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ABSTRACT

OPTIMAL EXTRACTION OF SCATTERING MECHANISMS FROM MEASURED DATA

Name: Chizever, Hirsch Michael
University of Dayton, 1995

Advisor: Dr. K. M. Pasala

The following thesis presents a method of decomposing a complex signal from a 

collection of spatially distributed scattering centers, each of which has a distinct frequency 

response. That is, from the observed frequency response data, it is required to estimate the 

locations of the scattering centers and their associated frequency responses. The method 

utilizes the MUSIC algorithm, a super-resolution technique, to determine the location of 

scattering centers from the maximum available bandwidth. Then, a generalized regression 

model is applied in sub-band increments to estimate the broadband complex frequency response 

of the scattering centers based on their derived locations.

The scattering from any target consists of contributions from several different scattering 

centers, each of which conceivably represents a different scattering mechanism. These 

scattering mechanisms may be specular reflections, edge diffractions, creeping waves, or a 

multi-mode resonance associated with a cavity. Signals from all these diverse mechanisms are 

buried in the composite signal. In addition, error sources such as scattering from support 

structures are also embedded in the measured data. It is required to delineate each of these 

different scattering centers, even when they are close together and further, to determine their 

frequency responses. Such a decomposition leads to a true understanding of the scattering from 

a target which is helpful in devising ways to control the same. Also, it becomes possible to
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identify the error sources, eliminate them, and obtain better estimates of the true scattered fields, 

especially of low RCS targets.

The study presents a theoretical development followed by a parametric study to identify 

limits of the method in resolution and accuracy. The method is then applied to both synthetic 

and measured data scenarios. Processing of synthetic data revealed excellent agreement 

between extracted frequency responses and true responses in all cases. Analysis of measured 

data from canonical shapes such as a sphere, wire, and ogive is also included. Additional data is 

shown for dielectrics with weak and strong inhomogeneities.
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CHAPTER I

INTRODUCTION

1.1 Purpose

The objective of this study is to analyze the frequency response data obtained from 

measurements carried out in a radar cross section range and extract the maximum possible 

information from this data. The scattering from any target consists of contributions from several 

different scattering centers, each of which conceivably represents a different scattering 

mechanism. These scattering mechanisms may be specular reflections, edge diffractions, 

creeping waves, or a multi-mode resonance associated with a cavity. Signals from all these 

diverse mechanisms are buried in the composite signal. In addition, error sources such as 

scattering from support structures are also embedded in the measured data. It is required to 

delineate each of these different scattering centers, even when they are close together and 

further, to determine their frequency responses. Such a decomposition leads to a true 

understanding of the scattering from a target which is helpful in devising ways to control the 

same. Also, it becomes possible to identify the error sources, eliminate them and obtain better 

estimates of the true scattered fields, especially of low RCS targets.

Even though the objective of the present work is focused narrowly in the context of the 

range measurements, the underlying ideas and techniques are applicable in areas such as 

wideband radar. The signal received from a target illuminated by a wideband signal, if 

decomposed as indicated here, leads to a much better understanding of the target and its
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possible identification. It may be possible to distinguish between a benign and cancerous tumor 

by virtue of their different frequency responses.

Some of the objectives outlined above may be attained using Fourier techniques with 

limited success. The resolution obtainable with Fourier techniques is limited. Even when 

scattering centers are resolvable, side lobes associated with the scattering center are a problem. 

When error sources are identifiable, it may be possible to “window” them out; but, edges of a 

window are a problem as well. Here, a super resolution method, viz., MUSIC, is coupled with 

regression analysis to overcome the problems with Fourier based techniques.

1.2 Background
Optimal extraction, a technique for modeling the frequency response of spatially 

distributed scattering centers, has received increased attention since the mid 1980's. However, it 

hasn't always been under this name. In 1978, Van Blaricum and Mittra1 and Poggio et. al.2 

addressed optimal extraction under the heading of waveform parameterization. In their studies, 

Prony's method was used to model the transient electromagnetic pulse from nuclear explosions. 

Their rationale for a technique other than the Fourier transform is that it is limited in resolution 

and dynamic range. Pisarenko3 began the development of modern super resolution techniques 

with his "Harmonic decomposition" method which culminated in the MUSIC algorithm by 

Schmidt4. MUSIC was used by Delfeld and Delfeld5 in 1989 and Gupta6 in 1990 to isolate multi- 

path error sources in compact radar cross section ranges. In 1994, Moghaddar and Walton7 

obtained the frequency response of scattering centers from a flat plate. This was done by first

locating the scattering centers using a modified MUSIC algorithm. Then, by assuming a

frequency dependence for each scattering center, the optimum a was obtained for each.

Recently, however, Moore and Ling8 have linked a "super-resolution" technique and 

waveform parameterization by using Prony's method and an averaging process to derive the 

complex frequency responses from both scattering centers and resonant targets. This technique, 

though, was not designed for use in the presence of noise. Moore et. al.9, responding to the
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need for a noise resilient method, used ESPRIT10 in lieu of Prony’s method but presented its use 

only with synthetic data.

1.3 Overview

The following investigation determines the frequency response of closely-spaced 

scattering centers from measured data using the MUSIC algorithm coupled with a regression 

technique. The theoretical approach is presented in Chapter 2. The investigation begins by 

developing a signal model for a collection of spatially distributed scattering centers illuminated 

by a plane wave. This model leads to a development of the MUSIC algorithm. A regression 

model is then formulated which utilizes the time delay estimates obtained from MUSIC to derive 

frequency response information.

Following the theoretical development, Chapter 3 applies the theory to a series of 

synthetic and measured data scenarios. The synthetic data sets comprise five different 

scattering types which include combinations of point, "linear" and resonant mechanisms - all in 

the presence of noise. A parametric study is performed to identify limits of the method in 

resolution and accuracy. Each synthetic data set is compared to the exact solution revealing the 

strengths and limitations of the method. The measured data include canonical shapes such as a 

sphere, wire, and ogive, with comparisons to exact solutions for the sphere and ogive.

Additional data are shown for dielectrics with weak and strong inhomogeneities. Outputs are 

displayed for all data sets in a time and frequency domain format. The time domain shows the 

location of the scattering centers from MUSIC and is overlaid with the Fourier transform of the 

same data. The frequency domain plots identify the frequency response of individual sources 

found from MUSIC.

Finally, Chapter 4 summarizes the investigation and presents conclusions based on the 

parametric study and applied data results.
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CHAPTER II

THEORETICAL DEVELOPMENT

The purpose of this study is to decompose a complex signal from a collection of spatially 

distributed scattering centers, each of which has a distinct frequency response. That is, from the 

observed frequency response data, it is required to estimate the locations of the scattering 

centers and their associated frequency responses. The approach, entitled optimal extraction, 

requires two parts. First, the MUSIC algorithm, an eigen-decomposition technique, is used to 

determine the location of scattering centers. Second, a regression technique estimates the 

complex frequency response of the scattering centers based on their derived locations. The 

theory behind both parts will be presented followed by a treatment of synthetic and measured

data.

2.1 Signal Model

Consider a simple scenario where two scatterers are illuminated by a plane wave as 

shown in Figure 1. The back scattered signal is measured over a band of frequencies from ft to 

fN at equal intervals. The range of the scatterers is such that their time delays, with respect to a 

reference, are tj and t2. Then, the received signal may be modeled as

v(f) = a1(f)e_j2’lftl + a2(f)e~j2*ft2 + n(f) (1)

In general, aT and a2 are functions of frequency but will be considered to be constant initially. 

n(f) represents measurement noise and modeling error. The more general case will be dealt 

with later. The measured signal at frequencies from fx to fN may be expressed as
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v, = v(f,) = a,e i2”t,tl + a2e j2lrflt2 + n(ft)

v2 = v(f2) = a,e-^ + a2e“j2"f’t*+n(f2)

vk = v(fk)= aie j2,rfktl + a2e"j27rfkt2 +n(fk)

vN = v(fN) = a^-**1* + a2e“j2,tfNl2 + n(fN)

This may be stated compactly, as,

v = wa + n

where V = [Vi v3 

a = [ni ».

vfJ

nNr

(2)

(3)

a = h a2] 

w = [w, w2]

,. = [e"'2”'1*' e'^ ••• e"j2”'“,‘lT, i = l,2.

Equation (3) continues to be valid for L sources with

w;

= [w3 w2 - wL] (4)

and

w

.ra = [a, a2 -

The correlation matrix Is given by,

Rv = E[v vh] = w R- wH + a2I

(5)

(6)
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where R- = E[aaH] and o2 is the noise variance. The signals and noise are considered to be

uncorrelated. The L-dimensional space spanned by Wj, w2, ... wL is defined to be the 

signal subspace which will be discussed later.

2.2 The MUSIC Algorithm

The MUSIC algorithm will be utilized to locate the L spatially distributed but distinct 

scattering centers instead of the classic Fourier approach. MUSIC, unlike the Fourier transform, 

is part of a larger class of "super-resolution” techniques which are not bound by the Rayleigh 

resolution criterion - a classic limitation of the Fourier transform. Haykin11 states this criterion as, 

"... two components of equal intensity should be considered to be "just resolved" when the first 

maximum from one component sits at the first minimum from the other..." (see Figure 2).

MUSIC is based on an eigen-decomposition of the correlation matrix R- and is constructed

from the measured signals vk as

r *
V1

R. =E[vhv] = E V2 [V1 V2 ' vN]

.-VN.

(7)

= E

"v:Vi

V2V1

V1V2

v*2v2

•” <vN 

v>N

_VnVi VNV2 •" VNVN.

(8)

MUSIC assumes that the observed signals are uncorrelated. That is,
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E[vkv[] = <
Pp k = l 
0, k*l

> (9)

where Pj is the power in the 1th received signal. However, in actual measurements the 

scattering sources are illuminated by the same signal, thus making them coherent. One solution 

for this is to perform multiple measurements at each frequency and average them.

Unfortunately, though, there is often only one "snap-shot” of the data, and ensemble averaging is 

not possible. As such, a form of post measurement averaging must be employed.

This procedure is implemented by creating a new correlation matrix RC which is an

average of the correlation matrices associated with each of the vectors . That is,

(10)

where vak is a "sub-aperture" of the original signal vector v and n A is the number of "sub

apertures" used. This "sub-aperture" concept is illustrated in Figure 3 where three apertures are 

used for a correlation matrix of order five. The order of the original Rv matrix has been reduced

to

Orderof R', =0=Nfeqoenck,-nA+l (11)

which later will be shown to adversely affect resolution in certain cases.

The eigenvalues and associated eigenvectors of the matrix RC will now be computed. 

The eigenvalue problem is formulated as

R (12)

or stated another way,

9



3 Averaging Apertures Applied to Correlation Matrix of Order 5

R=

*11 R12 *13 *14 ^15

*21 *22 *23 *24 R25

*31 ^32 ^33 R34 *35

*41 R*2 ^43 R44 R45

*51 *52 *53 *54 *55

*11 *12 *13 *22 *23 *24 R33 R34 *35

*21 *22 *23 + R32 R33 R34 + R43 R44 R45

*31 R32 R33 *42 R43 R44 *53 *54 R55

3

Figure 3. Two-Dimensional Averaging Applied to Correlation Matrix R,
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(R;-xi)q=o (13)

R' is the averaged correlation matrix with X and q the eigenvalues and eigenvectors 

respectively. For every eigenvalue there is a corresponding eigenvector which can be 

expressed as

R?qk = ^kQk’ k = 1,2,—,0 (14)

The eigenvalues are sorted in descending order with their respective eigenvectors. A property of 

the correlation matrix RC is that the eigenvectors can be separated into two disjoint subspaces

which are orthogonal to each other12. The lowest (M - L) eigenvectors are all equal and the 

corresponding eigenvectors define the noise subspace. The space spanned by the first L 

eigenvectors is called the signal plus noise subspace and is orthogonal to the noise subspace. 

Let,

Qs = [4i....... qL] (15)

and

Qn “ [4l+i’ • • *’Qm] 0®)

then

QnQs=0 (17)

where Qs and QN represent the signal and noise spaces, respectively. Since the signal 

subspace spanned by wt, w2, ... wL is also spanned by signal eigenvectors , q2, ... qL, 

equation (17) implies

w“q,=0, k = l,2,...,Lk 4. . . . . (18)
i — L +1, L + 2,..., 0

11



The signal space is spanned by the eigenvectors corresponding to theL largest eigenvalues, 

and the noise space is spanned by the eigenvectors corresponding to the 0 - L smallest and 

equal eigenvalues. Theoretically, the L largest eigenvalues correspond to the number of 

sources at the receiver across the bandwidth of interest (i.e. two sources define the signal space 

as the first two eigenvectors, and the remaining eigenvectors define the noise space).

The ability to distinguish the two spaces is dependent on the signal-to-noise ratio (SNR). 

For example, two signals may be above the noise by 20 dB resulting in signal eigenvalues being 

well separated from the noise eigenvalues. On the other hand, two more sources may be weak, 

and the SNR may be only 0-5 dB. Then it is hard to distinguish between signal and noise 

eigenvalues. An improper boundary selection for the two subspaces will manifest itself in the 

MUSIC spectrum as shown in Figure 4. Figure 4 shows three MUSIC spectra for two point 

scatterers separated in time by 1 ns with a SNR of 20 dB. Each spectrum is obtained by defining 

the noise subspace from a different eigenvalue. According to (15), two distinct scattering centers 

will have a signal subspace spanned by the first two eigenvectors, corresponding to the first two 

largest eigenvalues. In this case, the averaged correlation matrix was of order 21. Thus, if the 

noise subspace begins with eigenvector two, then the signal subspace spans only one 

eigenvector while the noise spans 20. This choice leads to an ambiguous MUSIC spectrum, in 

which it becomes difficult to identify distinct scattering centers. A signal space defined by the 

first nine eigenvalues gives a number of false scattering centers. As the figure demonstrates, the 

best choice is a noise subspace corresponding to the third eigenvalue. To further illustrate which 

eigenvalues should mark the subspace boundary, Figure 5 plots the eigenvalue magnitudes for 

the two point scatterers. As the plot clearly shows, a marked fall-off is noticed after the second 

eigenvalue. This means that the first two eigenvalues mark the signal space and the remaining 

eigenvalues mark the noise space.

To compute the MUSIC spectrum (location of the scatterers) recall from (18) that

12



w“ 4i =o, k = l,2,...,L 

i = L +1, L + 2,..., ©

However, since the averaging procedure is an approximation, the eigenvectors of RJ are only 

estimates of the true eigenvectors. As such, one must search for a vector which is"... most 

closely orthogonal"13 to the noise space. Consider a scanning vector wm corresponding to time 

delay tm defined below.

wm = [e"j27rf,tm e"j2lrf2tm ••• e_j2’'*9t"]T (19)

where 0 is the order of Rl. This scanning vector will be approximately orthogonal to the noise 

space when a correct scattering center time delay has been achieved. This concept leads to the 

definition of the MUSIC spectrum

S 1
MUSIC “ e ,

Ik
i=L+l

i2
(20)

whvnv“w
(21)

Smusic reaches a local maximum when the appropriate search vector is orthogonal to the noise 

space. It is important to note that the MUSIC spectrum is a " pseudo-spectrum " since it is not a 

true measure of power at the appropriate time delay as in Fourier techniques. The Fourier 

transform links the time and frequency domains via Parseval's identity. There is no such identity 

for MUSIC. However, the power from a particular source may be computed from (2) by solving 

for the a's via least squares.
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2.3 Regression Modeling
Once the location of each scattering center is identified, then the task of estimating the 

associated frequency response for each may begin. This process of identifying a in (3) begins 

with a restated, yet modified version of the signal model. This time, variation of the amplitudes 

with frequency is included. A regression model for L spatially distributed scattering centers 

whose measured signal ranges in frequency from fj to fN at equal intervals, may be stated as,

v, = v(f,) = a1(f1>-^- 

v2 = v(f2)=aI(f2>-j2^-

+ a2(f1>-i“'*’ + - +aL(f1)e-j2^+e(f1)

+ a2(f2>-i2’^’’+ - +aL(f2>-j2"f’l‘-+e(f2)

vk = v(fk) = aI(fk>-^ + a2(fk>-^ + - +aL(fk>-i2^+e(fk)
(22)

VN =v(fN) = a, (fN + a2(fN>-j2’f-‘5 + - +aL(fN)e-J“^+e(fN).

Or stated in matrix form,

v = wa + e (23)

where v = [v, v2 ••• vn]t 

w = [w, W2 - WL]

w. = [e"j2,rfltl ... i = l,2,..-,U

a = [a, a2 - aL]T

and ® = [£l £2 6n] •

The two differences between the regression model just stated and the signal model 

described in (2) are that all elements are now considered frequency dependent and that the 

noise vector n has been replaced by a new error vector e. In the previous section each

16



coefficient was considered to be a constant over the frequency range fi to fN. This implies

that regardless of the bandwidth under study, the scattering centers had constant frequency 

responses. Over broad bandwidths such an assumption is invalid. In fact, most scattering 

mechanisms, although well behaved, are not constant. Some may be expressed as first, 

second, or even higher degree polynomials. Others might exhibit frequency responses whose 

magnitudes are inversely proportional to frequency. In either case, a regression model must be 

generic enough to account for a variety of scattering behaviors. This becomes more 

manageable if the bandwidth fN - is divided into sub-bands of width Br, where Br is the 

regression bandwidth, or bandwidth where the coefficients ai are valid. Figure 6 illustrates how 

the process is applied to each sub-band.

A polynomial assumption for each may be stated as,

ai = ai0 ■*" ail^k ai2^k "*■ ’ * ’ ai,M-l^k ' ^3)

where f is the independent variable, frequency, and M is the order of the assumed polynomial. 

This approach allows each scattering center frequency response to be separately modeled as a 

different polynomial over Br. To illustrate this concept consider the case of two scattering 

centers each having an assumed first order frequency response. The general case will be 

considered later. Substituting (23) into (22) yields the following set of equations:

Vj = (a10 + anf, )e"j2”fl’’ + (a^ + a21f, )e'j2’tfA + e,

: (24)

vN = (aio + anfN )e‘j2’t"‘1 + (a20 + a21fN )e*j2"f"‘1 + eN

where N is now the number of measurement samples in Br. The estimated frequency response 

at the first frequency may be written in matrix notation as,
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aio

_ 21 _

(25)

or in a more compact form,

v1 = wT a + e1 .

where

(26)

W, = [w* w*]

and w,o =*■*■•** ” 12

a — [aio ail a20 a2l]

Now expanding (26) for N frequencies in Br yields

---
---

---
---

--,
...

 < < M •- =

... __
__

__
__

1

a +

ei

e2

_VN_ I
z

___
1 _^N_

(27)

or in matrix notation as

v = wa + e. (28)
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Figure 6. Application of Regression Coefficients to Sub-Bands
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Now, consider the generalized polynomial case of (23) assuming L scattering centers and an 

M* order polynomial. Equation 28 continues to be valid with

wk=[wj, - wkL]

e-j2irfktj

rM-1 -jZrfktj 
,k C

and a = [[a,„ - a1M][a20 — a2M] — [aL0 — au]] .

wk and a may now be substituted into (27) and (28) without modification. This section 

assumes that the polynomial selected is applied to each scattering center equally. However, 

with only minor modifications to the model, one may extend the model to vary polynomial order 

for each scattering center. In addition, the model has been shown for only one Br, assuming 

similar analysis for each sub band. An additional degree of freedom may be extended to 

applying different polynomials over different Br's without changing the model at all.

The coefficient vector a is now computed by minimizing the mean squared error ||e||. 

Equation (21) may be rewritten as

e = v - w a (29)

Since the measurement data v is complex, the coefficients a will, in general, also be complex. 

Real valued minimization occurs when the derivative of a function is equal to zero. However, for 

complex minimization, one must ensure that the derivative with respect to both the real and 

imaginary parts of a of the function are zero simultaneously14. Therefore, a real-valued function 

J is defined as,
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J = e“e = ||e||2

By minimizing J , the real power, or norm of the error vector is minimized. To minimize J , a 

gradient operator V . is defined as

(30)

(31)

Substituting for e and expanding,

J = (v- wa)H(v- wa) = (vH - wHaH)(v- wa) = vHv - vHwa-wHaHv + wHaHwa (32)

Taking the gradient of J and setting the result equal to zero results in the following:

V^J = -wHv +wHwa = 0 or a = (wHw)_1wHv (33)

The polynomial coefficients are now substituted into (29) to find the estimated value of

v and the error e.

Deciding what polynomial to select for a given measurement may depend on a number 

of factors. A zero order function is recommended as a first-cut to observe the general shape of 

the estimated frequency responses. However, care must be taken to determine the proper Br 

for a given polynomial set. An estimator for Br is obtained by examining the condition number of

the matrix wHw . By plotting the MATLAB function RCOND( wHw) as a function of Br, a peak

in the condition number is found as the bandwidth increases. The first peak will best represent 

the physics of the problem. Figure 7 and Figure 8 show MATLAB RCOND(x) as a function of 

Br for a zero and first order polynomial equations, respectively. If Br is too narrow, the system

becomes ill-conditioned and degradation will occur in the estimated frequency responses. Figure 

9 and Figure 10 show the estimated frequency response for a zero order polynomial with 

regression bandwidths of 1 GHz and 100 MHz respectively.
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Each polynomial now represents the estimated frequency response of the individual 

scattering centers from ft to fN. The method will now be applied to a series of synthetic and 

measured data.

22



R
C

O
N

D
 N

um
be

r v
s R

eg
re

ss
io

n 
Ba

nd
w

id
th

 (P
ol

yn
om

ia
l O

rd
er

=0
)

R
eg

re
ss

io
n B

an
dw

idt
h (

G
Hz

)

Figure 7. RCOND as a Function of Regression Bandwidth (Order = 0)

23



R
C

O
N

D
 N

um
be

r v
s R

eg
re

ss
io

n B
an

dw
id

th
 (P

ol
yn

om
ia

l O
rd

er
=1

)

R
eg

re
ss

io
n B

an
dw

id
th

 (G
H

z)

Figure 8. RCOND as a Function of Regression Bandwidth (Order = 1)

24



Es
tim

at
ed

 F
re

qu
en

cy
 R

es
po

ns
e 

(W
el

l-C
on

di
tio

ne
d)

(gp) epniiu6e^

Fr
eq

ue
nc

y 
(G

H
z)
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CHAPTER III

ANALYSIS OF SYNTHETIC AND MEASURED DATA

Synthetic and measured data are presented here under various parametric conditions. 

These parameters include:

• bandwidth

• dynamic range

• number of sources

• signal-to-noise ratio

• averaging apertures (apertures)

• size of correlation matrix

• various scattering types

3.1 Synthetic Data

The white Gaussian noise used in the signal model of (2) was generated by MATLAB. 

The signal-to-noise ratio (SNR) is defined as

SNR =

k=l

(34)

27



where sk and nk represent complex signal and noise components at the receiver for the

k111 frequency. Since the data is complex, a separate noise spectrum is generated for both the 

real and imaginary components. Figure 11 shows a histogram of the Gaussian noise source used 

from MATLAB.

3.1.1 Parametric Study
The performance of the MUSIC algorithm depends on a number of variables. In order to 

decouple the effects one may have on another, a baseline test scenario of two point sources 

separated in time delay by 1 ns will be used to study the effects of bandwidth, apertures, and the 

order of the correlation matrix. In all cases the SNR is 20 dB.

The evaluation begins with analysis of parameters affecting resolution and accuracy. 

Resolution is the capability of detecting the presence of two closely-spaced sources and 

accuracy is the ability to determine their true time separation.

3.1.1.1 Resolution
Consider the two point source baseline time delay of 1 ns. This spacing dictates a 

resolution bandwidth of approximately 1 GHz for the Fourier transform. This bandwidth is 

calculated from what Bracewell calls the time bandwidth product15. The well known

criterion where c=speed of light and B=bandwidth, results in a bandwidth requirement of 1

GHz. Another parameter of interest is the number of apertures. In this analysis, the MUSIC 

algorithm's resolving capacity will be tested using 1,2,3 and 6 apertures each with bandwidths of 

1, .8 and .5 GHz. In each of these cases, the frequency increment is adjusted so that the size of 

the correlation matrix remains constant for each case (e.g. a frequency increment Af of .1 GHz 

for a bandwidth of 1 GHz corresponds to an averaged correlation matrix of order six if using six 

apertures). This means that a true comparison can be made for a specific aperture size without 

disputing the effect that the size of Rv has on resolution.

28



M
A

TL
A

B 
No

is
e H

is
to

gr
am

 (R
ea

l C
om

po
ne

nt
)

Am
pl

itu
de

________________ I__________________ I_______________I________________ L
8 8 8 8 8
CM CM

eouejjnooo |O Aouenbejj

Figure 11. Histogram of MATLAB Noise Source

29



Figure 12 - Figure 15 plot the MUSIC spectrum as a function of bandwidth and number 

of apertures. In all four cases the resolution was enhanced by additional bandwidth. The 

resolution increases up to three apertures. However, no further improvement is seen from 3-6 

apertures. The conclusion from these parametric studies is that once the data samples are 

sufficiently decorrelated, then no additional improvement in resolution is gained except from 

increased bandwidth. Figure 16 shows the MUSIC spectrum and Fourier transform overlaid in a 

"noiseless" (SNR=100 dB) scenario with only 2 apertures and 0.03 GHz bandwidth. In this case, 

the Fourier transform failed to resolve the two scattering centers but MUSIC resolved them very

well.

MUSIC and the Fourier transform both give better resolution with increasing bandwidth. 

Often, in order to adequately view sources with the Fourier transform, a window is applied in the 

frequency domain to reduce the spectral contribution from the edges of the band. This window 

reduces the bandwidth according to the window's shape. In like manner, the MUSIC algorithm 

suffers reduced resolution as the number of apertures increases. This averaging procedure 

reduces the size of the correlation matrix, which, in turn, reduces resolution. As such there is a 

practical limit to the number of apertures that can be utilized and still resolve closely spaced

sources.
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Figure 13. MUSIC Spectra Using 2 Apertures
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3.1.1.2 Accuracy
Parameters affecting accuracy will now be studied. Unlike the previous examples, the 

size of the correlation matrix is free to change according to the frequency increment and number 

of apertures used.

Figure 17 - Figure 20 plot MUSIC spectra depicting incremental changes in time delay 

estimation as a function of the number of apertures and correlation matrix size. Each case is 

based on two equal point sources at time delays of 0 and 1 ns respectively, and, a frequency 

band of 10-11 GHz with 20 dB SNR. The accuracy increases for each case until six apertures, 

where the scattering centers are accurately identified at 0 and 1 ns respectively. These figures 

show that accurate time delay estimation was achieved by six apertures. As such, the size of the 

correlation matrix has no effect on accuracy when the number of apertures is great enough to 

properly decorrelate the data for a sufficient bandwidth.
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3.2 Synthetic Data Analysis
The ability to decompose various types of scattering centers from synthetic signals will 

now be presented. Five different source compositions will be tested under a "just resolved" and 

"fully resolved" parameter set. The phrase "just resolved" is defined as a MUSIC spectrum 

computed from a minimum bandwidth which reveals distinct peaks that reflect the actual number 

of sources present. A "fully resolved" set is a MUSIC spectrum obtained from the maximum 

available or target specific bandwidth. All of the synthetic cases were performed using 16 

apertures and a 20 dB SNR. Additional parameters specific to each set are shown in Table 1.

Table 1. Synthetic Data Parameters

Case
Number

Number
of

Sources

Source Types
1 = Constant
2 = "Linear"
3 = Resonant

MUSIC
Bandwidth/
Increment

(GHz)
"Just Resolved"

MUSIC
Bandwidth/
Increment

(GHz)
"Fully Resolved"

Regression 
Polynomial 

Order / 
Bandwidth 

(GHz)
1 2 1-1 10.3-10.7/.02 12.0-18.0/.2 0/1
2 3 1-1-1 10.0-11.5/.05 12.0-18.0/.2 0/1
3 2 2-2 9.7-10.3/.02 12.0-18.0/.2 1/4*
4 3 2-3-2 9.5-10.5/.04 7.0-13.0/.2 0/1
5 3 3-3-3 4.0-12.0/.4 2.0-17.5/.5 0/1

* For the "just resolved" case, a regression polynomial order / bandwidth of 0/1 was used.

The results for each synthetic case are presented in five plots. The first plot shows the 

exact frequency response of the individual scattering centers. The second plot is an overlay of 

the MUSIC spectrum and the Fourier spectrum showing the estimated location of the centers 

using a "just resolved" bandwidth. The third plot is the estimated frequency response for each 

center also using a "just resolved" bandwidth. The fourth and fifth plots are the same as the 

second and third, respectively, except using a "fully resolved" bandwidth.

3.2.1 Synthetic Case 1

This case is designed to be a simple scenario as Figure 21 clearly shows. Since both 

scattering centers have the same amplitude, this plot appears to show only one line, although 

there are two. The error in estimated frequency response for the "just resolved" case (Figure 23)
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is so pronounced. The primary source of error is the miscalculation in the scattering center 

locations (Figure 22). The exact versus estimated locations are as follows:

Table 2. Location of Scattering Centers for Synthetic Case 1

Exact Time 
Delay (ns)

"Just Resolved" 
Time Delay (ns)

"Fully Resolved" 
Time Delay (ns)

Source 1 0 -.1153 0.002

Source 2 1 1.3548 1.0029

Both the MUSIC spectrum and estimated frequency responses for the "fully resolved" case show 

excellent agreement with the exact solution and are shown in Figure 24 and Figure 25.

42



Ex
ac

t F
re

qu
en

cy
 R

es
po

ns
e

co

(gp) epn|iu6ew

Fr
eq

ue
nc

y 
(G

H
z)

Figure 21. Exact Frequency Response for Synthetic Case 1
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Figure 22. MUSIC Spectrum for Synthetic Case 1 ("Just Resolved")
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Figure 23. Estimated Frequency Response for Synthetic Case 1 ("Just Resolved")
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Figure 24. MUSIC and Fourier Spectra for Synthetic Case 1 ("Fully Resolved")
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3.2.2 Synthetic Case 2
This case is primarily designed to test the method in a simple extended dynamic range 

situation as shown in Figure 26. In particular, the -20 dB Source is at the level of the noise (0 dB 

SNR) and is still resolvable in both MUSIC spectrum (Figure 27 and Figure 29) and estimated 

frequency response of scattering centers (Figure 28 and Figure 30). Both the "just" and "fully 

resolved" cases perform quite well in this scenario, which is due to an accurate estimation of the 

scattering center locations as shown below.

Table 3. Location of Scattering Centers for Synthetic Case 2

Exact Time 
Delay (ns)

"Just Resolved" 
Time Delay (ns)

"Fully Resolved" 
Time Delay (ns)

Source 1 -1 -.9873 -.9951

Source 2 0 -.0059 0.002

Source 3 1 -1.0342 1.0068
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Figure 26. Exact Frequency Response for Synthetic Case 2
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Figure 27 MUSIC and Fourier Spectra for Synthetic Case 2 ("Just Resolved")
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Figure 28. Estimated Frequency Response for Synthetic Case 2 ("Just Resolved")
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Figure 29 MUSIC and Fourier Spectra for Synthetic Case 2 ("Fully Resolved")

52



Es
tim

at
ed

 Fr
eq

ue
nc

y R
es

po
ns

e

(gp) epnpuBei/M

Fr
eq

ue
nc

y 
(G

H
z)

Figure 30 Estimated Frequency Response tor Synthetic Case 2 ("Fully Resolved")
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3.2.3 Synthetic Case 3
This scenario shows how the SNR can affect a non-constant source as it approaches the 

noise level. As the exact frequency response shows in Figure 31, each source's frequency 

response begins at one end of the band at a maximum of 0 dB and extends down to -10 dB at 

the opposite end of the band. Both the "just” and "fully resolved" cases correctly identify the 

sources as "linear", but the "just resolved" frequency responses (Figure 33) are incorrect in slope 

and magnitude at 2 GHz. The estimated frequency response is better for the "fully resolved" 

case. The time delays for both cases (Figure 32 and Figure 34)are shown in the following table.

Table 4. Location of Scattering Centers for Synthetic Case 3

Exact Time 
Delay (ns)

"Just Resolved" 
Time Delay (ns)

"Fully Resolved" 
Time Delay (ns)

Source 1 0 -0.0137 0.002

Source 2 1 0.08426 1.0029

The method performs best when it accurately identifies the locations of the scattering centers as 

shown in Figure 35, in which the slopes and magnitudes of the frequency responses are 

accurately estimated.
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Figure 31. Exact Frequency Response for Synthetic Case 3
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Figure 32. MUSIC and Fourier Spectra for Synthetic Case 3 ("Just Resolved")
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Figure 33 Estimated Frequency Response for Synthetic Case 3 ("Just Resolved”)
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Figure 34. MUSIC and Fourier Spectra for Synthetic Case 3 ("Fully Resolved")
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Figure 35. Estimated Frequency Response for Synthetic Case 3 ("Fully Resolved")
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3.2.4 Synthetic Case 4

This case is designed to test the method in three areas. First, can the three sources be 

identified in the MUSIC spectrum? Second, can the method estimate the character of the 

frequency responses for each of the sources? Third, can the method estimate the lower 

amplitude regions of each of the sources as they approach, and eventually are overcome by

noise?

Figure 36 shows the exact frequency response for each of the three scattering centers. 

The first and third sources are "linear". The third corresponds to a resonance with a center 

frequency of 10 GHz.

The MUSIC spectrum for the "just resolved", as its name reflects, barely resolved the 

first "linear" source. However, it did adequately estimate the location of each of the three source 

locations as shown in Figure 37.

Table 5. Location of Scattering Centers for Synthetic Case 4

Exact Time 
Delay (ns)

"Just Resolved" 
Time Delay (ns)

"Fully Resolved" 
Time Delay (ns)

"Linear" 1 -1 -0.827 -0.9951

Resonance 0 0.1075 0.002

"Linear" 2 1 0.827 .9951

Figure 38 shows the frequency response of each of the scattering sources based on the locations 

obtained from the "just resolved" case. For each source, the method adequately estimated the 

character. However, the magnitudes for each are degraded as the levels approach the noise. 

Most interesting is that even though it was able to reconstruct the resonance it improperly 

estimated the center frequency. This is due to the error in location of the scattering center. The 

"fully resolved" MUSIC spectrum (Figure 39) correctly located the three sources and, as a result,
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correctly identified the resonant frequency at 10 GHz as shown in Figure 40. This figure also 

demonstrates its ability to estimate the "linear" and resonant frequency responses quite well.
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Figure 36. Exact Frequency Response for Synthetic Case 4

62



M
us

ic
 vs

 Fo
ur

ie
r S

pe
ct

ra

i i
(gp) epniiu6e|/M peziieiwoN

Ti
m

e D
el

ay
 (n

s)

Figure 37. MUSIC and Fourier Spectra for Synthetic Case 4 ("Just Resolved")
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Figure 38. Estimated Frequency Response for Synthetic Case 4 ("Just Resolved")
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Figure 39. MUSIC and Fourier Spectra for Synthetic Case 4 (Tully Resolved")
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Figure 40. Estimated Frequency Response for Synthetic Case 4 ("Fully Resolved")
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3.2.5 Synthetic Case 5
This scenario is designed to test the method under different resonances at multiple 

magnitudes. Figure 42 shows three resonant sources located at 5,10 and 15 GHz with 

magnitudes of 15, 5 and 0 dB respectively. The "just resolved" case is shown to have a 

bandwidth of 8 GHz. This appears, at first glance, to be a significant bandwidth for a "just 

resolved" condition. However, at less than this, the MUSIC spectrum could not adequately 

resolve the sources. This is due to the large separation between resonant peaks. Even under 

this 8 GHz bandwidth, the MUSIC spectrum significantly erred in locating the 15 GHz resonance 

as seen in Figure 43. The corresponding estimated frequency response for each of the 

resonances is shown in Figure 44. As this figure clearly demonstrates, such a location error 

significantly degraded the method's ability to reconstruct the individual frequency responses.

The figure also shows all three resonant magnitudes as less than the exact and the resonant 

frequencies are mis-identified. However, for the "fully resolved" case, the MUSIC spectrum 

(Figure 44) and frequency response of the sources (Figure 45) performed quite well. In each of 

these figures both the magnitudes and center frequencies are properly estimated. The locations 

for each of the resonances are shown in Table 6.

Table 6. Location of Scattering Centers for Synthetic Case 5

Exact Time 
Delay (ns)

"Just Resolved" 
Time Delay (ns)

"Fully Resolved" 
Time Delay (ns)

Resonance 1 - 5 GHz -1 -0.9912 -.9912

Resonance 2-10 GHz 0 0.0059 -0.0176

Resonance 3-15 GHz 1 1.5112 1.0068
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Figure 41. Exact Frequency Response for Synthetic Case 5
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Figure 42. MUSIC and Fourier Spectra tor Synthetic Case 5 ("Just Resolved")
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Figure 43. Estimated Frequency Response for Synthetic Case 5 ("Just Resolved")
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Figure 44. MUSIC and Fourier Spectra for Synthetic Case 5 ("Fully Resolved")
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Figure 45. Estimated Frequency Response for Synthetic Case 5 ("Fully Resolved")
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3.3 Measured Data

This section will present results from five measured data sets. The section begins with 

brief description of the measurement test range used and is followed by a discussion of the 

targets selected with their estimated MUSIC spectra and frequency responses of the individual 

scattering centers.

The measured data was collected on the Advanced RCS Measurement Range (ARMR) 

at Wright-Patterson Air Force Base. The ARMR is a dual-reflector/dual chamber Gregorian 

compact range16 (Figure 46- side view). The ARMR offers a planar wavefront produced by a 

linear, time-invariant (LTI) radar system. Figure 47 shows a histogram of the typical receiver

noise found in a 2-18 GHz sampling of the ARMR radar receiver.

Figure 46. Side View of RCS Measurement Range at Wright-Patterson AFB
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The measured data is designed to challenge the method under various situations. 

However, unlike their synthetic counterparts, the measured data will be studied under fully- 

resolved conditions only. These parameters are listed in Table 7.

Table 7. Measured Data Parameters

Case
Number

Description Source Types MUSIC 
Bandwidth/ 

Increment (GHz) 
"Fully Resolved"

Regression
Polynomial

Order/
Bandwidth

(GHz)
1 8 inch sphere Specular with 

creeping wave
2.0-11.3/.3 1/4

2 9.6 inch ogive Forward 
scattering & low 

SNR

2.0-11.3/.3 1/4

3 .7 inch wire Resonance 2.0-17.5/.5 0/1
4 foam block 

with
embedded 

wooden rod

Dielectric with 
strong

inhomogeneity

12.0-18.0/.2 0/1

5 foam block 
minus wooden 

rod

Dielectric with 
weak

inhomogeneity

15.0-18.0/.1 0/1

3.3.1 Measured Case 1
The sphere is a canonical target which offers both specular and creeping wave returns 

which are well understood. It is customary to measure the sphere atop a short Styrofoam 

column. This measurement geometry is shown in Figure 48. According to the Mie series 

solution17 for an 8 inch sphere, there should be a specular return from the front of the sphere and 

a creeping wave return at

_ r(rc + ^inches 
11802^

(35)

time delay behind the specular response. Where r is the radius of the sphere (in inches). The 

sphere under study, however, is showing three sources in the MUSIC spectrum (Figure 49). The
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first response, the specular return from the sphere, is located at -.6471 ns. The next source, 

located at -.4399 ns, is a result of mounting the sphere too close to a flat absorbing cap atop the 

support structure and is an error term. This response is a multi-path error source caused as the 

plane wave scatters from the sphere, down to the cap, back to the sphere and ultimately returns 

to the receiver. Finally, the third response, located at 1.32 ns is from the creeping wave. Figure 

50 shows the frequency response of each of the responses. Figure 51 shows the estimated 

MUSIC spectrum obtained from measured data overlaid with the MUSIC spectrum obtained from 

the Mie series data. This figure shows good agreement for both the specular and creeping wave 

returns. The time delay offset between the two spectra is due to the measured sphere not being 

located at the phase center of its reference target. This offset is arbitrary and of no consequence 

to the data accuracy as long as the shift is in the same amount and direction at both source 

locations. Figure 52 shows the estimated frequency responses of the specular and creeping 

wave responses obtained from the measured data overlaid with those of the Mie series data.

The measured specular return shows excellent agreement across the entire band. However, the 

creeping wave begins to degrade after 11 GHz. This is due to increases in the chamber 

background level and errors in the estimation of the frequency response due to the third error 

term. Figure 53 shows the total sphere frequency response from 2-18 GHz based on three 

different sets of data. First, the frequency response from the Mie series is plotted directly as a 

reference. Second, the sphere frequency response from the Mie series after optimal extraction 

is shown to reveal any errors introduced by the process. The third curve is the output of the 

optimal extraction using the measured data - corrected for the error term. As the figure clearly 

shows, there is excellent agreement between measured and exact solutions, until the creeping 

wave becomes poorly estimated due to range clutter.
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Figure 48. Measured Case 1 Geometry
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Figure 49. MUSIC and Fourier Spectra for Measured Case 1
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Figure 50. Estimated Frequency Response for Measured Case 1
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Figure 51. MUSIC Spectra for Measured Case 1
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Figure 52 Estimated Frequency Response for Measured Case 1
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Figure 53 Reconstructed Frequency Response for Measured Case 1
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3.3.2 Measured Case 2

The 9.6 inch ogive is a canonical target yet is difficult to measure accurately. It has a low 

signature across the 2-18 GHz region (low SNR). In addition to scattering from the ogive, there is 

also scattering from the boundary of a mounting surface. The mounting of this target is shown in 

Figure 54. This problem is highlighted in the MUSIC spectrum of Figure 55 where the interior 

two sources in the MUSIC spectrum are the Styrofoam cup support. The first and last responses 

at -.8465 and .7879 ns respectively correspond to the front and rear tips of the ogive. By 

converting the times of the front and rear tip responses to inches, one finds excellent agreement 

between the physical length of the target (9.6 inches) and the location of the response. For 

example, converting the electrical length of the ogive in nanoseconds to inches yields the 

following

lengthy =
(.8465+.7879)ns

2
(11.802 inches / ns) = 9.64inches. (36)

Figure 56 shows the estimated frequency responses of each of the sources found in the MUSIC 

spectrum. As the frequency approaches the end of the band, the chamber background noise 

dominates the estimation algorithm. Figure 57 shows the MUSIC spectrum obtained from 

measured data overlaid with the MUSIC spectrum obtained from scattered fields computed using 

the CICERO18, body-of-revolution code. As in the case of the sphere, there is excellent 

agreement between the calculated and measured data. The offset in time between the two sets 

of data is, again, due to calibration offsets in the measurement process and is inconsequential to 

the accuracy of the data. Figure 58 shows an overlay of the estimated frequency response from 

measured data and CICERO. Good agreement is found between measured and calculated until 

the chamber background becomes excessive. Figure 59, shows the total ogive frequency 

response from 2-18 GHz based on three different sets of data. First, the frequency response 

from CICERO is plotted directly as a reference. Second, the ogive frequency response from 

CICERO after optimal extraction is shown to reveal any errors introduced by the process. The 

third curve is the output of the optimal extraction using the measured data - corrected for the
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error terms. As in the previous figure, there is good agreement between measured and 

calculated data until limited by the chamber background noise.

9.6" Ogive

Figure 54. Measured Case 2 Geometry
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Figure 55. MUSIC and Fourier Spectra for Measured Case 2
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Figure 56. Estimated Frequency Response for Measured Case 2
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Figure 57. MUSIC Spectra for Measured Case 2
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Figure 58. Estimated Frequency Response for Measured Case 2
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Figure 59. Reconstructed Frequency Response for Measured Case 2
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3.3.3 Measured Case 3
The wire was selected as a canonical resonant source. The wire, approximately 0.7 

inches in length, was mounted in foam as shown in Figure 60. Figure 61 shows the MUSIC and 

Fourier spectra overlaid. The spectrum shows four peaks in which the first peak is the specular 

scattering from the wire body. The additional three returns are the decaying amplitudes of the 

resonances in time. Since the resonant frequency should be approximately 8.5 GHz, the 

spacing of the time resonances should be 1/8.5 GHz or 0.118 ns. The time separation between 

each of the peaks is .089, .11, and .102 ns respectively. Clearly, these time delays are within 

the accuracy of the MUSIC spectrum and the estimation of the resonant frequency. Figure 62 

shows the frequency responses of each of the decaying time delaying centers.

0.7" Wire

Figure 60. Measured Case 3 Geometry
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Figure 61. MUSIC and Fourier Spectra for Measured Case 3
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Figure 62. Estimated Frequency Response for Measured Case 3
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3.3.4 Measured Case 4
The foam block with an embedded wooden rod represents a dielectric body with a strong 

inhomogeneity. The mounting configuration for this target is shown in Figure 63. The MUSIC 

spectrum had no trouble identifying the front and back of both the foam block and the wooden 

dowel rod (Figure 64). The length of the foam block was 14 13/16 inches. As such the time 

delay from the front to back faces of the foam should be 2.51 ns. The estimated MUSIC 

spectrum yields a total time of 2.608 ns, a difference of 3.9 %. In addition, the wooden dowel 

rod is one inch in diameter, or a corresponding diameter of 0.246 ns in time after adjusting for 

rod permittivity (plywood dielectric constant = 2.1). The MUSIC spectrum yielded a rod width of 

.2659 ns, a difference of .02 ns or 7.5%. This error can easily be attributed to the approximation 

in dielectric constant, which can only be greater than the one assumed - yielding a closer solution 

to that predicted. Each of the frequency responses shown in Figure 65 are well behaved and 

were easy to model.

Figure 63. Measured Case 4 Geometry
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Figure 64. MUSIC and Fourier Spectra for Measured Case 4
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Figure 65. Estimated Frequency Response for Measured Case 4
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3.3.5 Measured Case 5

This target represents a dielectric with a weak inhomogeneity, an often troublesome 

source to detect. The mounting configuration for this target is shown in Figure 66. Without the 

wooden dowel rod, the objective is to locate the dielectric hole in the midst of the two large 

dielectric faces. This not only presents a challenge to detect the hole proper, but it also presents 

a dynamic range problem. Since the majority of the energy scattering from the hole lies from 15- 

18 GHz, this region was chosen to resolve the hole. The MUSIC spectrum was able to 

determine the location of the foam faces and the front and back of the open hole. Although 

detected, the time delays corresponding to front and back of the hole are incorrect. The time 

delay corresponding to the front of the hole should be the same as the front of the wooden dowel 

rod, but, instead are shown to be at -.5494 and -.1232 ns respectively. The rear of the hole, 

since the dielectric constant of the hole itself is one, should have a time delay of 0.17 ns behind 

the front. However, this time delay of .1114 ns is actually .6608 ns behind the front of the hole. 

This time delay estimation error may be attributed to insufficient bandwidth and the dynamic 

range between the foam faces and the hole mechanisms. The local maximum in the rear face 

frequency response of Figure 68 is due to estimation error and not from the foam face itself.
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Figure 66. Measured Case 5 Geometry
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Figure 67. MUSIC and Fourier Spectra for Measured Case 5
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Figure 68. Estimated Frequency Response for Measured Case 5
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CHAPTER IV

SUMMARY AND CONCLUSIONS

This study has demonstrated a method for determining the location and frequency 

response of a collection of closely-spaced scattering centers. The method begins by developing 

a signal model, from which a correlation matrix is obtained. The MUSIC algorithm uses an 

eigen-decomposition of this matrix to identify the location of the scattering centers. These 

locations are used, then, by a regression model to extract the frequency response of the 

scattering centers.

Traditionally, scattering centers have been identified via the Fourier transform. This 

approach works quite well if the scattering centers are sufficiently far from each other and non- 

resonant. These restrictions have led to the development of "super-resolution" techniques such 

as MUSIC, which are not bound by the Rayleigh resolution criterion nor subject to Gibb's 

phenomenon. Although computationally more expensive than the Fourier transform, the method 

reveals information which otherwise could not be uncovered. In addition, as computer speeds 

reach into the hundreds of megahertz, differences in computation times become less of a 

problem.

A formulation of the MUSIC algorithm and associated regression model has been 

presented. The MUSIC discussion starts with the development of the correlation matrix. An 

eigen-decomposition of this matrix reveals the number and location of the scattering centers. 

The eigenvectors of the matrix are separated into two orthogonal subspaces entitled the "signal- 

plus-noise" and "noise" spaces respectively. A scanning vector, comprised of basis functions 

taken from the signal model, is projected on to the noise space. When this vector becomes
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orthogonal to the noise space a scattering center location has been found. The discussion of 

regression analysis begins with a model which takes into account frequency response estimation 

error and allows for frequency dependent signal parameters. The regression concept models 

each scattering center as a polynomial over a frequency band of interest. The model begins with 

an assumption that the polynomials are of zero order and then expands to include an arbitrary 

set of polynomial functions. Ultimately, the model leads to an "over-determined" set of linear 

algebraic equations which is solved by the method of least squares. The output of these 

equations is a set of complex coefficients representing the frequency response of the individual 

scattering centers.

A parametric study was performed on a two point-source scenario (20 dB SNR) to 

identify limitations in MUSIC resolution and accuracy. The study revealed that bandwidth and 

number of apertures were the primary factors in both. Once the data samples were sufficiently 

decorrelated, then bandwidth was the primary determinant of resolution and accuracy.

The method was then applied to a series of synthetic and measured data sets. The 

synthetic data was comprised of five combinations of point, "linear" and resonant scattering 

types. Each scenario was run under a "just resolved" and "fully resolved" parameter set. The 

"just resolved" conditions mean that only enough bandwidth was used to "just resolve" the 

required scattering centers. These locations were then used by the regression model to derive 

the frequency response of each source. The "just resolved" frequency response in all cases 

experienced degradation due to inexact location of the scattering centers. These errors manifest 

themselves in magnitude errors and, in the case of a resonant source, an incorrect resonant 

frequency. On the other hand, the "fully resolved" data were all accurately modeled. Even a 

multiple resonance data set was reconstructed with proper resonance frequencies and 

magnitudes of each.

The measured data set consisted of broadband backscatter information for five targets: 

an 8 inch sphere, 9.6 inch ogive, 0.7 inch wire, foam block with embedded 1 inch diameter 

wooden dowel rod, and the same foam block without the dowel rod leaving the 1 inch diameter
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hole exposed. The 8 inch sphere was selected as a canonical target whose scattering properties 

are well understood. As the theory predicted, the method accurately found the sphere's specular 

and creeping wave returns. In addition, the method located a measurement error associated 

with the mounting structure. The MUSIC spectrum for the measured data was overlaid with the 

MUSIC spectrum obtained from the Mie series with excellent agreement. Then, the frequency 

response of both the measured and Mie data were overlaid. The agreement between the 

specular returns was excellent. However, the creeping wave tracked the Mie data until 

approximately 11 GHz, where chamber clutter begins to dominate.

The 9.6 inch ogive was selected as a canonical, but difficult target to measure. Its low 

broadband signature (low SNR) and traveling wave return from its mounting surface created a 

difficult measurement scenario above 9 GHz. The MUSIC spectrum resolved the front and rear 

tips of the ogive with great precision. In addition, the mounting support return was also evident 

at the boundaries where it met the surface of the ogive. The MUSIC spectrum is overlaid with 

the exact solution from the method of moments with excellent agreement. The frequency 

response of the front and rear tips are also overlaid with the calculated solution with general 

agreement until 10 GHz where chamber clutter begins to dominate.

The wire was selected as a canonical resonant source. Its MUSIC spectrum reveals a 

peak from the structure of the wire and three additional decaying returns. These additional 

returns are separated in time by the reciprocal of the resonant frequency. The frequency 

response of each of the mechanisms is also shown.

The two dielectric measurements were selected to demonstrate the utility of the method 

for dielectrics with both strong and weak inhomogeneities. The embedded dowel experiment 

easily resolved the front and back of the foam and rod respectively. The frequency response of 

each of these returns was well behaved and easy to model. The measurement of the foam with 

the exposed hole was also resolved but not as easily as the rod. The MUSIC spectrum, although 

identifying the hole's existence, did not accurately estimate its location. The estimated 

frequency response of the foam faces were accurately obtained. The frequency response of the
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open hole accurately showed a maximum return at 16.5 GHz, which is not a part of the flat foam 

physics. Overall, the method was quite successful in estimating the frequency response of 

various scattering mechanisms in the presence of noise.

While it is demonstrated here quite definitively that it is possible to decompose the 

measured data to reveal the underlying scattering physics, this investigation is more a beginning 

than an end. A number of questions need further investigation:

i) Not enough targets with resonances have been studied. It would be especially interesting to 

measure and study targets with multi-mode resonances.

ii) The signal model used here presumes a well defined phase center associated with each 

scattering center. That may not always be the case. It is reasonable to inquire as to what 

the manifestations are of a scattering center whose phase center is a function of frequency. 

How does one include that in the signal model?

iii) Another interesting target that deserves special mention is an antenna. Antenna scattering 

involves both the structural mode and the radiation mode. It is natural to wonder how these 

different modes manifest themselves in terms of optimal extraction? Is it possible to 

separate them?

iv) The investigation reported here efficiently yields a time delay frequency diagram of the 

targets. Since wavelet theory19 is designed to provide such a time-frequency description, it 

is natural to seek to establish the relationship between the present technique and wavelet 

theory.
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