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ABSTRACT

DESIGN AND APPLICATION OF THERMAL GRADIENT PROGRAMMING 
TECHNIQUES FOR USE IN MULTIDIMENSIONAL GAS CHROMATOGRAPHY-MASS 
SPECTROMETRY (MDGC-MS)

Name: Contreras, Jesse Alberto
University of Dayton, 2004

Research Advisor: Richard C. Striebich, Wayne A. Rubey 
Academic Advisor: Dr. Kevin J. Myers

Multidimensional gas chromatography-mass spectrometry can provide significant 

improvements in the separation of complex organic mixtures. However, due to the 

extreme complexity of these organic samples, some zones in the chromatogram are 

often not adequately resolved.

An often-encountered difficulty experienced in the second-dimension separation 

represents a form of the general elution problem (GEP). Over the years, programmed 

temperature gas chromatography has been regarded as an acceptable solution to the 

GEP in gas chromatography (GC). Although, due to the fast separations required in the 

second-dimension, the application of rapid and quick turnaround temperature 

programming is very difficult to accomplish.

A potential solution for this operational situation can be the use of thermal 

gradient programmed gas chromatography (TGPGC). This technique is a novel mode of 

performing fast GC analyses, by applying three-dimensional thermal field programming. 

The application of thermal fields in TGPGC has been accomplished through the use of a 

column sheath assembly (CSA). The design, construction, and evaluation of CSA
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capable of producing a variety of thermal contours with high-thermal compliance and 

uniformity was addressed in this thesis. A further goal was to employ the CSA concept in 

a MDGC-MS system to demonstrate its effectiveness to enhance the second-dimension 

separation, thereby improving analytical performance.

In order to test and tune the CSA, and the MDGC-MS system, only the 

secondary-column was used, and sample injections were performed to simulate the 

sample heartcuts coming from the first column. Results from the TGPGC experiments 

showed increased resolution improvements in the early eluting and clustered solutes, 

and a better spatial distribution for the analytes in the second-dimension.

We have successfully demonstrated TGPGC as an important technique for the 

second dimension of the complete MDGC-MS system. In contrast with conventional 

MDGC-MS, the application of TGPGC in MDGC-MS showed a more complete analysis 

of complex organic samples, in less time, while better addressing the GEP.

The application of the TGPGC mode in MDGC will be useful in the analysis of 

complex mixtures, e.g., petroleum products, combustion emissions, industrial effluents, 

etc., and in the detection of potentially toxic compounds found in the environment at

trace level concentrations.
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CHAPTER I

INTRODUCTION

In nature, pure substances are rare to find; our world is mostly made of mixtures. 

For instance, the mineral water used for drinking contains more than 8 compounds1, sea 

water contains more than 80 dissolved elements2, petroleum may well contain over 

100,000 components3, 4, cigarette smoke contains more than 7,500 compounds5 and 

even what we consider as clean rural air can contain at least 5,000 compounds with 

concentrations as low as parts-per-trillion6.

Human nature has always been oriented upon seeking knowledge to understand 

and thereby characterize the physicochemical world. Knowing the exact composition of 

mixtures could lead us to identify compounds that can be useful, or harmful, for us and 

the environment. Such information allows us to understand physicochemical processes

where mixtures are involved.

Among the separation sciences, gas chromatography (GC) occupies a rather 

unique position due to its sensitivity, separation efficiency, reasonable analysis time, and 

simplicity. It is the instrumental technique most widely used today for the analysis of 

volatile and semi-volatile organic compounds4,7’8.

Many improvements have been made in GC over the years since its invention in 

the early 1950’s. However, the complete separation of highly complex mixtures, e.g., 

petroleum products and environmental samples, requires extremely long analysis times 

or the use of more sophisticated systems, such as multidimensional systems9'12.
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Extensive peak co-elution presents a challenge for qualitative or quantitative analysis, 

even with the use of definitive confirmation technologies such as mass spectrometry13 

(MS). Different methods exist to reduce sample complexity by eliminating portions of the 

sample that contain compounds that are not of interest. Some of the preparative 

methods used are: single or multi-step solid phase extraction, size-exclusion 

chromatography, liquid chromatography (LC) or coupled-column techniques (LC-GC). 

Unfortunately, these methods can increase the chance of contamination and they are 

time-consuming.

With the introduction of the multidimensional GC (MDGC) technique in the 

1969’s, researchers started to separate complex samples without the need of difficult 

pre-separations techniques. Simplification of sample preparation was one of the 

advantages of MDGC that made the technique attractive. The MDGC technique consists 

of a sequential arrangement of two GC columns of different selectivity, where distinctive 

segments of eluant from the first column (first dimension) are transported into a second 

column (second dimension) to further separate any unresolved components. This 

technique combines the advantages of increased separation power with reduced 

analysis time14'17.

Impressive results in MDGC have been obtained in terms of separation efficiency 

as a result of increased peak capacity, improved analysis speed, sensitivity, and 

moreover, an orderly separation based on chemical class9,10. The further coupling of the 

MDGC technique with Mass Spectrometry (MDGC-MS) has shown remarkable gains in 

resolving power and compound identification i.e., beyond anything possible with one­

dimensional systems such as single chromatographic columns5,16,18.

In recent years, the use of MDGC-MS has not been restricted only to the analysis 

of complex samples, but also to less complex samples. With MDGC-MS, more
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constituents are being revealed in complex samples than those found by conventional 

GC, showing how much more complex they are, than what we previously realized13.

Even with the resolving power of MDGC-MS already an order of magnitude 

greater than one-dimensional techniques, complex mixtures, such as combustion 

effluents and petroleum-derived products, still require greater resolution than that 

achieved with MDGC-MS. Still some peaks or zones in the MDGC-MS chromatograms 

are not adequately resolved6.

The typical MDGC-MS experiment involves slow-programming of a primary 

column and an isothermal secondary column separation. One difficulty confronted in the 

isothermal second-dimension separation represents a form of the general elution 

problem (GEP), where early eluting peaks are sharp and clustered together, while later 

peaks become broad and spread out, while exhibiting a wide range of migrations rates. 

The experimentally accessible peak capacity of the system is only a small portion of its 

potential.

Over the years, programmed temperature GC (PTGC) has been regarded as an 

acceptable solution to the general elution problem in GC. However, due to the fast GC 

separation in the second dimension, the application of rapid and quick turnaround 

temperature programming is very difficult to accomplish.

Several approaches have been considered to improve the chromatographic 

selectivity and separation, as well as minimize elution time in the second dimension 

within MDGC-MS operations. Some of the approaches considered were: to program the 

temperature of the secondary column independently from the first column5, 10, 13, 19-21, 

modify the stationary phase selectivity, or use mixed stationary phases in the second 

dimension10,22,23, use longer columns in the second dimension24, employ narrower bore 

columns for the second dimension25, change the flow in the second dimension12,26, apply 

fast temperature programming in the second dimension22, use software to resolve
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overlapped peaks directly from the signal data27, and use of higher-order 

multidimensional separations or GCxGCxGC6. However, the gains in separation 

obtained through the application of these methods were relatively small and in some 

cases at a great expense in time or effort. Moreover, the enhancements were partial 

because only part of the chromatogram was improved10.

A potential solution for this operational situation could be the use of thermal 

gradient programming gas chromatography (TGPGC). This operational mode can 

perform rapid analysis with complex mixtures in a short period of time; moreover, it 

permits rapid turnaround times and is a better solution to the general elution problem in 

high speed GC28,29. All these attributes make the TGPGC method highly interesting to 

evaluate, as an alternative in optimizing the second dimension in MDGC-MS. This novel 

mode of conducting fast GC analysis is achieved by applying a three-dimensional 

(distance-temperature-time) thermal field programming. The TGPGC method creates a 

temperature gradient in the axial direction of the chromatographic column with the ability 

of modifying the gradient through time.

The application of thermal fields in TGPGC requires a special component known 

as column sheath assembly (CSA). In order to create a versatile range of thermal fields, 

the CSA needs to be thermally compliant and able to undergo rapid changes of 

temperature and pressure. Therefore, the design, construction, and evaluation of a CSA 

capable of producing a variety of thermal fields with high thermal compliance and 

uniformity were addressed in this thesis. Another goal was to employ the CSA within a 

MDGC-MS system to demonstrate its effectiveness in the enhancement of the second- 

dimension separation.

4



CHAPTER II

BACKGROUND AND LITERATURE SURVEY

History of Chromatography

One of the first works performed using chromatographic principles occurred 

during the middle of the nineteen-century, by F. F. Runge in 1843. He used unglazed 

paper and/or cloth to spot test dye mixtures and plant extracts7. The recognized 

introduction of chromatography is attributed to the botanist M. S. Tswett, who performed 

separations of plant pigments in 19O330, 31. Tswett presented the fundamentals of 

chromatography by scientifically describing the process. He discovered that plant dyes 

could be separated using calcium carbonate particles as the adsorbent and petroleum 

ether as the mobile phase. He called this process chromatography, literally from the 

Greek “color-writing”. Tswett also mentioned that the principles of chromatography apply 

for both colored and colorless compounds30,31.

Chromatography is a physical method of separation in which the sample 

components to be separated (the analytes) are distributed between two phases, i.e., one 

is stationary with a large surface area (the stationary phase), while the other is a fluid 

and moves in a definite direction (the mobile phase). The separation is due to 

differences in the distribution of the analytes between the two phases32,33. Currently the 

term chromatography is highly accepted, and is used for separation methods based 

upon established transport principles31. Since its conception, chromatography has 

undergone extensive development and has evolved into a wide variety of types and
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techniques. The main four types of chromatography are liquid, gas, thin-layer and paper 

chromatography. Gas chromatography is a technique used for the analysis of volatile 

compounds, in which the mobile phase is a gas and the stationary phase is either a solid 

(GSL) or a liquid (GLC).

Evolution of Gas-Liquid Chromatography (GLC)

The initial work in GLC is generally attributed to A.T. James and A.J.P. Martin 

with the appearance of their 1952 paper, where they reported the separation of volatile 

fatty acids by partition-chromatography with nitrogen gas as the mobile phase, and 

oil/steric acid serving as the stationary phase. In fact, the origin of GLC lies in a 

sentence presented in an important publication in 1941 in which Martin, with R.L.M. 

Synge, first described liquid-phase partition chromatography4. They stated that partition 

chromatography could be also applied to volatile substances using a vapor as the mobile 

phase. This paper was the foundation of partition chromatography for which Synge and 

Martin would be given the Nobel Prize for Chemistry in 19524.

This new separation technique produced a rapid growth of interest among 

researchers, due to its simplicity, and its capability to be applied in several areas, e.g., 

the petrochemical industry, biochemistry, reaction kinetics, etc. However, the use of 

packed columns in the early GLC systems presented some difficulties, due to the fact 

that the resolution was limited by the column length, which was restricted somewhat by 

the pressure drop across the column. These restrictions were overcome by the invention 

of the open tubular column (OTC) or capillary column. First suggested by Marcel Golay 

in 1957 as a result of mathematical studies, and later in 1958, Golay demonstrated its 

theory and operation4.
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With the introduction of capillary columns, high GLC efficiencies were produced, 

where complete separation and faster analysis were possible for many types of samples. 

Even so, problems soon appeared with the use of glass capillary columns. The activity of 

the “common” glass towards polar analytes often gave severe peak tailing and due to 

the unstable liquid film and their fragility, the glass OTCs had a short life4,31.

The commercial introduction of fused-silica capillary columns in the early 1980s 

by Dandeneau and Zerenner, was an important answer to solving these problems. 

Fused-silica tubing externally coated with a protective layer of polyimide, were flexible, 

durable, and chemically inert, thereby making them especially suitable for gas 

chromatographic use. Nowadays fused-silica columns are the most used OTCs in GC 

analysis4,30,31.

The development of fused-silica capillary columns greatly increased the 

application of high-resolution GC across the field of organic analysis and also the ability 

to separate complex mixtures. Furthermore, the access of a low-cost bench-top GC 

instrument made the technique widely available, becoming one of the most important 

and widely applied analytical techniques in modern chemistry.
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History of Multidimensional Gas Chromatography

Contemporary analytical gas chromatography is an effective means for analyzing 

samples containing volatile to semivolatile organic compounds. High-efficiency capillary 

gas chromatography has progressed a long way to become the main method of 

analytical and physicochemical research34,35. Despite the advances in column efficiency 

and instrumentation, conventional GC has some limitations that lessen or curtail its 

application in the analysis of complex mixtures.

For complex samples containing more than 150 to 250 randomly distributed 

relevant compounds, conventional GC can not completely separate all the individual 

analytes21, 36. The qualitative analysis task of recognizing an unknown as a specific 

compound out of a matrix of possible sample components is often constrained by the 

large number of solutes in the sample37. Even with the use of definitive confirmation 

technologies such as mass spectrometry (MS), the extensive peak coelution obtain, 

seriously restricts the qualitative analysis of many of the solutes12,13, 24. Separation of 

complex mixtures using conventional GC can be achieved, but at the cost of prohibitively

longer analysis times, due to the low peak capacity that a single GC column

11 12possesses ’ .

Peak capacity is a parameter used to describe the overall separation power of a 

single GC column9,38. It is defined as the maximum number of peak profiles that can be 

placed, with complete separation, into the available separation space (chromatogram)9, 

39. To alleviate the effects of peak crowding, column efficiency has to be increased by 

increasing peak capacity10. The limitations imposed by the use of a single column have 

been realized for many years. The search for improved or enhanced methods that 

address these deficiencies was undertaken shortly after the advent of the GC method

itself.
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An approach used to enlarge peak capacity was to increase column length, 

decrease column diameter, or a combination of both. However, the analysis times 

became unacceptably long to generate a reasonable separation9 using longer columns. 

Another approach was to join together two different columns to obtain an improved 

selectivity in the separation i.e., multichromatography. However, a simple joining of two 

different columns was not satisfactory. This was merely a shifting of the peak relative 

retention due to the mixing of stationary phases. Although the selectivity of the 

separation was improved, still there was no increase in the peak capacity of the 

system40.

J. Calvin Giddings described the fundamental aspects of multidimensional 

separations by defining it as a technique where the components of a mixture are 

subjected to two or more independent separation mechanisms in which their 

displacements depend on different factors9, 18, 38 (volatility, polarity, etc.). Then 

multidimensional GC offered an attractive alternative to rapidly expand peak capacity. 

The overall peak capacity of a two-dimensional system could be estimated as the 

product of the individual peak capacities of the independent columns41. The experiment 

using two columns in series was further developed by D.R. Deans in 1968 by locating a 

pressurizing valve switching system between two columns, which had different 

selectivities. The switching system was able to isolate discrete fractions of effluent from 

the first column and then pass them to the second column. The experimental results 

showed that it was an effective way to increase the resolution for a separation analysis4, 

17,40,42 -|-he jso|atecj Zones from the first column received the name of “heart cuts” and

therefore the “heart-cutting” two-dimensional GC, or multidimensional GC (MDGC) 

technique was born.

The invention of Deans switching system was an important early development for 

MDGC. Using Deans switching valve, Schomburg in 1972 reported that the resolution of
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the selected heart-cuts could be further increased by using capillary columns17,42. He 

also trapped the heart-cuts in a cold trap located between the columns, i.e., before the 

second separation. In this mode, the selectivity of the second-dimension separation was 

no longer influenced by the selectivity of the first separation. Furthermore, band-focusing 

(cryofocusing) permitted an increase in sensitivity to be achieved12,41,42.

Using an SGE Dean’s switching module and following the principles stated by 

Schomburg43, Rubey and coworkers reported one of the first works on coupling a MS to 

a two-dimensional heart-cutting MDGC system44. Now a system was not only capable of 

separating complex mixtures, but also of identifying the unknown individual compounds 

using MDGC-MS.

The inherent drawback in heart-cutting techniques was that detailed GC and MS 

information was obtained only for the few fractions subjected to the two-dimensional 

operation. Krock and Wilkins addressed this problem to some extent by using multiple 

fraction traps where they could isolate contiguous heart cuts. However, they recognized 

that there was a clear physical and practical limitation to the number of traps that can be 

employed for this purpose17, 40. In both of the previously discussed techniques, the 

number of secondary chromatograms was quite limited.

Feasible technical solutions to this MDGC dilemma were not offered until the

early 1990s, when Phillips and co-workers presented a new approach of applying two- 

dimensional GC10. The new method allowed doing a continuous two-dimensional 

separation to the entire first column effluent. The key to the procedure was the technical

utilization of the interface between the two columns. A modulator that was able to

continuously accumulate and focus small fractions of effluent from the primary column 

was used to inject solutes into the secondary column in a very fast and efficient manner.

Recent development work with MDGC systems has been directed to optimization 

and further enhancement. The incorporation of a MS detector for further accurate
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identification of the unknown peaks is highly desirable. The first steps to interface a 

conventional quadrupole type mass spectrometer to comprehensive two-dimensional 

gas chromatography where done by Striebich and Klosterman24,28,45. However, the scan 

speed and mass range were somewhat limited. New generation of fast scanning TOF- 

based mass spectrometers (TOFMS) seems to be an ideal match for MDGC. Currently 

interfacing experiments using TOFMS and MDGC are underway5,10.

At present the most popular way of conducting comprehensive MDGC or 

“GCxGC” follows the technique established by Phillips and co-workers. Currently, many 

investigators are working with this powerful separation technique because of the 

remarkable results reported during the last decade. The MDGC technique is still in its 

evolving stage, and one can expect further improvements in the future.
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Multidimensional Gas Chromatography Hardware Components and Principles

With the introduction of the new way of conducting MDGC by Phillips and co­

workers, a technique has become available which is especially suited for the separation 

and identification of analytes in complex samples16. The system consists of two columns 

of different selectivity connected in series with a modulator between the columns. The 

modulator continually takes segments of the eluting peaks from the first dimension open 

tubular column and pulses them onto the second dimension column as refocused bands 

for further separation37. A general schematic of the MDGC system is shown in Figure 1.

1 =lnjector, 2=First dimension column, 3=Modulator, 4=Second dimension column, 5=Detector, 6=First GC Oven, 

7=Second GC oven.

Figure 1. Schematic of a MDGC system.

The column arrangement could be placed in a single oven10, 22'24, 45 or each 

column could be placed in different ovens to allow more flexible and independent 

temperature programming5,6'10,13,20,22. In the systems where two ovens are available, 

the second oven follows the heating rate of the first one, but at temperatures that were 

typically higher13. The primary (first dimension) column is usually longer and has a wider 

bore than the secondary (second dimension) column10. The primary column is typically a 

nonpolar type, where compounds are separated according to their volatility or pure- 

component vapor pressure23. Because the secondary column contains a more polar
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stationary phase, compounds are separated based on their activity coefficient. The polar 

substances are more strongly retained than the less polar substances. The difference in 

the stationary phases of the columns allows compounds coeluting at the primary column 

exit to potentially be separated by the additional retention in the secondary column, 

whereas in one column, they may have co-elute10,23.

The migrations in the second column must be at much higher speed than the first 

column, so as to produce a series of analyses during the analysis time of the first 

dimension36. Also, it has to be fast enough to generate a complete chromatogram during 

the period of modulation to avoid “wrap around”. Wrap-around occurs when fast moving 

compounds elute, before the last substance from the previous injection has left the 

secondary column14. Due to the high speed of the secondary column and the slow 

temperature-programming rate at which the first column operates, the separations in the 

second dimension are performed essentially with a constant temperature mode10.

A flow-splitter is sometimes added between the columns to optimize column 

efficiency45 in each dimension, although it is not a required component10. The most 

critical component of the MDGC system is the trap and release device. Its function is to 

periodically stop and turn on the movement of the effluent from the first column. The 

modulator separates the first column effluent into a very large number of adjacent small 

chemical fractions that are subsequently injected into the second column in the form of 

narrow and periodic spaced pulses of highly concentrated compounds. The focusing 

step in the modulator offers significant advantages. The most important is that the effect 

of peak dispersion from the first column can be reversed. In essence a wide peak can be 

sharpened into a narrow peak, resulting in lower detection limits and improved 

quantitation10. However, more than one peak can be contained in this zone, thereby 

undoing the separation work of the first column.
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To preserve most of the first-column separation, the heartcuts should be no 

larger than a peak within the first dimension16. Larger heartcuts can adversely affect the 

resolution of the first dimension by partially recombining peaks again in the modulator. 

Consequently, for a peak eluted from the first-dimension, at least one to five heartcuts 

should be generated in the second-dimension5,25,46,47.

During the development of each secondary chromatogram the trap and release 

device accumulates the effluent fraction for the next injection. So every segment of the 

first dimension is thus subjected to both separative dimensions, which is the main 

requirement for achieving MDGC analysis. Figure 2 shows how two overlapping peaks 

emerging from the first-dimension are resolved in MDGC after passage to the second-

dimension.

First
Dimension

Second
Dimension

Figure 2. Illustration of how MDGC resolves two overlapping peaks.

The two components are labeled A and B. Thus heartcut H1 contains only the A component, whereas 

heartcut H2 has a larger amount of A and a small amount of B. The second-dimension can resolve A and B 

as shown, where the first dimension was unable to resolve them.
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Modulator Types

The accumulation and periodic reinjection of effluent from the primary column 

into the secondary column presents a considerable technical challenge. Three major 

techniques are currently being applied for the implementation of this modulation step, 

each having particular advantages and disadvantages.

- Diaphragm Modulation:

A diaphragm valve diverts sections of the eluting zone from the first column onto 

the second dimension column, providing narrow pulses of effluent12,37 (see Figure 3). 

Diaphragm valves are particularly suitable because they can provide precisely defined 

cuts at a high frequency. However, the limitations of this technique are that it is 

molecular weight (MW) limited, part of the sample is vented in the process and does not 

reach the detector, and sensitivity is lost in this configuration. Moreover it has a limited 

working temperature range10,12.

1 =lnjector, 2=First dimension column, 3=Diaphragm valve, 4=Second dimension column, 5=Detector, 6=Valve 

controller, 7=GC oven.

Figure 3. MDGC system with a valve modulator36.
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The principal used in the following modulators are based in the fact that almost 

all volatile substances can be physically retained onto and desorbed from a stationary 

phase film by manipulating the temperature. The approaches used are capable of 

producing very rapid changes in temperature to achieve and efficient trapping and 

release of the compounds.

- Thermal Desorption Modulator (TDM) or Sweeper:

Phillips and his group14 developed a thermal desorption modulator (TDM). It 

consists of a mechanically actuated heater (Figure 4). A rotating slotted heater sweeps 

portions of the chromatographic band from a modulator capillary onto the second 

dimension column. The “chemical pulses” are produced by stationary phase focusing 

followed by volatilization from the mechanically actuated heater10. The system allows 

independent adjustment of desorption temperature. It must operate at 100 °C higher 

than the oven temperature to achieve effective heart-cutting and refocusing of the 

solutes10, 41. So the maximum oven temperature, and therefore first dimension oven 

temperature, is thus lowered by 100 °C.

9

1 =lnjector, 2=First dimension column, 3=Slotted heater, 4=Stepper motor to turn the slotted heater, 5=Micro press 

fit column connections, 6=Thick film modulator capillary, 7=Second dimension column, 8=Detector, 9=GC oven.

Figure 4. MDGC system with a thermal modulator design36.
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- Cryogenic Modulator:

The mechanical modulator developed by Kinghorn and Marriott48,49 consists of a 

longitudinal modulating cryogenic system (LCMS). It is essentially a cryogenic trap which 

is moved by a motor or solenoid driven piston over a section of capillary column which 

acts as a modulator tube10 (see Figure 5). The moving cryogenic trap cryo-focuses a 

portion of the eluting band and then releases or remobilizes the focused band segment 

into the second dimension column. By moving the cryogenic trap and allowing the cold 

capillary to heat up by the turbulent oven air, the trapped band is released37. This 

approach provides several key attributes; modulation speed is high, there is no need for 

an additional accumulator column, the column can be used until its maximum 

temperature limit, and narrow bands are achieved37. The drawback that this approach 

has is that it requires either liquid nitrogen or CO2 in order to reach the low 

temperatures36. A similar trap and release method was applied in the MDGC-MS 

instrument used in our experiments, due to its advantages width respect to the other 

modulator systems.

CO:

— T

lLp

1 =lnjector, 2=First dimension column, 3=Column connection, 4=Second dimension column, 5=Detector, 6=Moving 

cryogenic trap, 7=GC oven.

Figure 5. MDGC system with a cryogenic modulator design36.
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Advantages of the MDGC:

MDGC is of use whenever a critical separation of an organic mixture cannot be 

achieved using conventional GC analyses. The very large peak capacity provided by the 

MDGC technique allows much more complete separation of not only complex mixtures, 

but also for mixtures of moderate complexity, providing remarkable gains in resolving 

power13,14,18,23. Moreover, the refocusing step at the modulator increases the sensitivity 

of the system since peaks at the detector are sharper and therefore taller14.

Remarkable results have been obtained in terms of compound classification. The 

peaks in the MDGC chromatogram display some order, based on the chemical or 

molecular functionality of the compounds. This is one of the strongest assets of MDGC10, 

21. Furthermore, since a true baseline is often available, high match qualities and better 

identification of the peaks by using mass spectroscopy can be achieved10,13. The MDGC 

system certainly combines the specificity for target analyses with the universality for 

unknowns and reasonable sensitivity for both24,45.

Optimization of the MDGC system:

In the past few years, MDGC has been shown to be a powerful technique for the 

analysis of complex samples. As can be seen in the MDGC chromatograms reported 

during the past decade10,14,21,23,24,44,45, some peaks or zones in the second-dimension 

chromatograms are not adequately resolved. Mostly the nonpolar saturated and 

unsaturated hydrocarbons, which have very low activity coefficients in the second- 

dimension stationary phase, elute from the second-dimension as non-resolved peaks,5
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while compounds with higher second-dimension retention times are seen to be much

better separated.

This often encountered difficulty experienced in the second-dimension separation 

(or many isothermal separations), represents a form of the general elution problem 

(GEP): i.e., early eluting peaks are sharp and clustered together, while the later peaks 

become spatially broad50 (See Figure 6). This uneven distribution of zones is seen when 

the separation is performed in an isothermal mode and the sample exhibits a wide range 

of migration rates, which is a measure of the time the analyte resides in the mobile 

phase relative to the total time it resides in the column.

Figure 6. The General Elution Problem, each number represents a unique compound50.

This is essentially the case in the second-dimension of MDGC chromatograms, 

where the separations are basically isothermal, and the segments eluting from the first 

dimension have solutes with widely differing migration rates, as can be seen in Figure 7.
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Zones not adequately Separated

/ \

Figure 7. Heartcuts from MDGC-MS chromatograms of a Diesel Exhaust solution45.

Programmed temperature gas chromatography (PTGC) has been regarded as an 

acceptable solution to the general elution problem in GC29,50. Although, due to the high 

velocity flows and fast GC separations in the second dimension, the application of rapid 

and quick turnaround temperature programming is very difficult to accomplish.

Another important aspect to optimize in the MDGC system is the analysis time. 

The reduction of analysis time has remained one of the most important research 

subjects for chromatographers since the introduction of capillary columns by Golay in 

195851. Every reduction of analysis time, without significant loss of resolution, can be 

translated into a higher sample throughput and hence reduction in per sample analytical 

costs52. In MDGC the overall analysis time could be further reduced, due to the fact that 

the first-dimension column is usually operated at sub-optimum flow and at slow 

temperature programming rates, to enable the required number of heartcuts across a 

first-dimension peak25. Therefore, increases in the speed of analysis of the second- 

dimension without significant losses in resolution, would be desirable. Because then the
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first-dimension column would be operated under optimum flow conditions, reducing the 

overall analysis time of the MDGC technique.

Several approaches have been considered to improve the chromatographic 

selectivity, analysis time, and separation in the secondary dimension within MDGC-MS 

operations. Some of the approaches considered were:

a) To program the temperature of the secondary column independently from the 

first column. To achieve this, the second-dimension column was installed in a separate 

oven. The separate oven provided a more flexible system since it allows fine-tuning of 

the retention in the second column. The temperature program in the second oven 

followed the temperature program rate of the first-dimension oven, but at a temperature 

that was typically higher5,10,13,22,23,25. The hot second column served to reduce elution 

time and peak broadening of the more retained compounds. This configuration helped to 

speed up the second dimension separation, and to optimize peak broadening5, 13, 20. 

However, the separations of the compounds less retained in the second dimension 

where not improved. Although the use of lower second-dimension temperature improves 

separation, the increase in retention and analysis time is not acceptable5,22.

b) Modify the stationary phase selectivity or use mixed stationary phases in the 

second dimension. Increase in selectivity and separation in the second-dimension could 

be obtained by using appropriate phases with different polarities10' 22,23. The aim is to 

maximize differences in activity coefficients (i.e. molecular interactions between different 

analytes and the stationary phase) on the secondary column to increase its resolution10, 

23. That means that the second dimension has to be changed and adjusted for every 

type of sample, which is time consuming and not convenient.
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c) Use of a splitter and longer columns in the second dimension. Increasing the 

length of the secondary-columns helps to increase the resolution of the second- 

dimension. Furthermore, employing a splitter between the columns of the MDGC system 

optimizes both columns efficiencies, by operating each column at its optimal carrier gas 

velocities for maximum resolution24, 45. The high resolution outcome that the system 

provides is obtained at the expense of both longer analysis times due to the longer 

secondary column, and lower sensitivity as a result of sample vented at the splitter.

d) Use of shorter and narrower bore columns for the second dimension. 

Reduction of the column diameter has proven to be a highly efficient tool to increase the 

speed of analysis while keeping GC resolution52'55. Therefore, the use of narrow bore 

columns for the second-dimension allows reduction of the analysis time without 

sacrificing resolution of the separation. The well-known disadvantages of small-diameter 

columns are the necessity of higher inlet pressures and their limited sample capacity that 

leads to column overloading and high demands on the detector25,52,56.

e) Fast temperature programming in the second dimension. The use of this 

operational mode will help to minimize analysis time and increase the resolution of the 

separation. However, fast temperature programming gas chromatography (FTPGC) has 

been only performed in conventional GC51'53,57'61. The incorporation of FTPGC technique 

into a MDGC system has not yet been performed due to the fast turnaround times 

required. Current FTPGC systems have turnaround times of 1 to 3.5 minutes53, which 

are considerably long compared to the 4 to 45 seconds turn-around times of the 

secondary-dimension analysis5,10,25,45.
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f) Use software to resolve overlapped peaks directly from the signal data. The 

Mass spectral deconvolution software is an effective and efficient tool to resolve co­

eluting peaks and a way of enhancing the separation power and limits of detection in 

MDGC-MS. The software performs nearly perfect background subtraction of distinct MS 

spectra to identify individual components within a mixture that has been minimally 

separated by chromatography27,58. This makes compound identification in GC-MS much 

better, faster, and easier than can be accomplished by a human operator. The technique 

uses the inherent MDGC-MS data structure to mathematically separate and quantify 

incompletely resolved signals, helping to save great amount of data processing and 

review time27,58. The software requires fast data acquisition instruments to be efficient 

and the sacrifice of sensitivity to avoid false peak identifications from noise58.

g) Change the flow in the second dimension. The selectivity of an ensemble of 

two capillary columns using different stationary phases can be modified by changing the 

carrier gas pressure at the junction point between the columns34, 40, 62, 63. The 

manipulation of the junction-point pressure can allow controlling the relative residence 

time of analytes in each of the columns, which can result in more efficient utilization of 

the available peak capacity of the system40,56,62. Moreover, selectivity tuning can be 

performed automatically instead of tedious column replacement57,63. However, changes 

in flow rate represent a problem for mass spectrometer detectors where a signal loss 

occurs with an increase in flow rate64.

h) Use higher-order multidimensional separations or GCxGCxGC?. This 

technique could undoubtedly have a huge peak capacity and thus separation power. 

However to make comprehensive three-dimensional gas chromatography (GC3) 

practical, the use of a very fast tertiary column is required. Moreover, the visualization of
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GC3 chromatograms, integration of three-dimensional blob volumes, and computer aided 

identification of peaks and compound classes pose significant challenges to software 

development6. The technique is in its developing stage and the major drawback is that it 

is technically more demanding than MDGC-MS.

The gains in separation obtained through the application of these methods was 

partial because only part of the chromatogram was improved and in some cases at a 

great expense of time.

A potential solution for the operational situation on the second-dimension could 

be the use of thermal gradient programming gas chromatography (TGPGC). The 

operational aspects associated with TGPGC are such that rapid GC analyses can be 

achieved for complex samples and broad migration rate samples in a short period of 

time. Furthermore, it permits rapid turnaround times and it is a better solution to the 

general elution problem in high speed GC3,28,29. All these attributes make the TGPGC 

method highly interesting to evaluate as an alternative in optimizing the second

dimension in MDGC-MS.
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Thermal Gradient Programmed Gas Chromatography (TGPGC):

Fundamental Principles of TGPGC

The stationary phase and operating temperature of the column, the choice of 

carrier gas, and the carrier gas velocity are interrelated variables that can exercise 

profound effects on separation efficiencies and analysis times. However, the control of 

temperature is one of the easiest and most effective ways to influence the separation 

process. In GC the column is normally operated at temperatures where most 

compounds have a vapor pressure, it need not be in the gas state. However, the column 

temperature should be high enough so that sample components pass through it at a 

reasonable speed33. For this reason it is often required to maintain the column at a wide 

variety of temperatures, e.g. from cryogenic values33 to 360 °C. Some degree of 

compromise is usually necessary, because for most of the samples, the lower the 

temperature, the better is the separation, and the longer the analysis time30. Currently 

the two major operational modes of conducting gas chromatography analysis are: 

isothermal GC (ITGC) and programmed temperature GC (PTGC). Temperature 

programming is very useful for the analysis of mixtures with a wide boiling range or 

migration rates, whereas the isothermal operation is limited to samples with a narrow 

boiling range; PTGC is normally the preferred analytical mode30.

A novel operational mode of performing GC analysis is thermal gradient 

programmed gas chromatography (TGPGC)3, 26, 28' 29, 65, 66. This novel mode of 

conducting fast GC analysis is achieved by applying three-dimensional (distance- 

temperature-time) thermal fields to the column. The TGPGC method creates a negative 

temperature gradient in the axial direction of the chromatographic column with the ability
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of modifying the gradient through time26,29,65. In TGPGC there is continually an axial 

negative temperature gradient applied to the column length29. An adequate 

characterization of the TGPGC technique can be achieved by showing the three- 

dimensional views (Figure 8) of the different operational modes applied in GC.

TGPGC

C

Figure 8. Three-dimensional views of the operational modes of GC29.

Z is migration distance, T, temperature, and t, analysis time.

Figure 8 highlights the difference between the three existing methods. As is 

depicted in Figure 8-A, one dimension could be sufficient to describe the ITGC process 

and two dimensions are adequate for the PTGC technique, while three dimensions are 

needed to describe the thermal field (or “temperature surface”) applied in the TGPGC 

technique. In TGPGC operations, (Figure 8-C) temperature continues to decline with 

distance at every axial location throughout the column. While in PTGC operations, the 

“whole column” temperature experiences a gradual increase as a function of time;
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therefore, an inclined plane is observed in Figure 8-B. On the other hand ITGC 

operations can be viewed as a PTGC operation, but with a heating rate equal to zero. 

Once looking at the three-dimension views of these different operational modes, the 

TGPGC process becomes understandable29.

An important operational aspect of TGPGC is that a solute zone continually 

encounters a negative thermal gradient throughout its chromatographic axial migration26, 

66. Therefore, a solute zone will continually be migrating into regions of lower 

temperature, greater retention, and, therefore, lower axial velocity, “v” (see Figure 9). 

The negative thermal gradient provides a mechanism for solute zone axial compression 

of a nature somewhat similar to that produced by cryofocusing29.

DISTANCE

DISTANCE

Vi>Vh>V2

Figure 9. Migrating zones velocity aspects29,66 68.

This behavior is markedly different from that which is experienced in other GC 

modes, e.g. ITGC and PTGC, where the axial length of a migrating solute zone 

continually increases with migration distance. With the axial compression provided by 

TGPGC operation, a migrating solute zone’s longitudinal spread can actually diminish as 

depicted in Figure 10. Although the axial length of migrating zones in TGPGC is smaller,
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the axial distance between the centroids of adjacent migrating zones is also usually less 

than in ITGC and PTGC, and this must be taken into consideration with regard to the 

peak capacity and chromatographic resolution29.

Figure 10. Migration behavior relative to axial length of solute zone for 
different modes of gas chromatography26 66.

The resolution is a measurement that describes how well resolved or separated 

two adjacent peaks are33. Figure 11 shows how a resolution of 1.5 provides an adequate
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Figure 11. Separation of peaks A and B for three resolutions.
Where, Or) are the retention times of each peak, tM, retention time of an 

unretained compound, and w is the with of each peak.
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The resolution of two adjacent peaks takes into account the individual average

widths of each peak (W) and the distance between the two peak maxima (AZ). And it is 

expressed by the Equation 133.

2-AZ (1)

By rearranging Equation 1, the resolution can be then written as Equation 23,39.

_ (a-l) < £ A
5 4 a k +1J (2)

Dispersion
Effect

Selectivity Partitioning
Effect Effect

where N is the observed plate number of the column, a is the relative retention, which

describes the relative behavior of two analytes, and k is the capacity factor, which is a 

measure of the time the analyte resides in the stationary phase relative to the time it 

spends in the mobile phase. The expression 2 can be further subdivided by different 

chromatographic influences3. The dispersion effect is a function of the column length, 

diameter, film thickness, mobile phase velocity, and it has almost insignificant influence 

upon resolution at different column temperatures3,69. The selectivity effect depends on 

the choice of the mobile and stationary phases, and it was found to decrease by a factor 

of 1.5-2 over an operational range of approximately 100 °C. Consequently, it does have 

a significant impact upon the loss of resolution with increasing temperature3, 69. The 

partition effect is a function of the temperature and it is the one that causes the greatest 

loss of chromatographic resolution at extremely high temperatures3,69.

In ITGC operation, the k value of a migrating solute zone is constant, whereas in 

normal PTGC operation the “whole column” temperature is changed in a linear manner
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as a function of time. Thus a migrating solute zone’s localized k value will diminish in an 

approximately exponential manner with distance or time3,65. While by selecting a suitable 

TGPGC temperature surface, chromatographic migration can theoretically be 

accomplished in which solutes experience a nearly constant relative retention behavior 

and practically optimum operational k values for their entire chromatographic transport.

The retention ratio Rr (Equation 3)39, which is related to the partitioning ratio can 

be plotted for the various chromatographic operation modes.
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Figure 12. Plot of retention ratio against migration distance for different modes of 
chromatographic operation3.

It is apparent form Figure 12 that in conventional PTGC a solute initially migrates 

at a rate below desired, and that a considerable amount of analytical time is consumed 

during this early slow migration. After this period, approximately 1/3 of the column length 

experiences solute zone migration within the desired region. In the last portion of the 

migration, the solutes experience essentially gas-phase transport3. When the PTGC is 

operated rapidly the effective chromatographic migration is further reduced. The ITGC
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mode could operate within the region of desired chromatographic migration but for a 

narrow range of compounds. By selecting a suitable TGPGC temperature surface, 

chromatographic migrations of a wide range of compounds can, theoretically, be 

accomplished with optimalpartitioning65.

Another behavioral aspect of TGPGC is associated with inherent 

chromatographic selectivity. Specifically, with the larger number of variables or 

parameters associated with TGPGC, there are correspondingly more operational 

variables available for obtaining increased selectivity for closely spaced solute zones. 

Figure 13 shows a variety of thermal fields that could be achieved for their use in 

TGPGC technique.

29 67 68Figure 13. The three basic forms of TGPGC temperature surfaces ’

An inherent advantage of the TGPGC operational mode is that it can be 

performed very rapidly. It requires less energy to heat the column in TGPGC operations
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than in PTGC mode. Since in TGPGC the column experiences a temperature gradient, 

the column temperature can effectively be much more rapidly increased than in PTGC 

operations where the “whole column” is at a uniform temperature. The fast TGPGC 

analysis translates into shorter turnaround times, which is an important factor in MDGC 

instrumentation69. TGPGC mode is also very beneficial because it allows us to modify 

the axial temperature decline (temperature surface), during the chromatographic 

analysis. This temperature surface is very important to achieve complete separations, 

since there are regions in the chromatogram where one wants a significant negative 

temperature gradient and others where only gradual negative gradients are preferred. 

For all these reasons GC analyses of the general elution problem type can, therefore, be 

solved and conducted more rapidly using the TGPGC mode3,29.

Column Sheath Assembly (CSA)

The application of rapid analysis using the TGPGC technique requires special 

components to achieve the axial temperature gradient and the fast changes in 

temperature, needed for its implementation. An important requirement is that the 

chromatographic column must exhibit a high degree of thermal compliance. In that 

sense, fused silica columns are a good choice. Even though they are manufactured from 

materials which can be classified as thermal insulators, the extremely thin walls enable 

them to follow rapid thermal changes with fidelity26,29,67,68. In addition to a thermally 

compliant column, the TGPGC technique requires a special component called a column 

sheath assembly (CSA) to produce the temperature contour and three-dimensional 

thermal fields. The CSA also needs to be thermally compliant to facilitate rapid localized
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thermal changes, and also be able to undergo rapid and broad changes of temperature 

and pressure, in order to create a versatile range of thermal fields and have long-term 

durability.

The early CSA designs used a counter-current heat exchanger principle for 

invoking the axial thermal gradient along the column axis. Here, cold nitrogen gas was 

the coolant and preheated in-line nitrogen gas was used to change the temperature over 

distance and time within the CSA. Also a controlled flow of nitrogen gas was needed for 

producing the convective heating, and alternatively, the cooling within the CSA66. A 

sketch of a basic CSA design, which was used for developing the method, is shown in 

Figure 14.

DETAIL OF FUSEDSILICA 
BONDED TO CSA CONDUIT

Figure 14. A column Sheath Assembly, for performing TGPGC thermal fields3.

After reviewing the theoretical and technical aspects of the TGPGC technique, it 

becomes evident that its implementation in the MDGC system will definitely be a 

promising approach for the optimization of the separation in the second dimension.
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Capillary Column Heating Techniques (GC Ovens)

The various means to heat gas chromatography columns and the latest 

innovations are: forced-air convective heating, resistive conductive heating and recently 

developed microwave heating technology.

Forced Convection GC Ovens

Most laboratory bench-top GC systems today, use resistive heated air-bath 

ovens to heat the entire column and its contents63. Actual GC ovens are large in volume, 

and most of the thermal energy generated by these ovens is needed to heat the oven 

itself. The large thermal mass of the conventional GC oven dramatically retards the rate 

at which the column can be heated and cooled71. The maximum heating rate of most 

conventional GC ovens is approximately 1 to 2 °C/s58,61 ’63,72, and the cool down times 

from 300 to 30 °C is around 5-7 min (0.6 °C/s)51,53,56,72. In this type of oven the cool­

down time is a limiting factor for fast chromatography51.

The thermal mass is the capacity of storing thermal energy and it is related to the 

specific heat capacity of the substance and its amount of mass, High thermal mass 

systems implies that it takes large amounts of energy to change its temperature. Such 

systems react slowly to temperature variations, which is the case of the bulky GC ovens. 

Materials with low thermal mass such as fused-silica columns, can rapidly follow the 

temperature variations readily.

Therefore the heating and cooling rate of a system is strongly dependent on its 

thermal mass. It is for this reason that conventional GC ovens are just not well suited for 

high speed heating and cooling cycles51.
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Solid-State Resistive Heating

In the pursuit of fast column heating techniques, a number of alternatives have 

been developed. One of the alternatives is the use of resistive heating, where the 

column can be heated by a conductive coating, a metal sheath around the GC column, 

or a wire closely adjacent to the column. The operating principle is essentially the same 

in all cases: when a voltage is applied to the conductive material, the passage of 

electrical current increases the temperature of the metallic heating element and heat is 

transferred to the column mostly via conduction53,63.

Commercially systems have recently become available (EZ-Flash GC system, 

ThermoOrion and Flash GC, Thermedics) in which a fused silica capillary column runs 

coaxially inside a coiled resistively heated metal tube. These devices can achieve 

heating rates up to 20 °C/s58,60,72 and cool-down times of 1 min from 325 to 35 °C (5 

°C/s)60, 73. However it is very important in these systems to carefully insulate each 

column coil, thermally and electrically, from adjacent coils as well as from the column 

supports. Any contact between the coils creates uneven thermal gradients (cold spots) 

and electrical shorting63,73. Even small cold spots can drastically decrease the column 

resolution in fast chromatography59.

Microwave GC Ovens

An innovative alternative for heating the GC column is the use of microwave 

technology. A microwave GC oven has been engineered to generate a uniform 

microwave field around the column, eliminating cold spots, and furthermore heating only 

the capillary column. The columns used in microwave ovens need to be coated with a
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microwave-absorbent material that converts microwave energy to thermal energy, which 

heats the column and stationary phase.

Heating rates in excess of 10 °C/s, and 1-min cool-down times from 350-35 °C (5 

°C/s) can be achieved71, yet the oven is cool to the touch and small enough to be held in 

the palm of one’s hand.
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CHAPTER III

EXPERIMENTAL

The application of the three dimensional thermal fields in TGPGC requires the 

use of a column sheath assembly (CSA). Therefore, the design, construction, and 

evaluation of a CSA capable of producing a variety of thermal contours with high-thermal 

compliance and uniformity were necessary.

An instrument was designed and built to evaluate the different CSA designs by 

measuring the temperature inside the CSA along the length, as a function of time. This 

instrument allowed the 3D mapping of the thermal fields created in the CSA, and also 

the application of a wide range of thermal and pneumatic conditions to study the 

operational limits of the CSA designs. These parameters were used in choosing the best 

performing CSA design for its application in rapid TGPGC analysis.

The further use of the TGPGC technique in the second-dimension of the MDGC- 

MS system required the tuning and adjustment of the CSA. In these experiments only 

the trap-and-release device and the second-dimension column of the MDGC-MS system 

were used, and the sample injections were performed simulating the heartcuts coming 

from the first column. The sample used for the tuning of the CSA consisted of five 

selected compounds that possessed similar boiling points and demonstrated different 

chromatographic polarities. The sample simulated a narrow collected fraction from the

first dimension.
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After tuning the CSA with the second-dimension column, the primary column was 

incorporated into the MDGC-MS system. A low dead-volume tee was used to connect 

the two columns together. Finally, after carefully adjusting the optimal flow in both 

columns the experiments of the TGPGC mode with more complex mixtures and 

heartcuts were performed.

The Column Sheath Assembly Testing Instrument

The initial experiments were performed to evaluate the different designs of the 

CSA. The experimental set up used is shown in Figure 15. The axial cooling and heating 

of the CSA designs were achieved within a modified gas chromatography oven (Carlo 

Erba HRGC 5300) and by using nitrogen gas (Air Products) as the heat exchanger fluid. 

The CSAs were placed inside the GC oven and connected to the system by % inch 

Swagelock fittings. The connections between the Swagelok fittings and the polyimide 

tubing where performed by placing a %” outer diameter (OD) PTFE tubing (Cole-Parmer 

A-06407-44) inside the polyimide tubing (see Figure 16). The PTFE tube worked as an 

intermediate between the polyimide tube and the Swagelock fitting. The polyimide was 

attached to the PTFE tubing with the help of polyimide tape (Airtech Airkap 477349), 

while the PTFE tubing was directly used with the Swagelock fittings.

A heat exchanger made of a %” OD copper tubing (Cole-Parmer A-34671-10) 

was designed and built to heat the nitrogen gas from room temperature to oven 

temperature, thereby providing the heating fluid. The cooling fluid used was room 

temperature nitrogen gas.
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Figure 15. Scheme of the apparatus used fortesting the different CSA designs.

The nitrogen gas flow 

32461-56) positioned at the

rate was measured with a rotameter (Cole-Parmer A- 

beginning of the CSA testing apparatus. Since the
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operational conditions of the experiments differed from the calibration conditions of the 

rotameter, the rotameter scale could not be used directly. Adjustments were done by 

using Equation 4, allowing the use of the rotameter scale to obtain the corrected flow 

rate at the experimental conditions. The pressure at the outlet of the rotameter was 

measured by a digital pressure gauge (Cole-Parmer A-68110-20)74.

F = Flow rate; P = Pressure; T = Temperature 
F' = F° — x — 0 = Conditions of calibration of the rotameter

\ P° T' 1 = Conditions of the rotameter at the experiment (4)

Computer-controlled solenoid valves (Nema-4 SV-127 and Skinner 3-way C 

series) were used to accurately and instantly change the heating and cooling process in 

the system, allowing a precise control of the flows. The cooling process or temperature 

gradient formation in the CSA was achieved when the solenoid valves 2 and 4 where

opened and 3 and 5 where closed (see Figure 15), while the opposite was true for the 

heating process. The 3-way solenoid valve was used to rapidly switch between a high 

flow and a low (or restricted) flow that was needed to generate a wide range of thermal 

fields. The ball valves “a” and “b” worked as flow restrictors, allowing more experimental 

flow flexibility.

The temperature inside the CSA was measured at 4 different axial positions, to 

provide an adequate profile of the temperature gradient through the CSA. Furthermore, 

the use of unsheathed fine diameter type K thermocouples (wire diameter 0.005” 

OMEGA Chromel/Alumel) ensured a fast response time using the thermocouples to 

precisely follow the temperature variations inside the CSA. The thermocouples were 

positioned inside the CSA through small holes across the CSA and kept in place with 

polyimide tape; see Figure 17 for details.
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Insulation

Figure 17. Thermocouple Positioning.

The thermocouple bare wires were insulated with fiberglass sleeve (ALPHA wire 

Company PIF-240-20). The wires were then coupled to ceramic connectors (OMEGA 

high temperature connectors SHX-K-(F)) that were attached to thermocouple wires that 

transmitted the temperature signal outside the GC oven.

The temperature readings were gathered by the use of an acquisition device 

(LabJack U12) and stored in a PC workstation. First, the analog signal output of the 

thermocouples were amplified, (Electronic Innovations El-1040) and then input into the 

acquisition device that allowed the monitoring of the temperatures at a sampling rate of 

up to 300 Hz. This fast data acquisition system permitted the collection of an accurate 

profile of the temperature changes within the CSA device as well as the 3D plotting of

the thermal fields.

The experiments performed in this system consisted of determining the speed of 

heating and cooling that could be achieved with the different CSA configurations. For 

these experiments a cyclic cooling and heating mode was performed. First, the oven 

was kept at a constant temperature between 100 and 200 °C, so the temperatures inside 

the CSA were axially constant. Then, the solenoid valve 1 was positioned in high flow 

and the cooling flow path was opened. Fast cooling was achieved by intensely sweeping
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nitrogen gas through the CSA by using inlet pressures of approximately 30 psig. After 1 

or 2 seconds the solenoid valve 1 was switched to low flow to keep a desired constant

temperature gradient along the CSA. Valve “a” was previously regulated to achieve the 

particular temperature gradient. Then, after a period of 10 seconds the heating path was 

opened and either high or low flow was used for heating the CSA again (valve 1 in high 

or low flow position). After 10 seconds the cycle was repeated and measurements were 

taken when the temperature profiles cycles showed a steady state. The heating flow was 

performed in the opposite direction of the cooling flow, in order to keep the negative 

gradient during the heating processes.

To study the limits of operation, each CSA design was submitted to a wide range 

of temperature and pressure conditions while applying the cyclic mode explained above. 

The oven temperatures used for these experiments were between room temperature 

and 300 °C, while employing pressure between 5 and 35 psig.

The MDGC-MS System Specifications

The multidimensional system assembly was housed in a modified Hewlett- 

Packard 5890 gas chromatograph. The GC was equipped with a split/split-less injector, 

constant pressure flow control, and a flame ionization detector (FID). The secondary 

column effluent was directed to a mass selective detector where the qualitative 

identifications of products were done. The MSD was a Hewlett Packard 5969B that 

incorporated a quadrupole design. The raw data was recorded on a PC workstation. The 

general schematic of the MDGC-MS system is shown in Figure 18.
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Figure 18. General Schematic of the MDGC-MS system.
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The primary separation was performed using a megabore stainless steel column, 

approximately 30-m in length. This megabore column had a 0.53-mm internal diameter,

and a 1.0-pm film thickness. The stationary phase was non-polar ((5%-Phenyl)- 

methylpolysiloxane (MXT-5 Restek)), an excellent general-purpose substrate with low 

bleed over a wide temperature range (-60°C to 310°C)75. The secondary column was of 

microbore design necessary for fast chromatography. Two secondary columns where 

used, the length of the columns were 4-m and 2.3-m, the internal diameter and film 

thickness for both columns were 0.1-mm, and 0.1-pm respectively. The secondary 

columns’ bonded stationary phases were trifluoropropylmethyl polysiloxanes (RTX-200) 

and polyethylene glycol (BP20 SGE)76. These phases were chosen because of their 

high selectivity for polar molecules and their high thermal stability (up to 320°C for the 

RTX-200 and 280°C for the BP20).

Since the carrier gas used in the system was high purity helium (purchased from 

Air Products), the optimal carrier gas velocity for the primary column was around 25- 

cm/sec according to the Van Deemter curves. However since the second dimension is a 

fast GC analysis, higher carrier velocities around 100-cm/sec were desired. An example
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of the van Deemeter curves is shown in Figure 19 where the H.E.T.P is the height 

equivalent to one theoretical plate. The smaller the HETP the more efficient the column.

E
E
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I

Average Linear Velocity (cm/sec.)

Figure 19. The van Deemter curves for nitrogen, helium and hydrogen, showing 
their optimal flow velocities69.

To maintain the optimal flow in both columns, a low dead-volume tee (J&W 

Scientific) was used to connect the two columns. At the tee, the flow was divided and 

part of it was vented thereby maintaining the required flow in both columns. The vent 

flow at the tee was adjusted by modifying the dimensions (length and diameter) of the 

venting restrictor. The pressure within the tee connection was experimentally measured. 

Due to the complexity of the MDGC-MS system, the average velocity in each column 

was estimated by Flow Calculator Software from the Hewlett-Packard Company77. The 

software required only the characteristics and pressure gradient of the column to 

determine the average velocity, making it very convenient to use. The optimal flows in 

both columns were then obtained by modifying the primary column inlet pressure and 

the vent at the tee connection. These parameters where adequate to generate the 

optimal flow through the primary and secondary column.
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The Modulator

The MDGC-MS instrument used a cryogenic trap system that followed the same 

principles as the one presented by Marriott and Kinghorn41, 49. Instead of moving the 

cryogenic trap along a section of a fixed column, the column was moved through a 

stationary cryogenic zone.

During the accumulation phase, solutes moving towards the cryogenically cooled 

zone essentially stop moving through the column and become refocused in a narrow 

band, thus removing the effects of zone dispersion within the first column. After a pre­

set and constant period of time, the column was quickly moved to a new upstream 

position. There, the previously focused zone was exposed to the thermal environment of 

forced flow convection provided by the GC oven. Quickly the trapped components were 

released. On average, it was estimated that the component release time was 30 

milliseconds45.

The movement of the column through the trap was created through the use of a 

linear actuating device manufactured by a Swiss company (Sulzer Electronics AG). The 

linear actuator had an extendable arm that could be computer-programmed to move at 

various speeds. A brass bar attached to the end of the actuator arm extended into the 

right side of the GC oven. This bar was attached to the capillary column by two high- 

temperature silicon septa, which prevented the capillary column from slipping. When the 

actuator was extended, the system was in “trap” mode and the chemical components 

within the cold section of the column were no longer migrating. As the arm retracted, the 

trapped section of column was pulled into the heated oven, where the components were 

released and transported through the secondary column45. This trap and release motion 

is further described in Figure 20. It was determined that the most effective motion of the 

actuator was a slow extension followed by a rapid retraction. The slow trapping motion
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created a continual refocusing of the components at the beginning of the trap, preventing 

the potential breakthrough or migration of the solutes through the cryogenic trap, and 

lessened the risk of breaking the column45.

Figure 20. A diagram describing the trap and release processes using a stationary 
cryogenic zone and moving capillary column.

The trap operated at approximately -30 °C and it was achieved by using a low- 

pressure (22-psi) reservoir of liquid nitrogen (Air Products). After flowing through the 

trap, the cold nitrogen was warmed to room temperature and released back into the 

heated oven (see Figure 20). This nitrogen flow helped to remove excess water vapor 

from inside the oven and prevented ice formation on the trap.
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Integration of the CSA in the MDGC-MS Equipment

For the tuning of the TGPGC apparatus, the coupling of the CSA with the 

multidimensional system was necessary. The CSA testing system was modified and 

rebuilt to fit in the remaining free space inside the GC oven of the MDGC-MS instrument. 

In this experimental set up only the second column and the modulator where used. 

Figure 21 shows the final configuration of the CSA in the multidimensional system.

The CSA was suspended down into the GC oven through the top plate, while 

keeping the same flow and valve configuration as in the CSA testing instrument. Thus 

the operation of the CSA in the MDGC-MS system followed the same steps previously 

explained. The temperature flexibility of the CSA system was further improved when the 

metal tee at the cooling inlet (see Figure 21) was changed for a thin walled %” polyimide 

tee. The low thermal mass of the polyimide tee, allowed not only rapid changes of 

temperature at the tee connection, but also lower temperatures during the cooling stage. 

The polyimide tee was hand-made from the %” polyimide tape tube and polyimide resin.

The secondary open tubular column (OTC) was placed inside the CSA through 

small perforations in the polyimide sheath. Radial temperature uniformity associated with 

the fused silica column positioning was achieved by keeping the column in the middle of 

the CSA without touching the conduit walls. A fine wire coiled design was used to keep 

the OTC in the middle of the CSA. Tungsten wire of 0.005” diameter was used for the 

coiling system, due to its low thermal mass and excellent strength (U-TW-005 Small 

Parts).

Figure 22 shows the coiling arrangement, where an alternating sequence of two 

coils diameters %” and 1/16” were used to keep the fused silica column in the middle of

the CSA.
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Figure 21. Apparatus assembly of the CSA in the MDGC-MS system.
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Figure 22. Coiling arrangement that keeps the OTC in the middle of the CSA.
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After tuning the second dimension separation using the TGPGC mode, the 

remaining first dimension column was incorporated. The configuration of the complete 

multidimensional system with the application of the TGPGC technique in the second 

dimension is shown in Figure 23. Figure 24 and 25 show the entire system.
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' XL
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MS
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Volume Tee

Heat \ 
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Polyimide 
Tube.

Thermocouple
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Solenoid Valve
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a - Cooling Flow Regulator 
b - Heating Flow Regulator

Figure 23. System configuration of the MDGC-MS system with a TGPGC mode in 
the second dimension.

The general flow path of a sample injected into the MDGC-MS (with TGPGC) 

system was as follows. After volatilization in the hot split/split-less injector, the sample 

was transported into the non-polar primary column by the carrier gas. From this column, 

the separated sample flowed into a low dead-volume tee connection, where it was split
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between the secondary column and the vent column. Sample that passed into the 

secondary column immediately reached the cryogenic trap. In the trap it was 

subambiently refocused into a narrow band of solute and then released into the polar 

secondary column. In the secondary column the sample was submitted to a negative 

temperature gradient where it was constantly refocused. After a certain period of time 

the negative gradient was eliminated and the secondary column was heated to oven 

temperature where the rest of the sample was eluted. At the completion of the 

secondary separation, the components of the sample were detected using a mass 

selective detector (MSD).

Figure 24. Picture of the MDGC-TOFMS with TGPGC system incorporated.
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Figure 25. Picture of the MDGC-TOFMS GC oven arrangement.

Sample Preparation

For the tuning of the TGPGC technique in the MDGC-MS second dimension, five 

pure selected compounds that had similar boiling points, and offered different 

chromatographic polarities, were used to constitute samples that simulated a heart cut. 

The components chosen needed to include a wide range of chromatography polarities in 

order to distribute the compounds through the second dimension separation. The 

components chosen are shown in Table 1.

Table 1. Selected pure compounds for the simulation of a heartcut.

Compound Name MW Density Boiling Point (°C) Company
n-C12 (normal dodecane) 170 0.75 215 Aldrich
n-C16 (normal hexadecane) 226 0.77 287 Aldrich
n-C16 (normal hexadecene) 224 0.78 273 Aldrich
2-methyl naphthol 148.2 264 Aldrich
1-decyl benzene 218 0.85 293 Aldrich
1-tetradecanol 214 0.82 289 Aldrich
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The compounds where dissolved in dichloro methane and the solutes that were 

used were added approximately in the same proportion (V/V) to the mixture. The 

dichloro-methane used was 99% pure purchased from Aldrich.

The GC injections were performed using only needle dead-volume injection 

technique, due to the high concentration of the sample. In the sample, the n-C12 

functioned as the unretained compound, and was used to determine the average carrier 

velocity in the second dimension column. The sample was injected (Hamilton 691 

syringes) in the split injection mode at 280 °C with a split flow of 120 ml/min. The 

temperatures of the GC oven for the tuning experiments were held at 180°C and 200 °C 

isothermal temperatures. The pressure inlet at the column entrance was 30 psig, since 

an average carrier velocity of 100 cm/sec was desired for the second dimension.

The quadrupole mass selective detector was operated in full scan mode, at a 

spectrum storage rate of 14 Hz, using a mass range of 50-110 m/z. All instrumental 

parameters and data acquisition was controlled through the Hewlett Packard 

ChemStation software (version D.01.00.). The qualitative identification of each 

compounds, mass spectra was searched against the NIST (National Institute of 

Standards Technology) mass spectral library.

The calculations of the peak capacity resolution were calculated with the data 

retrieved from the ChemStation, e.g. retention time, area height and peak with. The 

calculations of the raw data were performed using Microsoft Excel software.

With the tuning and complete assembly of the MDGC-MS TGPGC system 

accomplished, experiments with real and challenging heartcuts were required. Complex 

samples were selected to provide complicated heartcuts and test the functionality and 

separating power of the TGPGC mode against the isothermal GC mode, which is 

commonly used for the second dimension separation. Most of the complex sample
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preparation (extraction, blow-down, etc.) were performed by the combustion researchers 

who generated the samples.

Polyimide Tape Tubing Assembly

The %” OD coiled polyimide tubing needed to be hand-made and manufactured 

since it could not be found commercially. The construction of the polyimide tube was 

essentially performed by wrapping a stainless steel tube with polyimide tape. The 

straight polyimide tube obtained (after removing the metal tube) was then coiled and 

strengthened; thereby obtaining the required polyimide tube. The polyimide tape used 

for the construction of the finished tube was wide and 2 mil thick (AirKap, purchased 

from AirTech). The stainless steel tube that was used as a mold was 1.3 m long and %” 

OD (obtained form Cole-Parmer (A-06407-44)).

First, a portion (1.1m) of the stainless steel tube was wrapped with polyimide 

tape. In this step, the non-adhesive part of the tape was fixed facing the metal tube. It is 

important to previously cover the metal tube with a thin layer of mineral oil, to allow the 

removal of the polyimide tubing once prepared. To achieve the wrapping, the polyimide 

tape needed to be held to an end of the metal tube with adhesive tape. And when the 

metal tube was wrapped, adhesive tape was also needed to keep it wrapped. For the 

wrapping, the tape was either superimposed with itself or carefully placed right next to 

each other. Figure 26 shows these two ways of wrapping the metal tube.

After wrapping the metal tube with the polyimide tape, another layer of polyimide 

was placed on top, covering the gaps of the first wrapping. In this case, the tape was 

placed with the adhesive part facing the covered tube. As before the wrapping was 

made by either superimposing the second tape or by placing it carefully near each other.
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Moreover, the tape could be wrapped in the opposite direction. Figure 27, shows how 

the second polyimide layer was applied. Once the polyimide tube was completed and 

the metal tube was taken out, the coiling process was performed.

Figure 26. a) Wrapping the metal tube superposing the tape; b) Wrapping the metal tube 
locating the tape right next to each other.

Initially a %” OD PTFE tube (Cole-Parmer A-34671-00) was placed inside the 

polyimide tube to avoid buckling the tube during the coiling process. To keep the PTFE 

tube in a coiled position, a 1/8” copper tube (Cole-Parmer A-34671-10) was placed

inside the PTFE tube. A coil diameter of less than 30 cm was used, due to the

dimensions of the GC oven.

To strengthen and make leak proof the polyimide tube, polyimide resin was used 

(purchased from RESTEK (Cat.# 20445)). The polyimide resin was placed at the 

junctions of the polyimide tape and thermally treated to cure it. The temperature profile 

of the curing process is shown in Figure 2875.
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Figure 27. a) Applying the second polyimide layer in the opposite direction; b) Second 
polyimide layer wrapping placing the tape right next to each other.

The coil arrangement of tubes was then thermally treated to cure the resin and 

coil the polyimide tube. The coiling of the polyimide tube was accomplished due to the 

thermal expansion characteristics of the PTFE. When the coiled arrangement of the 

PTFE and polyimide tube was heated, it made the PTFE tube expand. The expansion of 

the PTFE tube inside the polyimide tube forces the tapes of the polyimide tube to move 

into new positions to relieve the stress that the coil arrangement places on them. The 

relocation of the tapes was what kept the polyimide tube coiled after being thermally

treated.
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Figure 28. Temperature profile of the thermal treating of the polyimide tube for curing the 
resin and coiling the tube.

After thermally treating the arrangement of tubes, the already coiled polyimide 

tube was separated. Even though the polyimide tube was already coiled, the application 

of wide temperatures, fast thermal and pressure changes during the experiments could 

collapse and buckle the tube. To keep the structural circular form of the polyimide tube, 

additional polyimide tapes were placed in three different positions around the coil. Figure 

29 shows how the additional tapes were placed in the coiled polyimide tube. The 

positioning of the 3 tapes allowed using the same forces that try to collapse the circular 

tube to keep its integrity by balancing the forces around the coil, when it is subject of 

high temperatures and fluctuating pressures.
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Polyimide Tapes

Coiled Polyimide 
Tube

Figure 29. Polyimide tape position that keeps the polyimide tube from buckling.

Solenoid Valves Control

The solenoid valves were controlled with a custom-made controller that

contained a Basic Stamp, a microcontroller (develop by Parallax Inc.) that is easily 

programmed using a form of the BASIC programming language. The PBASIC (Parallax 

BASIC) is the language used to program the BASIC Stamp, which is a hybrid form of the 

BASIC programming language.

57



A BASIC Stamp Windows Editor downloadable from the Internet78 is used to 

write the PBASIC program. The editor consists of one main window that can be used to 

view and modify the source code files (see Figure 30).

BASIC Stamp - C:W>rogram FitesWratlax InctStamp Editor v1,33WS2\Cool»ngand Heating,...
Fie Edit Directive Run Help

D ci‘ R X M e£* ® ®
Stop.bs2 | Heating Gradient.bs2 { Cold Gradient.bs2 Cooling and Heating Cycle. bs2 |

’{$STAMP BS2} A
'{6PORT COM3.} Reqular Solenoid Valves

OUTs-XDOOOOOOOODOOOOOO
DIRs-Xllllllllllllllll

High = Open
Low = Close

'Cooling

Loop i 3 Wav Solenoid Valve
high 0 High = High Flow
high 3 
high 1

Low = Low Flow

low 2 
low 4 Solenoid Valve Number

pause 1000
(see Fiqure xx)

low 0 0 = Valve 1 (3 way)
1 = Valve 2

pause 6000 2 = Valve 3
‘Heating 3 = Valve 4

1 high 4 
high 2

4 = Valve 5

high 0 Explanatory example of the code
low 3 High 0 = Valve 1 (High Flow)

: XjOW 1 Low 3 = Valve 4 (Close)
pause 6000

Goto loop Pause 1000 = wait for 1 second v
34: 1

Figure 30. BASIC Stamp Windows Editor, showing a Heating and Cooling Cycle code.

After opening a new source file and entering the desired code in the editor 

window, the program is downloaded by connecting the computer to the Stamp through 

the computer’s serial port. Selecting RUN (or pressing Ctrl-R) will download the code to 

the BASIC Stamp. As soon as the program is successfully downloaded, it begins 

executing the new program from the first line of code. The BASIC Stamp must be 

powered in order to receive the new program.

58



To make the program continue endlessly, a label (loop:) at the start of the code 

and a GOTO statement at the end of the code directing logical execution back to the 

label need to be added (see Figure 30). Without this, the BASIC Stamp will run the 

program only once and then will remain unresponsive until the power is cycled or a reset

condition is created.

Thermocouples Data Acquisition

The temperature readings were gathered with a data acquisition system, a 

LabJack U12 (see Figure 31). This system provides an easy to use interface between 

computers and the physical world. It is a USB based measurement and automation 

device that provides analog and digital inputs and outputs.

Figure 31. The LabJack U12 the temperature data acquisition system.

The data is stored in a personal computer using software that comes with the 

LabJack. The LJstream is a sample application of the DAQLab software (AzeoTech Inc.)
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that allows acquiring data continuously and graphing four analog input channels at a rate 

of 300 Hz. This application program has a single screen shown in Figure 32.

Figure 32. Windows of the LJstream showing a graphic of a heating and cooling 
cycle of the CSA.

At the top left of the window is the on/off button (ENABLE STREAM) to start or 

stop the acquisition. The data can be stored at anytime during the acquisition. The file 

name and store path is set at the lower right of the window and the store operation starts 

and ends by selecting the WRITE TO FILE option.

Along the top right of the window is displayed the color coding for the four 

channels, along with the average voltage and scale for the last second’s data. One can 

set the scale for either channel by entering a scaling equation in the Channel 

Configuration Windows (see Figure 33). The “v” is the measured voltage and the “y” is 

the output of the scaling equations.
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Figure 33. LJstream Channel Configuration Window.

The graph shown at the main window of the LJstream program shows the 

incoming data at the scale chosen versus time. The data could be monitored at a rate up 

to 300 Hz by changing the SCAN RATE at the main LJstream window. A rate of a 100 

scans/second was used in the experiments, because it was enough to precisely follow 

the temperature variations in the CSA.

This fast data acquisition system permitted obtaining an accurate profile of the 

temperature changes within the CSA device. The data was further processed with 

Microsoft Excel and MATLAB software for 2D and 3D plotting of the thermal fields.
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CHAPTER IV

RESULTS AND DISCUSION

Design of the Column Sheath Assembly (CSA)

The challenge in applying the TGPGC technology in the second-dimension of the 

MDGC-MS system was the development of a CSA. This CSA needed to be capable of 

creating an axial temperature gradient in the column, have a fast heating and cooling 

cycle, while keeping radial temperature uniform within the column.

Of the various qualities that the CSA must have, the fast heating and cooling 

characteristic is most challenging. Many approaches have been used for achieving fast 

column heating and cooling instruments. None of the systems have reached cooling and 

heating cycles of the order of 4-45 seconds5,10,25, 45, which is the analysis time of the 

second dimension separation in most MDGC systems. The minimum analysis times 

reported (including cooling) were between 1 and 3.5 min53.

Heating is usually not a problem using the new low thermal mass resistive 

heating systems (EZ Flash and Flash GC), which have reached heating rates of 20 °C/s, 

though rapid cooling is not easily achievable63. Conventional GC ovens have cooling- 

down times of approximately 5-7 min, from 300 to 30 °C (0.6 °C/s)51,53,56,72; and even 

with the low thermal mass resistive heating systems51, 53,56,59,60,69 and the recently 

introduced microwave oven, the minimum cooling times are about 1 min (5 °C/s)71.
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Among the column heating methods, the resistive heating approach is currently 

being use to achieve fast heating rates. However, this method is technically more difficult 

to accomplish and still requires the use of forced convection methods to achieve fast 

cooling rates and uniform column temperatures60,73. It is for these reasons that forced 

convection was the technique chosen for the heating and cooling of the CSA.

A heat exchanger design was used for the CSA system, where the fused silica 

capillary column runs coaxially inside of the CSA, and not outside the heating and 

cooling sheath as in previous designs (see Figure 14), thus achieving radial temperature 

uniformity in the column. The CSA consisted of coiled tube placed inside of an air-bath 

GC oven, which provided a constant temperature on the external side of the CSA. We 

are assuming that any amount of energy removed by the CSA will not affect the oven 

temperature since the energy would be replaced by the controlled electrical heaters of 

the GC oven. Furthermore, the oven itself can act as a thermal reservoir to keep 

temperature constant. Nitrogen gas was used as the heat exchanger fluid inside the 

CSA (see Figure 15).

The temperature gradient along the column axis was generated when cold 

nitrogen gas was increasingly heated as it flowed through the CSA. Heating of the 

temperature gradient to oven temperature was achieved when preheated (oven 

temperature) nitrogen gas flowed through the CSA. To maintain a constant negative 

gradient through the CSA during the cooling and heating process, the cooling and 

heating inlets were placed in separate entrances of the CSA. Figure 15 shows the 

arrangement used to achieve the heating and cooling of the CSA.

Different experiments using various tubes and materials were performed to 

decide on the construction, tube diameter, and tube length of the CSA design.

63



Length of the CSA

The application of the TGPGC mode was performed in the last part of the second 

dimension column to take advantage of its separation improvements and to avoid any 

further isothermal broadening effect. While previous work used lengths of 4m for 

moderate polarity columns (RTX-200), 2.3m was chosen for using more polar Carbowax 

OTC columns. Since an isothermal pre-separation of the mixture was desired, prior to 

TGPGC, one meter of the Carbowax would be inside the CSA and 1 meter at the 

isothermal oven temperature for polarity separation with 0.3 meters of transfer line in the

MS.

Diameter of the CSA

To determine which diameter to use for the CSA design, experiments using 

PTFE tubes of 1/8”, 1/4” and 3/8” OD (COLE-PARMER A-06407-42, -44 and A-06605- 

04) were performed, where the temperature gradient measured along the tubes was for 

a constant mass flow rate. The measurements were performed after 20-s of cooling from 

oven temperature using thermocouples of 0.01” sheath diameter (Omega KMQss- 

010(U)-12). The instrumentation used for this experiment is depicted in Figure 15, and 

the conditions of the experiment are given in the Table 2. PTFE tubes were used since 

it was one of the material options for the construction of the CSA that was available in

different diameters.

In Figure 34, the temperature gradient of the 1/8” and 1/4” outer diameter (OD) 

PTFE tubing are similar, however the conditions of each experiment are quite different. 

Table 2 shows that the inlet pressure of the 1/8” OD CSA needed to be 10 times higher
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than the one required in the 1/»” PTFE CSA to achieve similar mass flow rates. This 

implies that the use of 1/8” OD tubing will require the need for a more robust CSA, which 

translates to either stronger materials or the use of thick wall tubing to support the high 

pressures. The use of tubing with higher thermal mass to support the high pressures will 

negatively influence the heating and cooling rates of the system.

Figure 34. Temperature profiles of three different tubing diameters at a similar 
mass flow rate.

Table 2. Experimental conditions of the different diameter PTFE tubes.

OD Tube 1/8" 1/4" 3/8"
Wall thickness (mm) 0.8 1.2 1

Ro
ta

m
et

er P (psig) 50.5 5.4 3.6

T(°C) 24 24 24

Level (LPM) 13 25 25
Actual Volume Rate at STC (LPM) 27.7 29.6 28.2
Mass Flow (g/s) 0.535 0.570 0.545
Reynolds Number 8,870 4,740 3,000

AT (°C) 75 98 72
Oven Temperature °C 200 200 200

On the other hand, the 3/8” OD PTFE CSA showed that due to the increase in 

heat transfer area, residence time and thermal mass due to the larger fitting
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connections, the temperature gradient profile was higher than the one obtained for the 

1/8” and 1/4” OD tubing. This implies that to generate a temperature gradient profile 

similar to that gradient generated with the 1/8” or 1/4” diameter tube will require an 

increase of the mass flow rate. The disadvantage that the 3/8” tubing is the bulky 

connections as compared to smaller diameter tubes. The %” tubing was determined to 

be a good compromise between 3/8” and 1/8” tubing.

The temperature profiles shown in Figure 35 were created by varying the 

nitrogen mass flow rate through the 1/4” OD CSA. With higher nitrogen mass flows, 

lower temperatures can be achieved, cooling down the CSA. Thus temperature profiles 

become lower when the mass flow rate increases. Higher mass flow implies the need for 

higher inlet pressure, and an operating pressure range between 1.5 and 17 psig, which

Figure 35. Temperature gradient profiles of the PTFE tube OD at different volume flow 
rates of N2 at 25 °C. The LPM units are at standard conditions f21.1°C and 1 atm).

The 1/4” diameter tubing was determined to be the best option for the CSA 

design due to its low operational pressure and wide range of temperature gradients that 

can be achieved. The low operational pressures of the 1/4” OD tube, implies that tubes
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with thinner walls (lower thermal mass) can be used for the construction of the CSA, so 

that fast heating and cooling rates can be achieved.

Selection of the material for the construction of the CSA

The CSA needed to be constructed with a low thermal mass, such that small 

changes in thermal energy would result in major temperature variations. And at the 

same time it needed to be structurally strong to support wide and rapid changes in 

temperature and pressure.

Metal was not considered as a possible material, since even thin walled tubes 

will have more thermal mass than polymeric materials. Among polymers, PTFE , 

Polyimide, and PEEK, are promising materials for the construction of the CSA, due to 

their high thermal properties and mechanical stability, and their capability to be extruded 

into tubes with extremely thin walls. Table 3 lists the physical and thermal properties of 

these polymeric materials, as well as copper to serve as a metal reference79'81.

Table 3. Thermal and physical properties of the polymer materials and copper.

Units PTFE Polyimide PEEK Copper
Specific Gravity g/cc 2.2 1.42 1.32 8.9
Temperature Working Range °C -260 to 260 -270 to 400 -260 to 260 -198 to 540
Melting Point °C 335 not applicable 343 1083
Thermal Conductivity W/m/K 0.25 0.33 0.17 394
Specific Heat @ 25 °C Cal/g/°C 0.23 0.24 0.76 0.092

Maximum Continuous 
Operating Temperature

°C 260 288 250 540

Heat Deflection Temperature 
0.45 MPa (66 psi)
1.8 MPA (264 psi)

°C 122
55 238 140

not applicable

Tensile Strength
23 °C
200 °C

MPa 21
4

92
41

91
10

221
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To achieve a low thermal mass CSA, a tube with a very thin wall was required. 

However, the wall thickness of a tube is a function of its operational pressure and its 

material tensile strength. This implied that the material that should be used must exhibit 

a high tensile strength even at high temperatures, qualities that only the polyimide 

polymer offered, as can be seen in Table 3. PTFE and PEEK lack rigidity when the 

temperature is relatively high. Polyimide is one of the highest performing engineering 

plastics currently available. It will not melt, so it does not soften at high temperatures 

keeping its rigidity, and it can operate continuously from cryogenic temperatures to 288 

°C, with occasional excursions to 400 °C80. The ability of polyimide to maintain its 

excellent physical and mechanical properties over a wide temperature range makes it 

the best material option for the construction of the CSA.

However, polyimide is difficult to manufacture because of its high working 

temperatures, no thin wall polyimide tubing is commercially available in the sizes 

required. Therefore, polyimide tubing needed to be hand-made. Polyimide Tape was 

used for the construction of the tubing; the tape consisted of Kapton® polyimide film and 

silicon adhesive. The construction of the polyimide tube was essentially performed by 

wrapping polyimide tape on a 14” OD stainless steel tube. The spiraled tube was set with 

the adhesive and strengthened with polyimide resin. A polyimide tube of 14” ID and 5 

mils wall thickness was then obtained by removing the stainless steel tube; the

construction is further explained in the experimental section.

In wrapping and constructing the polyimide tube, the arrangement where the 

polyimide tape layers were placed right next to each other was the strongest, according 

to experiments performed at 250 °C and 30psig. Regardless of the superior strength and 

resistance of polyimide, the mechanical strength of the tubing was now restricted to that 

of the adhesive and the polyimide resin. Further experiments were then required to test
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the structural and thermal stability of the hand-made polyimide tube at high pressures 

and temperatures.

The results of the experiments showed that the hand-made polyimide tube 

supported up to 30 psig at 260 °C. At higher temperatures the silicon adhesive 

decomposed and caused the seam of the tubing to fail, buckling or bursting the tube.

The maximum temperature of the hand-made polyimide tube imposed some 

restriction on the analysis of complex mixtures, since complex mixtures usually require a 

temperature of 300 °C to completely analyze the sample. The sacrifice of the maximum 

temperature was necessary to apply the TGPGC method in the MDGC-MS.

Transient Temperature and Heating and Cooling Rates

First, we needed to demonstrate the efficiency of the new polyimide CSA in 

obtaining fast temperature changes, and to show how the thermal mass of the CSA 

plays a roll in the heating and cooling rates. Experiments with 3 different tube materials 

were performed: PTFE , Polyimide, and copper. A cooling and heating cycle was 

performed with each CSA material at an oven temperature of 200 °C. Figure 36 shows 

the temperature gradient profiles that were obtained for each %” OD CSA material. 

Table 4 shows the conditions at which each experiment was performed.

As was expected, the temperature profile for the copper tubing shows higher 

temperatures I the cooling cycle, due to the high thermal mass of the tube. While for the 

PTFE and the polyimide tubing, the temperature profiles reached lower temperatures 

than that reached by the copper tube. Also the temperature rapidly increased to oven 

temperature, due to the lower thermal mass of the polyimide and PTFE CSA compared 

to the copper CSA.
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Figure 36. Temperature profile obtained in different CSA materials of 1/i” OD at a
constant mass flow rate. Distance (cm;

Figure 37 and Figure 38 show the transient temperature cooling and heating of 

the different materials, where we can appreciate that even though PTFE and the 

Polyimide have similar temperature gradients, the PTFE has a lower cooling and heating 

rate than the Polyimide CSA. This was expected since the hand-made polyimide tubing 

has thinner walls and lower thermal mass compared to the PTFE CSA.

Table 4. Experimental conditions of the heating and cooling test for the different CSA 
materials.

Copper PTFE Poly imide
OD Tube 1/4" 1/4" 1/4"

Wall Tubing Thickness (mm) 0.8 1.2 0.1

R
ot

am
et

er P (psig) 2.8 3.1 2.6

T(°C) 24 24 24

Level (LPM) 20.5 20 20
Volume Rate (LPM) STC 22.63 22.26 21.95
Mass Flow (g/s) 0.4377 0.43 0.424
Reynolds Number 3,620 3,560 2,345

70



Time (s)

Figure 37. Formation of the temperature gradient (Cooling cycle) in the CSA.
In this plot only the temperature of the cold flow inlet for each CSA is shown. 

Thermocouple diameter is of 0.01”

Figure 38. Heating the CSA to oven temperature (heating cycle) in the CSA.
In this plot only the temperature of the cold flow inlet for each CSA is shown. 

Thermocouple diameter is of 0.01”

The heating rates obtained in the experiment are shown in Table 5, and it is clear 

that the Polyimide CSA can heat and cool more efficiently than the other CSA materials. 

We obtained a cooling rate of 9.5 °C/s, which is faster than the 5 °C/s obtained with the 

current column heating technology60,73. However, the heating rate of 8.4 °C/s achieved 

with the polyimide tube is still not as fast as the heating rates obtained with the resistive 

heating devices (20 °C/s) described earlier.
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Table 5. Heating and cooling rate for the different materials of CSA.

Rates measured as the slope from the beginning of the temperature cycle to the end.

Rate °C/s
T1 (°C) T2 (°C) t1 (s) t2 (s) Cooling Heating

Polyimide 200 124 2 10 9.5
116 200 19.4 29.4 8.4

PTFE 200 132 2 10 8.5
116 190 19.4 29.4 7.4

Copper 200 169 2 10 3.9
150 183 19.4 29.4 3.3

Further improvements needed to be made in order to reach higher heating and 

cooling rates. One of the improvements was the replacement of a %” OD metal tee at 

the cooling inlet with a hand-made %” polyimide tee. The previous metal tee that was 

used contributed a high thermal mass. As a result, part of the cooling time of the CSA 

was consumed in cooling the metal tee, and the same was true during the heating stage, 

where part of the time required to heat the CSA was consumed in heating this tee. The 

system with the new hand-made polyimide tee is shown in Figure 21. The polyimide tee 

was made using the same procedure as the hand-made polyimide tube using polyimide

resin.

The expected improvement in reducing the thermal mass of the tee connection at 

the beginning of the CSA was observed in the heating and cooling rates obtained 

(Figure 39). Using the 0.01” thermocouple diameter used in the previous experiments, 

heating and cooling rates of 25 and 66 °C/s, respectively, were obtained with the new 

low thermal mass polyimide tee design. Cooling rates are much higher than resistive 

heating devices, and heating rates are slightly higher as well.
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Figure 39. Transient temperature comparison between the metal and polyimide 
tee connection.
Rates measured from 0.5s to 2s for the polyimide tee and from 0.5s to 10s for the 
metal tee.

Thermocouple size reduction to track gradients

Another improvement was the use of smaller thermocouples to track the fast 

thermal changes occurring inside the CSA. Figure 40 shows the difference in measuring 

the temperature of a cooling and a heating cycle using different thermocouple diameters. 

The smaller diameter thermocouples have a faster response, thus they can follow the 

temperature change in the CSA more accurately.
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Time (s)
Figure 40. Temperature measured using different thermocouple diameters in the heating 

and cooling cycle of the polyimide CSA.
Rates determined from 0.5s to 1s for the cooling cycle and from 6s to 10s for the heating 
cycle.

Using the data obtained with the smaller diameter thermocouples, we can obtain 

a more accurate heating and cooling rate. Table 6 shows the new heating and cooling

rates obtained.

Table 6. Heating and cooling rates obtained with the new polyimide tee and the new 
thermocouples.

Thermocouple
Diamter

Rate °C/s
T1 (°C) T2 (°C) t1 (s) t2 (s) Cooling Heating

0.01" 200 100 0.5 2 66.7
100 200 6 10 25.0

0.005" & 0.001" 200 100 0.5 1 200.0
100 200 6 9 33.3

The heating and cooling rates achieved were of 33.3 and 200 °C/s for each case, 

rates that were definitely higher than any other heating column device, and fast enough 

to apply the TGPGC method in the second dimension of the MDGC-MS system. The 

high heating and cooling rates were achieved by exposing the CSA to high flow rate of 

nitrogen gas (higher than 40 LPM STP). The high cooling rate of 200 °C/s obtained 

shows how efficient the CSA is on changing its temperature, due to its low thermal
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mass. This means that heating rates of the same order of magnitude as the cooling rate 

can be achieved. The difference between the heating and cooling rates observed was 

due to the temperature of the heating and cooling fluid. The cooling fluid was nitrogen at 

25 °C, which provides a big driving force being able to cool down from 200 to 100 °C 

very quickly. On the other hand the heating fluid was at 200 °C or oven temperature, 

making possible high heating rates of 240 °C/s up to 160 °C as it is observed in Figure 

41. However, once the gradient temperature is closer to the heating fluid temperature 

and the temperature difference is smaller, the heating driving force is reduced, thus the 

heating rate starts to decrease, in this case after 160 °C (see Figure 41). To obtain high 

heating rate one needs to heat the heating fluid higher than the oven temperature (e.g. 

50 °C), so the heating driving force will be high enough to keep a high heat rate up to 

oven temperature, avoiding the zone where the heating rate starts to decrease.

Time (s)

Figure 41. Cooling and heating cycle of the CSA design.

The thermocouple diameter chosen for the experiments was the 0.005”, since it 

was easier to handle than the 0.001” diameter and had a response time that was good 

enough to monitor the temperature changes inside the CSA, as can be seen in Figure 

40. An example of a heating and cooling cycle obtained with the polyimide CSA design
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used for the tuning of the CSA in the MDGC-MS system is shown in Figure 41 and its 

temperature gradient is shown in Figure 42.

Figure 42. Temperature gradient of the 1/i” Polyimide CSA design.

To generate the square response plot of the heating and cooling of the 

temperature gradient (TG), initially high flow of nitrogen gas at room temperature was 

used to quickly form the TG desired. Then, the high flow of nitrogen was reduce to a flow 

that would maintain the desired TG constant. Heating the TG was achieved by using 

high flow of nitrogen gas preheated at oven temperature. The operational conditions of 

the heating and cooling cycle are shown in Table 7.

Table 7. Operating conditions of the CSA for the heating and cooling cycle.

Constant Temperature Cooling & Heating
ID Tube 1/4" 1/4"

R
ot

am
et

er P (psig) 7.5 23

T(°C) 24 24

Level (LPM) 21 -
Volume Rate (LPM) STC 26.11 -
Mass Flow (g/s) 0.505 -
Reynolds Number 4,180 Turbulent
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Thermal field mapping and determination of best gradient

Taking advantage of the data obtained in Figure 41 and by using MATLAB, the 

thermal field of the heating part of Figure 41 was plotted. The temperature surface 

obtained when slower heating rates are used is shown in Figure 43 and 44.

Distance (cm) Tirne(s)

Figure 43. Temperature surface for a heating rate of 33 °C/min.

Figure 44. Temperature surface for a heating rate of 20 °C/min.
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Further experiments where performed to establish the flexibility in producing 

different temperature gradient profiles. The temperature gradient profiles shown in 

Figure 45 correspond to the %” polyimide CSA with the polyimide tee. Steeper 

temperature gradients were achieved compared to Figure 35, where the connection was 

a metal tee. The polyimide tee allows colder fluid to reach the inlet of the CSA creating 

the steeper gradients.

j
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Distance (m)
0.9 1

The LPM units are at standard conditions (21.1 °C and 1 atm)

Figure 45. Temperature gradient profiles of the 1/4” OD polyimide tube at different 
volume flow rates of N2 at 25 °C.
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Tuning of the TGPGC Mode in the Second Dimension Column

The thermal gradient programmed gas chromatography method is performed by 

the application of adjustable three-dimensional thermal fields as shown in Figure 43 and 

44. The thermal fields are formed by generating in the axial direction of a 

chromatographic column a negative temperature gradient that can be modified through 

time (Figure 43).

An advantage that the TGPGC method has, compared to the ITGC and PTGC 

methods, is that the thermal field can be modified during the chromatographic analysis. 

This feature is very important in achieving complex separations, since there are regions 

in the entire GC analysis where one wants a significant negative temperature gradient 

and others where only gradual negative gradients are preferred.

The flexibility of the thermal field implies that the TGPGC method has more 

operational variables available for the separation process than the ITGC and PTGC 

methods. The main operational variables that are encountered in the TGPGC method

are:

a) The negative gradient shape or profile

b) The gradient temperature difference (inlet-outlet)

c) The heating rate of the column within the gradient

d) The initial heating time of the gradient

The large number of operational variables that the TGPGC mode offers3, 66 

makes the technique more powerful for the separation of a wide variety of samples, 

though it also makes it more difficult to apply. Table 8 shows a comparison of the main 

operational variables encountered in the different thermal application modes for 

performing chromatographic analysis.
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Table 8. Operational variables encountered in different chromatographic 
separation modes.

ITGC PTGC TGPGC
Carrier gas flow rate (velocity) Carrier gas flow rate (velocity) Carrier gas flow rate (velocity)

Oven temperature — Temperature gradient shape 
or profile

— — Temperature gradient 
difference

— — Time to initiate the heating
— Heating rate Heating Rate

The tuning of the TGPGC technique consisted of finding the correct values of 

operational variables that enhanced the separation of a heartcut in the second 

dimension column of the MDGC-MS system. Experiments were performed to understand 

their influence in the separation process, and to achieve the tuning of the TGPGC 

method. However, it should immediately be made clear that the study of the effect of the 

main variables of TGPGC in the separation process has an exploratory nature.

In these experiments only the cryogenic trap and the second-dimension column 

of the MDGC-MS system were used. The sample injections into the secondary column 

were performed with the cryogenic trap simulating a narrow collected fraction (heartcut) 

coming from the first column. The sample mixture used for the tuning of the CSA was 

based on five selected compounds that possessed similar boiling points and 

demonstrated different chromatographic polarities. The components chosen are shown

in Table 1.

Influence of the negative gradient profile and its temperature difference |AT| in 
TGPGC

Due to the CSA design, the gradient profiles studied were restricted only to 

negative convex curves. The CSA was housed in a GC oven where the oven 

temperature was kept higher than the CSA flow inlet temperature and as a result, the 

gradient generated by the heating of the cold inlet flow produced convex curve profiles.
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There was no independent control between the gradient temperature difference and the 

gradient profile since the CSA inlet flow temperature was kept constant. Increasing the 

cooling flow inlet rate produced higher temperature differences, as well as a less 

pronounced convex curve profile (see Figure 45). Therefore, the temperature gradient 

profile was then specified by the absolute temperature gradient (|AT|) only. For these 

reasons, a study of the influence of different gradient profiles in the TGPGC separation 

mode could not be made. However, the influence of the temperature gradient difference 

in TGPGC separations was studied.

The compounds used in these experiments were n-hexadecane, 1-decyl- 

benzene and 1-tetradecanol, which were chosen because they characterize a nonpolar, 

a semi-polar and a polar compound, comprising the whole chromatographic separation 

range of the second column. The GC conditions used were isothermal at 200 °C, 3.5 

psig head column pressure, split mode with 100 ml/min of helium carrier gas. The first 

chromatographic column used was a polar 4 m RTX-200, 0.1 mm ID, employed in

The influence of the absolute temperature gradient difference (|AT|) on the 

TGPGC separation process was studied by comparing an isothermal separation with
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separations done using three gradient profiles with different |AT|. The temperature 

profiles used in the experiments are shown in Figure 46.

The second-dimension separation in MDGC-MS is always assumed to be under 

isothermal conditions; therefore, an isothermal separation of the heartcut sample was 

performed to compare the application of the TGPGC mode with an isothermal 

separation. However, two situations can take place when the TGPGC separation 

technique is applied:

1) Allowing the compounds to breakthrough the negative temperature gradient.

2) Releasing the compounds before they get through the gradient, by heating 

the negative gradient to the isothermal oven temperature.

These situations were studied using the different |AT| profiles shown in Figure

46. The heating rate used for releasing the compounds was 33 °C/s, the fastest 

achievable for the CSA design. The isothermal separation chromatogram and the 

chromatograms obtained from the separation performed by using the TGPGC mode are 

shown in Figure 47. All the chromatograms in Figure 47 were plotted using the same 

scale, except Figure 47-D, which had a larger scale x-axis. The sample amount was 

equal for all the experiments performed.

The isothermal separation chromatogram of the compounds is shown in Figure 

47-A where coelution is observed between the two last compounds, the 1-decyl-benzene 

and 1-tetradecanol, showing that the isothermal separation does not provide a complete 

separation of the heartcut. Figure 47-B to G shows the remarkable influence of the 

application of the TGPGC mode in the chromatographic separation of the compounds. 

To quantify the separation of the compounds and analyze the chromatograms of Figure

47, bar plots are presented in Figure 48 to 50.
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A) Isothermal 200 °C

B) Breakthrough
Gradient |AT| = 30 °C

C) Breakthrough
Gradient |AT| = 50 °C

D) Breakthrough
Gradient |AT|= 100 °C

E) Heating Release at 
33 °C/s, |AT|= 30 °C

F) Heating Release at 
33 °C/s, |AT|= 50 °C

G) Heating Release at 
33 °C/s, |AT|=100 °C

Figure 47. Isothermal, breakthrough, and fast heating release chromatograms of a 
heartcut mixture at different |AT| temperature gradients.
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The peaks in the bar plots were represented by letters, A as the n-hexadecane, B

as the 1-decyl-benzene and C as the 1-tetradecanol.

22.7 s 15.8 s

Figure 48. Peak apex separation between peaks A-B and B-C of the chromatograms of 
Figure 47.

Figure 49. Peak height percentage of the chromatograms of Figure 47.
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Figure 51. Resolutions of peaks A-B and B-C of the chromatograms of Figure 47.

For the situation where the peaks broke through the gradient (Figure 47-B to D) 

the compounds were more separated and broader than the isothermal separation, see 

Figure 48-left side. As can be seen in Figure 47-B to D and Figure 48-left side, the 

separation and broadening of the peaks increased as the temperature gradient 

increased, which is noticeable in Figure 47-D, where the peaks are very broad and 

separated.

For the case where the peaks were released before they broke through the 

gradient (Figure 47-E to G), the peaks got narrower and taller than the isothermal 

separation (Figure 49-right side). Although the apexes of the peaks were closer than the 

isothermal run (Figure 49-right side), the narrow peaks and increased signal provided an 

enhanced chromatographic separation (increased in resolution Figure 49-right side) that 

permitted a better identification of the peaks. The peaks got narrower and taller as the 

temperature gradient |AT| was higher, which is seen in Figure 47-G for the release of the 

compounds at a |AT| of 100 °C, and Figure 48-right side.
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A schematic of the entire second dimension profile (Figure 52) would be helpful 

to understand what happens when the compounds breakthrough the negative gradient 

or when they are released by heating before they breakthrough. However it is important 

to understand first how the compounds move through the column.

The movement of the compounds through the column is determined by the 

interaction with the stationary phase, the higher the interaction the slower the 

compounds will move, and the higher the axial diffusion will be. Therefore, in a polar 

stationary phase, polar compounds that have more affinity to the stationary phase will be 

broader and move slower than a non-polar compound. Temperature plays a big role in 

the interaction strength of the compounds with the stationary phase. Generally, the lower 

the temperature the higher the interaction strength will be.
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Figure 52. Second dimension column temperature profile.
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When the compounds exit the negative gradient they encounter a steep positive 

temperature gradient, which goes from the colder CSA temperature to the oven 

temperature and eventually to the MS transfer-line temperature, segment F-G of Figure 

52. Now as the opposite effect of a negative gradient, the peaks, will be broadening 

instead of narrowing. The velocity at the beginning of the peak increases when it
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encounters the step positive temperature gradient, leaving the back part of the peak 

inside the negative gradient at a lower temperature, and thus, lower velocity. This 

velocity difference is what makes the peak broaden. The bigger the velocity difference 

between the beginning and end of the migrating zone, the broader the peak becomes. 

Figure 53 shows what happens to a migrating zone or peak when it encounters a 

positive gradient.
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This is the reason why the peaks shown in Figure 47-B to D become broader and 

more separated as the |AT| of the gradient profile increased. When the first peak breaks 

through the gradient, the second is still in the gradient and thus traveling slower, allowing 

the separation between the peaks. As the |AT| of the negative gradient increases the 

slower the second peak will be traveling and thus the bigger the separation between the 

peaks, as shown in the left side of Figure 48, where the separation of the compounds for 

a |AT| of 100 °C is very large.

However, the peak height, and therefore its signal, is inversely proportional to its 

width, and for this reason the heights of the peaks obtained in Figure 47-B to D
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decreased, due to an increase in their peak widths (Figure 49). The variation of the peak 

height with respect to its base width is shown in Figure 54, where it is noticeable that 

decreases in width of an order of magnitude produce a gain of an order of magnitude in

height and thus in signal.
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xtb= 1 s
z

1
/tb=2 s

r z tb = 5 s
^tb=10s /tb=20s|

.

.. —**- ■■■« X... -Ifc................. »
10 5 0 5 10

Time (s)
Figure 54. Effect of the peaks narrowing on their height detection.

(tb= Base time length)

Therefore the decrease in signal or height of the peaks shown in Figure 47-B to 

D and Figure 49 (left side), is a sign that the peaks were becoming broad. This 

observation is obvious in Figure 47-D where the last peak is so broad that it can barely

be seen.

As can be seen in Figure 49 (left side), the resolution increased when the peaks 

breakthrough a negative gradient with a low |AT|, and decreased for higher |AT| 

gradients. The increase in resolution obtained with lower |AT| gradients is due to the 

increase in separation of the peaks. However, higher |AT| gradients make the 

broadening effect bigger, overcoming the separation effect and hence decreasing the

resolution.

The release process consisted of rapidly heating the temperature gradient to 

isothermal oven temperature, eliminating the temperature gradient. This implied the
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application of a positive temperature gradient to the peaks. However the heating method 

used allowed reducing the broadening effect of the positive gradient by keeping a 

negative gradient during the heating process (see Figure 55). This negative gradient 

permitted a reduction of the broadening effect by continuously focusing the peaks during 

the heating process.

Figure 55. Temperature gradient profile during the heating release process.

Narrow peaks are achieved in the release process of the TGPGC mode, since 

the beginning and end of the migrating zone is being heated almost at the same time. 

This heating scheme keeps the velocities of the migrating zone constant, hence, 

releasing the peak as focused as they were in the negative gradient. Although some 

resolution is lost due to the heating process, the peaks are kept very narrow and tall, as 

observed in Figure 47-E to G and the right side of Figure 49.

Narrower and hence taller peaks were obtained at bigger |AT| gradients (see 

Figure 49). Peaks as narrow as 120 ms were obtained. The reason for this was the 

colder temperatures and steeper negative gradients caused larger velocity differences in 

the migrating zone, thus producing narrower peaks (see Figure 47-G).
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In the release process of the TGPGC mode the peaks were closer to each other 

than the isothermal separation as seen in Figure 48 (right side). The peaks get closer to 

each other since they slow down, due to the lower temperatures encountered in the 

negative temperature gradient. Even though the peaks are closer to each other 

compared to the isothermal separation, good chromatographic separations were 

obtained due to the narrow peaks, as seen in Figure 47-E to G.

The right side of Figure 51 shows the resolution obtained using the release 

situation of the TGPGC mode. Even though the resolution of peaks A-B was reduced 

compared to the isothermal separation, it was still over 1.0, which is considered the 

minimum for a measurable separation to occur and to allow good quantitation39. 

Nevertheless, the resolution of peaks B-C increased more than 100% (Figure 51), even 

though the peaks where closer, they were narrower (and higher) allowing a good 

chromatographic separation.

High resolution in the release process of the TGPGC mode is created by the 

production of narrow peaks. The release process not only improved the chromatographic 

separation of the peaks, but also increased the signal of the peaks. This increase made 

the MS more sensitive for lower compound concentrations, reducing its detection limit 

and improving its quantitation capacity.

As can be seen in Figure 47, the situation where the peaks broke through the 

gradient in the TGPGC method increased the resolution, though it also reduced the 

signal of the peaks as can be seen in Figure 49. For the situation where the peaks were 

released, even though the resolution of the first pair of peaks (A-B) was reduced, the 

resolution of the second pair and its signal was increased, as can be noticed in Figure 

51 and Figure 49 for all the compounds.

The two TGPGC situations can be observed in Figure 56, where the 1- 

tetradecanol peak at a |AT| gradient of 100 °C, was allowed to breakthrough the gradient
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and was then released before the whole peak went through the gradient. In the 

chromatogram of Figure 56 we can observe the broadening effect at the beginning of the 

peak, due to gradient breakthrough. The narrowing effect of the negative gradient was 

also appreciated at the end of the peak, as the remaining part of the peak still retained in 

the gradient was released.

1.20 1.40 1.60 1.80 2.00 ' 2.20 2.40

Figure 56. Breakthrough and release of the 1-tetradecanol.

This situation explains the peak shape of 1-hexadecane in Figure 47-G where 

broadening of the first part of the peak was observed. This means that part of the n- 

hexadecane broke through the gradient before it was released. The broadening of the 

peak explains the lower height percentage shown in Figure 49- right side, for the |AT| 

gradient of 100 °C. This explains why peak A did not follow the growing height 

percentage trend observed with peaks B and C as the |AT| gradient increased.
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Influence of the heating rate in TGPGC

Different heating rates can be applied for releasing the compounds in TGPGC, 

however its influence in the separation process is not known. Therefore, experiments 

were performed to understand the effect of the heating rate on the separation process 

when the release operation of TGPGC is applied.

The sample and experimental conditions used were the same as the ones used 

for describing the effect of the negative temperature gradient in the separation process 

using TGPGC, though, in this experiment only one negative temperature gradient was 

used, which was the 100 °C |AT| gradient.

The chromatograms generated using TGPGC for the different heating rates are 

shown in Figure 57-B to G. In these experiments the compounds where released just 

before they broke through the negative gradient. Figure 57-A shows the isothermal 

separation of the sample, which was used as the model for comparing the TGPGC 

separations. As seen before in Figure 46-A, the isothermal separation generated in 

Figure 57-A shows once more the limitation of the isothermal mode to completely 

separate the peaks.

As previously mentioned, releasing the peaks before they breakthrough the 

gradient makes the peaks more closer to each other and become narrower while 

maintaining good resolution for the first pair of peaks and increasing the resolution of the 

second pair. The situation depicted in the chromatograms of Figure 57-B to G is the 

same as the one previously described, even though the heating release process was 

done at different heating rates.
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Figure 57. Different heating rates applied in TGPGC separations at a |AT| gradient of 100 °C. 
(The arrows indicate the initial heating time)
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Figure 58 shows the height percentage of the peaks with respect to the 

isothermal separation, where it is clearly seen that the peak height was higher than the 

isothermal separation for all the heating rates.

Figure 59. Resolution of the peaks shown in Figure 57.
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As seen in Figure 59 higher heating rate does not necessarily mean higher 

resolution. At lower heating rates the resolution increases due to the narrowing effect 

obtained from releasing the peaks. It may be that, as the heating rate increases, the 

peaks get narrower and closer together, possibly reaching a point where the narrowing 

effect may be overcome by the smaller and smaller distance between the peaks, thus 

decreasing the resolution.

Nevertheless, the resolution between the peaks of Figure 57-B to G (see Figure 

59), followed the trend observed for the peaks that broke through the gradient Figure 48- 

right, where the first pair of peaks showed lower resolution compared to the isothermal 

run, and the second pair of peaks showed higher resolution. This implies that for the 

heating release process in TGPGC, no matter the heating rate, the peaks that are 

released before they breakthrough the gradient should be nearer to each other, narrower 

and hence higher, while keeping good resolution.

However, what was notable about releasing the peaks at different heating rates 

was the fact that the peaks became narrower and closer as the heating rate increased, 

which was easily observed in Figure 57-B to G.

Thus, an increase in the heating rate implies a decrease in the time it takes to 

heat the gradient to oven temperature. Then, the variations observed in the 

chromatograms of Figure 57-B to G must be an effect due to the temperature of the 

gradient at which the peaks are eluted.

Hence, using the time it takes since the heating release starts to the elution of 

the last peak (c) 1-tetradecanol, and using the heating rate, we can determine the 

temperature or the |AT| of the gradient at which the last peak was released. However, 

since the start of the heating release was not precisely measured, and since peak A 

immediately comes out after starting the heating release, the releasing time was taken 

as an average between the elution of peak A and the elution of peak C.
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The elution time of peak C with respect to peak A for the different heating rates is 

shown in Figure 60, where it is seen that the higher the heating rate the less time it takes 

to elute the peaks. By using the time it takes to elute the peaks of the column (Figure 60) 

and the heating rate, the |AT| of the gradient at which peak C was released was then

calculated (see Figure 61).

Figure 60. Adjusted retention time of peak C with respect to peak A for the different 
heating rates.

Figure 61. Temperature of the gradient at the elution time of peak C.
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As can be seen in Figure 61 the slower the heating rate the bigger the |AT| 

gradient which peak C, and hence peaks A and B, go through. Slow heating rates do not 

release the peaks at oven temperature, thus releasing the peaks while still in presence 

of a gradient. This explains why for lower heating rates, which mean bigger |AT| 

gradients, the elution time of the peaks was larger (see Figure 60). When the peaks go 

through a negative temperature gradient they slow down and the bigger the gradient the 

slower the peaks move, hence the longer the elution time as seen in Figure 60.

The positive gradient that the peaks see once they go through the negative 

gradient is what makes the peaks broader (Figure 57-B to G), as explained before when 

the peaks breakthrough a gradient. This situation explains why for lower heating rates, 

which means bigger |AT| gradients, the peaks where broader and more separated, as

can be seen in Figure 62.

Figure 62. Separation of peaks A-B and B-C of the chromatograms of Figure 25 (s).

97



As the heating rate increased the peaks got closer and narrower, as seen in 

Figure 57-B to G, since the |AT| gradient was lower, thus decreasing the effect of 

breaking through the gradient. Lower heating rates and bigger |AT| gradients made the 

breakthrough the gradient effect bigger, generating less narrow and more separated 

peaks, as seen in Figure 57-B to G, Figure 58 and Figure 62.

In all the heating release cases there was some breakthrough effect involved, the 

effect was not as pronounced as when the gradient was static, which was the case 

studied in Figure 46-D. In the heating release process the peaks are breaking through a 

dynamic |AT| gradient that is getting smaller with time, maintaining the velocities of the 

migrating zone very similar and decreasing the broadening effects observed when a 

peak broke through a static gradient (Figure 46-D).

In summary, if one wants to take advantage of the narrowing effect of a negative 

gradient, the heating process must be started before the peaks breakthrough the static 

gradient. High heating rates must be used, to elute the peaks even though it will not 

necessarily guarantee the best separation.
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The effect of the initial time for heating the gradient in TGPGC

As described earlier, two separation processes can take place in TGPGC. One of 

them consists in letting the peaks breakthrough the gradient (Figure 63-1), while the 

other consists in releasing the peaks that are traveling slowly in the gradient by heating 

the gradient to oven temperature (Figure 63-2 to 4).

1) Isothermal

3) Breakthrough 
of peak A

Same scale Chromatograms

2) Heating release 
of all the peaks

4) Breakthrough 
of peaks A and B

lx

5) All the peaks 
breakthrough

Oven Temp = 200 °C; AT gradient = 100 °C; Flow velocity 20 cm/s; column: RTX-200. 
The Vertical arrows indicate the initial heating time.

Figure 63. Separations performed at different initial heating times.
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In the first process there is an increase in resolution due to the physical 

separation of the peaks, whereas in the second process, they are chromatographically 

separated due to the narrow and thus taller peaks obtained (Figure 63-2, 3). Conversely, 

the first process reduces the signal of the peaks as a result of the broadening effect 

during the breakthrough, while the second process increases the height of the peaks 

and consequently the sensitivity of the detector system.

Figure 63 is an example that shows how TGPGC works. Moreover it shows the 

advantages of using TGPGC, where one can selectively separate the peaks. For 

instance one can decide to let peak A escape the gradient and then narrow peaks B and 

C (Figure 63-3), or either decide to just increase the signal of peak C by letting peaks A 

and B escape from the gradient and then heat the gradient (Figure 63-4).

This feature makes the TGPGC method very attractive for solving the problem 

encountered in the separation of the second-dimension in MDGC-MS. As previously 

mentioned, an often encountered difficulty in the second-dimension separations is the 

presence of zones that are not adequately resolved, representing a form of the general 

elution problem (GEP). Figure 64 shows a typical GEP chromatogram where, the early 

eluting peaks are narrow and clustered together, while the later peaks are more 

separated and broader.

Figure 64. A General Elution Problem example50.
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For this reason the initial heating time of the gradient is very important in solving 

the GEP, since it determines what section and which separation process would take 

place in the separation of the heartcut.

To study the effect of the initial heating time in the separation process of the 

second-dimension, experiments were performed at different heating times. In addition, 

different heating rates where also tested to further determine the best conditions for 

increasing the peak capacity in the second-dimension.

The system used for the experiments was the same system used in previous 

experiments, though, the secondary-column was changed due to the need for faster 

analysis in the second-dimension. A carbowax column of shorter length (L= 2.3 m) and 

new GC conditions were used. The higher polar nature of the carbowax column with 

respect to the RTX-200 increased the separation of polar compounds, compensating the 

negative separation effect of increasing the carrier gas velocity and decreasing the 

length of the column. The operational conditions of the GC used were: a column head 

pressure of 30 psig, a split of 110 ml/min, and a carrier gas velocity of 100 cm/s.

The isothermal oven temperature used in the experiments was determined from 

a Diesel chromatogram where the n-hexadecane eluted at 180 °C. This temperature 

allowed us to precisely simulate the heartcut elution of the sample, and hence determine 

the best conditions for increasing the separation power.

However, due to the new column and GC conditions, a breakthrough test was 

necessary to establish which |AT| gradient would provide the best separation for the first 

zone of the heartcut. An unretained compound (n-dodecane) was added to the sample 

mixture to facilitate the observation of the retention times of the compounds.

Figure 65 shows the four temperature gradient profiles employed in the 

experiments, while Figure 66 shows the breakthrough of the sample for three different 

|AT| gradients. The |AT| gradient of 180 °C completely stopped the compounds in the
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gradient, hence the peaks never breakthrough the gradient and there is no 

chromatogram for this experiment.

Figure 65. Temperature Gradient Profile used for the Breakthrough experiments.

As seen in Figure 66, an increase in the |AT| gradient increases the retention 

time of the peaks and also made them broader, which was expected. However, the best 

|AT| gradient would be the one that allows some retention of the first peaks without 

broadening the peaks.

Figure 66. Breakthrough at different AT gradient temperatures.
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From Figure 66 we can observe that a |AT| of 60 °C barely retains peak A while a 

|AT| of > 130 °C definitely retains peak A, although it also decreases its peak height by 

50 %. Higher |AT| gradients of 130 °C would be less likely to be used since it would take 

a lot of time for the peaks to breakthrough the gradient. Moreover the peaks would be 

very broad with a low signal. A test was done for a |AT| gradient of 180 °C, and in this 

case the peaks were stopped. This gives another possibility of using bigger |AT| 

gradients and stopping all the peaks and then releasing them, though bigger |AT| 

gradients involve longer times for heating and cooling which in turn would mean longer 

separation processes that we want to avoid.

A |AT| gradient of 100 °C was then chosen as the best gradient for enhancing the 

separation of the first peaks of the second-dimension, since as seen in Figure 66 it 

retained peak A, while keeping a good signal, also maximum resolution.

More compounds were added to the heartcut sample in order to appreciate the 

effect of the different heating times and heating rates in the separation of the sample. 

The isothermal run at 180 °C is shown in Figure 66 where all the compounds present in

the heartcut can be observed.

Figure 67. Isothermal run showing all the peaks present in the heartcut sample.
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C-12 is the unretained compound (n-dodecane), the D zone is composed by solute and 

solvent impurities peaks, A and Ai represents the aliphatic compounds n-hexadecane 

and n-hexadecene respectively, B represents the aromatic compound (1-decyl- 

benzene), C is the 1-tetradecanol and it represents the polar compound. Peak A2 is a 

polar compound 2-methyl-naphthol, and as can be observed, it is eluting before the 

aromatic compound, which was not expected due to the high polarity of this compound. 

The reason for this is the fact that peak A2 does not belong to the 180 °C heartcut. In a 

real sample this compound must elute before the n-hexadecane, explaining why peak A2

elutes in the middle of the run.

The experiments were performed at three different heating rates and five initial 

heating times, they are shown in Figure 68 to 69.
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Figure 68. Different initial heating times (IHT) fora heating rate of 9 °C/min and |AT| of 100 °C.

(The arrows indicates when the heating started)
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Figure 69. Different initial heating times (IHT) for a heating rate of 18 °C/min and a |AT| of 100 °C. 
(The arrows indicates when the heating started)
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Figure 70. Different initial heating times (IHT) for a heating rate of 33 °C/min and a |AT| of 100 °C. 

(The arrows indicates when the heating started)
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Since it is difficult to visually (qualitatively) evaluate which of the previous runs 

provides the best conditions for the separation of the heartcut, the peak capacity of each 

separation was then calculated. The peak capacity (np) is the maximum number of peaks 

that can be resolved side by side into a chromatogram between the holdup time (ZM) 

and the last peak39. The larger the peak capacity the better the overall separation power 

would be. The following equations are used for the calculation of the peak capacity33,39.

np = l + 0.25-(Vv *i«(l + A )) (8)

N = wj2 (9)

k = ~~ h'f (10)l J

TV, +N? + ....N
N = (11)

n

k, + k-, + ....k
k = 12 n (12)

n

Equation (8) is an approximation for the calculation of the peak capacity, which 

assumes a resolution of 1.0 for the separations between the peaks. TV is the number of 

theoretical plates, which is a measurement of the efficiency of a column; k is the 

retention factor or the period of time that the sample component resides in the stationary

phase relative to the time it resides in the mobile phase; N is the average theoretical

plates and k is the average retention factor. The other parameters include tR as the

retention time for the sample peak, tM as the retention time for an unretained peak, and

wb as the base width of the peak.

A bar plot shows (Figure 71) the peak capacity of the chromatograms of Figure 

68 to 70, performed at different heating times and heating rates. As can be seen in
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Figure 71, the application of the TGPGC method when initially heated at 4s produces an 

increase in peak capacity for any heating rate. However, for a heating rate of 9 °C/s the 

peak capacity increases starting from a 2s initial heating time. The reason for the 

increase in peak capacity at the initial heating time of 4s is a result of the increase in 

resolution of peaks A and A1; due to the heating release effect, and after 4s the increase 

in resolution is due to the breakthrough effect as seen in Figure 68 to 70.

Initial Heating Time

Figure 71. Peak capacity (n) of the chromatograms of Figure 68 to 70.

Lower heating rates make the gradient heat slower. Consequently when the 

peaks elute, they elute at lower temperatures in presence of a |AT| gradient and not at 

oven temperatures. This causes separation due to the breakthrough gradient effect, 

where the peaks get broader and physically separated. This process was explained 

earlier. This is the reason why for an initial heating time of 2s, only the heating rate of 9 

°C/s experienced an increase in the resolution of peaks A and and hence its peak 

capacity increases. This explains why the peak capacity for higher heating rates does 

not increase for an initial heating time of 2s.

The peak capacity is a function of the analysis time and the longer the analysis 

time the larger the peak capacity would be. This is the reason why the peak capacity for
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the heating rates of 9 and 18 °C/s were longer compared to 33 °C/s. Slower heating 

rates means that larger amount of peaks would be affected by the negative gradient 

during its heating time, and hence would increase the retention time of the peaks and 

the analysis time. This was not observed for fast heating rates where the effect of the 

gradient would be limited for those peaks that are on the gradient and during the heating 

period which is shorter compared to the slow heating rates.

Figure 72 shows the temperature of the gradient at which the last peak (1- 

tetradecanol) elutes, showing that at lower heating rates (9 °C/s) all the peaks will be 

eluting through a higher |AT| gradient compared to the fast heating rates.

Initial Heating Time

Figure 72. Temperature of elution of the last peak (1-tetradecanol).

Figure 73 shows the total analysis time for the chromatograms shown in Figure 

68 to 70. As can be seen, higher peak capacity implies higher separation power; 

however it also implies higher analysis time.

Figure 73 shows that lower heating rates increase the analysis time due to the 

increase in retention time of the peaks, since all of the peaks elute at temperatures lower 

than the oven temperature (see Figure 72). Fast heating rates only have influence over
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the peaks that go through the gradient; they do not influence the retention time of the 

last peak. As a result the analysis can be done faster.

Figure 73. Total analysis time of the chromatogram of Figures 34 to 36.

As discussed before, not only the peak capacity of the second dimension is 

important, but also it’s total analysis time. Therefore a plot of peak capacity divided by 

analysis time for the chromatograms of Figure 68 to 70 was done to determine the best

conditions for the application of the TGPGC in the second-dimension.

Figure 74. Peak capacity/analysis time of all the different experiments performed.
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Figure 74 shows how the peak capacity analysis time ratio increases when it is 

initially heated at 4s or later, maintaining an average value of 145 peaks/minute or 2.4 

peaks/s. Therefore, we can discard the idea of initially heating the gradient at 2s since it 

produces the lowest value of n/analysis time.

Looking at the GEP chromatogram (Figure 64) and the isothermal separation of 

the heartcut sample (Figure 67), it can be observed that the separation problem is poor 

resolution at the beginning of the chromatogram and too much resolution at the end. 

Therefore, the ideal situation for applying the TGPGC in the second-dimension, would 

be to let the early peaks breakthrough the gradient and apply the release process to the 

last zone of the chromatogram where the peaks are spatially broad. This situation was 

observed at initial heating times of 7s and 8s, where the peaks were physically 

separated at the beginning, peaks A, A-! and the peaks in D, while the last peaks were 

closer, peaks A2, B and C. This approach allowed the physical separation of the early 

peaks, while making the last peaks narrower and closer, thus increasing the peak 

capacity of the whole chromatogram.

The sacrifice in signal due to the broadening effect of breaking through the 

gradient was not significant for the first peaks, since they are typically narrower and 

taller. Besides, it is compensated by the increase in separation and thus resolution, as 

can be seen in Figure 68 to 70 shows that for the initial heating times of 7s, 8s and 11s, 

there was an increase in resolution of 90% compared to the isothermal separation.

As seen in Figure 74 any heating time after 4s produces a good amount of peak 

capacity in a given analysis time, however its value starts to decrease for an initial 

heating time of 11s. This was one of the reasons why the initial time of 11s was 

discarded. Furthermore, it also had the longest analysis time as seen in Figure 73. An 

initial heating time of 7s and a heating rate of 33 °C/s were chosen as the best 

conditions for applying the TGPGC method in the second-dimension of MDGC-MS.
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These conditions provided the lowest analysis time among the different initial heating 

times, while still providing the best peak capacity/analysis time value. The fastest 

heating rate allowed obtaining the maximum narrowing effect and also the minimum 

analysis time among the 3 heating rates.

A comparison between the isothermal separation of the heartcut sample and the 

best TGPGC separation is shown in Figure 75, and a comparison of the quantitative 

values obtained from the chromatograms are shown in Table 9.

Figure 75. Isothermal and TGPGC separation of the heartcut sample.
I) Isothermal Mode
II) TGPGC mode for an initial heating time (IHT) of 7s (arrow), and at 33 °C/s

Table 9. Quantitative comparison between the Isothermal and TGPGC separation.

Separation Modes Isothermal TGPGC Heating at 7s % Comparison between the 
TGPGC vs Isothermal

R
es

ol
ut

io
n | RA-A1 0.86 1.64 91
RA1-A2 6.75 11.75 74
RA2-B 3.00 3.20 7
Rb-c 9.67 6.18 -36

Peak Capacity (n) 16.98 30.21 78
Analysis time (s) 9.54 10.58 11

Peak Capacity/Analysis time n/min 1.78 2.86 60
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Even though the separation does not appear significantly better an increase of 

78% in the peak capacity will definitely improve the resolution of a complex mixture.

From Figure 75 we can observe a notable increase in the resolution of the early 

peaks A and An of 90% (Table 9), the narrowing effect of the later peaks (A2 and B), 

and the decrease in resolution for the last peaks B and C.

Overall the peak capacity of the separation of the heartcut sample obtained with

the TGPGC mode had showed an increase of 78%. This means a theoretical 78%

increase in the total peak capacity of the MDGC-MS system, since the peak capacity of 

a multidimensional system (Equation 13) is the product of the peak capacity of the 

individual columns36,40.

nTo,al=ncCncl (13>

The increase in the peak capacity ensures an improvement in the separation power of 

the system, though it could only be appreciated by doing a complete separation of a 

complex sample.

Even though the analysis of the heartcut done by TGPGC increased the analysis 

time by 11%, the gain in resolution and peak capacity is promising when compared to 

the approaches used today to improve the resolution and GEP of the secondary 

separation. These approaches consist of putting the secondary column in a 

programmable second oven, where the isothermal temperature of the secondary column 

was changed, either to a higher or lower temperature with respect to the primary column. 

Therefore, isothermal separations of the heartcut sample were performed at different 

oven temperatures, to compare the TGPGC separation with these methods. Figure 76 

shows the isothermal separations of the heartcut at different oven temperatures.

As can be seen in Figure 76, temperatures lower than the oven temperatures 

were used to increase the resolution of the early peaks, while higher temperatures were

114



used to improve the resolution and detection limit of the last peaks, as well as to reduce 

the analysis time and wraparound problems.
M

S-
S

ig
na

l

Figure 76. Comparison between the isothermal and TGPGC separations of the 
heartcut sample. (IHT = Initial Heating Time)
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Conversely, higher temperatures make the early peaks merge together (220 °C) 

and lower temperatures make the late peaks so broad that they were hardly detected 

(140 °C), and it also produced wraparound problems. Wraparound may be the most 

significant shortcoming in MDGC as it is practice today. These approaches were not a 

complete solution for the GEP encountered in MDGC-MS.

Figure 76 shows how temperatures higher than the oven temperatures (220 °C) 

make peaks A and merge together, while lower oven temperatures (140 °C) increase 

the separation of these peaks, though it decreases the signal of the later eluted peaks 

like B, and it increases the analysis time.

Figure 76 also allows us to appreciate the advantages of using the TGPGC mode 

in the second-dimension of the MDGC-MS system. The separation done by TGPGC 

shows how this powerful method can allow a separation enhancement of the early peaks 

similar to the one obtained in the isothermal mode at 140 °C; however, the TGPGC 

separation was performed 3.7 times faster than the isothermal separation at 140 °C. 

Furthermore, the late peaks in the heartcut where kept as narrow as the 180 °C 

isothermal separation, showing that the TGPGC is a good solution for the GEP in the

second-dimension of MDGC-MS.

Figure 77. Comparison of the peak capacity/analysis time for the isothermal oven 
temperatures and TGPGC separations.
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Regarding the peak capacity, Figure 77 shows the peak capacity divided by the 

analysis time for the different isothermal separations and also the TGPGC separation. 

Figure 77 shows that the ratio of peak capacity and analysis time has a maximum value 

for the isothermal separation of 180 °C, or the heartcut elution temperature, which 

means that the best separation with respect to analysis time is performed at this 

temperature.

It also explains why the use of higher or lower temperatures with respect to the 

elution temperature does not yield a good separation with respect to time. Lower 

temperatures increase the analysis time, while higher temperatures decrease the peak 

capacity. It is for these reasons that the actual methods used in MDGC-MS are not

efficient.

TGPGC is an alternative for increasing the separation power, by obtaining higher 

peak capacities in a short analysis time, as seen in Figure 75 and Figure 76. The 

increase in n/analysis time is proportionally related with the separation power as seen in 

Figure 75 and 76 when the TGPGC separation was compared with the isothermal runs.
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Application of TGPGC in the second dimension of the MDGC-TOFMS system

The TGPGC method produces peaks as narrow as 120 ms, although the system 

that was being used for the detection of these peaks was not adequate. A HP5969 mass 

spectrometer has a maximum scanning rate, for a limited amount of ions (60 ions), of 15 

Hz, or a full scan every 66.66 ms. This translates to 2 or 3 full scans per peak; however 

the average peak widths were on the order of 180 ms for the peaks that where released 

from the gradient, allowing 4 to 5 points as seen in Figure 78 for peak C.

As can be seen in Figure 78, the low scanning rates do not allow the obtaining of 

Gaussian peaks, and also identification of the peaks by the use of the MS libraries is 

limited by the nunber of ions employed. Peaks A and B were 120 ms base width, which 

was the minimum peak width that could be measured, since a 60.66 ms/scan was the 

lowest available, hence it is likely that the peak widths could be less than 120ms wide. 

Moreover peak C was truncated, showing that the real height of the peak is not properly 

seen (i.e., the area of the peak is inaccurate).

With all these limitations of the detection, the implementation of the TGPGC in 

the second-dimension of an MDGC-MS would be useless, since the identification and

analysis of the peaks would not be possible.
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A higher scanning rate detector was necessary to apply the TGPGC method in 

the MDGC-MS system. The Time of Flight Mass Spectrometer (TOFMS) detector (LECO 

PEGASUS III) was capable of solving this situation, since it had a scanning capability of 

500 Hz. This was ideal for the narrow peaks produced by the TGPGC method. 

Therefore, the MDGC system was reassembled into a GC-TOFMS system.

In order to demonstrate the complete separation capability of TGPGC, a complex 

mixture was analyzed using this technique. The detector used in this analysis was the 

TOFMS, and the scan use was of 100 Hz. The MDGC-TOFMS with the TGPGC system 

was assembled (shown in Figure 24 and 25), and its separation power was 

demonstrated through experimentation.

The complex mixture used was a solid phase extraction (SPE) sample from an 

aviation turbine fuel (SPE 3686). This sample contained polar and non-polar 

compounds, thereby it was ideal for demonstrating the TGPGC separation capability. 

The conditions of the MDGC-TOFMS system used to analyze the SPE aviation turbine 

fuel sample are listed in Table 10. A ramped pressure was required to maintain the 

optimal helium gas velocity in both columns. The ramped pressure was calculated by 

applying a mass balance at the split tee that connected the two columns as previously 

explained.

Table 10. Oven conditions used to analyze the SPE aviation jet fuel sample using

Multidimensional GC-TOFMS
Injector (°C) 250 isothermal
Initial T (°C) 40 (15 min hold)
Temperature Ramp Rate (°C/min) 4
Final T (°C) 250 (15 min hold)
Injector Mode splitless, (3ul)
MS Scan Range 40-300 amu
MS Scan Rate 100 (Hz)
Initial Preassure (psi) 38 (15 min hold)
Pressure Ramp (psi) 0.32 (psi/min)
Final Pressure (psi) 55 (15 min hold)
Heartcut Time (s) 20
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For the TGPGC mode, the thermal field employed had a temperature gradient of 

100 °C/m, and the heating was performed at 7s after the injection of each heartcut. The 

heating rate employed was 30 °C/min. Figure 79-A shows the conventional MDGC- 

TOFMS chromatogram for the SPE aviation turbine fuel sample, where each line (or 

cluster) observed represents a second-dimension separation, as seen in Figure 79-B.

Figure 79. MDGC chromatogram of the SPE aviation turbine fuel.
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Both of the separation modes (TGPGC and ITGC) employed in the second- 

dimension of the MDGC-TOFMS system were applied to the SPE aviation turbine fuel 

sample. Within the analysis of this solution were numerous examples of where the 

conventional multidimensional separation was improved by the TGPGC mode. Figure 80 

shows a single heartcut of each separation mode to compare both separation methods.

T T

Figure 80. Comparison of the TGPGC and ITGC mode in the second-dimension 
separation of an MDGC-TOFMS system.

Figure 81 is a good example of the separation improvement that the TGPGC 

method provides. The compounds marked in these chromatograms show the start and
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end of the heartcut, and also help to verify that the selected chromatograms belong to 

the same heartcut of the sample.

In the TGPGC chromatogram of the two separation processes, the breakthrough 

and the heating release of the compounds are well distinguished (Figure 81). For the 

breakthrough process, the compounds became more separated, broader and had a 

lower signal (see zone A Figure 81). For the heating release process, the compounds 

became focused, which caused the peak height to increase, improvement in the MDGC 

sensitivity, and a lower minimum detection limit, (zone B Figure 81).

Time

Figure 81. Separation processes of the TGPGC mode, in the heartcut sample.
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Even though the signal decreased for zone A, the gain in separation overcame 

this decrease, since the use of an automatic library search gave an excellent match 

quality. Furthermore, more peaks were found in the TGPGC separation than in the 

conventional MDGC-TOFMS output.

As an example of the separation enhancement of the TGPGC mode, Figure 82 

shows how the Quinoline-2,7-dimethyl and the Octanoic acid, along with other 

compounds, were not able to be separated by conventional MDGC, but the separation 

was achieved by the application of the TGPGC mode.

Figure 82. identification of compounds in the TGPGC separation mode.
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A particular heartcut has been studied however in order to appreciate more 

generally the separation enhancement of the application of the TGPGC. A 2D plot is

used.

By stacking side by side the second-dimension chromatograms, the 

multidimensional chromatogram can be transformed to a two-dimensional 

chromatogram. In this case one dimension will represent the retention time on the first 

column, and on the second dimension, the retention time on the second column. The 

signal intensity is represented by contour lines and shadings. The transformation into a 

2D matrix array was performed by laboratory-written software (Basic).

Figure 83 shows the 2D chromatogram of the conventional MDGC separation. It 

can be observed from the empty space at the top of the plot in Figure 83 that only 50 % 

of the separation space is being used. Most of the peaks elute at the beginning of the

second-dimension.

0 First Dimension
Figure 83. 2D chromatogram of the conventional MDGC-TOFMS separation of the aviation 

turbine fuel.
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Figure 84 shows the 2D chromatogram of the TGPGC MDGC-TOFMS 

separation, which shows how the TGPGC mode takes advantage of the whole 

separation space and the time of the second dimension. Two groups of compounds are 

clearly seen. The first group, near to the starting time of the second dimension, 

represent non-polar compounds, while the ones at the end of the second dimension are 

polar compounds.

c
o
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E
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■oc

First Dimension
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0

Figure 84. 2D chromatogram of the conventional MDGC-TOFMS separation of the aviation 
turbine fuel.

These two groups of polar and non-polar compounds were also seen in Figure 

83. However, in this case the two groups appear overlapped and the conventional 

MDGC does not separate them. Showing that the separation between the peaks
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diminishes as the temperature of the oven increases. This situation does not occur when 

the TGPGC method was applied as seen in Figure 84.

The use of the TGPGC separation offers the advantage of easily distinguishing 

the polar from the non-polar compounds. It also keeps the polar and non-polar groups 

separated, maintaining a good resolution even at high oven temperatures. The TGPGC 

mode was demonstrated to be a good solution for the GEP in the second dimension of 

the MDGC system, due to its fast turn around cycles and the enhance in separation 

produced. However, further applications need to be performed to take advantages of its 

maximum separation power.

Complex samples need to be analyzed to adjust and improve TGPGC separation 

power to take advantage of its best performance TGPGC does significantly enhance 

separation in the second dimension of MDGC-MS.
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Quality Assurance

In general, the experiments carried out for this research were conducted with 

Good Laboratory practices in mind. Thermocouple measurements were an important 

part of the research conducted. While the thermocouple measurements were not 

calibrated to NIST traceable standards, they were validated by accurate temperature 

measurements made inside the gas chromatographs, which are accurately calibrated. 

For example, the use of thermocouples to measure temperature of the column sheath 

assembly should result in a temperature curve which approached the oven temperature 

which, in all cases was measured using a separate temperature measurement system. 

Because these thermocouples all recorded the same temperatures, to within one degree 

C, we were comfortable with the accuracy of the temperature measurement.

In the case of the chromatographic analyses regarding retention time or peak 

heights, these measurements were carried out in duplicate, typically. Retention times 

were generally accurate to one one-hundredth of a minute. Peak heights were generally 

accurate to 10 percent and were also analyzed in duplicate, in most cases.

Because of the design and construction nature of this project, the great majority 

of work was not subject to typical quality assurance methods. Since no direct 

quantitation was required in this project, standards, replicates, blanks and the like were 

not considered in the protocol of the experiments.
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CHAPTER V

CONCLUSIONS

A multidimensional gas chromatography time of flight mass spectrometer with 

second-dimension thermal gradient programmed gas chromatography was developed 

(MDGC-TOFMS with TGPGC).

The application of the TGPGC in the second-dimension of the MDGC system has 

been accomplished through the use of a column sheath assembly (CSA). A convective 

heat exchanger design was used, which consisted of a coiled tube placed inside an air- 

bath GC oven where the capillary column was placed coaxially inside of the CSA, 

allowing the formation of an axial temperature gradient and radial temperature 

uniformity. A hand-made, thin walled %” OD polyimide tubing was the tube that 

performed the best among the tubes tested. The polyimide tube was structurally strong 

and supported the wide and rapid changes in temperature and pressure, sustaining up 

to 30 psig at 260 °C. Furthermore, the low thermal mass of the CSA allowed it to be 

highly compliant, achieving heating and cooling rates of 33 °C/s and 200 °C/s, 

respectively, which are much higher than any other heating device currently available. 

These heating and cooling rates allowed the generation of thermal fields as required for 

the application of TGPGC in the second-dimension of the MDGC system.

The tuning of the TGPGC technique consisted of adjusting values for the 

operational variables that enhanced the separation of the heartcut sample in the second- 

dimension column of the MDGC-MS system. The studies performed showed that two
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separation processes can take place when the TGPGC separation technique is applied. 

The first separation process takes place when the compounds are allowed to 

breakthrough the negative gradient, making the peaks physically separated and broader. 

The second separation process happens when the compounds are released before they 

get through the gradient, by heating the gradient to the oven temperature. In this case 

the peaks get narrower and closer together, though chromatographically separated and 

with an increase in signal.

The influence of the |AT| gradient in the TGPGC separation process showed that 

for the breakthrough situation, as the |AT| gradient increased, the broader and physically 

more separated the peaks became. The resolution increased up to a point where the 

broadening effect overcame the separation effect. While for the release situation, the 

peaks got closer and narrower as the |AT| gradient increased. The distance decreased 

for the later peaks, due to the heating release effect and resolution increased for those 

peaks at the beginning due to the breakthrough effect.

The influence of the heating rate in the TGPGC releasing situation showed that 

the higher the heating rate the narrower and closer the peaks were eluted. In this case 

the resolution increased reaching a point where the narrowing effect may have been 

overcome by the smaller distance between the peaks, thus decreasing the resolution.

From these studies, we concluded that the ideal situation for applying the 

TGPGC in the second-dimension and solving the GEP would be to let the early sharp 

and coeluted peaks breakthrough the gradient, and apply the release process to the last 

zones of the chromatogram where the peaks are spatially broad.

Different heating rates and initial heating times where investigated. The best 

conditions for improving the separation in the shortest time for a 15s heartcut sample 

applying the TGPGC method were: a 100 °C |AT| gradient, heating at 7s with a heating
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rate of 33 °C/s. A notable increase in the resolution (90%) of the early peaks was 

obtained. In addition an increase in peak capacity of more than 69% was achieved, 

which means a theoretical 69% increase in the total peak capacity of the MDGC-MS 

system.

The separation obtained in the first peaks was comparable to an isothermal 

separation of the same sample at 140 °C. However it was done 3.7 times faster, while 

maintaining the latest peaks close together and narrow, which was the intention.

We have successfully demonstrated TGPGC as an important technique for the 

second dimension of the MDGC-MS system. In contrast with conventional MDGC-MS, 

the application of TGPGC in MDGC-TOFMS showed a more complete analysis of 

complex organic samples, in less time (50%), while better addressing the non-linear 

distribution or spread of generated solutes, i.e., the general elution problem. Moreover, 

the enhanced analytical performance of the experimental system resulted in well-defined 

mass spectral patterns, which enabled more accurate peak identification using MS with 

higher library matches.

Despite the cumbersome nature of the system and its implementation, these 

results showed that the TGPGC mode not only enhances the peak capacity of the 

chromatogram, but also is a very good option for solving the GEP encountered in the

second-dimension of MDGC-MS.
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CHAPTER VI

FUTURE WORK AND RECOMMENDATIONS

This work showed that in contrast with conventional MDGC-MS, the application 

of TGPGC in MDGC-MS showed a more complete analysis of complex organic samples, 

in less time, while better addressing the non-linear distribution or spread of generated 

solutes, i.e., the general elution problem. However, further work is still required to 

optimize and evaluate the effects of different rapidly generated thermal fields in the 

performance of TGPGC for the second-dimension separations.

The employment of a faster scanning rate MS, like the recently acquired Time-of- 

Flight Mass Spectrometer (TOFMS), will provide improved peak definition and more 

accurate peak areas and heights. This will permit a more detailed study of the effects of 

the main variables of TGPGC in the separation process, and moreover, it will allow 

performing faster separations than the ones considered in this thesis.

To further study the separation capabilities of the TGPGC method, the 

generation of different temperature gradient profiles and thus thermal fields would be 

required. To achieve this, previous simulations suggested that placing the CSA in a 

separate thermal environment rather than the GC oven would have the possibility of 

having different inlet temperatures and thereby permit the CSA to be capable of 

generating a wide variety of thermal fields.

A limitation that the actual system has that should definitely be addressed is the 

maximum analysis temperature, which is limited by to the hand-made polyimide tube 

and the stationary phase of the secondary column. These restrictions would be
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overcome by finding a source that could provide a coiled polyimide tube using the 

specifications recommended in this thesis, and by using a higher temperature polar 

column (many are currently under development). Some less-polar columns will support 

higher temperatures. The loss of retention and resolution with the less polar column 

could be compensated by the application of the TGPGC method, and therefore allowing 

the complete analysis of complex mixtures.

Another major problem in MDGC-MS, which TGPGC has not completely 

addressed, is the presence of wraparound. This occurs when compounds do not elute 

during their required modulation time. The use of TGPGC technology could help to 

overcome this difficulty, by placing a CSA in the isothermal zone of the secondary 

separation. Heating this zone to higher oven temperatures, before the next heartcut is 

injected, would help to cleanse the secondary column and hence ensure that all the 

compounds have eluted, thus eliminating wraparound. It is important to mention that 

before the next heartcut is transferred to the secondary-column, the column would be at 

oven temperature again, ready for the next separation. This approach will not only 

eliminate wraparound but also allow the use of longer secondary columns (increasing 

resolution), while still maintaining short analysis times. Currently this approach is under 

investigation and has shown promising results.

To further improve the TGPGC method, the application of a flow gradient in 

conjunction with temperature will definitely increase the separation power and efficiency 

of the TGPGC method. The use of lower flows at the beginning of the thermal field with 

increase in flow at the end would allow for maximum resolution in the whole separation. 

However, the application of this new variable will certainly make the system 

instrumentation and development quite complicated.

Another suggestion would be to change the cryogenic trap design. The current 

trap mechanically moves the capillary chromatography column in and out the cryogenic
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zone. Although one of the principle concerns with this design was the breakage of the 

column, this has never happened. However, the column has separated from the septa 

that connects it to the moving rod, thus stopping the heartcut sampling. Recently 

cryogenic jet systems have been used as a modulator82. These systems consist of using 

pulses of cold nitrogen or CO2 directly onto the chromatographic column, trapping the 

sample, and then releasing it by using hot pulses of air. Due to its instantaneous heating 

and cooling of the column, it would enable more rapid heartcutting and smaller heartcut 

time-spans. Furthermore, there are no moving parts in this system, making it more

robust and reliable.

Of course, as we investigate the different parameters of TGPGC we will be 

generating different applications to evaluate the capability of the TGPGC method in real 

complex samples.
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