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ABSTRACT

A NEW DIGITAL BANDPASS FILTERING SCHEME FOR THE EFFICIENT

IMPLEMENTATION OF THE SPLIT SPECTRUM TECHNIQUE FOR

ULTRASONIC NONDESTRUCTIVE EVALUATION

Name: Canelones, Orlando J.
University of Dayton, 1991

Advisor: Dr. Prasanna Karpur

Split spectrum processing (SSP), based on the decomposition of 

ultrasonic signals by multiple narrow-band filtering, has been proved 

efficient in the suppression of backscattering noise in the nondestructive 

evaluation of materials in order to enhance the signal-to-noise ratio of such 

signals for flaw detection and characterization purposes. However, SSP is a 

computationally intensive technique requiring long processing times. 

Industrial inspection procedures often demand fast acquisition and 

processing rates making a real time or near-real time implementation of the 

technique very appealing. SSP is currently performed by means of Fast 

Fourier Transform techniques which can be very efficiently implemented 

with digital signal processors; despite the fact that, strictly speaking, the 

FFT is a non-real time instrument since it requires the availability of all 

points before processing. This thesis investigates the efficient finite 

impulse response (FIR) as well as the frequency domain (FFT)
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implementation of SSP from two standpoints. First, it considers a reduction 

in the size of the bandpass-filter bank by employing bandpass filters with 

flat-top frequency responses (Hanning windows), as opposed to the more 

conventional Gaussian filters. This allows to concentrate more energy 

within the filter’s bandwidth without substantially increasing the correlation 

between adjacent filters. Secondly, it advances a computationally efficient 

approach towards the design of FIR narrow-band bandpass filters for SSP 

based on a two branch structure of cascaded lower-complexity subfilters. 

This work demonstrates that it is, indeed, possible to greatly reduce the 

computational load of the technique with smaller filter banks without 

compromising SNR performance and that a very efficient tapped-delay line 

(VLSI) implementation is also within reach. This document presents the 

results from simulations and experiments on ultrasonic signals based on 

signal-to-noise ratio performance and a comparison between this approach 

and the more traditional Gaussian-filter scheme.
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CHAPTER I

SPLIT SPECTRUM PROCESSING

1.1 Introduction

Ultrasonics is of great importance in the nondestructive evaluation 

(NDE) of engineering materials and noninvasive diagnostic medicine. 

Defects and anomalies can be detected, located, sized and classified by 

means of ultrasonic signals provided the backscattering noise or 

interference patterns contained within the received signals can be 

suppressed to acceptable levels; that is to say, the signal-to-noise ratio 

(SNR) must be adequately enhanced.

Split spectrum processing (SSP) was introduced in the late 1970's 

as a technique adapted from radar applications! 18] to improve the signal-to 

noise ratio in ultrasonic signals. Figure 1.1 depicts the filtering scheme for 

SSP. The spectrum of the received ultrasonic signal is split into different 

overlapping frequency bands by means of equally spaced Gaussian 

bandpass filters with constant bandwidth. The split frequency bands so 

obtained have time domain representations called spectral decomposition 

components which can be compounded using techniques such as 

minimization[18], polarity thresholding! 1 ], or both[4], etc. Excellent SNR 

enhancements have been reported with SSP in the literature! 1,2,4]. As an 

example, figure 1.2 shows an ultrasonic signal containing a great deal of
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clutter which completely hides or obscures the flaws or defects within the 

material sample. The signal is, once again, shown in figure 1.3 after the 

application of the split spectrum technique. It is quite evident that this 

backscatter-reduction technique is very efficient in the removal of material 

clutter for the detection of flaws and defects. The SNR performance of SSP 

is very sensitive to processing parameters such as the number of filters 

used for the spectral splitting, the filter bandwidth, the frequency 

separation between adjacent filters and the location of the filter bank 

within the available bandwidth of the transducer. The proper selection of 

these parameters for optima, SNR performance has been recently studied 

and established by Karpur et a! [1,4,5].

Fig. 1.1 Conventional Filtering Scheme of the Split Spectrum Technique.
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Time Index

Fig. 1.2 Unprocessed Ultrasonic Signal.

Time Index

Fig. 1.3 Signal after Processing by SSP. A Target is Clearly Revealed.
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1.2 Foundations of Split Spectrum Processing

Split spectrum processing is based on the physics of the interaction

between ultrasonic waves and random scatterers of the material grain 

structure. Grain noise or clutter is an interference pattern produced when 

the ultrasonic signal is scattered by the randomly packed, unresolvable 

grains present in the material under test. Since it is an interference pattern, 

the clutter is dependent upon the relative spatial position of the transducer 

and the test material as well as on the frequency of the transmitted signal. 

Split spectrum processing makes use of the fact that the interference 

pattern is dependent on frequency.

A typical ultrasonic signal received from a material under test can be 

represented by a time limited signal

r(t) = f(t) + n(t) , 0 < t < T (eq.1.1)

where f(t) is the signal from a flaw or target and n(t) in the noise signal

from the material grains. In SSP, the received signal is decomposed into a 

set of N narrow-band signals rj(t) of normalized amplitude by frequency- 

domain filtering, and the above equation becomes a set of N equations

q(t) = fj(t) + nj(t) , i = 1,N (eq.1.2)

as shown in figure 1,4.

The narrow-band signals fj(t) have some invariable properties as they 

are produced by the same flaw or target; however, the noise frequency
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components nj(t) may exhibit variable properties since they are an

interference pattern. This can be better understood by considering figure 

1.5, where the principle of operation of the technique is illustrated in terms 

of phasors. The resultant phasor is a combination of both a phasor from a 

flaw or reflector and a set of randomly oriented phasors from random 

scatterers in the material. The SSP algorithms, in general, utilize the 

property that the energy from the specular reflector is distributed rather 

uniformly over the bandwidth of the receiver, whereas the backscatter is 

highly frequency dependent as depicted in figure 1.6. The split spectrum 

technique utilizes optimization algorithms which are applied to the set of 

signals in equation 1.2 in order to enhance the visibility of the flaw or 

target. As mentioned, these algorithms are based on the frequency 

properties of noise and target signals. The most effective algorithms 

reported to date are the minimization algorithm and the polarity 

thresholding algorithm or a combination of both.

The minimization algorithm uses the property that the target or flaw 

tends to distribute the received signal in a rather uniform fashion over the 

frequency bandwidth of the transducer; that is, the fj(t) have the same

order of magnitude, whereas the interference pattern has a strong 

dependence on the frequency; meaning that the noise components n,(t)

may have low or high levels in different frequency channels. The result 

from minimization is given by s{t) = q(t), where | q(t) | = min{ | q{t) |} for i

= 1, N.
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Fig. 1.6 Frequency Diverse Signals.
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The polarity thresholding algorithm is based on the property that in 

the presence of a target, the probability that the components fj(t) all have 

the same sign is large, whereas, since the noise components nj(t) are

independent the probability that they have the same sign decreases with

the number of narrow-band signals N. The result of the polarity 

thresholding algorithm is s(t) = r(t), if all decomposition components fj(t) 

have the same sign or s(t) = 0, otherwise. A combination of the two

algorithms can also be applied for a further increase in performance and is 

given by s(t) = q(t), where | rj(t) | - min{ | q(t) |}, if no sign reversal occurs

or s(t) = 0, otherwise. The signal-to-noise ratio enhancement and 

probabilities of detection of a target signal of these optimization procedures

have been investigated as a function of the SNR and the number N of 

signals q(t) from the decomposition of the input r(t) [4].

This spectral decomposition is a very critical step in SSP. In previous 

work, the decomposition of the input signal was carried out in the 

frequency domain with a bank of equally spaced Gaussian filters of 

constant bandwidth, as discussed in the next section.

1.3 Frequency Domain Constant Bandwidth Decomposition

The splitting of the spectrum of the received signal r(t) can be

described as the multiplication of its Fourier Transform R(f) with a set of 

independent functions H^(f) in the following manner

R(f) = +f° Hk(f) = R(f) Hk(f)

k = -oo k = -oo

(eq.1.3)
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The set of functions H|<(f) form an orthonormal basis and each RjJf) has an 

equivalent time domain representation r^(t). In practice, the receiving

transducer’s bandwidth places a limit on the number of orthonormal 

functions H^(f) that can be used for the decomposition. Theoretically, since

the received ultrasonic signal is sampled within the time interval T, its 

frequency response is unlimited; however, the transducer’s frequency 

response effectively bandlimits the ultrasonic signal. The spectral splitting 

process can be viewed as the sampling of the Fourier transform of the 

received pulse, and the frequency sampling theorem can then be invoked 

to express equation 1.3 in the following way

oo

R<f) = V R(y) sinc(brT-kir) (eq.1.4)

k = -oo

sin(x)where the functions sinc(x) = —-— are an orthonormal set and equally 

1
spaced by a frequency interval <5f = y. Equation 1.4 simply states that if a

function r(t) is non-zero only in the time interval [O,Tj; then its Fourier 
k

transform R(f) can be uniquely determined from its values R(y) at equally

spaced points (distance <5f). The sine functions simply act as interpolators 

between adjacent samples to effectively generate the spectrum. Since the 

received ultrasonic signal is real, its spectrum exhibits complex conjugate 

symmetry ( R(f) = R*(-f)), and due to the transducer and instrumentation
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ensemble frequency response, it has a lower and upper cut-off frequencies 

f| and fu. If for the sake of simplicity, it is assumed that the cut-off
1

frequencies are integer multiples of the sampling frequency <5f = y, such 

that f| = k|6f and fu = ku5f; then eq. 1.4 reduces to

*<u
R(f) = £ R(fk) Sinc( ttT( f - fk» + R*(fk) sinc«T( f +fk» (eq.1.5)

k= k,

* kwhere R(-f|<) = R (f|<) and fk= y • The maximum number of orthonormal

functions that can be used to decompose a signal of finite time duration T 

and bandwidth BW = fu - f| is given by

N = ku - k| + 1 = T(fu - f|) + 1 = BW*T + 1 (eq. 1.6)

1
The frequency bands defined by the sine functions spaced by y and having 

2a main lobe of width y are perfectly uncorrelated with one another since

the sine functions form an orthogonal set. The resulting time-domain

signals corresponding to each band are of a frequency diverse nature; and

being uncorrelated, they could be compounded for an increased SNR.

Equation 1.6 above gives the number of frequency bands the spectrum 
1

could be broken into, based on the spectral separation y of the sine

functions. The decomposition expressed by the frequency sampling
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theorem is not easily realizable by FFT filtering. Obviously, the sampling of 
1

such transfer function at Sf = y, as required, would not allow enough

resolution of this frequency response function for implementation. 

Therefore, as a matter of practicality, other frequency response functions 

suitable for this purpose must be employed. Frequency responses which 

may be amenable to perform the splitting of the spectrum of the ultrasonic 

signal are those with maximal time and frequency concentrations. Though 

correlated, a compromise can be reached between the number of filters 

and the bandwidths of the individual filters in order to achieve acceptable 

SNR levels.

If Nu uncorrelated frequency bands are used in SSP, the SNR 

enhancement is given by

SNRe = (eq.1.7)

However, if there exists some measure p of correlation between the bands 

then the SNR enhancement is given by

where Nc is the number of correlated bands. This equation reveals that

small values of p are desirable in order to obtain better SNR performance. 

The effective number of uncorrelated bands can be estimated by
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*
N u

(1 - p)Nc

1 +
2(NC- 1)p2 

Nc

(eq.1.9)

This equation may appear to indicate that by increasing the number of 

filters within the bandwidth of interest we ought to be able to increase the 

SNR correspondingly. However, the correlation factor p also increases due 

to greater overlap between filters and offsets the potential gains in 

performance. Experimental evidence to this effect has been provided by 

Karpur[4].

In current practice, the decomposition of the spectrum of the 

ultrasonic signal is carried out by using equally spaced Gaussian filters of 

constant bandwidth instead of sine functions. The Gaussian filters are easy 

to implement digitally because of their maximal time and frequency 

concentration; that is, the time bandwidth product (TBP) is the smallest. 

The Fourier transform of the Gaussian filters can be described by

f + fk 9f - fk 9 L)2
Hk(f) = e * 0.85*0 + e 0.85*0 (eq.1.10)

where the standard deviation and the half-power bandwidth of the filter are 

related this way: a = 0.60043*0 and fk is the central frequency of the

filter. The impulse response corresponding to this filter can be easily 

derived and is given by
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h(t) =1.7*aA0 e-<°.85*ir/3z)2 cos(2Tfkfl (eq.1.11)

This expression is used to derive the coefficients of the digital Gaussian 

filters used in the simulations conducted here.

Karpur[4] established experimentally that, for the optimal separation 
1

<5f = — corresponding to the ideal interpolating sine frequency responses,

the Gaussian bandwidths must be about three to four times this separation: 
3 4(3 « [y, y]. This is intuitively correct, since the energy concentrated within

the half-power bandwidth of a sine frequency response is only 50% of all 

its energy, whereas a Gaussian frequency response holds about 70%. This 

would lead us to suspect the need for smoother Gaussian responses to 

reduce the gaps that may exist between adjacent filters to prevent energy 

losses. Figure 1.4 is a representation of the conventional implementation of 

split spectrum processing based on frequency-domain FFT convolution.

1.4 Thesis Objectives

The main objective of this thesis is to investigate the efficient 

realization and implementation of the Split Spectrum Technique, whether 

based on FFT-convolution or tapped-delay lines, in order to advance 

forward towards a real time or near-real time implementation amenable to 

industrial inspection procedures. To achieve this basic goal, a modification 

to the conventional scheme of bandpass filtering has been introduced that, 

under certain circumstances, requires fewer filters in the splitting-filter bank 

for a desired SNR performance. This modification is introduced in chapter II
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of this document, and experimental results are presented. Also, a more 

efficient implemention of the SSP technique with tapped-delay lines is 

introduced in chapter III, which may open the door to a real-time or near- 

real time implementation of the technique for industrial inspection 

procedures.



CHAPTER II

A NEW FILTERING SCHEME FOR SPLIT SPECTRUM PROCESSING IN

ULTRASONIC NDE

2.1 Introduction

In the conventional approach to SSP, the filter bank utilized to 

perform the splitting of the spectrum of the signal is made up of equally 

spaced Gaussian filters of constant bandwidth. In the frequency domain, 

the processing time of the technique depends primarily on the number of 

filters in the bank required for a desired SNR performance. A feasible way 

to reduce the size of the filter bank (relative to the Gaussian filter bank) is 

to increase the energy confined within the half-power bandwidth (HPBW) 

of the filter without substantially increasing the correlation between 

adjacent or neighboring filters, that is to say, increase the number of 

effectively uncorrelated filters such that the corresponding increase in 

correlation is more than offset by the increase of target-signal energy. This 

chapter presents a new filtering scheme or rather a modification to the old 

scheme that may, under certain conditions, require fewer filters for a 

desired SNR enhancement performance than its Gaussian counterpart. The 

rationale for the selection of the processing parameters is established, and 

experimental results from computer-simulated signals as well as real 

ultrasonic signals are presented.

16
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2.2 A New Filter Bank : Raised-Cosine Filters

As indicated in the literature[4], the splitting of the spectrum of a

signal can be treated as the sampling of the Fourier transform of the signal.

As such, the frequency sampling theorem can be used in analyzing the

decomposition process and getting, at least, a rough idea as to the size of

the filter bank and bandwidth of each individual filter. The frequency

sampling theorem, as expressed by equation 1.4, indicates that the Fourier

transform R(f) of a signal r(t) of duration T units of time can be 
k 1reconstructed perfectly from samples R(y) of the transform taken y Hz

apart by interpolation with sine functions. The set of interpolating sine 

functions is given by

lk(f) = sinc(firT - k%) (eq.2.1)

1
which are separated by y. Figure 2.1 shows two sine functions centered at

k k+1y and (-y-).

This figure depicts the main characteristics of the filters that perform 
2the interpolation. The main lobe of the sine function is of width y or twice

the spectral separation and contains most of the energy of the function. 

About 50% of the energy is contained within the half-power bandwidth. 

However, it must be kept in mind that SSP is not an interpolation process 

intended to reconstruct the received noisy ultrasonic signal, but a 

technique meant to rid the signal of unwanted material-grain backscatter.
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Fig. 2.1 Adjacent Sine Functions of a Reconstruction Bank.

As a consequence, the use of sine filters, as dictated by the frequency 

sampling theorem for signal reconstruction, might not yield good results in 

SSP even though these functions form an orthogonal set, this being due to 

the signal losses in the gaps between adjacent filters, not to mention the 

fact that sine filters are rather hard to realize, as required, due to frequency 

resolution problems with the FFT. Such expectations have been borne out 

by experimental evidence. These considerations may lead to the conclusion 

that the best filter for SSP applications should preserve as much signal 

energy as possible within its passband and maintain its extension towards 

neighboring filters as small as possible, so as to keep the correlation 

between neighboring filters within reasonable bounds. This will ensure that 

signal energy is not lost and that the number of effectively uncorrelated
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filters will be high enough to produce good SNR performance. However, 

this argument may not necessarily hold true for all signals and may, in 

some cases, be counterproductive depending on the noise levels present in 

the signal. More energy concentration within the passband of the 

spectrum-splitting filters means better detection or increased sensitivity of 

such filters, and if the noise levels are such that the SSP optimization 

algorithms will not perform very well or be ineffective, then the SNR 

performance could be degraded even more for filters with higher energy 

concentration within their half-power bandwidths.

Figure 2.2 depicts the possible shape of a transfer function which 

may afford better performance than the most conventional Gaussian-filter

Fig. 2.2 A Filter with Flat-Top and Smooth Transition Band.
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approach. The function exhibits a flat-top passband of width Ap (half) and 

a transition bandwidth Af of reasonably small extension. Theoretically, a 

perfectly rectangular window would be a better choice since it has no 

skirts, but it is impossible to realize since time aliasing problems arise due 

to the abrupt cut-offs, and its SNR performance would be impaired as 

reported by Draheim et at. [16]. Therefore, as a compromise, this work 

proposes a sinusoidal smooth transition bandwidth. A well known function 

that may serve as a prototype is the raised-cosine or Hanning window 

which, as its name suggests, is simply a frequency-selective filter whose 

skirts or transition bands make up a truncated full-cycle sine wave shifted 

upwards by unity and which may or not exhibit a flat top as shown in 

figure 2.3.

Fig. 2.3 Raised-Cosine Frequency Response.
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It is to be noted here that it is also possible to fit a flat-top to a 

Gaussian filter, thereby generating a similar frequency selective filter with 

Gaussian skirts; however, the studies of this work have been conducted 

with raised-cosine (RAC) filters as a prelude to a real-time implementation 

with tapped-delay lines as well as a means of comparing relative 

performances of this filter shape and that of the Gaussian filters. The 

raised-cosine frequency response has extensive applications in the area of 

digital communications, and its impulse response can be approximated very 

efficiently with available filter design software. The frequency response of 

such a filter, as depicted in figure 2.3 is given by

1 f “ Ice ~ Ap
2 {1 + cosbr(-------- ----------- ))},

1 1 — ^ce +
2p + cosbr(-------- ------------))},

fce + Ap < f < fce + Ap + Af

fce “ Ap < f < fce + AP

fCe “ Ap - A f < f < fce - Ap

(eq.2.2)

where fce is the center frequency of the filter, and its impulse response is 

given by

h(t) =
[sin{ 2t(Ap + Af) t) + sin{2ir Ap t)] cos(2tffce t)

7T t [1 - (2 Af t)2]
(eq.2.3)

when t * — and Af

H(f) = < 10,
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An TT TT fpph(t) = Af cos(-^p) cos(-^j—) (eq.2.4)

otherwise. These equations are used in the implementation of the raised- 

cosine digital filters used here as part of the simulations, where the digital 

impulse response of the filter can be readily obtained by appropriate 

sampling of eq. 2.3. As mentioned above, a similar expression can be 

derived for frequency-selective filters with Gaussian skirts

h(t) =2|Sin(2xAp t) + 0 35^^ cos(2,rAp t)e~(O-857r/3 t)2

oo

- 1,445ir(32t sin(2irAp t) V R 1 }cos(2lrW>

k=-1

where (2k-1)l! = 1x3x5...(2k-1) and /3 is the HPBW of the Gaussian filter 

that results when Ap = 0. The third term in this equation makes it rather 

ackward or hard to implement it for fast acquisition of filter coefficients. 

The appendix contains a FORTRAN 77 subroutine that returns the 

coefficients of a bandpass (or low, or highpass) RAC filter for a given set 

of specifications.

2.3 Selection of the Processing Parameters

The selection of the processing parameters, such as filter bandwidth

and number of filters, is a critical step in SSP. The following comments
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refer to the minimization algorithm since this algorithm exhibits an optimal

bandwidth above or below which the performance drops below a peak

value, and this optimal parameter can be ascertained in a reasonable

manner. The polarity thresholding algorithm will show a SNR enhancement

that starts to decline after a maximum which depends on the stochastic

nature of the signal and noise; this makes it hard to establish any sort of

criteria for optimal parameter selection. The frequency-sampling theorem

gives an initial indication of what these parameters might be. If the sine 
1

spectral separation y, where T is the duration of the signal, is the

separation between adjacent filters in the spectral-splitting bank, then the

maximum number of filters that can be used in an FFT implementation

without zero padding is BW*T + 1, where BW is the available signal

bandwidth. In current practice, Gaussian filters are utilized and Karpur[4] 
3 4has established that a Gaussian bandwidth fi of approximately y to y is

required in order to obtain good SNR performance. This is intuitively 

satisfying since a wider bandwidth than that of the sine functions should 

be required to provide sufficient overlap between adjacent filters in order to 

prevent signal-energy losses or leakage. The RAC filter can also be 

expected to require more bandwidth since more energy (80% or more) is 

contained within its half-power bandwidth; however, the raised-cosine 

window complicates matters somewhat since it becomes necessary to 

determine an optimal passband width Ap and transition bandwidth Af. An 

initial estimate concerning the best choice for the passband width is 

suggested in figure 2.2; that is, it is hinted that the passband be made at
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least as wide as the width of the main lobe of the sine functions since it is 

within this lobe that most of the signal energy in each frequency band is 

contained. The best choice of the width of the transition band Af is not as 

clear, except that it is possible to expect that smaller transition bandwidths 

relative to the passband of the filter will produce better performances since 

smaller bandwidths imply more independence (less correlation) between 

neighboring filters in the bank which is a must for post-processors such as 

minimization and polarity thresholding. However, a higher energy 

concentration within the half-power bandwidth (sharper filters) can lead to 

resolution problems with an FFT implementation or long impulse responses 

for a tapped-delay line implementation both of which will invariably lead to 

either degraded performance or increased computational loads or both. 

When the energy concentrated within the filter's half-power bandwidth is 

varied, the optimal passband width can be expected to change in an 

inverse fashion to the choice of transition bandwidth, that is, smaller 

transition bandwidths will force the passband to widen to maintain or 

preserve the optimal half-power bandwidth, whereas wider transition 

bandwidths will force it to shrink. The percentage energy contained within 

the half-power bandwidth of a raised-cosine frequency response is given 

by

Ap + 0.300Af 
Ke Ap + O.375Af } (eq.2.5)
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where it is clear that a 100% energy concentration can only be achieved 

with an abrupt transition bandwidth which would lead to the ideal 

rectangular window. Experiments were conducted to ascertain the best 

possible selection of these parameters, and certain guidelines have been 

established to aid in choosing near optimal values for such parameters. The 

experimentation was carried out in the time domain for the minimization 

processor and a combination of both minimization and polarity thresholding 

algorithms. Its implementation with FFT convolution is straightforward as 

long as resolution problems do not arise.

2.4 Signal-to-Noise Ratio Measurement and Ultrasonic Signal Simulation

In order to evaluate the SNR performance of the raised-cosine filter

bank, as compared to that of Gaussian filters, an adequate simulation of 

the ultrasonic inspection process must be realized as well as an appropiate 

meausre of SNR performance. The unprocessed ultrasonic signals have 

been simulated by contaminating single-target signals obtained from the 

impulse responses of different transducers with digitally generated noise 

(though not perfectly random, computer simulations of random signals are 

suitable enough for this work) colored by the transducer’s impulse 

response. These impulse responses exhibit a single well defined target 

region which is windowed out from the rest of the sequence, where the 

noise or erratic clutter shall be measured. The transducer (target) signal is 

fairly clean or free of noise outside the target region. A random noise signal 

(Gaussian or uniformly distributed noise) is generated with the FORTRAN
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77 code in the appendix, and convolved with the clean target signal in 

order to generate the clutter, and this is then added to the transducer's 

impulse response to produce the unprocessed ultrasonic signal; that is, the 

noisy signal is generated as prescribed by the following equation

r(t) = n(t) ® f(t) + f(t) (eq.2.6)

where r(t) is the resulting unprocessed ultrasonic signal, n(t) is the random 

noise signal and f(t) is the transducer's impulse response. The signal is 

then processed using minimization alone and both minimization and polarity 

thresholding combined, and the signal-to-noise ratio is measured such that 

the fluctuations or erratic variations caused by the noise around the target, 

which tend to make detection hard, are measured outside the target region, 

as dictated by the following equation

firms ~
Signal Peak-to-Peak Amplitude

ffn
(eq.2.7)

where an is the standard deviation of the sequence made up of all points in 

the processed signal outside the target region. This equation is useful and 

meaningful as a performance estimator only when a single target is 

present, since the variations or random fluctuations can be best observed 

in this fashion to ascertain the effectiveness of the filtering schemes used 

in the spectral splitting. When various targets are present, they will create 

significant amounts of fluctuations that will tend to decrease the SNR
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sharply and obscure the relative performances of Gaussian filters and RAC 

filters.

The minimization and polarity thresholding with minimization 

algorithms have been used in order to establish a set of curves describing 

the SNR performance as a function of filter HPBW for different numbers of 

filters. For a particular number of filters, various bandwidths were tested 

and the peak values selected to generate SNR versus filter bank size for 

both Gaussian and RAC filters. A description of the experiments performed 

is given next.

Experiment I

This experiment is intended to establish the effect of a flat-top on

the SNR performance of the SSP technique. The target signal of figure 2.4,

which corresponds to the impulse response of a transducer with available

bandwidth ranging from 1.36 MHz to 2.344 MHz, is used. The signal was

sampled at the rate of 20 MHz and had a duration T of 25.6 microseconds,

thereby generating 512 points or samples. The ideal sine spectral 
1

separation 5f = y = 0.0390625 MHz and the number of optimal filters can

be estimated by N = BW*T+1 = (2.344-1.36)*(25.6) + 1 = 26. This 

equation gives the maximum number of filters that can be used with an 

FFT implementation without increasing the observation interval or zero 

padding, and sometimes more filters may be required to obtain an 

acceptable SNR level. The bandwidth at which the Gaussian filters are 

expected to show a peak performance is around 0.15625 MHz (4/T) and
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the bandwidth of the RAC filters should be even wider. For this initial 

experiment, the full passband width 2Ap of the RAC filter has been made 

about half that of the transition band Af. This concentrates roughly 87% of 

the energy of the RAC filter within its half-power bandwidth, and it is 

expected that Ap « 0.039 MHz and Af ~ 0.156 MHz for a HPBW of 

0.1915 MHz (see eq. 2.5). The half-power bandwidth of the RAC filter as a 

function of Ap (half) and transition bandwidth Af is given by

0C = 2( Ap + 0.364 Af) (eq.2.8)

The target signal is used to generate the noisy signal as per equation 2.6, 

using randomly distributed noise, and the result is the signal of figure 2.5. 

This signal shows only moderate levels of noise and the target is still 

visually recognizable.
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Fig. 2.4 Target Signal of Experiment I.



29

Fig. 2.5 Unprocessed Signal of Experiment I.

This signal was processed with filter banks of different lengths 

ranging from two to sixty filters using the minimization algorithm alone and 

both polarity thresholding and minimization combined for a range of 

bandwidths. The result of these experiments can be seen in figures 2.6 and 

2.7 where the graphs of output SNR versus half-power bandwidth for 

different numbers of filters are shown. Figure 2.8 shows the output SNR 

versus the number of filters used and reflects the advantage, in this case, 

of the flat-top filter over that of the Gaussian. These curves were obtained 

by selecting the peaks in figures 2.6 and 2.7 for different numbers of 

filters. It can be seen that a given SNR can be achieved with a relatively 

smaller filter bank if flat-top filters are used. For instance, if 26 filters are
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Half-Power Bandwidth

Fig. 2.6 SNR vs. Half-Power Bandwidth Curves for RAC Filters and 
Minimization.

Half-Power Bandwidth

Fig. 2.7 SNR vs. Half-Power Bandwidth Curves for Gaussian Filters and 
Minimization.
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Fig. 2.8 Performance Levels vs. Number of Filters with Minimization.

selected for the filter bank for an SNR output of about 71 with Gaussian 

filters, a similar performance could be obtained with 18 flat-top RAC filters. 

This may appear to be a contradiction since the performance of the 

minimization algorithm depends only on the number of independent signals 

obtained by the decomposition and not on the decomposition itself[2]. 

However, this is not a new decomposition, but rather a modification to the 

conventional one which does not severely suppress signal frequencies 

within each band. Figure 2.9 shows the output of the minimization 

processor with 26 Gaussian filters at an optimal bandwidth of 0.175 MHz. 

The output SNR is about 71, which is lower, by far, than that of the flat- 

top filter, which was measured at 107 and whose output is seen in figure 

2.10.



32

Time Index

Fig. 2.9 Signal after Processing with 26 Gaussian Filters and Minimization.

Time Index

Fig. 2.10 Signal after Processing with 26 RAC Filters and Minimization.
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Figure 2.11 shows the output of the minimization processor with 18 

RAC filters at an optimal bandwidth of 0.2339 MHz. The width of the full 

passband is 0.0925 MHz (or Ap = 0.04625 MHz). This value is only 

slightly greater than the optimal separation 5f, and the transition bandwidth 

Af is 0.19425 MHz, which is roughly five times as big as <5f. This is in 

accordance with the initial theoretical estimates. A similar experiment was 

conducted with this transducer signal using zero-mean Gaussian noise, and 

even though the SNR levels achieved were lower than those achieved with 

uniformly distributed random noise, similar SNR versus half-power 

bandwidth and number of filters cuvers were obtained. Figures 2.12, 2. 13

Fig. 2.11 Signal after Processing with 18 RAC Filters and Minimization.
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Time Index

cn z cc

Fig. 2.12 Noisy Ultrasonic Signal Derived from the Signal in Fig.2.4 with 
Gaussian Noise.

Number of Filters

Fig. 2.13 Performance vs. Number of Filters for Signal of Fig. 2.12.
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show the resulting simulated ultrasonic signal and a plot of output SNR 

versus number of filters respectively.

Experiment II

This experiment has the objective of showing the effect of 

increasing the energy concentrated within the half-power bandwidth of 

each filter. The unprocessed signal of figure 2.5 is used, and this time the 

energy concentrated within the passband of the RAC filters is about 91% 

(Af is about 2 times Ap). The results of the experimentation are represented 

in figure 2.14, where the curves corresponding to SNR versus half-power 

bandwidth for 26 filters using minimization are shown for both 87% energy 

concentration and 91 % energy concentration within the bandwidths of the

Fig. 2.14 Curves Depicting Effects of Energy Concentration on Output 
SNR.
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filters. The curve corresponding to 26 Gaussian filters is also shown as a 

reference. This case reveals that a higher SNR can be obtained using a 

higher energy content. Note that the half-power bandwidth at which the 

peak occurs does not shift drastically.

Experiment III

This experiment makes use, once more, of the signal of figure 2.4 

and has as an objective to highlight the possible perils that exist in using a 

flat-top filter when high levels of noise are present in the received signal. 

The signal to be processed is shown in figure 2.15. This signal exhibits 

considerably high levels of noise. It has been processed using 26 filters 

with flat tops and without flat tops for a range of bandwidths. The results 

are illustrated in figure 2.16, where it is evident that the field engineer

Fig. 2.15 Unprocessed Ultrasonic Signal of Experiment III.
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Fig. 2.16 Curves Depicting the Effect of the Flat-Top for very Noisy 
Signals.

must be cautious about using flat-tops. In general, flat-top filters should 

not be employed when high levels of noise are expected or observed on a 

sample signal.

Experiment IV

The transducer signal utilized in this experiment can be seen in figure 

2.17. This signal had a duration of 2.56 microseconds and was 

contaminated with uniformly distributed noise, as explained, above with 

the resulting signal as depicted in figure 2.18. The available bandwidth 

ranges from 1.7578 MHz to 5.664 MHz, and the sampling rate was 100 

MHz. The target region takes up a rather wide range within the 256-point 

signal [45,178]. The unprocessed or noisy signal exhibits rather moderate 

levels of distortion, and the target is still visible. The energy concentrated
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Fig. 2.17 Target Signal Corresponding to Experiment IV.

Time Index

Fig. 2.18 Unprocessed Signal of Experiment IV.
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within the half-power bandwidth of the RAC filters has been fixed roughly 

at 89.4% by choosing the transition bandwidth 1.5 times wider than the 

passband of the filters. The ideal spectral separation 5f is 0.39 MHz and 

the Gaussian filters ought to show an optimal bandwidth between 1.17 

MHz and 1.56 MHz. Based on the choice of energy concentration, Ap ~ <5f 

= 0.39 MHz and Af should be in the neighborhood of 1.17 MHz for a half

power bandwidth of about 1.632 MHz. The optimal number of filters is 

estimated at 11. A set of curves similar to those of experiment I were 

developed for this case, and from these, SNR versus number of filters 

curves were obtained, as shown in figures 2.19 and 2.20 for both 

minimization alone and polarity and minimization combined. These figures 

reveal that there appears to be no significant advantage to using more

Fig. 2.19 SNR Performance vs. Number of Filters with Minimization Alone 
for the Signal of Experiment IV.
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filters than the optimal number (11) for this case since both curves 

(Gaussian and raised-cosine) seem to saturate rather quickly. It is, 

however, clear that the flat-top filters give better performance for any 

particular number of filters and a certain number of such filters could be 

dropped with confidence without compromising performance. For instance, 

figures 2.21, 2.22 and 2.23 show the output signal after processing with 

12 Gaussian, 12 RAC filters and finally with 8 RAC filters, respectively. It 

is obvious that the signal of figure 2.23 has roughly the same output SNR 

as that of figure 2.21 except that the signal in figure 2.21 was processed 

with a smaller bank. This could lead to great savings in processing time 

especially when thousands of signals like this have to be processed, as is 

the case in the processing of B and C scans. In this experiment, Ap was 

found to be about 0.36 MHz and the transition bandwidth is about 1.0875

Fig. 2.20 SNR Performance vs. Number of Filters with Polarity/Minimization 
for the Signal of Experiment IV.
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Time Index

Fig. 2.21 Signal of Experiment IV after Minimization (12 Gaussian Filters).

Time Index

Fig. 2.22 Signal of Experiment IV after Minimization (12 RAC Filters).
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Time Index

Fig. 2.23 Signal of Experiment IV after Minimization (8 RAC Filters).

MHz for the RAC filters, leading to a total half-power bandwidth of 1.52 

MHz. These values are in close agreement with the theoretical estimates. 

The optimal Gaussian bandwidth was found to be about 1.25 MHz.



CHAPTER III

REALIZATION OF THE SPLIT SPECTRUM TECHNIQUE FOR ULTRASONIC

NDE WITH TAPPED-DELAY LINES

3.1 Introduction

This chapter explores the implementation of the bandpass filtering 

phase of the split spectrum technique with tapped-delay lines thus 

departing from the more conventional FFT-based approach. Here, a filtering 

scheme based on a two-branch structure of cascaded subfilters of lower 

complexity is advanced towards the implementation of the very narrow- 

band bandpass filters which are typical of SSP. This approach is shown to 

exhibit a lower multiply count (up to 70%) than that of the direct approach 

with Parks/McClellan[14] at the expense of a somewhat longer network 

delay. In chapter II, it was shown that the bandpass filtering stage of the 

split spectrum technique can be implemented with flat-top filters and that it 

was possible to surpass the Gaussian-filter bank in SNR performance. The 

developments of this chapter are expressed in terms of generic flap-top 

filters of the type that is obtained with algorithms such as that in [14], but 

its validity extends to other shapes like raised-cosine (RAC) or Gaussian as 

well. It is shown that excellent SNRs and computational efficiency can be 

achieved. Experimental results from computer simulations are presented.

43
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3.2 Linear Phase FIR Digital Filters and Computational Complexity Issues

Linear phase finite-impulse response (FIR) filters have very desirable

properties such as guaranteed stability, no limit cycles problems, etc. 

However, their appeal is severely limited by the great lengths of the 

impulse responses needed in certain applications which may lead to very 

high computational loads. Usually, a filter is specified in the frequency 

domain analytically and an approximation process (analytical or numerical) 

is carried out in order to determine the impulse response coefficients, and 

the length of the impulse response bears a direct effect on the goodness of 

the approximation to the desired frequency response. Filter frequency 

responses with sharp transitions require long impulse response sequences. 

The most efficient known method of FIR linear-phase filter design is a 

numerical Chebyshev approximation technique based on the Remez 

exchange algorithm which is optimal in the minimax sensed 4]; that is, it 

implements the filter with the least number of coefficients for a specific 

error in the approximation. Figure 3.1 shows the relationship of the impulse 

response length versus transition bandwidth (region between passband and 

stopband) of the filter for narrow-band filters with error 6 = 0.01 (-40dB) in 

the stopband and passband, when using this algorithm. This graph reveals 

the reasons why very sharp filters are usually not implemented with 

tapped-delay lines.

Various authors have studied the problem of efficient FIR-filter 

implementation [9-13]. Most proposed implementations are particularly well
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Fig. 3.1 Digital Filter Complexity by Numerical Approximation Approach 
(Parks/McClellan) for Narrow-Band Digital Filters.

suited for lowpass and highpass filters and, to a limited extent, for 

bandpass filters. In the bandpass cases, the most limiting factors are the 

center frequency and the width of the passband. In split spectrum 

processing, the bandpass filtering scheme must allow easy centering of the 

frequency response of the filter. The split spectrum technique requires, in 

most cases, very narrow-band filters that would demand rather long 

impulse responses making it prohibitive to implement the technique in the 

time domain. A direct implementation of SSP bandpass-filtering banks 

could be considered, possibly in cases in which the sampling frequency is 

very close to the Nyquist's sampling rate (roughly twice the maximum 

frequency component of the signal); however, even then, in many cases



46

the resulting impulse response may be too long, specially when very sharp 

filters and algorithms such as polarity thresholding are used.

3.3 Computationally Efficient Bandpass Filter Banks for Split Spectrum 

Processing

As indicated above, the main disadvantage of SSP lies in the very 

long processing times required by the technique. When the convolution 

process involved in the bandpass-filtering stage is performed in the 

frequency domain with the FFT, the processing time depends primarily on 

the number of filters used to split the spectrum, whereas, when 

convolution is performed in the time domain with tapped-delay lines, both 

the number of filters as well as the number of coefficients required to 

implement each filter become an issue. In the implementation of SSP, a 

time-domain filtering scheme must meet certain conditions. One of these is 

that the algorithm must be simple to make it suitable to VLSI 

implementation for real-time performance. This condition may appear 

superficial; however, DSP chips are becoming very pervasive and a low 

cost implementation (small program code) of this technique is appealing. 

Another condition is that it must allow easy tuning of the center frequency 

of the filter, that is, any filter in the bank must be easily produced once a 

center frequency has been specified; in this way there may be no need to 

load all filter coefficients initially. Finally, it must reduce the multiply count 

considerably. Current processor speeds could not support the bandwidths 

SSP requires for true real-time processing; however, in the near future



47

faster chips may be available that, when combined with highly efficient 

techniques of digital filter design may make true real-time SSP a reality.

Aussel [2] has proposed a method for the implementation of SSP 

with tapped-delay lines in which the filter bank is made up of unequally 

spaced Gaussian filters of different HPBWs. As the center frequency 

increases, so does the HPBW of the filter and the separation between 

adjacent filters. This makes the filters placed at the higher frequencies 

smoother and easier to implement. This approach may be very efficient for 

relatively wider filters; however, for very narrow-band filters, of the type 

used with polarity thresholding, this method may not be viable. Also, he 

finds that the number of filters needed is the same as with the 

conventional approach.

3.3.1 Graphical Development

The complexity or length of a digital FIR filter designed by the 

Parks/McClellan approach[14] in a direct manner can be estimated by

N 19 - 20log 6
27Af (eq.3.1)

This equation holds true for very narrow-band filters where the stop band 

error 5 and the relative (to the sampling rate) transition bandwidth Af 

govern the length of the filter[16]. A graph of this equation is shown in 

figure 3.1. It is possible to design a digital filter in an indirect manner that 

would result in a filtering structure involving various filters of lower
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complexity with a net lower-multiply count. This has been demonstrated by 

various authors! 10-13] primarily for lowpass and highpass filters.

A similar approach can be taken towards the design of very-narrow 

bandpass filters that can achieve a net lower-multiply count of up to 70% 

compared to the direct approach. Consider, as a point of departure, the 

design of a bandpass filter centered at f0 with transition bandwidth Af and

passband width Ap as described in figure 3.2. AH frequencies or frequency 

quantities shall be relative to the sampling frequency, that is, all quantities 

are normalized with respect to the sampling frequency. As presented, this 

filter has a very small Af which would lead to a long impulse responses as 

per equation 3.1. The design of this bandpass filter can be started from a 

lowpass filter with a much smoother transition bandwidth as shown in 

figure 3.3. Since the design is based upon this filter, it shall be called the 

base filter. As shown in this picture, this lowpass filter has a transition 

bandwidth and passband width I times wider than that of the desired 

bandpass filter. Therefore, the length of the impulse response required to 

implement this filter is I times smaller, as indicated by equation 3.1. If the 

frequency response of this base lowpass filter were to be compressed or 

frequency scaled by a factor I, the frequency response of figure 3.4 would

result. This response is that of a multiple-passband filter with the
1 kpassbands being located at integer multiples of y ,that is, at y for k = 0,

±1, ±2, ±3,... The effect of this operation on the impulse response of 

the filter is illustrated in figure 3.5. Here, figure 3.5a represents the impulse 

response of a sample base lowpass filter. Figure 3.5b shows the impulse
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SAMPLE IMPULSE RESPONSES

Fig. 3.5a Sample Impulse Response of Base Filter.
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response of the base filter after it is been frequency scaled by a factor of I 

= 3. The effect is to simply stretch the impulse response by inserting I - 

1 zero samples (in this case 2 zero samples) between all non-zero samples. 

This is a well known occurrence, compression in the frequency domain 

leads to expansion in the time domain; however, in the digital domain the 

stretching does not increase the number of non-zero samples, that is, the 

number of non-zero coefficients in the stretched impulse response is the 

same as that of the impulse response of the base filter. In the frequency- 

scaled base filter, all passbands are identical in shape to those of the 

desired bandpass filter. From this point, there is more than one way to 

arrive at the desired bandpass filter. One is to cascade a lowpass filter with 

the frequency-scaled base filter such that the center passband is retained 

and all others are masked out, as shown in figure 3.6, to produce the

lowpass filter of figure 3.7. This filter's impulse response can then be 

modulated by a cosine sequence cos(2irfon) to produce the desired 

bandpass filter. The modulation process is depicted in detail in figures 

3.8a, 3.8b, where right and left shifted frequency responses are illustrated 

which are properly combined to yield the final bandpass filter of fig. 3.8c. 

However, it is obvious that this approach is equivalent to designing the 

filter in a direct fashion, and therefore the computational complexity would 

not be improved, and no effective advantage is achieved. This case does, 

however, serve as an illustration of the basic principle to be employed here 

in designing bandpass filters. This way to produce a bandpass filter from a 

lowpass one by frequency shifting or modulation with complex
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Fig. 3.6 Cascade of Lowpass Filter and Frequency 
Scaled Base Filter.

Fig. 3.7 Resulting Lowpass Filter.
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Fig. 3.8a Right-shifted Version of H|p(f) of Fig. 3.7 
j2T nfoh (n)e 

Ip HJp(f-fo)

h, (n)e’i2Tnf0 
ip H,p(f*fo)

Fig. 3.8c Addition of Responses in a and b. Result is 
Equivalent to Modulation by cos(2rnfo).
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exponentials is of central importance since it forms the basis for the 

formulation of the design procedure presented here. Fundamental to this is 

the modulation or frequency shifting theorem which simply states that, if

h(n) <=> H(f)

then

h(n)ei2’rfon <=> H(f - f0)

that is, multiplication or modulation of the impulse response h(n) of a filter 

by a complex exponential ei^fo11 simply shifts the frequency response by 

f0. An application of this theorem has already been seen and detailed in

figure 3.8. This theorem is now used to formulate an efficient procedure to 

design a bandpass filter departing from the filter of figure 3.4 or frequency- 

scaled base filter.

3.3.2 Two-Branch Cascaded Filter Structure

A bandpass filter can be easily designed from the frequency-scaled

base filter in figure 3.4. A right and a left shifted frequency-response 

versions of this filter can be obtained by modulating its impulse response 

by the appropriate complex exponentials. Figures 3.9a and 3.9b show both 

frequency-shifted versions. These frequency responses correspond to those 

of filters which are complex conjugates of one another and which are 

asymmetric about zero. If a lowpass filter is designed with a passband 

wide enough to encompass the entire center passband of the frequency- 

scaled base filter and mask out all other passbands, as shown in figure
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H (f-fo)
(3_

\ •

-2/1 + fo -1/1 * fo 0 f'□ 1/1 + fo

Fig. 3.9a Right-shifted Frequency-Scaled Base Filter.

j2Tfo(n-NM
h (n)e H (f-fo) 

0

Fig. 3.9b Left-shifted Frequency-Scaled Base Filter.

, x -j2Tfo(n-N)l h (n)e < » H (f+fo) 
X3
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3.10a, and its impulse response modulated or shifted in the same fashion 

as that of the frequency-scaled base filter then the filters of figures 3.10b 

and 3.10c will result. The filters of figures 3.9a and 3.10b can be 

cascaded together to generate the filter of figure 3.11a. That is to say, the 

frequency right-shifted version of the frequency-scaled base filter is 

cascaded with the frequency right-shifted version of the lowpass filter or 

masking filter of figure 3.10b. The result is the right-shifted frequency 

response of figure 3.11a, which simply represents an asymmetric bandpass 

complex filter with a passband centered at fo. A similar filter results by 

cascading the frequency left-shifted versions of the frequency-scaled base 

filter and the masking filter as shown in figure 3.11b . These two cascades 

of filters can be combined or added together to yield the desired bandpass 

filter of figure 3.2. The total process to design the bandpass filter is then 

condensed into a filtering structure composed of two branches and four 

subfilters as shown in figure 3.12. The top branch would correspond to the 

net filter of figure 3.11a and the bottom branch to the net filter of figure 

3.11b. This overall filter structure generates the desired bandpass filter. A 

more formal presentation of this implementation is now given such that the 

design can be readily undertaken.

3.3.3 Formalization of the Design Procedure

The design procedure described above in a graphical fashion,

indicates that the design involves two basic lowpass filters. One is a 

lowpass filter that have been called the base filter and from which the

desired shape is derived by frequency-scaling or compression. This filter is
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Fig. 3.10a Frequency-Scaled Base Filter and Masking 
Filter (Dashed Line).

H (f)
ML

\

-1/2 -fo 0 fo 1/2 f
Fig. 3.10b Right-shifted Version of Masking Filter.

H (f) 
AM

-1/2 -fo 0 fo 1/2 f

Fig. 3.10c Left-shifted Version of Masking Filter.
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Fig. 3.11a Result of Cascade of Filters in Figures 3.9a 
and 3.10b. This is one of the Branches.

Fig. 3.11b Result of Cascade of Filters in Figures 3.9b 
and 3.10c. This is the other Branch.

Fig. 3.11 The Result from Adding the above Responses is 
the desired Bandpass Filter shown in Fig. 3.8c.
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described as having a much smoother transition bandwidth than that of the 

desired bandpass filter and therefore as requiring a much shorter impulse 

response for its implementation. Upon being frequency compressed, the 

shape of each passband is identical to the shape of the passband of the 

desired bandpass filter, except that this frequency-scaled filter is a 

multiple-band filter. Two complex conjugate filters are derived from this

frequency-scaled base filter, one is frequency right-shifted and the other 

left shifted to f0 and -f0 respectively. The other basic lowpass filter 

required here is a masking filter from which two complex conjugate filters

are also derived, one has a right-shifted frequency response and the other 

a left-shifted one to f0 and -f0 respectively. It is seen here that the

function of the masking filter is to remove or mask out all extra passbands 

and to retain only those centered at f0. Two series connections are then

formed, one is a cascade of the right-shifted frequency-response filters and 

the other one the left-shifted frequency-response filters corresponding to 

the base and masking filters and then these two branches are added to 

form the desired bandpass filter. The net result is shown in figure 3.12.

If h^(n) represents the impulse response of the base filter of figure 

3.3, then the impulse response hg(n) of the frequency-scaled base filter in 

figure 3.4 is given by

h0(y) for n = 0, I, 21, 3I...... (N^g - 1)

(eq.3.2)
0, otherwise
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where I is the scaling factor and is the length of the impulse response

of the base filter. This expression indicates that the number of non-zero 

coefficients in the frequency-scaled base filter is the same as that of the 

impulse response of the original base filter. The Z-transform is the 

mathematical tool commonly used to describe digital filters, and it shall be 

used here for such purpose. The Z-transform expression corresponding to 

the base filter is

N/3- 1
H^(z) = £ h0<n>z-n (eq.3.3)

n = 0

and that of the frequency-scaled base filter is given by

N0- 1
H^(z) = £ h0<n)z~nl (eq.3.4)

n = 0

The Z-transforms of the right-shifted and left-shifted frequency-response 

frequency-scaled base filters are given by the two expressions

N0- 1
Hgr<z) = Y, hj3(n)ei [2*<n ~ N>lf0]z—nl (eq.3.5a)

n = 0

and
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N/3- 1
H^(z) = E h0(n)e-j t2^n - N)lf0]z —nl (eq.3.5b)

n = 0

Ntf - 1
respectively. N is equal to (——) and not necessarily an integer.

Likewise, similar expressions can be obtained for the masking filter as 

follows

1
Ha£(2) = E hM(n)ei [2,r(n ~ M)f°lz_n (eq.3.6a)

n = 0

and

Ng - 1
H^j(z) = hJLt(n)e~i (27r(n - M)f0]z-n (eq.3.6b)

n = 0

for the right-shifted and left-shifted frequency-response filters respectively.

hjjn) is the impulse response of the masking filter and is its length and 
N„ - 1

M is equal to {—^—N and M are s’mP*Y the P°ints about which h^(n) 

and h^n) are symmetric. Figure 3.13 summarizes the transform pairs for all 

four subfilters involved. The transfer function of the overall structure can

be found as follows

H(f) = (H^i + j H0j)(HMr| + j H^j) + (H^i - j H0j)(Hgr| - j Hgi)
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which reduces to

H(f) = 2*(H/3r,*HMr, -

This last expression allows the realization of the filtering structure with 

purely real arithmetic. Here, H^rj and H^rj are the real parts, and H^j and 

H^j are the imaginary parts corresponding to H^(z) (Hgj(z)) and H^(z) 

(H^j(z)) described in equations 3.5 and 3.6 respectively (it should be

obvious that the right and left-shifted versions of the filters are complex 

conjugates of each other). These real-valued impulse responses are all 

summarized in figure 3.14 and the corresponding Z-transform expressions

are

N/3- 1
Hfi£l(z) = E h/3(n) cos[2irfo<n - N)l] z“nl (eq.3.7a)

n = 0

N/J - 1
Hgj(z) = E hjS<n) sin[2lrfo<n - N)l] z~nl (eq.3.7b)

n = 0

Ng - 1
H^fz) = hM(n) cos[2irfo(n - M)] z“n (eq.3.7c)

n = 0

and

1
H^j(z) = £ hM(n) sin[2Tf0(n - M)] z“n

n = 0
(eq.3.7d)
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These equations, in essence, lead to the implementation of the structure of 

figure 3.12 in a very straightforward manner. This is discussed next.

3.3.4 Implementation of the Two-Branch Filtering Structure

The equation that defines convolution with tapped-delay lines is

given by

N - 1
y(n) = £ h(k) x(n - k) (eq.3.8)

k = 0

where h(n) is the impulse response of the filter, x(n) is the input to the

filter and y(n) is the output sequence and N is the length of the impulse

response. If a filter is of the linear-phase type, h(n) is symmetric about 
N - 1M= (—-—). A practical implementation of equation 3.8 is shown in figure

3.15 for a linear-phase filter with five samples. Advantage can be taken of 

the symmetry of the impulse response, as shown in figure 3.16, to reduce 

the multiply count by roughly 50 percent. The structure in figure 3.12 can 

be implemented in two sections with each section mechanized in a 

combined-delay network in which top and bottom branches are integrated 

to expedite the processing. The first section is implemented as shown in 

figure 3.17 in a direct fashion using the same scheme as that of figure 

3.16, except that, the two filters at the input of the system are 

implemented simultaneously or made to share the same set of delay 

elements. The second section is implemented in a somewhat different 

manner out of convenience. This section has two different input streams 

and one output stream. For this, a different implementation of equation 3.8
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is considered which is equivalent to that of figure 3.15, and which can be 

better understood by looking at the way each individual output sample is 

computed from equation 3.8 :

y(0) = h(O)x(O)

y(1) = h(0)x{1) + h(1)x(0)

y(2) = h(0)x(2) + h(1)x(1) + h(2)x<0)

y(3) = h(0)x(3) +h(1)x(2) + h(2)x(1) + h(3)x{0)

y(4) = h(0)x(4) + h(1)x(3) + h(2)x(2) + h(3)x(1) +h(4)x<0)

The mechanization of the process represented in the above equations 

results in the structure of figure 3.18. Figure 3.19 shows the 

implementation of one the filters and figure 3.20 shows the implementation 

of both using the same set of delays. It is important to note that this 

implementation is adopted for the second section of the structure in order 

to combine the two branches and make them share the same set of delays; 

in this fashion, the entire structure is a combined-delay structure which 

roughly halves the delay of the signal through the net filter. These two 

sections can be easily translated into a very simple program. The appendix
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shows the FORTRAN-77 code that implements the bandpass filter structure 

of figure 3.12.

3.3.5 Approximation Error Considerations

If *^xp and 6^p are the passband approximation errors of the masking 

and base filters respectively and ^s and &ps the corresponding errors in 

the stopbands of these filters, then the worst case error the designer must 

face is given by

e = typ + S^p + «/3p*SMP + 6gS + 5gs*fyp

or desregarding the smallest or product terms

s ~ "I" fyxp "l” ^/xs (eq* 3.9,

where the absence of the error in the stopband of the base filter is noted. 

This error can be made as high as the desired error, whereas all the other 

error specifications in equation 3.9 could be made approximately half the 

desired errors to roughly achieve the needed specifications; that is, if 5 is

the desired error in the approximation, then the subfilter errors are selected 

such that bpp = 6^p = = 6/2 and bps = 6 . As shown in the sample

designs to be considered ahead, this basic rule of thumb shall almost 

always work very well.

3.3.6 Computational Complexity Considerations

It is quite evident from the presentation above that the 

computational complexity of the two-branch filtering structure (fig. 3.12)
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depends on the complexity of the two lowpass filters: the base filter and 

the masking filter, that is, the length of the impulse responses of these 

filters. The total number of multiplies per output sample for this structure is 

roughly given by

TM = (eq. 3.10)

and by using equation 3.1, this expression can be written as

a aTM = Af*l 1—2*(Af + Ap)*l (eq.3.11)

A/x =

where a is given by (——ancj the transition bandwidth of the

masking filter as indicated in the second term of the above equation is 

1 - 2*(Af + Ap)*l (eq.3.12)

It is important to select the scaling factor I such that the number of 

multiplies in equation 3.11 is reduced or minimized. This optimization leads

to

VZf - 2*(Ap + Af)
Af - 4*(Ap +Af)2

(eq.3.13)

and for very narrow-band filters with no flat top (Ap = 0), this equation 

reduces to

(eq. 3.14)
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This equation allows to estimate the interpolating factor, which can then 

be used to design the base lowpass filter. Figure 3.21a shows a graph of 

equation 3.1 and equation 3.11, with I given by equation 3.13; or number 

of unique impulse response samples versus width of transition band for a 

stopband error 6 = 0.01 and Ap = 0. Figure 3.21b depicts the scaling 

factor as a function of the relative transition bandwidth and it shows that 

the experimental data is in close agreement with the theory. It is apparent 

that this design approach is well suited to the implementation of very 

narrow-band bandpass filters, specially those whose relative transition

Relative Transition Bandwidth

Fig. 3.21a Filter Complexity Curves for Direct and Indirect Methods.
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Fig. 3.21b Scaling Factor vs. Relative Transition Bandwidth.

bandwidths are such that Af < < 0.04, which are very typical of split 

spectrum processing with polarity thresholding. For transition bandwidths 

wider than this, the direct application of Parks/McClellan to the design of 

the band pass filter may be preferable.

3.3.7 The Design Procedure

The steps towards the design of the bandpass filter by the two- 

branch structure is very simple and can be summarized as follows:

I. From the given specifications (Ap and Af), the scaling or interpolating 

factor is determined by equation 3.13 or 3.14.
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II. The Base Filter is designed with a transition bandwidth of l*Af and a 

passband width of ,*Ap.

III. The Masking Filter is designed with passband cut-off at fp = Ap + Af
and a stopband cut-off at fstp = ------ * + • . The width of the

1
transition band of this filter is Au = 7-----zrr-—-—777. Note that the

passband of this filter can be made zero for the design of a very narrow- 

band filter. The basic filters can be efficiently designed with the program in 

[14]. The specifications for the errors can be given following the guidelines 

of equation 3.9. This very simple procedure is used next to experimentally 

study the numerical complexity of the structure of figure 3.12.

3.3.8 Experimental Verification

Following are a set of sample designs intended to show the 

application of the above design procedure and to demonstrate the 

advantages or gains of this method over the direct application of the 

Parks/McClellan program in [14].

Sample Design I

The specifications for this filter are as follows : the center frequency 

of the filter is 0.25. The width of the passband Ap = 0.0, and the 

transition bandwidth Af = 0.005. The desired passband and stopband error 

is 6 = 0.01 (-40dB). From equation 3.14, the optimal scaling factor can be 

estimated and is found to be 12. The stopband cut-off frequency of the 

base filter is then 0.06 or 12 times 0.005, and the passband and stopband
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cut-off frequencies of the masking filter 0.005 and 0.078 respectively. The 

error in the stopband of the base filter is set to 0.01 and the remaining 

errors are set to 0.005 to design this bandpass filter. The program in [14] 

is used in the design of these filters. Figures 3.22a and 3.22b show the 

resulting frequency response of the filter. The masking filter required 30 

taps or multipliers for its implementation, whereas the base filter needed 29 

leading to roughly 59 multiplies per output sample. The direct approach 

would have required about 160 multiplies per output sample. This 

represents a savings of about 63%. The specifications are met or 

surpassed by following this approach; however, it may be necessary to 

play with the errors in the approximation to get the best possible or lowest 

complexity filter.

Sample Design II

This time a bandpass filter with a transition bandwidth Af of 0.02 

and a passband width of Ap = 0.0 and desired approximation error of 0.01 

in both passband and stopband is desired. The optimal scaling factor is 

readily estimated at I = 5.5 by equation 3.13 and is rounded up to 6. The 

stopband cut-off frequency of the base filter is then 6 times 0.02 or 0.12 

and the passband and stopband cut-off frequencies of the masking filter 

are 0.02 and 0.146. The errors of the individual filters are selected as 

before to meet the given specifications. This gives a base filter requiring 15 

multipliers and a masking filter of 20 multipliers for a total multiply count of 

35 per output sample. The resulting filter is shown in figures 3.23a and 

3.23b. If the scaling factor had been selected to be 5, the
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e

i 0.4 
t

Complexity = 59 mult/sample

P/MC = 160 mult/sample

Af = 0.005

6 = 0.01 (-40dB)

i i i i i i>........ -i i i—i—i—i—i , >.... i—i—i-.-. i—i—i—■—» ■ ..I—

0 0.1 0.2 0.3 0.4 0.5

Relative Frequency

Fig. 3.22a Frequency Response for Very Narrow BP Filter. Sample Design I.

Relative Frequency

Fig. 3.22b Log Magnitude Frequency Response of Filter. Sample Design I.
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overall multiply count would have been only 31. This shows that the 

equations above only give approximate optimal values and that some trail 

and error work may be needed. The direct approach would need 43 

multiplies per output sample or 28% more.

Sample Design III

For this particular design, a transition bandwidth Af = 0.04, very 

close to the crossover frequency in figure 3.21, has been selected. As 

before, the passband has been set to zero (Ap = 0.0) and the 

approximation error 6 is set to 0.01 (~40dB). With these specifications, the 

interpolating factor turns out to be 4 and the base and masking filters have 

lengths of 11 and 10 respectively, for a net filter of 21 multiplies per 

output sample. The direct approach would have required 22 multiplies per 

output sample which makes the two approaches roughly the same. This 

filter’s amplitude and log magnitude frequency responses are shown in 

figure 3.24. Other sample designs are shown in figures 3.25, 3.26 and 

3.27. These filters are rather sharp; the one in figure 3.25 requires about 

76% more multiplication per output sample than the indirect approach, the 

one in figure 3.26 requires 62.5% more and the one in figure 3.27 42% 

more. These last three filters are the same, though they may appear 

different, only the sampling rates differ. The filter of fig. 3.26 has a 

sampling rate half as high as that of the filter of fig. 3.25, and the filter of 

fig. 3.27 has a sampling rate one fourth as high. Note that the complexities 

of the filters are not in inverse proportion to the sampling rates.
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Relative Frequency

Fig. 3.23a Amplitude Frequency Response of Filter of Sample Design II.

Fig. 3.23b Log Magnitude Response of Filter of Sample Design II.
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Relative Frequency

Figure 3.24a Amplitude Frequency Response of Filter of Sample Design III.

Relative Frequency

Figure 3.24b Log Magnitude Response of Filter of Sample Design III.
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Fig. 3.25a Amplitude Frequency Response of a Sample Filter.

Relative Frequency

Fig. 3.25b Log Magnitude Frequency Response of a Sample Filter.
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Fig. 3.26a Amplitude Frequency Response of a Sample Filter.

Relative Frequency

Fig. 3.26b Log Magnitude Frequency Response of a Sample Filter.
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Fig. 3.27a Amplitude Frequency Response of a Sample Filter.

Relative Frequency

Fig. 3.27b Log Magnitude Frequency Response of a Sample Filter.
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Designing filters with relative transition bandwidths greater than 

0.04 in the indirect fashion presented here will not provide a computational 

advantage over the direct approach. For instance, a filter with a relative 

transition bandwidth of 0.06 shall require only 15 multiplies per output 

sample with the Parks/McClellan program[14], whereas a similar filter 

designed with the structure above would require 18. In the design 

examples above, the filters exhibited no flat tops (Ap = 0), as in the 

conventional SSP Gaussian filters. Increasing the size of the passband 

(assuming a fixed sharp Af) will simply make the net filter computationally 

more complex since a non-zero passband will take up some of the space 

available to the relative transition bandwidths of the base and masking 

filters; that is, as the filter becomes wider, its complexity approaches that 

of the direct approach filter. However, as long as the relative transition 

bandwidth of the desired bandpass filter remains below 0.04, as shown in 

figure 3.21, and its passband width is small enough, the bandpass filter 

design approach of the previous section shall provide a simpler filter. To 

estimate the narrowness of the desired filter, compute the scaling or 

interpolating factor and make sure that it is, at least, as great as four. 

Consider now the design of other filters which exhibit a flat-top passband.

Sample Design IV

This filter shall have a passband with Ap = 0.0023125 and a 

transition bandwidth Af = 0.0086875. The desired error 6 = 0.01 (-40dB) 

in both bands. The scaling factor is 8; the resulting base filter has 31 taps, 

and the masking filter has 18 for a total count of 49 taps. The direct
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approach would have required about 130 distinct multipliers (62% more). 

Figures 3.28 display both responses for this particular filter.

Sample Design V

The specifications are as follows : Ap = 0.0025, Af = 0.0065 and 6 

= 0.01 in both bands. The result is the filter of figure 3.29 with a total 

multiply count of 66 multiplications per output sample (Base 35 taps/ Mask 

31 taps) as opposed to 130 for the direct approach (49% more).

Sample Design VI

The specs are as follows : Ap = 0.005, Af = 0.01 and 5 = 0.01 in 

both bands. The result is the filter of figures 3.30 with a total multiply 

count of 52 multiplications per output sample (Base 34 taps and Mask 18
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Fig. 3.28a Amplitude Frequency Response of Filter of Sample Design IV.
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Fig. 3.28b Log Magnitude Response of Filter of Sample Design IV.

taps), as opposed to 90 with the direct approach (42 % more).

Other filters with flat tops are shown in figures 3.31 and 3.32 and in 

the first instance, Parks/McClellan takes about 45% more, whereas in the 

second case it takes some 43% more. The designs above show that there 

are advantages or gains of the two-branch structure over the direct 

approach for narrow-band bandpass filters.

Even though they appear different, these last two filters are 

essentially the same, the second filter was designed for a sampling rate 

half as great as that of the first, which makes the relative transition of the 

second twice as wide and therefore less complex to implement. Note that 

doubling the sampling rate does not mean doubling the complexity of the
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Complexity = 66 mult/sample
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Fig. 3.29a Amplitude Frequency Response of Filter of Sample Design V.

Relative Frequency

Fig. 3.29b Log Magnitude Response of Filter of Sample Design V.
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Fig. 3.30b Log Magnitude Response of Filter of Sample Design VI.
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Fig. 3.32a Amplitude Frequency Response of Sample Narrow BP Filter.
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Fig. 3.32b Log Magnitude Response of Sample Narrow BP Filter.
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filter, as in the direct approach, since the complexity is not in inverse 

proportion to the relative transition bandwidth but rather to a/a? as 

indicated in equation 3.14. The following table gives a summary of the 

designs presented here, highlighting filter specifications and a comparison 

between the direct approach, or Parks/McClellan method, and the method 

described in this chapter.

Table 1. Complexity Comparison Between Direct and Indirect Methods.

Design Transition
Bandwidth

Passband
Width

Two-
Branch
Structure

Parks and 
McClellan

Percent
Improve
ment.

1 0.005 0.0 59 160 63

2 0.02 0.0 31 43 28

3 0.04 0.0 21 22 4.5

4 0.0027 0.0 72 320 76

5 0.0055 0.0 60 160 62.5

6 0.0109 0.0 46 80 42

7 0.0087 0.0023 49 130 62

8 0.0065 0.0025 66 134 50

9 0.01 0.005 52 90 42

10 0.0105 0.0035 51 91 44

11 0.021 0.007 37 68 45.5

12 0.01 0.005 85 150 43
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3.4 Application of the Two-Branch Structure to Split Spectrum Processing 

Let us now proceed to process ultrasonic signals previously

encountered in Chapter II of this work by implementing the digital

bandpass filtering with the structure of the preceding section. The digital

filters designed here for such purpose have an approximation error 6 of

roughly 0.01 (-40dB) in both passband and stopband so as to not adversely

affect SNR performance, as suggested by figure 3.33, which shows how

SNR performance deteriorates with increasing error in the approximation to

the filter's frequency response. Consider, as a first example, the ultrasonic

signal of figure 2.5 of duration T = 25.6 gs. If this signal is processed with

a filter bank made up of 26 filters such as the one designed above in 
1 4 74sample IV { Ap ~ — and Af = —y— ), which concentrates about 87% of its

energy within the HPBW and using the minimization technique, the result is

the signal of figure 3.34, which reveals the similar nature of the more

generic filter type to that of the RAC filters used in chapter II. For

comparison purposes refer to figure 2.10. The total multiply count is

substantially less than would be needed in a direct implementation;

however, FFT-based convolution would prove much more efficient than 
Nthis approach; an N-point FFT requires about y log2N complex multiplies or 

2N*log2N real multiplies. The number of multiplies involved in an FFT 

convolution is then given by

Mfft = 2N*log2 N + N (eq. 3.8)
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The FFT algorithm usually demands a power-of-two length sequence 

to operate on, and in practice it may be necessary to sample at rates 

higher than the Nyquist rate to prevent the introduction of high frequency 

harmonics. These two limitations are not exhibited by tapped-delay lines, 

and a convolution with tapped-delay lines requires a number of 

multiplications given by Mfjr = M0S*N where Mos is the number of 

multiplies per output sample of the filter. In the application of SSP with a 

filter bank of size K, and using the polarity thresholding algorithm, the 

number of multiplies for the FFT and digital filters are given by

TMfft = (2N*log2 N + N)*K (eq. 3.9)

and

TMfir = M0S*N*K - <-><->*M0S

where the second term comes from the fact that, on average, half the 

number of samples of the output signal are zero due to polarity reversals 

between any two samples in different channels and that, on average, these 

sign reversals will occur in the first half of the filter bank. The above 

equation reduces to

TMfjr = (eq.3.10)

Minimization would have required the full M0S*N*K multiplies and not been 

so amenable to a real-time scheme for the technique. For the bandpass
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filtering structure of the preceding section, Mos is given by equation 3.10

above.

As shown above, the polarity thresholding algorithm alone or polarity 

thresholding and minimization combined lend themselves better to a real

time implementation than minimization alone, since once a sign reversal is 

found between any two channels or bands in the filtering, the process can 

be restarted to compute the next output sample thereby bypassing a 

certain number of filters in the bank for a particular output sample. Also, 

polarity thresholding and minimization combined are more widely used than 

minimization alone due to an excellent SNR performance. Therefore, what 

follows will deal mainly with polarity thresholding.

Fig. 3.33 Performance Degradation with Approximation Error 6.
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Fig. 3.34 Signal Processed with Two-Branch Filter Structure.

The preceding signal was originally sampled at a rate of 20 MHz 

which is a rate higher than actually needed to satisfy Nyquist sampling 

criterion. If this ultrasonic signal is processed with the polarity thresholding 

and minimization algorithms combined using 26 filters of the type in sample 

design V (72 multiplies/output sample), the result is the signal of figure 

3.35a which shows an excellent view of the target; processing this signal 

with the same filter shape, but using only 10 filters also yields very good 

results as shown in figure 3.35b. If the signal is decimated by taking every 

other sample, the effective sampling rate is then 10 MHz (256 points) and 

the application of SSP with 10 filters such as the type in sample design VI 

(52 multiplies/output sample) results in the signal displayed in figure 3.35c 

clearly revealing the target. Using the 10 MHz sampling rate would lead to
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a total multiply count of 99,840 (eq. 3.10), while the FFT approach, with 

the 20 MHz sampling rate and 26 filters without flat-tops, would require 

roughly 213,504 multiplies (eq. 3.9) for a similar performance. It is 

possible to use flat-top filters with the FFT, but FFT-resolution problems of 

the passband and skirt of the filter may arise that would require the 

observation time of the signal to be doubled or more for very sharp filters. 

If that were the case here, 1024 points would be needed and the result 

would be 205,824 multiplies for the entire 10 filters. This count is still 

significantly higher than that of the tapped-delay line. This example 

suggests that it may be possible, in the case a very narrow band filters of 

the type usually associated with the polarity thresholding algorithm, to 

improve processing time (over the FFT scheme), by using a tapped-delay 

line sampling as close as possible to the Nyquist sampling rate.

As another example of sampling-rate reduction, consider now 

processing the signal of figure 2.18 using the minimization algorithm. If the 

original 256 points are used (100 MHz) in association with the filter shape 

of figure 3.31, the result is the signal of figure 3.36a, whereas using only 

128 points (50 MHz) in association with the filter shape of figure 3.32 

results in the signal of figure 3.36b. Refer to figure 2.22 for comparison 

purposes. These sampling-rate reduction instances may allow a substantial 

decrease in the amount of processing that takes place in SSP and also in 

the amount of data that is stored. When these factors are combined, the 

appeal of the digital filter structure is quite evident.
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Fig. 3.35c Signal of Fig. 2.5 after Processing {10 Filters. Sample Design V).

Microseconds

Fig. 3.36a Signal of Fig. 2.18 after Processing with 12 Filters(Fig. 3.31).
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Fig. 3.36b Signal of Fig. 2.18 after Processing with 12 Filters(Fig. 3.32).

As a final example of sampling-rate reduction, consider processing 

the signal of figure 1.2 which exhibited very high amounts of clutter, using 

polarity thresholding/minimization. Processing the original signal of 1024 

points at 100 MHz with the filter shape of figure 3.25 yields the signal of 

figure 3.37a, whereas processing at 50 MHz with the filter shape of figure 

3.26 produces the signal of figure 3.37b. Finally, processing at 25 MHz 

yields the output in figure 3.37c. It can be seen that the three output 

signals provide excellent views of the target present in the clutter and that 

the computational advantages of processing at the much lower sampling 

rate are significant. As a matter of comparison, processing this signal with 

13 filters at the original rate with the FFT would have taken about 267,264 

multiplies for the filtering phase, whereas the tapped-delay line would take
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Fig. 3.37a Signal of Fig. 1.2 after Processing with 13 Filters(Fig. 3.25).
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Fig. 3.37b Signal of Fig. 1.2 after Processing with 13 Filters(Fig. 3.26).
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Fig. 3.37c Signal of Fig. 1.2 after Processing with 13 Filters(Fig. 3.27).

about 114,816 multiplies. Usually, in practice, much higher sampling rates 

are used with the FFT to prevent the introduction of high frequencies into

the signal; digital filters do not pose this problem.



CHAPTER IV

CONCLUSIONS AND FUTURE WORK

The bulk of this work has been devoted to exploring alternative 

implementations of the split spectrum processing technique to reduce the 

processing time. Two avenues were considered. First, chapter II introduces 

a flat top to the conventional filter shape in order to boost SNR 

performance by preserving signal energy without substantially increasing 

correlation between neighboring filters, and possibly reduce the size of the 

filter bank to speed up processing. Hanning windows were used in the 

simulations, and eventually generic flat-top filters were employed. The 

results clearly indicate that, under certain conditions, a certain number of 

filters can be dropped without compromising SNR performance thereby 

reducing processing time. Second, chapter III considers the implementation 

of SSP with an FIR two-branch structure whose multiply count per output 

sample compares favorably to the well known direct method by Parks and 

McClellan. Following this approach, savings in excess of 70% in the 

multiply count of the digital filter, over that of the direct approach, can be 

obtained. Also, when a reduction in the filter bank, combined with the 

application of the polarity thresholding and minimization algorithms in 

tandem, is possible; then substantial improvements in the processing time 

of the technique can be achieved.

107
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This work has demonstrated the effectiveness of other filter shapes 

such as raised-cosine filters, and the more generic frequency selective 

filters, as opposed to the more conventional Gaussian shape. Other shapes 

can also work just as well: Kaiser shape, for instance, could also be used.

Even though the feasibility of the reduction of the filter bank size has 

been demonstrated, the scope of this work has not allowed to study and 

clearly establish any general criteria, or guidelines for concrete conditions 

under which such reduction can be implemented without compromising 

performance, and what number of filters could be dropped. This work 

could be carried out by conducting extensive experiments on various 

different types of signals with varying degrees of noise levels and 

originating from different types of flaws and materials.

Another area for further work is the implementation of the technique 

of chapter III on any of the most recent DSP chips such as the TMS320 

family, in order to ascertain hardware resources necessary such as buffers, 

data memory, code size, data flow for optimal performance etc., and be 

able to contrast it to an FFT-based implementation. The FFT has been long 

established as a very powerful processing tool, and specialized circuitry 

has been built into DSP chips for its efficient implementation; however, an 

investigation of the VLSI implementation of SSP with the FFT, as opposed 

to a two-branch filter structure mechanization of the technique, may be 

required to establish the merits and shortcomings of both.
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Finally, as another option for future work, the bandpass filtering stage 

of SSP may be implemented by shifting the spectrum of the unprocessed 

signal, as opposed to shifting(tuning) the spectrum of the bandpass filter 

itself, by an appropriate amount to place or center the correct frequency 

bin about the zero-frequency axis. In this fashion, the filtering may be 

performed by a cascade of running-sum filters that would reduce the 

filtering to simple additions and subtractions. Of course, the resulting 

spectrum would have to be shifted back to the original place. However, the 

processing should proceed extremely fast.



APPENDIX A

0==================================
C
C ROUTINE NAME : BPIFIR
C
C ROUTINE TYPE: FORTRAN 77 SUBROUTINE
C
C PURPOSE: THIS SUBROUTINE MECHANIZES THE TWO BRANCH 

STRUCTURE OF FIGURE 3.12.
C
C X —> INPUT SEQUENCE
C
C H —> IMPULSE RESPONSE OF THE BASE FILTER
C
C LH — > LENGTH OF BASE FILTER
C
C G -—> IMPULSE RESPONSE OF THE MASKING FILTER 
C
C LG —> LENGTH OF MASKING FILTER
C
C F1 — > 0 IF THE LENGTH OF H IS EVEN, 1 IF ODD
C
C F2—> 0 IF THE LENGTH OF G IS EVEN, 1 IF ODD
C
C IF—> INTERPOLATION OR SCALING FACTOR
C
C WO—> DESIRED CENTER FREQUENCY OF FILTER
C
C Y —> OUTPUT SEQUENCE
C
C LY —> LENGTH OF OUTPUT SEQUENCE
C { LY = LX + (LH-1 )*IF + LG - 1}
C
C AUTHOR: ORLANDO J. CANELONES
C

110



ill
a 

a 
o 

a 
o o o SUBROUTINE BPIFIR(X,LX,H,G,LH,LG,F1 ,F2,IF,W0,LY,Y)

REAL X(0:3500), HA<0:80), HB(0:80),H(0:LH),G(0:LG), WO 
REAL GA(0:80), GB(0:80), Y(O:LY)
REAL XA(0:2000), XB(0:2000), R1(0:80), R2<0:80)
REAL P1(0:80), P2(0:80), MS, PI, PIE, J 
INTEGER IF, F1, F2

PI = 3.141592654 
M = (LH-1)/2 
MS = (LH-1)/2.0 
PH = WO*(PI + PI)
W = PII*IF

= = = = = = = CENTERING OF THE BANDPASS FILTER = = = = = = = =

DO 1 K = 0, M 
J = K-MS
HA(K) = H(K)*C0S(W*J) 
HB(K) = H(K)*SIN(W* J)

1 CONTINUE
C

M = (LG-1)/2 
MS = (LG-1)/2.0

C
DO 2 K = 0,M 
J = K - MS
GA(K) = G(K)*COS(PII*J) 
GB(K) = G(K)*SIN(PII* J)

2 CONTINUE
C

L = (LH-1 )*IF 
LL = LG-1 
LAB = LX + L 
M1 = L/2 
M2 = LG/2

C
DO 40 I = 0, LG 
R1 (I) = 0.0 
R2(l) = 0.0
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40 CONTINUE

o 
o 

o

= = SECTION |= = = = = = = = =

DO 10 N = 0, LAB-1
XA(N) = 0.0
XB(N) = 0.0
I = 0 

C
DO 20 K = 0, M1-1, IF
II = N + K
I2 = N-K + L
IF (X(I1).EQ.O.O.AND.X(I2).EQ.O.O) GOTO 3
XA(N) = XA(N) + HA(I)*(X(I1) + X{I2))
XB(N) = XB(N) + HB(I)*(X{I2) - X(I1))

3 1 = 1 + 1
20 CONTINUE

IF (F1.EQ.1) XA(N) = XA{N) + HA(I)*X(I1 + IF)
C
C = = = = = = = = = = = = = = =SECTION 11= = = = = = = = = = = = = = 
C

DO 60 K = 0, M2 - 1
P1(K) = GA(K)*XA(N)
P1(LL-K) = P1(K)
P2(K) = GB(K)*XB(N)
P2{LL—K) = —P2(K)

60 CONTINUE 
C

IF (F2.EQ.1) THEN
P1(M2) = GA(M2)*XA(N)
P2(M2) = 0.0

ENDIF
C

DO 70 K = 0, LG - 1 
I = K+1
R1(K) = P1(K) + R1 (I)
R2{K) = P2(K) + R2(l)

70 CONTINUE
Y(N) = R1(0) - R2(0)

10 CONTINUE 
C

DO 80 N = LAB, LY - 1
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DO 110 K =0, LG - 1 
I = K+1 
R1(K) = R1 (I)
R2(K) = R2(l)

110 CONTINUE
Y(N) = R1(0) - R2(0)

80 CONTINUE 
RETURN 
END

C==================================

A sample digital filter designed with the technique introduced in 

chapter III with the help of the above subroutine is presented next. The 

specifications for this filter are : desired approximation error 6 = 0.001 (- 

60 dB) in both passband and stopband. The passband width Ap = 0.005 

and the transition bandwidth Af = 0.01. Following the instructions laid out

in chapter III, the scaling factor is chosen to be 8 and the errors are 

selected such that = <5^s = 0.0005 and dps = 0.001. The cut

off frequencies for the base filter are as follows:

f^p = 8x0.005 = 0.040 (passband cut-off frequency) 

f/?c = 8x0.015 = 0.12 (stopband cut-off frequency)

and those of the masking filter are

fpp = 5 (passband cut-off frequency)
1

f/xc = 3 “ 0.015 =0.11 (stopband cut-off frequency)

The filter that results is shown figures A.1. The base filter is realized with 

45 taps while the masking filter takes 40 taps. Note that the direct 

approach demands about 43% more multiplies per output sample. Also, 

note that the error is no longer equiripple.
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C
C ROUTINE NAME : RAC
C
C TYPE OF ROUTINE: FORTRAN 77 SUBROUTINE
C

C PURPOSE: RETURNS THE COEFFICIENTS FOR THE IMPULSE OF A 

BANDPASS RAISED-COSINE FILTER. THE LENGTH OF THE IMPULSE 

RESPONSE IS GIVEN BY ’L’ (ODD OR EVEN), THE WIDTH OF THE 

TRANSITION BAND IS ’TBW' AND THAT OF THE PASSBAND IS ’PBW’.

THE CENTER FREQUENCY IS GIVEN IN ’FCE’ AND THE COEFFICIENTS 

ARE RETURNED IN ’H(K)’ WITH 'H(O)’ HOLDING THE POINT OF 

SYMMETRY. IF ’FCE’ = 0.0 A LOWPASS FILTER CAN BE DESIGNED, AND 

IF ’FCE’ = 0.5 A HIGHPASS FILTER CAN BE DESIGNED.’FCE’, ’TBW’ AND 

’PBW’ MUST ALL BE NORMALIZED WITH RESPECT TO THE SAMPLING

FREQUENCY.

C

C AUTHOR: ORLANDO J. CANELONES

C
0= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =: =
c

SUBROUTINE RAC(FCE,TBW,PBW,L,H)
C

REAL H(O:L), FCE, PBW, PI, PH, TBW, LHP 
C

PI = 3.141592654 
PH = PI + PI 
LHP = 1.0

C
IF (FCE.EQ.0.0.OR.FCE.EQ.0.5) LHP = 0.5 
OS = 0.0 
IT = MOD(L,2)
M = L/2
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IF (IT.EQ.O) THEN
OS = 0.5
IK = 0
ELSE
IK = 1
OS = 0.0
H(0) = 4*PBW + TBW + TBW 
H(0) = LHP*H(O)
ENDIF

C
DO 10 K = IK, M 
T = K + OS 
FAC = PII*T 
TT = T*(TBW + TBW)
IF (TT.NE.1.0) THEN
H(K) = (SIN(FAC*(PBW + TBW)) + SIN(FAC*PBW))*COS(FAC*FCE) 
H(K) = LHP*H(K)/(PI*T*(1 - TT*TT))
ELSE
H(K) = LHP*TBW*COS(PBW*PI/TBW)*COS(PI*FCE/TBW)
ENDIF

10 CONTINUE 
RETURN 
END

C==================================

A sample of a digital lowpass, bandpass, and highpass filters of the 

raised-cosine type designed with the subroutine RAC above are shown in 

the figures A.2 below.

C==================================
c
C NAME: GAUSSIAN
C

TYPE OF ROUTINE: FORTRAN 77 SUBROUTINE



117

Relative Frequency

Fig. A.2a Lowpass RAC Filter.

Relative Frequency

Fig. A.2b Bandpass RAC Filter.



118

Relative Frequency

Fig. A.2c Highpass RAC Filter.

C PURPOSE: RETURNS THE COEFFICIENTS OF THE IMPULSE

RESPONSE FOR A BP GAUSSIAN FILTER WITH BANDWIDTH ’BW* AND

CENTER FREQUENCY ’FCE’ BOTH NORMALIZED WITH RESPECT TO THE 

SAMPLING FREQUENCY. ’H(K)’ HOLDS THE IMPULSE RESPONSE WITH 

'H(O)’ CONTAINING THE POINT OF SYMMETRY. THE USER SPECIFIES 

THE LENGTH ’L’. (SEE FIG. A.3)

C

C AUTHOR: ORLANDO J. CANELONES

o 
o 

o

SUBROUTINE GAUSSIAN(L,BW,FCE,H)
C

REAL BW, FCE, H(O:L), LP 
C
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LP = 1.0
IF (FCE.EQ.0.0) LP = 0.5 
PI = 3.141592654 
V1 = 1.7*BW*1.772453851 
V2 = 2.67*BW 
V3 = (PI + PI)*FCE 
REMAINDER = MOD(L,2)
OS = 0.0
IF (REMAINDER.EQ.O) OS = 0.5 
M = (L-1)/2

C
DO 10 K = 0,M
H(K) = V1*EXP(-(V2*(K + OS))**2) 
H(K) = LP*H(K)*C0S(V3*(K + 0S))

10 CONTINUE 
RETURN 
ENDuuu uu NAME: GAUSSRAND

Relative Frequency

Fig. A.3 Gaussian Bandpass Filter Designed with Subroutine Gaussian.
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C TYPE OF ROUTINE: FORTRAN 77 SUBROUTINE
C

C PURPOSE: GENERATES A RANDOM SEQUENCE WITH A GAUSSIAN 

DISTRIBUTION WITH MEAN AND STANDARD DEVIATION SPECIFIED BY 

THE USER. THE ARRAY 'RN(K)’ HOLDS THE RANDOM SEQUENCE. FOR 

THE GENERATION OF THE SEQUENCE, FIVE HUNDRED RANDOM 

NUMBERS WITH A UNIFORM DISTRIBUTION ARE ADDED TOGETHER. THE 

MEAN OF THE UNIFORM DISTRIBUTION IS 0.0775 AND ITS VARIANCE IS

0.002 APPROXIMATELY.
C
C AUTHOR: ORLANDO J. CANELONES
C
0==================================
c

SUBROUTINE GAUSSRAND(MEAN,STD,NS,SEED,RN)
C

REAL MEAN, STD, RN(NS), Z 
INTEGER*4 SEED

C
DO 10 K=1,NS 
SUM = 0.0 
DO 20 J = 1,500
SUM = SUM + 0.155*RAN(SEED)

20 CONTINUE
Z = SUM-38.75 
RN(K) = MEAN + STD*Z

10 CONTINUE 
RETURN 
END

C==================================
c
C NAME: UNIRAND
C
C TYPE OF ROUTINE: FORTRAN 77 SUBROUTINE
C
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C PURPOSE : GENERATES A UNIFORMLY DISTRIBUTED SEQUENCE 

OF RANDOM NUMBERS. THE USER SPECIFIES THE BOUNDS, UPPER AND 

LOWER CUL’ AND ’LL’), THE NUMBER OF POINTS IN THE SEQUENCE 

’NS’ AND THE ’SEED’. TO OBTAIN DIFFERENT SEQUENCES, DIFFERENT 

SEEDS MUST BE GIVEN. THE RANDOM SEQUENCE IS RETURNED IN

’RN(K)’.

C
C AUTHOR: ORLANDO J. CANELONES
C
0= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
c
C SUBROUTINE UNIRAND(UL,LL,NS,SEED,RN)
C

REAL UL, LL, RN(NS)
INTEGER*4 SEED

C
DO 10 1 = 1,NS
RN(I) = LL +(UL—LL)*RAN(SEED)

10 CONTINUE
RETURN
END

C==================================
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