs. Desired signal Elevation (degrees)

Figure 46. Elevation standard deviation vs. ad for £d = 30 dB, ed = 1, £j = 40 dB, aj = ej 
= 30 and L = 8. Curve is computed from 100 trials.
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CHAPTER 5

CONCLUDING REMARKS

5.1 General Remarks

This thesis devised a new adaptive technique to estimate the azimuth and elevation angles 

of the target in the presence of a main lobe jammer and using a monopulse configuration. 

In the absence of main lobe jammer the monopulse system works very well, but the 

jammer tends to destroy the monopulse characteristic and the system fails completely. A 

number of efforts, for instance, Nickel [12], sought to develop corrections for the slope 

and zero crossing of the adapted monopulse ratio in the presence of jamming. Toulgor 

and Turner [13] also seek to eliminate the jammer component from the signal as was the 

case in the approach presented in this thesis but use a different method. They estimate the 

jammer subspace and then project the data to a space orthogonal to the jammer subspace

to eliminate jammer component. MUSIC, suitably modified is then used to estimate the

angle of arrival. The technique reported in this thesis consists of the following steps:

i) The jammer component in each beam is eliminated by one of the other 
difference beams as an “auxiliary beam” and is subtracted.

ii) The monopulse output, cleaned so to speak of the jammer component is 
then used to estimate the angle of arrival using the MUSIC algorithm.
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iii) The pseudo spectrum of the MUSIC algorithm reveals peaks
corresponding to both the target and the jammer. The discrimination 
between the two peaks is made based on the signal power associated with 
their peaks, which is determined using least squares technique. The peak 
with the largest power is declared to be the target signal peak.

An extensive study based on MATLAB Simulation suggests that this angle estimator 

gives results comparable to that obtained using the deterministic Maximum Likelihood

Method [6], [17]. However, locating the peaks is much simpler using the present method.

The MLM approach requires the location of the maximums of a two dimensional surface

which assumes very complex shapes in the presence of jamming.

5.2 Discussion of the Results

This thesis has examined the statistical performance of an adaptive monopulse MUSIC

angle estimator operating with an array of four isotropic antenna elements. A target

signal and a jamming signal are incident on the antenna, and each element signal also

contains thermal noise. The estimator determines the azimuth and elevation angles of the 

desired signal. Monte Carlo trials have been run using a MATLAB simulation to 

determine the bias and standard deviation of the angle estimates as functions of the signal

parameters.

Part 1 of Chapter 4 showed how the estimator performance is affected by the desired 

signal SNR. Also, results obtained from 100 Monte Carlo trails were compared to those 

obtained from 400 trials, in order to see the differences in the computed statistics. Part 2 

examined the effect of L, the number of signal vectors combined to form the sample

covariance matrix, on the estimator biases and standard deviations. Most of the curves in

this thesis were obtained by using L = 8 (twice the number of adaptive channels). Part 3
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of Chapter 4 showed that the presence of a jammer has two main effects. First, it 

increases the standard deviation of the estimates by more than an order of magnitude.

Second, when jamming is present, a higher SNR is required to reduce the biases to zero.

Part 4 of Chapter 4 showed how the JNR affects the estimator performance.

Part 5 of Chapter 4 examined how the estimator performance changes as the desired 

signal azimuth angle is scanned through the jammer azimuth angle.

The results show that the estimation by both the MLE and the MUSIC algorithm are 

similar. The main difference is shown in Figure 47, where the plane around the detection 

space is more complex with the MLE estimator. Note that the MUSIC algorithm 

generates a narrow, large peak at the estimation angle. In the case of jamming, the 

MUSIC algorithm outperforms the standard MLE algorithm in that the jamming-MLE 

peak exhibits a complex surface geometry around the estimated angle.

Figure 47. MLE Q surface for £d = 30 dB, ed = 1, Ej = 40 dB, aj = ej = 30 and L = 8. 
Courtesy of [17]
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5.3 Contributions to State-of-the-Art

As stated earlier, the main contributions of the thesis are that the MUSIC algorithm 

performs as well as the maximum likelihood estimator. However the location of the 

target from the MLE suffers from a complex geometry, whereas the MUSIC algorithm 

generates a simple geometrical surface. The simplicity of the space is needed for further 

processing since the gradient of the measurement can give additional information such as 

the confidence of the measurement. For instance, if the gradient is large, or the beam- 

width is small, then the detection of the angle estimation of azimuth and elevation is high.

5.4 Future Work

There are many issues to further explore in the implementation of the MUSIC algorithm. 

Such examples of the extension of the work include: real data, theoretical limitations of 

the algorithm, moving targets with varying angles, integrated measurements with other 

sensors such as Inertial Navigation Systems (INS) [19] and the integration of the MLE

with the MUSIC algorithm. It is hoped that some of these issues will be resolved in the 

dissertation. Additionally, such issues as learning might be extended with this work [20].

There are a number of issues that could not be addressed in the present investigation but

deserve to be examined. Some of these are listed below:

i) The element patterns constituting the monopulse system are taken to be isotropic. 
In a real system, they actually would be a large array, with a relatively narrow 
beam. The effect of such a pattern must be taken into account.

ii) In formulating the MUSIC Signal Model, the steering vectors are affected by the 
adapted weights. However, this is not taken into account in computing the
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MUSIC pseudo spectrum. It would be interesting to modify the steering vectors 
appropriately to compute the MUSIC spectrum.

iii) Monopulse yields best results when the target is at the boresight. Once an 
estimate of the target is obtained, it is possible to steer the monopulse system so 
that the target is close to the boresight and then process the data again to compute 
an updated estimate. It is expected that this estimate would have better statistical 
properties than the earlier estimate.

71



REFERENCES

[1] Van Trees, H. L., Detection, Estimation, and Modulation Theory, John Wiley and

Sons, Inc., New York, NY, 1968.

[2] Miller, M. I. And D.R.Fuhrman, 'Maximum-likelihood narrow-band direction 

finding and the EM algorithm,' IEEE Transactions on Acoustics, Speech, and 

Signal Processing, Vol. 28, no. 9 (Sept 1990). pp.1560-1577.

[3] Pillai, S. U. Array Signal Processing, Springer-Verlag., New York, NY, 1989.

[4] Ziskind, I., and M Wax, 'Maximum-likelihood localization of multiple sources by

alternating projection,' IEEE Transactions on Acoustics, Speech, and Signal

Processing, Vol. ASSP-36, no. 10 (Oct 1988). pp.1553-1560.

[5] Stoica, P, and A. Nehorai, 'Performance study of conditional and unconditional

direction-of-arrival estimation,' IEEE Transactions on Acoustics, Speech, and

Signal Processing, Vol 38, no 10 (Oct 1990), pp. 1783-1795.

[6] Compton, R.T., 'Adaptive Maximum Likelihood Angle Estimate Bias with a

monopulse antenna under ideal conditions,' Tech Report WL-TR-97-1148,

Wright Laboratory.

[7] Brennan, Reed and Davis, 'Parameter estimation of superimposed signals using

the EM algorithm,'. IEEE Transactions on Acoustics, Speech, and Signal

Processing, Vol. ASSP-36, no. 4 (Apr 1988). pp. 477-489.

72



[8] Feder, M. and E. Weinstein, 'Parameter estimation of superimposed signals

using the EM algorithm,'. IEEE Transactions on Acoustics, Speech, and Signal

Processing, Vol. ASSP-36, no. 4 (Apr 1988). pp. 477-489.

[9] Roy, R. and T. Kailath., 'ESPIRIT - Estimation of signal parameters via

rotational invariance techniques,' IEEE Transactions on Acoustics, Speech, and

Signal Processing, Vol. ASSP-37, no. 7 (July 1989), pp. 984-995.

[10] Lin, Feng-Ling C. and Kretschmer, Frank F., 'Angle Estimation in the presence

of Mainbeam Interference,’ NRL Report 9234 AD-A216 832 (December 1989).

[11] Theil, 'Angle Estimation in the presence of Mainbeam Interference,’ NRL

Report 9234 AD-A216 832 (December 1989).

[12] Nickel, U., 'Monopulse Estimation with Adaptive Arrays,' IEE Proceedings-F,

Vol. 140, No. 5, (October 1993) pp. 303-308.

[13] Toulgoat, Mylene and Turner, Ross M., 'Estimation of Target Angular Position 

Under Mainbeam Jamming Conditions,' Defence Research establishment

Ottawa, Report No. 1281 (December 1995).

[14] Schmidt, R. O., 'Multiple emitter location and signal parameter estimation,’ 

IEEE Transactions on Antennas and Propagation, Vol. AP-34, no. 3 (Mar 1986),

pp. 276-280.

[15] Morris, Guy V., 'Airborne Pulsed Doppler Radar,' ARTECH HOUSE, INC., 

(1988)

[16] Stimson, George W., 'Introduction to Airborne Radar,' Hughes Aircraft 

Company (Mar 1983)

73



[17] Compton, R.T., ’The Statistical Performance of Adaptive Maximum Likelihood 

Angle Estimation with a Simple Monopulse Antenna,' Tech Report WL-TR-97- 

1149, Wright Laboratory.

[18] Reed, L.S., Mallett, J.D., and Brennan, L.E.,'Rapid Convergence Rate in

Adaptive Arrays,’ IEEE Transactions, Vol. AES-10, No. 6 (November 1974), pp.

853-864.

[19] Layne, J, R. and E. Blasch, 'Integrated Synthetic Aperture Radar and

Navigation Systems for Targeting Applications,' Tech Rep. WL-TR-97-xxx,

Wright Laboratory, Wright Patterson AFB, Ohio, October 1997.

[20] Johnson, J, H. Li, E. Culpepper, E. Blasch, and A. Klopf, 'Learning Algorithms 

for Suppressing Motion Clutter in Airborne Array Radar,* National Aerospace 

and Electronics Conference, Dayton, Ohio, July 1997, pp. 840-845.

74



VITA

Edwin Culpepper was bom on 3 July 1962 in Cleveland, OH. He graduated from 

Lutheran High School East in 1980 and attended the University of Evansville in Indiana, 

graduating with a Bachelor of Science degree in Electrical Engineering. He also co-oped 

with Wright-Patterson AFB near Dayton, OH during his undergraduate studies. Since 

then, he has been a full-time employee at Wright-Patterson, currently assigned to the 

Targeting and Attack Radar Branch of the Sensors Directorate for the Air Force Research 

Laboratory while earning a Master of Science degree in Electrical Engineering at the 

University of Dayton. Mr. Culpepper's area of expertise is in adaptive and array signal 

processing for radar and communications.

75


