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ABSTRACT

Phase Matched Coupling for Ladar Systems Incorporating Single Mode 

Optical Fiber Receivers

Name: Brewer, Christopher David
University of Dayton

Advisor: Dr. Bradley D. Duncan

A rigorous method for modeling received power coupling efficiency (t|fzr) and

transmitted power coupling efficiency (t|f/t) in a general target illumination Ladar system

is presented. For our analysis, we concentrate on incorporating a single-mode optical fiber

into the ladar return signal path. By developing expressions for both TJf/r and T|f/t for a

simple, diffuse target, our model allows for varying range, beam size on target, target

diameter, and coupling optics. Through numerical analysis, T|f/r is shown to increase as

the range to target increases and decrease as target diameter increases, while T|f/t is shown

to decrease with target range. A baseline signal-to-noise ratio analysis of the system is

also provided for varying illumination schemes. Techniques for implementing a phase

only matched filter at the receiver of a flood-illumination LADAR system incorporating

single mode optical fiber receiver is then examined theoretically for various types of glint 

and diffuse targets. Experimental methods for using liquid crystal spatial light modulator

technology to increase the coupling of spatially complex target returns are also presented.
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CHAPTER I

Introduction

For most LADAR (LAser Detection And Ranging, a.k.a. “Laser Radar”),

applications, a primary goal is to collect and focus onto a photodetector as much light as 

possible reflected from a distant target. Therefore, all other things being equal, one will 

rightly conclude that by simply increasing the detector area, the chances of increasing the 

average return signal from a target are improved. However, simply increasing the

average, or DC, return signal is often not the primary issue that must be addressed when

designing a ladar system. For example, besides the ability to simply detecting and 

ranging targets, some state-of-the-art ladar systems are also designed to achieve a high

resolution capability for target depth profiling. Recalling that light travels approximately 

one foot per nanosecond in air, to achieve a target resolution of something less than a

meter, the response time of photodetectors used in high range resolution ladar systems

must be on the order of a Gigahertz. This response time limitation can only be met

currently by detectors whose diameters are on the order of tens of few microns.
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Unfortunately, using a small area detector makes alignment rather difficult, and 

greatly diminishes the percentage of collected optical return energy that can be converted

into a useful electrical signal. Our goal here, then, is to examine the issues of received

power coupling efficiency (i.e., the percentage of received optical energy available for 

detection) and transmitted power coupling efficiency (i.e., the percentage of transmitted 

optical energy available for detection) when small area receivers are used. By examining 

these issues, we will in the process see which system parameters can be adjusted for 

optimum system performance and we will establish, for a few specific cases, baseline 

values for both coupling efficiencies.

We will specifically look at the case of coupling diffuse returns into single mode

optical fiber receivers. We do this for two primary reasons. First, diffuse target statistics 

are well known and will provide “worse case” results. Second, very often high speed 

detectors are provided with single mode fiber pigtails. These pigtails in turn provide their 

own advantages, among them being the ease of incorporating in-line fiber optic amplifiers

into the optical signal path. In certain applications this optical pre-amplification step 

provides clear advantages.1 In addition, though we do not specifically address this issue 

herein, the use of single mode fiber mixers in heterodyne ladar systems (e.g., when target

velocity measurements are required) provides for an efficient overall ladar system which 

is highly robust with respect to its internal optical alignment.2 We also point out that by 

considering the coupling of ladar returns into single mode optical fibers we are also, in a

manner of speaking, looking at the worst case coupling scenario. For example, to 

effectively couple light into a single mode optical fiber requires that the received light

enter the fiber through its numerical aperture (NA) and be spatially matched to the LPOi
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mode. However, coupling to a small area detector only requires matching the detector 

area to the focal spot size of the ladar receiving optics.

With low signal power returns, any improvement in detector coupling efficiency 

will enhance the performance of the ladar system. One simple method of optimizing the 

received power coupling efficiency tif/r has been shown by our colleagues Jacob et al.2 

They examined TJf/r for the special case of a purely diffuse, small-spot illuminated target, 

positioned in the far field of a ladar system incorporating a single mode optical fiber 

(SMOF) receiver. It was shown that by correctly matching the numerical aperture (NA) 

of the receiver optics to that of the optical fiber, the signal power coupled from the target 

into the LPoi mode of optical fiber can be maximized.

It was also shown that this type of coupling is dependent on the size of the 

Gaussian beam transmitted by the source. Defining the transmit truncation ratio R as the

ratio of the transmitter exit aperture diameter D^s to the transmitted beam waist CDo [i.e.,

R=Dtrans/fflb ], it was shown that for truncation ratios greater than the optimum ratio of 

four, the amount of light coupled into the fiber receiver drops dramatically due to 

increased beam divergence upon transmission. Furthermore, if the truncation ratio is less 

than four, the beam is apodized at the transmitter exit aperture. This induces a significant 

loss of energy upon transmission, as well as diffraction effects, which can not be ignored 

and which ultimately reduces both the received and transmitted power coupling

efficiencies, T|f/r and T}F/t- By NA matching the receiver coupling optics and by setting 

the truncation ratio to its optimum value of R=4, it was shown that one can expect to

achieve a received power coupling efficiency of approximately T|f/r= 31% for a ladar

system operating at a wavelength of 1 pm.
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The model developed by Jacob et al. further assumed that the beam on target was 

much smaller than the target itself. Spot illuminating a target, however, requires that the 

ladar beam must be scanned across an object if full target data is to be collected. 

Unfortunately, this type of collection scheme is inherently slow and requires a fair 

amount of data processing. On the other hand, flood illumination of a target allows one 

to, in effect, rapidly take a single “snapshot” of the object while gathering a great deal of 

information about the whole target. Such 1-D interrogation schemes are currently under 

investigation for use in RF radar applications.3 However, expanding the area of the 

transmitted beam decreases the energy density in the target plane. For smaller targets

with a diameter of a meter or less, fewer photons will be reflected overall and both TJf/r

and T|F/t will drop dramatically.

Counteracting this declining trend in coupling efficiency can be accomplished

somewhat simply by altering the magnitude and phase of the collected beam profile at the 

fiber endface. If the modal field of the collected light passed through the receiver 

aperture resembles the LPOi mode more closely, the signal power coupled into the fiber

will be greater, thereby increasing both the tif/r and the t1f/t coupling efficiencies. 

Simple beam shaping abilities have already been demonstrated by Lee.4 He has shown 

that it is possible to convert a typical, Gaussian beam profile into a more uniform 

distribution by phase filtering the incoming beam with a computer generated hologram 

(CGH). Applying this technique to a direct detection ladar system, we will proceed to 

investigate the effects of inserting a liquid crystal spatial light modulator or LCSLM into 

the path of the ladar receiver. This device is similar to the CGH but allows one to 

compensate for the inherent phase profile of the particular target as well as the phase
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accumulated upon propagation from the target to the receiver in real time. We shall see 

that once this target specific phase profile is known, it can altered through phase-only

filtering the collected return, enhancing both T|F/r and T|f/t-

With this goal in mind, the coupling efficiency enhancement development within

the text is as follows. For comparison, a simple geometric model of Pf/r for ladar

systems incorporating multimode and singlemode fiber receivers will first be presented in

Chapter II as well as a set of definitions describing the nature of a target and its return in a

general-illumination system. These working definitions will then be incorporated into 

expressions for the received field at the fiber endface and received power coupling

efficiency T|f/r in Chapter IH. The development of this general illumination model will 

then follow along the same general lines as Jacob’s development,2 but will allow for 

varying transmission and receiver optics, target range, beam size in the target plane, and

target diameter. However, as with Jacob’s original analysis, this development will not

account for the effects of atmospheric turbulence. Next, in Chapter IV, the transmitted

power coupling efficiency and a baseline signal-to-noise ratio SNR analysis will be

presented.

In Chapter V, we develop a theoretical model and calculate the F/R coupling

efficiency for a glint target. This will then be the baseline of comparison for the coupling

efficiency enhancement simulations found in Chapter VI for resolved, glint and diffuse

targets with singlemode returns. We then turn our attention to improving the coupling

efficiency of returns from larger, multimode targets within the context of a general 

illumination ladar system. Chapter VII presents a set of computer simulated and

experimental results for improving the F/R coupling of multimode returns from various
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unresolved glint targets. Finally, Chapter VUI contains a summary and proposals for

future work in this area.



CHAPTER II

Geometric Coupling Efficiency Analysis for Direct

Detection Ladar Systems Incorporating Multimode and

Single Mode Optical Fiber Receivers

In general, a ladar receiver includes the detector and its associated coupling optics. 

Beam expansion optics are also typically included in this group since they merely

increase the solid angle of the target, as seen by the detector. With this configuration in

mind, a geometric model for received power coupling efficiency will first be developed 

for a simple, one lens imaging system equipped with a beam expanding telescope. This 

geometric analysis is primarily presented to serve as a basis of comparison for the more

complete model we will develop later in Chapter EH. Unfortunately, because it is simple

enough to do, this geometric coupling analysis is often performed in lieu of the more

rigorous approach. Though we will see that under some circumstances the geometric and

the following rigorous analyses of Chapter HI agree very well (they should not, of course, 

be fully inconsistent with one another), the limitations of the geometric approach for both 

single mode and multimode fiber receivers will become very apparent.

7
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2.1 Geometric Coupling Model

The system we will be focusing on for the geometric analysis is illustrated in 

Figure 2.1 below,

Telescope

Figure 2.1: Imaging Lens System used for the geometric analysis.

where L is the distance from the receiver to the target, f^ is the focal length of the

imaging lens, and 0js is the full field image space angle of the fiber. Furthermore, Dt is

the target diameter, Dr is the receiver diameter, and Df is the diameter of the fiber core.

Note, here we have assumed that the fiber lies in the focal plane of the coupling optic in 

order to obtain the maximum coupling from targets at extended ranges.
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2.1.1 Multimode Fiber Receivers

By far the easiest method of maximizing the coupling efficiency in ladar systems

that incorporate optical fiber receivers is to increase the area of the fiber. As long as the 

area of the imaged spot is smaller than the diameter of the optical fiber core, a coupling 

efficiency of 100% can theoretically be obtained. Thus, multimode fiber receivers are

ideally suited for the task of optimizing coupling. To determine the area of the target

image in the plane of the fiber, a uniformly illuminated, diffuse target is assumed to be a

large distance L away from the receiver aperture as shown in Figure 2.1. The full field

angle of the illuminated portion of the target 0OS, as seen by the telescope, is then given

for small angles by

L
(2-1)

where Dt is the illumination spot diameter in object space. To transform this angle to the

full field image space angle 0jS of the fiber, 0OS is multiplied by the magnification M of the

beam expanding telescope, yielding the following expression,

Multiplying by the focal length of the imaging lens f^, the area of the imaged target A' at

the fiber becomes,

a; = k
2

2

(2-3)= 71
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where reff is the radius of the target image at the fiber endface.

If we now equate the area of the imaged target to the area of the multimode fiber

Af,mm, we find

Afjmm = a;

rcD f,mm = ft

Df =f,mm

rMP^v 
2L

MD^

(2-4)

where Df>mm is the diameter of the multimode fiber. We can now determine the range at

which 100% coupling is achieved for a given target size. For this analysis, we will

assume a focal length, for reasons that will become apparent shortly, of f^ = 3.85 cm for 

the coupling optic and a telescope magnification of 10X. With these values, a plot of 

fiber diameter vs. target range for several different target diameters can be generated. 

This family of curves is shown in Figure 2.2.

Figure 2.2: Fiber diameter vs. target range for 100% coupling efficiency in a direct 
detection ladar system incorporating a multimode fiber receiver.
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From Figure 2.2, for a typical multimode fiber diameter of Df>mm = 100 |im, we see that as 

the target diameter increases the range at which the maximum coupling occurs also 

increases. Furthermore, if the range to the target is kept constant, one must increase the 

size of the multimode fiber receiver in order to maintain a particular coupling efficiency 

when the target size increases. Unfortunately, simply increasing the area of the fiber to 

increase the coupling does not come without certain tradeoffs.

Increasing the coupling efficiency is not always the primary issue that must be 

addressed when designing a ladar system. As stated in Chapter I, to achieve a high range 

resolution for depth profiling, the response time of photodetectors used to amplify the

detected signal must be on the order of a Gigahertz; which can only be met currently by

detectors whose diameters are on the order of a tens of microns. Therefore, at the

interface between multimode fiber/post-detection amplifier, a significant amount of

collected light could be lost if the area of the fiber is much bigger than that of the smaller 

detector. This problem can be overcome by replacing the multimode fiber receiver with a 

single mode fiber receiver. So long as the received signal coupled into the fiber is above 

the inherent noise of the system, it can be amplified to useful levels. Thus, even though

moving to a smaller diameter fiber would decrease the coupling efficiency for larger

targets, it may increase the transverse resolution of the ladar system and give the operator

the ability to distinguish between various types of targets. The next section will examine 

the geometric coupling efficiency for a single mode fiber receiver.

2.1.2 Single Mode Fiber Receivers

The received power coupling efficiency in a direct detection ladar system

incorporating a single mode optical fiber receiver can be determined by taking the ratio of
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the power coupled into the LPoi mode of the receiving fiber to that of the power PR in the

target image at the fiber endface. For a circular target, the total received power PR is then

the irradiance of the uniform image field Uf at the fiber endface multiplied by the area of

the target image A'. That is,

MDtO 
2L J

=N

Pr =JJdP,|C,(p,)(’
a;

2 f
X7t

V

where pf is the spatial variable associated with the fiber plane and the remaining

variables are defined as for Figure 2.1. For notational purposes throughout this thesis, a

boldface quantity will represent a complex field, an overscore will denote a vector

quantity, and a tilde will indicate a random field.

When the diameter of the focused spot on the fiber endface is larger than the fiber

core, the power Psig coupled into the fundamental mode of the receiving fiber can then be

approximated by an overlap integral between the field Uf(pf) and the complex conjugate 

of the LPoi modal field, Uo,(pf) .5 This relationship is given by,

P =Sig
JJdp,U,(p,)U;,(P,) (2-6)

However, assuming that the field variations over the area of the imaged spot due to the 

random nature of the diffuse target are small, Uf(pf) can be treated as a constant and

pulled out of the double integral, provided the imaged target spot is larger than the fiber

core. We make this assumption here because the field focused on the endface of the fiber 

can be shown to be spatially correlated near the fiber core.6 This in essence arises in a
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way similar to the one by which the correlation of a time domain signal increases by 

narrow-band filtering.7 In our case, the signal of interest is the random backscatter from 

the diffuse target and our spatial, narrow-band low-pass filtering is performed by the 

finite NA of the receiver optics. Once the spot size becomes smaller than the area of the 

fiber core though, the overlap integral above is no longer valid. However, at this point we

will be coupling 100% of the energy into the fiber, according to this model, and thus it is

no longer necessary to calculate Eq. (2-6).

Continuing with the analysis of Psjg, for a singlemode fiber field, Marcuse8 has

shown that the LPoi field distribution, normalized to unit power, can be approximated as

a Gaussian function defined as

U0,(p,)- (2-7)
k 7

where the approximate field distribution can be optimized if the co parameter in Eq. (2-7) 

is found from the relationship8

f 1.619 2.879^
co = r, I 0.65 + + (2-8)v3/2 7

where rc is the radius of the fiber core and V is the normalized frequency of the fiber

given by9

V = (2-9)

This approximation has been shown to have an accuracy of better than 1% in the region 

of 0.8 < A/Ac < 2, where A is the operating wavelength and Ac is the cutoff wavelength of 

the LPn mode.8 Expressing the relationship in terms of the V number we find that the
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approximation is valid so long as V falls in the range 1.2 < V < 3.0. For this analysis, we 

will assume the use of Coming SMF-28 fiber which has a numerical aperture, NA, of 

approximately 0.13 at a wavelength of X = 1.5 pm and has a core diameter of 8.3 pm. We 

then find the V number of the fiber at this wavelength to be V=2.26, thus validating the 

Gaussian approximation for the modal shape. With this established, substituting Eq. (2-7) 

back into Eq. (2-6) and assuming, from a geometric perspective, that the amount of 

guided energy coupled into the fiber cladding is negligible, we find that after integrating

over the fiber core,

2 W
Psig = |uf |2 X 27t(O2 1-exp (2-10)

Dividing Eq. (2-10) by Eq. (2-5), we obtain the following approximate expression for

received power coupling efficiency T|f/r in terms of target diameter, range, telescope

magnification, focal length of the coupling optic, and fiber radius,

8 (Leo)2
F/R- (MD,f]L)-

z t-cYi
1 - exp - „21 © J J

(2-11)

Following along the lines of Jacob’s previous work,2 we will now calculate, for 

purposes of illustration, the maximum t|f/r which occurs when the overall NA of the

receiver optics matches that of the single mode fiber. This condition can also be related 

to the overall receiver f/# of the final coupling optic by,

f/# =
1__

2xNA
Mfn,
Dr

(2-12)

where Dr is the receiver diameter [i.e., the telescope entrance pupil diameter]. Assuming 

a telescope diameter of 10 cm and a telescope magnification of 10X, the focal length of

n



15

the coupling optic is readily found to be fn, = 3.85 cm. Then assuming a uniformly

illuminated target diameter of 0.3 m, a plot of T|f/r vs. range L can be generated, as is

shown in Figure 2.3. (Note the singlemode/multimode return boundary line appearing at

8.2 km. The significance of this boundary will be explained in greater detail in Section

2.2)

Figure 2.3: Geometric received power coupling efficiency (T|f/r) vs. target range.

Though we will see that this analysis is quite good at close ranges, the geometrical 

analysis admittedly does not fully stand up under scrutiny. Upon inspection of Figure 2.3,

we see that when the target range increases beyond 16.2 km, coupling efficiency reaches

100%. However, once the target range exceeds 16.2 km, the geometric model

mathematically allows the possibility of F/R coupling efficiencies greater than 100%.

This is clearly impossible! Specifically, employing the Cauchy-Schwarz inequality one

can show that,
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PSig
Ijjdpf Uf(pf)U01(pf) < JJdpf |uf(pf)| JJdpf |uoi(pf)| . (2-13)

Recalling that the LPoi modal distribution is normalized to unit power, we see that the 

second double integral equals unity. We are then left with the integral of Uf (pf) over the

area of the imaged spot. If we then assume Uf(pf) is constant over the fiber core, we 

obtain

?„„<jjdp,|u,(p,)i2 =|uI|!xj”,ijrrdrde=p« ■ <2-i4>

Thus, the F/R coupling efficiency T|f/r = Psig/Pft must have an upper limit of 100%.

Another crucial drawback to the geometric model is the assumption of uniform

target illumination by the transmitted beam. This restriction might be crudely met by

some sort of beam-shaping technique that generates a top-hat beam in the far field.

Unfortunately, this process is at best a difficult requirement to design into a common laser

radar system. Uniform illumination could also be accomplished by assuming the

transmitted beam is a spatially broad Gaussian. Then, if the target diameter itself is not

much wider than the peak of the beam, one could approximate the illumination as nearly

uniform. For a real system, however, this is clearly very wasteful of the transmitted

energy.

Furthermore, this geometric model also fails to account for any information

resulting from the diffuse nature of the target. The assumption that the received field is

constant over the plane of the fiber endface may not always be true, and thus provides a

poor representation of the true spatial distribution of the target’s return field throughout

the singlemode region. Thus we see that the assumptions made for the geometric
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development, although common, are clearly suspect. Therefore, the remainder of this

article will focus on developing a more complete ladar system analysis, accounting for all

field diffraction and target effects.

2.2 General Illumination Terminology

Before continuing, we will set forth a pair of working definitions that completely

describe the nature of the target in terms of both the transmitter and receiver optics. Once

again assuming a Gaussian transmit beam, we illuminate an object at some range L from

the transmitter. If the target extent is smaller than the illumination “footprint” at the

plane of the target, the target is said to be unresolved or flood-illuminated. Conversely, if

the object is larger than the illumination footprint, the target is said to be resolved. These

definitions are illustrated in Figure 2.4.

Figure 2.4: Target illumination/retum illustrations for a.) unresolved target, 
multimode return, b.) unresolved target, singlemode return, 
c.) resolved target, multimode return, d.) resolved target, 
singlemode return.
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It is important to note that by definition, the resolved or unresolved target quality is only a 

function of the ladar system transmitter. In order to fully describe the general nature of 

the target, we must examine the receiver leg as well.

We will define a target return to be singlemode if the target’s illuminated portion 

lies fully within the diffraction limited spot size of the receiver entrance aperture, back 

propagated to the target plane. Recall, the diameter Ddls of the diffraction limited spot 

can be determined from the following expression,11

Ddls “
2.44 XL 

D„
(2-15)

where X is the wavelength of the illumination beam and DR is the diameter of the receiver

aperture/pupil. Under the singlemode return condition, there is an approximate one-to-

one geometric spatial matching of illuminated points on the target to points at or near the

fiber core if the receiver is matched to the NA of the fiber. By restricting the signal 

coupling to an approximate one-to-one imaging relationship for a singlemode return, we

are not at all restricting the possibility that a wide range of spatial frequencies may be

excited by the target. For example, if the target is a small, diffuse cone falling within the

diffraction limited spot size of the receiver aperture, the reflected light will have a high

spatial frequency content, most of which will not be collected by the receiver optics. Yet

the return signal will still be considered singlemode because for the light actually

collected and focused onto the fiber core, we will still have a one-to-one spatial matching

relationship to points on the target. Conversely, any target whose transverse, illuminated

extent is greater than that of the diffraction limited spot size of the receiver will then

defined as multimode.
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Some comments regarding the above definitions, especially the singlemode versus

multimode return definitions, are in order. Primarily, the above definitions are made only 

for conversational convenience. Though our definitions serve our purposes quite well, 

other just as suitable definitions could be proposed. Regardless, these definitions in no

way influence the mathematical development which will follow. Furthermore, in the

singlemode/multimode definitions, no attempt at all has been made to indicate that any

system parameter or characteristic, including T|f/r and T|f/t, has been optimized. For

example, as we can see from Figure 2.3, and will also see later, the received power

coupling efficiency generally tends to increase with target range. Our

singlemode/multimode return definition simply allows us to conveniently and rationally 

designate a boundary beyond which coupling efficiency makes a clear transition from

“poor” to “better/good”. Specifically for Figure 2.3, using a wavelength of 1.5 |im, a

target diameter of 30 cm, and a receiver aperture diameter of 10 cm, from Eq. (2-15), the

distance L at which the resolution spot size equals the target diameter is readily found to

be 8.2 km. It is then a simple matter to see that multimode returns result for target ranges

less than 8.2 km, while singlemode returns result for target ranges greater than 8.2 km.

Equipped with our definitions, we will now develop our general illumination models,

incorporating whether the target is resolved or unresolved and whether or not its

illumination characteristics produce singlemode or multimode returns.



CHAPTER III

Baseline Coupling Efficiency Analysis for a Direct Detection

Ladar System Incorporating a Single Mode Optical Fiber

In Figure 2.3, we showed that the geometric coupling efficiency analysis of a 

direct detection ladar system predicted 100% coupling once the target moved past a range 

of about 16 km. We instinctively anticipate that this can not be the case. Therefore, in 

this chapter, we will analyze the direct detection ladar system more thoroughly and

develop an expression for the receiver to fiber coupling efficiency T|F/r that accounts for

all beam diffraction effects, other than turbulence, occurring within the system. We will

then compare this full analysis to the geometric analysis of Chapter n. For notational

purposes, once again a boldface quantity will represent a complex field, an overscore will

denote a vector quantity, and a tilde will indicate a random field.

3.1 Field at the Fiber Endface

Following the general analysis developed by Jacob et al. for a resolved target with

a singlemode return, a comprehensive model capable of effectively predicting the T|f/r

for general target illumination [i.e., resolved or unresolved] in a bistatic system will be

20
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developed. For this undertaking, as we will concentrate on the system shown in Figure

3.1 below.

Plane

Figure 3.1: General Illumination LADAR system demonstrating a 
multimode return from a unresolved target. In an actual 
LADAR system, the TX and RX would be colinearly aligned.

Note, L is the distance to the target, Dt is the target diameter, fi is the focal length of the

transmitter collimating optic l\, and f3 is the focal length of the receiver optic Z3. Here, we

have also assumed for simplicity that all necessary transmitter beam expansion is

accomplished by inserting a single negative lens I2 immediately after the transmitter 

collimating optic l\ placed one focal length away from the laser output.. Thus, by 

adjusting the focal length of just this one lens, one can either spot or flood illuminate the

target. This effect of varying the focal length of I2 will be discussed in greater detail in 

Section 3.3. Furthermore, as stated earlier in Chapter I, the minimum loss of energy upon

transmission occurs when the truncation ratio of the transmitter aperture diameter [i.e. the
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diameter of Zi] to the transmitted beam waist is at an optimum of R=4. Therefore, both Zi 

and I2 are chosen to meet this stipulation. The telescope/coupling optic shown in 

Figure 2.1 will also be replaced by one large, fiber NA matched coupling lens Z3 for 

simplicity.

To proceed with the analysis, the nature of the received field at the fiber 

endface Uf(pf) must first be determined. This can be found by propagating the

transmitted field UTrans(p), where p is two dimensional spatial variable associated with

the transmitter plane after Zi, to the target plane. This target plane field can be expressed 

via the integral product of the transmitted field, the phase curvature induced by the 

negative lens I2, and the free space Green’s function h(pt - p) given as1,12

ikL

h(P'-p> = iXLeXP (3-1)

where p, is the spatial variable associated with the target plane, X is the source

wavelength, k is the free space wavenumber, and L is the distance to the target. The 

resulting field at the target Ut(pt) is then

Ut(pt)= JJ dpUTrans(p)exp ^r|p|2 |h(pt-p) (3-2)
V^2

where Ajrans is the transmitter aperture and f2 is the focal length of the negative 

transmitter lens I2. We then multiply by the complex target reflectivity T(p,) and back

propagate the reflected field to the receiver lens I3 with another Green’s function. The

field before the receiver, UR(pR), can thus be written as
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CR(pR) = JJdp,f(p,)U,(p,)h(pR-p,) (3-3)

where At is the target area and pR is the spatial variable associated with the receiver

plane. The field then passes through lens Z3 and is propagated to the fiber endface. Thus, 

the field at the fiber Uf (pf) is given by

ik 2 A
Uf(Pf) = JJdpRUR(pR)exp — |pR| h(pf-pR) , (3-4)

ar V 2f3 J

where Ar is the area of the receiver aperture and f3 is the focal length of the receiver lens 

Z3. Now, by defining a receiver aperture function, WR(pR), the limits of integration on 

thedpR integral in Eq. (3-4) can be extended to infinity. Combining Eqs. (3-2), (3-3), and

(3-4), the field at the fiber endface can then be expressed according to the following

nested integral relationship

~ _ exp(i2kL) exp(ikf3) f ik i_ 12^
Uf(pf) =

(iXf3)(XL)2
exp

v2f3'rf y

X JJ d pR Wr (pR) exp^- — pf. pR J 

x JJdpt T(pt) exp( ^(|pt|2 + |pR|2 - 2pt.pR) (3-5)

ikx JJ dp UTrans(p) exp —|p|
v2f2 y

exp
jk

2L
;l2-2p.pt)

Upon examination of this expression, several simplifying assumptions can be 

made. The quadratic phase term in pf is negligible since realistically the diameter of the

fiber core is on the order of a few microns while the focal length f3 of the receiver optics

is on the order of several centimeters. The quadratic phase term resulting from p can be
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ignored as well. By incorporating the negative lens I2 into the system shown in Figure 

2.1, we can ensure that the target is always in the far field relative to the transmitter,

making the p quadratic term over XL insignificant. This point will be fully illustrated in

Section 3.3. This argument, however, does not apply to the receiver. Assuming a typical 

receiver aperture diameter of 10 cm and an operating wavelength of X = 1.5 pm, for a 10 

cm target to be in the far field with respect to the receiver [i.e. ATarget«XL], it must be at 

a range of nearly 52 km. Therefore, since many targets of interest are much closer than 

this, the quadratic phase term associated with pR can not be ignored.

After eliminating negligible terms, we find that Eq. (3-5) can be rearranged more

compactly as

~ exp(ik(2L + f3)) ff ~ fi27t,_

Uf(Pf)= (iXf3)(XL)
At

x JJdP U;rans(p)expl-^-p-pt
(3-6)

JJdptT(pt)exp^— |pt 

i2rc

(iK 1-- I2^ f Pt Pf
»r| lexP -i27tpR-

I

1 1 1 1 I
<XL A,f3>>

where U^rans(p) incorporates the phase curvature introduced by lens I2 and is defined as

U;m.(p) = UI,„,(p)exp[^|p|2'| . (3-7)

VZr2 J

Now, if we assume that the truncation of the transmitted beam is insignificant

[i.e., R = 4], the limits of integration over the A^ans integral can be extended out to 

infinity. Therefore, the dp integral in Eq. (3-6) simply becomes the Fourier transform

trans of Eq. (3-7), giving us the following expression for the field at the fiber endface



25

U, (p|)=exP(,k(2L + f;)) t 2A f
(iXf3)(XL)2 JAJ * ' (XL1 \XlJ

At
xjJdpRwR(pR)exp^lpRl2^exp

-i2rcpR
/ - - A A
JL + _Pf

Xf3yy

• 0-8)

Knowing the nature of the field at the fiber endface, we can now determine the amount of

power coupled into the LPoi mode of the fiber.

3.2 Single-Mode Fiber F/R Coupling Efficiency

The power Psig coupled into the fundamental mode of the receiving fiber can again

be approximated by using the overlap integral given by Eq. (2-6). Yet, due to the random

nature of the diffuse target, the expected signal power coupled into the LPOi mode of the

fiber must now be found by taking the expected value of Eq. (3-8). Substituting Eq. (3-8) 

into Eq. (2-6) and rearranging terms we obtain the following expression for the expected

signal power,

where ptl and pt2are dummy variables of integration associated with the target plane. 

Utilizing the following statistical relationships for a purely diffuse target,13
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E[T(P„)] = O

e[T(p„)T(p,2)] = 0 , (3-10)

e[t< P„), T- (P,2)]=Vr0(p„ )6( P„ - P,2)

where Ta(ptl) = rip, )/7[ is the diffuse, mean square reflection coefficient and t(p„) is a

unitless number associated with the target reflectivity ranging from 0 to 1, we can arrive 

at the following expression, after some rearrangement, for the expected value of the

signal power coupled into the LPoi mode of the fiber,

E[^'J- (XL)2 (XL)4 JJdp‘T°(pt)
A XL,

X
JJdpRWR(pR) expf ^|pRI' ]exp[-Pr • Pt

2
i27t

(3-11)

x JJ dpfu;,(pf) exp - —- pR • Pf
XL

However, since the target has already been assumed to be spatially stationary over At, if 

there are no variations in the reflectivity as a function of p,, To can be pulled out of the

dpt integral. One also notices that the dpf integral is now simply the Fourier transform

of the LPoi mode of the fiber. Now, expanding the magnitude squared around 

thedpR and dpf integrals we obtain

, (3-12)
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where %01 is the Fourier transform of the fiber mode and pR and pR are arbitrary receiver

plane variables.

A Jacobian change of variables is now made to simplify the integration. By 

defining the following variables14

_ = pR_+pRand Ap_p, _^r JJdpR JJdp' = JJdp0 JJ dAp , (3-13)

and making the appropriate substitution back into Eq. (3-12), we obtain

e[p.J = 77^57 J J MJ dP,W,(pX«.(£->
XL

eXP(-^P‘-A%

A Po Ap 

v'Xf3 2Xf3
xJJdpoKi^ xf3+2Xf3701 

x wr (Po ~ 2 Ap)W\ (p0 +f Ap)exp(- p0 • Ap^j

• (3-14)

In the above expression, we have also introduced a specific target function Wt (pt),

allowing us to extended the limits of integration over the target area out to infinity. This

is now as far as we can proceed until some further information about the transmitted

beam, the aperture functions Wt and Wr, and the modal field in the fiber are specified.

To continue with the analysis, we will define the untruncated, Gaussian field at 

lens li, Urrans (p), normalized to the transmitted power P-rrans. to be

U Trans (p) —
2P.

KCO
^exp IpP (3-15)

Therefore, the field transmitted through the negative lens I2 can be found by substituting

Eq. (3-15) back into Eq. (3-7) yielding
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u;„,(p)=
2Pq

71 CO
^^exp

a

to:

2 A Z \' ik ,_,?
exp

v2f2

Evaluating the Fourier transform of Eq. (3-16), for inclusion in Eq. (3-14) yields

?{uu 2PqTrans

TC(Q„

'(-i 1—I2exp |p|
\®-, 3f2 J p=Pt- P XL J

7t I- |2
2 rt

2PTrans £
' rcco2 a'eXp a'(XL)

(3-16)

(3-17)

where a'equals

a =
1 ik 

" 2f2 (3-18)

Rationalizing the denominators of the two terms not under the square root gives us the

following expression,

27t2f2a>2 (2f2 + ik(o2) , ,27t
— exp

- n~ 
a'(XL)2

2rcf2(d2(2f2 + ikes2) 
------------------ o—exp . (3-19)
w+k)

Thus, substituting Eq. (3-19) into Eq. (3-17) and taking the magnitude squared of the 

resulting expression gives us the following for the Fourier transform of the transmitted

field

(XL)’ (2f2)!+(ko>n 2 Ht

Trans I XL,

2,^2^^Trans^ ®
4f2+ (k®o)'

-exp
87t2f2CO2 I— I2

(XL)2(4f22 +(k©2)2) * (3-20)

The dpt integral in Eq. (3-14) is now an integral over a Gaussian with a 

complicated waist multiplied by a phase factor over the target area W,(pt). To evaluate
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the integral, we will assume for this analysis that the target area is circular in shape, with 

a diameter Dt, and is given by the expression below

W,(p,) = circ
1,

0,
2

,i>y
(3-21)

Similarly, our receiver aperture function WR(p) will be defined as a circular disk of 

diameter Dr given by

W„(p) = circ

|p|^

Dc (3-22)

VD.7

) >

In addition, we will let the field distribution of the fiber mode again be given by Eq. (2-7).

Substituting Eqs. (2-7), (3-20), (3-21), and (3-22) back into Eq. (3-14) and scaling the 

dp, and former dpR variables of integration by Dt and DR respectively, we obtain the

following expression

<]^4NT°P75D?a2JJdApM-2H]
x JJ dptcirc( pt) exp(- Ntc2D2|p, |2 j exp| -i2rcDRDt_ 4_ 

—P‘Ap

x JJ dpocirc(p0 -|Ap)circ(p0 +|Ap)exp(-4a2|p0|2) 

-i2jtDR_

(3-23)

xexp
XL

Po‘AP

where N and a are collections of constants associated with the transmitter and receiver

respectively, defined as follows
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and

2_ 1 

a ~ 2

8fX
(XL)2(4f22+(k©y2)

TtWD. \2 7t(0NAoptics V

(3-24)

(3-25)

N =

= 2
J

In Section 3.3, the significance of the focal length f2 within the N parameter will be

discussed in greater detail.

Recognizing that the two circ functions in the receiver plane are now unit 

diameter functions centered at ±Ap/2, the dp0 integral is merely the area of overlap

between the two functions. This observation is depicted in Figure 3.2.

Figure 3.2: Circ function overlap.
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Upon inspection of the figure, we see that if the separation between the two centers of the 

circ functions is greater than one [i.e., |Ap| > 1 ], there will be no overlap between the two

functions. One also notices from Eq. (3-23) that the circ functions in both the target and 

receiver planes are weighted by a complex exponential term. If we then employ Euler’s 

relationship, this exponential can be expanded into sine and cosine terms. Both the dpt

and dpo integrals now contain even functions multiplied by an even cosine function and

an odd sine function. With the limits on the integral extended to infinity, the area

resulting from the sine term will be equal to zero due to the odd nature of the function.

As a result, Eq. (3-23) then becomes

4NT P D2 D2a2iorTransi^Riy,d—JJdApexp[-a2|Ap|2]

( 2kDrD "
1 Pt'Apx JJ dp,circ(p,)exp(- N7t2D2|p,|2)cos^

x JJ dPocirc( Po - 2 Ap )circ( p0 +1 Ap) exp(- 4a21p012) 

( 2kDr _ Abrp°-ApJ

. (3-26)

xcos

If we then make the following vector substitutions

Ap = r cos 0x + r sin 0y, p, =x,x + y,y, and po = xx + yy , (3-27)

the dot products inside the cosine terms become

p, • Ap = rx, cos0 +ry, sin0 and p0 • Ap - rx cos 0 + ry sin 0 . (3-28)

Yet, recognizing that all three integrals in Eq. (3-26) are circularly symmetric, the dp0,

dp,, and dAp0 integrals are independent of the angle associated with the Ap shift. This

makes it possible to choose a convenient direction for Ap in which to calculate the area of

overlap between the two circ functions. For this analysis, we will consider a shift



32

occurring along the y axis, [i.e., 0 = 90°]. Expressing the dAp integral in polar

coordinates and using the circ functions to define the bounds of the target area and 

receiver area, the expected value of the coupled signal power becomes,

128tcNTJ> D2D?a2 ft^-Jodrrexp[-a2r2]OTrans R

L2

x J02 exp(~ N7t2D2xt2 dyt exp(- N7t2D2yt2) cos
(3-29)

xjo2 dxexp(-4a2x2)jj4 2dyexp(-4a2y2)cos
z27tDR2ryA

XL

Note, the bounds over the former dpt and dp0 integrals show the area of only one

quadrant of the unit circle and the integrals have been multiplied by a factor of four to

obtain the entire area of the circle.

To compute the received power coupling efficiency t|f/r, we take the ratio of the

expected power coupled into the fiber mode to the expected power collected by the

receiver aperture [i.e. T|f/r = E(PSjg)/E(PR)]. Therefore, we must now determine the nature 

of the field at the receiver and determine how much energy is actually collected. From

Eqs. (3-1), (3-2), and (3-3), we can show that the field at the receiver plane is given by

0R(pR) = ^^«^--
(XL)2

X JJ dPUTrans(P)eXP ^|p|

JJdp,T(p,)exp(^-(|p,|2+|pR|1-2p,.pE)

At
ik 1-12^ ( ik /,_ ,2-----
^IpI

V Zr2 )
exp -Mj

, (3-30)

providing the assumption ATrans«XL is made. The irradiance Ir at the receiver plane is

then simply the magnitude squared of UR. Given that the transmit beam is untruncated,

this irradiance can be written as

0
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Ir = JJ dPtT(pt) expf^|pt|2expf- * pR- pt ^ransf

At
X JJdptT*(pt')exp

A,

ik,_ 

vL

rnc,-,
L

fik_exPl — PR-Pt
A XL,

A
XL

(3-31)

ik_ _ 

L

A '* (_pCk:

where ^ransis the Fourier transform given by Eq. (3-17). Now, by applying the target

statistics of Eq. (3-10) and making use of Eq. (3-20), the expected value of the total 

irradiance at the receiver plane reduces to

E[t,] = NTtcR JJdp.cio Trans I I j — circ exp(- N7t2|pt|2 (3-32)A 
vD.y

where we have extended the limits on the dp, to infinity by incorporating the target

function in Eq. (3-21). Expressing the dp, integral in polar coordinates and using the circ

function to set bounds on the limits of integration, we obtain after integrating,

T P1 AoA Trans
EIAJ- J_2 1-exp

ND,tc
(3-33)

The above expression is then the expected value of the irradiance at the receiver plane. 

However, the power received will be limited by the extent of the receiver aperture and 

thus, can be found by multiplying Eq. (3-31) by the area of the receiver to yield,

Efr]= ND27t2A
4L

(3-34)

Finally, dividing Eq. (3-29) by Eq. (3-34), we obtain the final expression for tjF/r for a

general illumination ladar system incorporating a single mode optical fiber receiver. This

equation is,
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fe] 2i-\ 2

'Hf/r — ^r~ l —
512Na D

'CM
exp

2^.2ND 71
J(drrexp[- a2r2]

(

x J02 dxt exp(~ N7l2°t xt2)j/^ dy, exp (- NK2D2yt2) cos

-Vb? |--x2--
xJq2 dxexp(-4a2x2)Jj4 2dyexp(-4a2y2)cos

(3-35)V XL 

27iDR2ry

In contrast to Eq. (2-11), this model allows for varying the truncation ratio at the 

transmitter, the beam diameter in the target plane, the transmission optics and coupling

optics, as well as the target diameter and the range to target. We will also see in

Appendix B that with the appropriate assumptions, Eq. (3-35) reduces to the result 

obtained by Jacob for a resolved target with a singlemode return.2

3.3 Comparison with Geometric Model

Recalling from Eq. (3-24) that N is a collection of constants dependent on the 

transmitted beam and the range to the target, most of the components of N will be given 

as system parameters. N is also dependent on the focal length of the negative lens f2 in

Figure 3.1 and must be determined separately based on the desired beam diameter at the

target. Since the beam is collimated by lens l\ before illuminating lens Z2, we may 

envision f2 as the radius of curvature R on a transmitted wavefront emerging from a 

single, equivalent source in front of the transmitter exit aperture, as shown in Figure 3.3.
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Figure 3.3: Illustration of the geometry used for calculating 
the focal length for the negative lens I2.

Employing the propagation equations associated with Gaussian beams, the expression for 

the radius of curvature is,11

V
f2 — 7?(zeff) — zeff TtCO eff (3-36)1 +

V ^Zeff /

where Ofeff and zeff are the effective beam waist and its effective distance behind lens I2

respectively. These quantities can in turn be found by simultaneously solving the

expressions for the Gaussian beam spot size at the plane of lens I2 and at the target,

respectively11

col(Zeff) (0eff
Xzeff

71 CO eff 7
(3-37)1 +

V
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(i)(L + Zeff) — COeff 1 + (3-38)

To compare with the earlier geometric analysis where uniform target illumination was

assumed, we consider a large beam diameter of 2co(L+ zeff )=15 m on a small target at 20 

km and a beam diameter of 2©(zeff)= 2.5 cm, for a truncation ratio of R=4, at lens l2-

Using a wavelength of A, = 1.5 (im, the effective spot size and the effective distance from

the transmitter exit aperture are found to be ow = 1.27 mm and zeff = 66.80 m,

respectively. This corresponds to a radius of curvature, or focal length, of f2= -66.98 m 

at the negative lens. Although this value is rather large, one can easily generate this type 

of effective lens with modem liquid crystal devices similar to those currently under 

investigation in our laboratory.15

Next, to verify that the target is in the far field with respect to the transmitter, the 

Rayleigh distance, zR, can be determined for the above system. This range is given by11

= 3.42m (3-39)

Therefore, to satisfy the far field condition, the target range L must be large enough that

L > 34.2 m from the effective beam waist. Yet, with the effective beam waist 66.80 m

from the negative lens, as long as the target is anywhere in front of the transmitter, the far

field condition is satisfied. Thus, with the addition of the negative lens at the transmitter,

the range to which the general illumination model is valid has been extended to any

distance in front the transmitter, so long as the proper beam expansion focal length is

chosen for l2.
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Equation (3-35) can now be evaluated numerically by substituting the appropriate 

values for receiver diameter (Dr = 10 cm) and target diameter (Dt = 0.3 m) from the

geometric analysis. The to and a parameters are then calculated by substituting the fiber

core diameter of 8.3 pm and a normalized frequency parameter value of V = 2.26 into

Eq. (2-9) and Eq. (3-25) respectively. Equation (3-35) is then evaluated using the 

numerical integration techniques of the Mathematica software package. Figure 3.4 is

then a plot of T|f/r vs. target range for both the geometrical model and full, general

illumination model.

Figure 3.4: Received power coupling efficiency (T|f/r) vs. target range 
for a target diameter of 0.3 m.

As one can see, both curves agree very well throughout the multimode region, as 

expected. After all, this is the region where the geometric optics model still holds.

However, after the boundary at 8.2 km, unlike the geometric model, the general
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illumination model slowly starts to level off and approaches 100% coupling efficiency 

only as L goes to infinity.

To demonstrate the flexibility of the coupling efficiency model given by

Eq. (3-35), we now examine T|f/r for a variable diameter, unresolved target at a constant

range of L = 20 km. Figure 3.5 displays a plot of Eq. (3-35) vs. target diameter for a 

beam diameter of 15 m on target, while all other system parameters remain the same as in 

the previous example.

Figure 3.5: Receiver to fiber power coupling efficiency qF/R 

for a flood illuminated target vs. the illuminated 
target diameter at a constant range of 20 km.

As we see, at a fixed range T|f/r increases as the diameter of the target decreases. This

can readily be attributed to the singlemode nature of the returns from smaller targets.

From Eq. (3-33), we see that the irradiance at the receiver aperture is essentially uniform

[i.e. the energy scattered by the target in all directions]. As a result, as the size of the

target decreases, the solid angle into which a small target scatters the returning light is
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much smaller. Therefore, a greater portion of the light incident on the receiver falls 

within the diffraction limited acceptance cone of the fiber mode.

F/R coupling efficiency can be shown to drop off with increasing illumination 

spot size in the target plane. Keeping the range to a 1 m diameter target constant at 

L = 20 km and letting all other system parameters remain the same as in the last example,

Figure 3.6 displays a plot of T|f/r in Eq. (3-35) vs. illumination spot radius in the target

plane.

Illumination Spot Radius at Target (m)

Figure 3.6: F/R coupling efficiency vs illumination spot radius on 
aim target at a constant range of 20 km.

As we can see, T|f/r decreases rapidly as the radius of the illumination beam approaches

the radius the actual target, 0.5 m. Once past this boundary however, the target becomes

unresolved and the rate of the curve’s decent slows as the Gaussian illumination beam

expands. Finally, the extent of the illumination beam becomes so large that the target is

uniformly illuminated and the F/R coupling efficiency levels off at r|F/R~14.4% . This
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observation leads us to conclude that after the target is completely illuminated, coupling 

efficiency becomes constant and any further beam expansion would only serve to 

decrease the overall system efficiency. In the next chapter, the idea of system efficiency 

is examined more carefully.



CHAPTER IV

System Efficiency Analysis

As seen in Chapter HI, the tJf/r coupling efficiency developed in the full analysis 

increased steadily as the target moves further and further away from the 

transmitter/receiver. From Figure 3.5, we saw that in some cases, such as for very small 

targets, this efficiency was very high, nearly 85%. Unfortunately with a smaller target,

any increase in tjf/r coupling efficiency is offset by a decrease in the amount of

transmitted power reflected off of the target that is ultimately available for detection.

Intuition tells us that the transmitted coupling efficiency t|f/t will drop off dramatically as

target range increases. This effect can be modeled by simply changing the denominator

of Eq. (3-35) from the expected power collected by the receiver to the expected total 

power transmitted through lens li of Figure 3.1. In this chapter, we will develop an

expression for T|f/t- A baseline signal-to-noise ratio (SNR) analysis for both spot and

flood illuminated targets in a direct detection ladar system will also be presented.

4.1 Transmitted Power Coupling Efficiency

To compute T|T/f for a diffuse target, we must take the ratio of the power coupled

into the LPOi mode of the fiber to the total power Ptx transmitted through lens Zi. The

41
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total power transmitted through li can be found by taking the magnitude squared of the 

field given by Eq. (3-15) and integrating over the area of the transmitter, yielding the 

following expression for Ptx

Pt. = 2S’ JJ dP
KCO .

( 1—I2

exp _IeL
co20 A Trans I 0 7

2RTrans

KCO
Jpp

/ ~I-|2 A

exp

(4-1)

0 At

Extending the limits of integration over the transmitter plane out to infinity by 

substituting the transmitter aperture function WTrans(p), given by

D,Trans

WT„,(p) = circ
V Trans / °, lpl

(4-2)
Trans>

D

the total transmitted power becomes

PTx =
^Prrans^Trans llj— 

Ttft)2

( 9D2 '-|2A
JJ dp circ(p)exp Trans

co: (4-3)

Note, the dp has been rescaled by DTrans. Expressing the dp integral in polar

coordinates, integration of Eq. (4-3) yields

D2
P = PA Tx A Trans

Trans

1-exp

1-exp

Trans

2co
(4-4)

= R
R 2 Y

o 7

where R is the truncation ratio at the transmitter. However, recalling that we have

assumed an optimum truncation ratio of R=4 at the transmitter, the power lost upon 

transmission through l\ is negligible, causing the exponential term in Eq. (4-4) to vanish.
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Thus, the expected total power transmitted through lens l\ is simply Ptrans- Dividing 

Eq. (3-29) by Ptrans, T|f/t becomes

^If/t —
[p,] 128NToa2Dt2DR2Jt fi

Trans

JQdrrexp[-a2r2]

x J02 dxt exp(" N7t2°'xt2) dy, exp(- Nrc2D2yt2)cos
(4-5)

--x2--J2 dxexp(-4a2x2)J’4 2dyexp(-4a2y2)cos
<27tDR2ry>

XL

For purposes of illustration, we will now look at the special case of tjF/t versus

target range under the conditions that: 1) f2 equals infinity, thus yielding the minimum 

illumination beam waist without actually focusing the beam itself; and, 2) the target

diameter for all ranges less than 20 km is twice the illumination beam waist at 20 km .

Using Eq. (47) with zeff = 0 and co^f = Dtrans/4 = 2.5 cm, we find that our beam diameter

(and thus our fixed target size) at a target range of 20 km is 76.5 cm. From Eq. (2-15), at

the same range, we find the diffraction limited spot size of our receiver aperture (DR =10 

cm) is 73.2 cm in diameter. Upon comparison, we see that under these conditions the

illuminated portion of the target, regardless of range for L<20 km, will always be slightly

larger than the diffraction limited spot size of the receiver, and thus always yield a

borderline multimode return. For this discussion, returns obtained under the above

conditions will be defined as the return from one pixel in the target plane, and Figure 4.1

illustrates T|f/t vs. target range under this scenario.
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Target Range (km)

Figure 4.1: Transmitted power coupling efficiency (TJf/t) vs. target range 
for a resolved target with a nearly singlemode return.

Note, Figure 4.1 was generated using a receiver diameter of DR = 10 cm and an N

parameter calculated using a fiber core diameter of 8.3 pm and a normalized frequency

parameter value of V = 2.26. Also, for purposes of illustration, we have assumed an

arbitrary reflection coefficient of t=0.5 thus, making To = 0.5/71. As we can see, Figure 

4.1 exhibits a classic l/e2 trend for an under filled object at most ranges. However, at 

close ranges of 4 km or less, this trend varies slightly as the cosine terms in Eq. (4-5)

become more pronounced.

4.2 Signal To Noise Ratio Analysis

By itself, the significance of Figure 4.1 is not clearly obvious since the T|f/t

appears to be so small. However, expressing the data in terms of a baseline signal-to-

noise ratio (SNR) that accounts for dark current noise, shot noise, and thermal noise gives
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a better representation and puts the trend in a more appealing format. Writing our SNR 

expression in a form analogous to that of the SNR analysis developed by Overbeck et al. 

for a pulsed ladar system,16 the post detection signal-to-noise ratio can be expressed as

SNR = —r
(R^o^If/t)

2e RJono'lF/T

‘i 7

4kJ
Rl

(4-6)

!d + +

where R is the responsivity of the detector, Jo is energy per pulse, Ti is the pulse duration, 

e is the charge on an electron, and Id is the dark current. Furthermore, kb is Boltzmann’s

constant, Rl is the load resistance, and T is the temperature of the resistance in Kelvin.

Assuming some reasonable values for the above constants such as R = 0.5 A/W, Jo = 100

mJ, Ti = 3.5 nsec, Id = 5 nA, T = 300 K, and RL = 50 Q, the signal-to-noise ratio vs.

target range can be can be calculated using the appropriate values for the transmitted

power coupling efficiency. Figure 4.2 illustrates the SNR vs. target range for a resolved

target with a nearly singlemode return, one pixel wide and under the same conditions as

Figure 4.1.

Figure 4.2: SNR vs. target range for a resolved target 
with a nearly singlemode return.
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As can be seen, even though T|f/t is very small, the coupled signal power is nearly eight 

hundred times greater than the noise, even at a range of 20 km due to the large pulse 

energy we have assumed.

However, expanding the beam to illuminate a larger target will greatly decrease

the amount of energy density per pixel on the object. Since the above model gives t|f/t

for a single pixel in the target plane, the SNR for large targets can be roughly estimated 

by simply dividing the value of Jo by the total number of pixels in the expanded beam.

For example, by assuming a large resolved target illuminated by a beam 15 m in diameter

and a total pulse power of 100 mJ, the amount of power incident per pixel is reduced to

approximately 0.260 mJ. The resulting effect on the SNR vs. target range is shown in

Figure 4.3.

Target Range (km)

Figure 4.3: Signal-to-noise ratio (SNR) vs. target range for a multimode 
return, large resolved target. The beam diameter in the target 
plane has been set to 15 m.
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Note, this estimate is a slight underestimate because it only accounts for the light 

reflected from the one pixel. In actuality, some of the scattered light from neighboring 

sectors will also be coupled into the fiber, increasing the effective energy incident on a

pixel.



CHAPTER V

Glint Target Coupling Analysis

In this chapter, we will develop a theoretical model and calculate the F/R coupling 

efficiency for a circular glint target [i.e. a target that does not generate a random phase on 

the reflected wavefront]. This will then provide the baseline of comparison for the 

coupling efficiency enhancement simulations found in Chapter VI. Again, the same 

notation used in Chapter HI will be employed, a boldface quantity will represent a

complex field, an overscore will denote a vector quantity, and a tilde will indicate a 

random field. Also, p, pt, pR , and pf will still represent the two dimensional spatial

variables associated with the transmitter, target, receiver, and fiber planes respectively.

5.1 Field Analysis for a Glint Target

To begin our analysis, we again start with the expression for the field at the fiber

endface in a general illumination ladar system given by Eq. (3-6)

48
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U,(P,) = 5^^^J/dp,T(p,)expg^r

(iXf3)(XL)2

\

t
7

x JJdp U;rans(p)exp(-^p-pt

XL

xJJdpRWR(pR)exp|^-|pR|2 )exp
-i2rcpp

Cp<_+_pf?A 

XL Xf3 j j

(5-1)

Here, recall thatU'rans(p) incorporates the phase curvature introduced by negative lens li

of Figure 3.1 and is defined by Eq. (3-7), X is the source wavelength, k is the free space 

wavenumber, L is the distance to the target, and f3 is the focal length of the coupling optic 

I3. Again, we will assume the truncation of the transmitted beam is insignificant 

[i.e., R = 4], As a result, the limits of integration over the ATrans integral can be extended

out to infinity, leaving the dp integral simply as the Fourier transform of Eq. (3-7). We

can now determine the amount of power coupled into the LPOi mode of the fiber for a

glint target.

The power Psig coupled into the fundamental mode of the receiving fiber can again

be approximated using the overlap integral of Eq. (2-6), following the same procedure as

developed in Chapter HI. However, by letting the entire phase across the target be zero, 

our target effectively becomes a “mirror” with reflectivity Tg> Then assuming that the 

object has no structure to it, the complex target reflectivity T(pt) then becomes a 

constant which can be pulled out of the dp, integral. Therefore, the steps associated with

taking the expectation of signal power coupled into the LPOi mode of the fiber are no

longer necessary. Making the appropriate substitutions back into Eq. (2-6), the signal

power coupled into the fiber can be expressed as,
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sig,glin, - (Xf )2(XL)4
JJdPt exP^|P‘|2)^-^) JJdpfU^Jpf)

X JJ dpRWR(PR ) eXP^|pRP ]eXP
-i27ipB

<P«_ + _PCAA

Xfjyy

(5-2)

where %'trans is the Fourier transform of transmitted field. Simplifying, we then arrive at 

the following expression after some straightforward rearrangement of the exponential

terms,

L sig,glint —
Tg JJdPt exp^|pt|2]^r;

(Xf3) (XL)
At

— A

XL,

xJJdpR%vLWR ( Pr ) eXP^ |pR P ) expfPr • Pt
, (5-3)

7

where %*, is the Fourier transform of LPOi mode of the fiber.

To continue with the analysis, we must define the information about the

transmitted beam, the aperture functions Wtand WR, and the modal field in the fiber. For

consistency, we will let the field transmitted through the negative lens Z2 be given by 

Eq. (3-16). For inclusion in Eq. (5-3), the Fourier transform of the transmitted field 

^rans can be found by substituting Eq. (3-19) into Eq. (3-17) to give

^Trans u
2r 2 

Trans tUor2 (2f2+ik©2)
XL? (2f2) + k2co4

-n2 (2f2 + ikco2)
x exp

(XL)2

2f2o>; "1
Io I2

J2f2)2 + k2co4 y |P,|

(5-4)

The dp, integral in Eq. (5-3) then becomes an integral over a circular target area W,(pt) of

the complicated field in Eq. (5-4) multiplied by a quadratic phase factor. Recalling that
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the field distribution of the fiber mode is given by Eq. (2-7), substitution of Eqs. (2-7) and 

(5-4) back into Eq. (5-3) results in the following expression for P„ig,giint

Tg2 V167l2PTrans®of2®2
p -x sig,glint —

(xf3) (xl)‘ 

JJ dP< exP

(2f2) +kX
(2f2+iK)

~rc2 fo2)
(XL)2

2f2®2
(2f2) +kX

x exp i27t2f2c0„ i2rc In I2ftL)J((2f2)'+kX)+ XL? |P.|

xJJdpRWR(pR)exp(^|pR|2 lexpf-^pR -pjexp ^-|p: 12

XL <XL

(5-5)

X

Xf3 ,

The dp, integral in Eq. (5-5) can be evaluated by first defining a specific target area 

function Wt(p) of Eq. (3-21) and extending the bounds of the integral out to infinity.

Employing this technique and letting the receiver aperture function Wr(p) be given by

Eq. (3-22), we see that after the appropriate substitutions, Eq. (5-5) can be rearranged to

obtain the following,

P
x sig,glint

4BPTrans©2Tg2
(Xf3) (XL)2

x exp -l

JJ dpRcicirc

Bkto
2L

JJdp, exp[- B|p,|2]

(5-6)

APr? 

VDr?
exp

( r A2' 7tCO '
VXf3y

17t
XL ip,r i2n _ _ 

exp| ^]“Pr -PtX

y

where B is defined as



52

c _ 4*2fX f5.71
(XL)!(4f22 +(km;)’)

Equation (5-6) is the most general expression one can obtain for the signal power 

reflected off of a glint target and coupled into an optical fiber receiver in a general 

illumination ladar system. From this point, one can analyze any combination of resolved 

or unresolved circular targets with a singlemode or a multimode return. A complete

derivation for the most complicated case of an unresolved glint target with a multimode

return can be found in Appendix A. However, for simplicity of calculation, we will only

examine here the special case of a resolved target [i.e. f2 has gone to infinity] with a 

singlemode return [i.e. the illuminated portion of the target is smaller than the diffraction

limited spot size of the receiver]. This allows us to greatly simplify the mathematics

involved with solving the problem and directly compare our results to the earlier work of

Jacob et. al.2

Assuming a resolved target implies that the dpt integral in Eq. (5-5) is performed

over all space, not just over the target’s area itself. With this in mind, the step of defining 

a specific target function Wt(p) is unnecessary, and thus we can eliminate the circ

function over the target area in Eq. (5-6). Furthermore, by letting f2 go to infinity, 

L’Hopital’s Rule can be employed, thus collapsing the B constant to,11

and reducing ^rans to
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^Trails | -1 T I ~ V^Trans^ftWo CXp
I XL,

™>o
I XL (5-9)

As a result, this reduces the first quadratic term in the dpt integral to a much simpler

expression and causes the second quadratic term to vanish altogether. Moreover, 

allowing f2 to go to infinity ensures that the illuminated portion of the target will always 

be smaller that the diffraction limited spot size of the receiver for all target ranges and 

thus, always generate a singlemode return. After these simplifications, the resulting 

expression for Eq. (5-6) can be written as,

P -sig.glint —

4K2PTransco2co2T2

(Xf3) (XL) 

JJ dpRcirc

JJdp, exp
KCOc

XL
- Ip,f

A_Pr?

j
exp

( r y2
KCO 1TC

XL |pr|

2k

expi,xE

i2K _ _
6XP| XL Pr Pt

. (5-10)

X
y ^3) 7

Upon inspection of Eq. (5-10), one easily recognizes that with a little

rearrangement, the dpt integral merely becomes the Fourier transform of the two pt

exponentials. Carrying out this step yields,

y

L sig.glint

4k2Pt co2co2T21rans o g

(Xf,) (XL)'
ff dpi circ

A_Pr? 

y°R j
exp

x? -i exp
XL

exp
2k

11 XT"*1

(( y2
KCO

yXf3?
IK

XL Pr

• (5-11)

p_PR
pt XL J

7

To evaluate this transform kernel, we begin with a slight rearrangement of terms,
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? ’-{exp rcco„ i-12

XL

-1

exp
0=^ Pt XL J (5-12)

exp — 71
.(-2 co. 2A

nXLj ' I XL J JPt'
p =PR 
pt XL

Now, letting a2 equal

= ?

rcXL) (XL
(5-13)

Eq. (5-12) simply becomes the Fourier transform of a standard Gaussian function and

can be readily calculated to give

,-i exp irl W2 exp © sf
P-Pfi- 
pt“ XL J

exp -Jt2a2|pt|2 _ (5-14)
Pr XL

= —exp
- 1 |_ |2

IPr|a2(XL)

Rationalizing the denominator gives us the following expression for the transform kernel

inEq. (5-11),

1
exp

-1 Io I2 (XL)2(co2k + i2XL) 7t(co27t + i2XL) |_ >2
_a2(XL)2 |Pr| _ ((O2rc)2 + (2XL)2 (co2k)2 + (2XL)2

(5-15)

Equation (5-15) can now be substituted back into Eq. (5-11) to obtain,
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where

P -A sig,glint — exp
(«,)

JJdpR exp
7IC0

VXf3,
|Pr

in i_ i2 i2BALi i2 PRxexp exp WJ circ
<dr J

cofo
~ / o \2(co» +(2XL)2

[-nB2 |pR|2]

(5-16)

(5-17)

Once again, we notice that Eq. (5-16) is an integral over all space of a circ

function weighted by four exponential terms. Equation (5-16) then becomes, after scaling

the dpR variable of integration by DR,

sig, glint — («,)

x exp iD

4rcB2PTransco2D4RTg2

or

JJ dpR exp
/

- D2
\

1---------
1

CM_IQ
-

71 CD
I Xf3 ) + tcB2

)

2
£>r

circ(pR)

(5-18)

Expressing thedpR integral in polar coordinates and using the circ functions to define the

bounds over the receiver area, the coupled signal power for a resolved glint target with a

single mode return is,

sig, glint —

167t3B2PTransco2DRT2

(W,)!

1
P dr 
Jo rexp -D2Rr2

A2KtO
+ rcB,

(5-19)

x exp iD2r2
2B2XL k 

co? + XL

kXf3,

Now to compute t|f/r for a glint target, we need to take the ratio of the power

coupled into the LPoi mode of the fiber to the total power collected by the receiver 

aperture. Therefore, we must determine the nature of the field at the receiver and
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determine how much energy is actually collected. From Eqs. (3-1), (3-2), and (3-3), we 

can show that the field at the receiver plane is given by

(pJ=rnS JJdp.f(p.)e4^(ip.i2+iprI2 -zp,-p»)
(iXf3)(XL) ■ “I

x JJ dpUTrans(p)expf^|p|2

A Trane
exp '£(|p,f-2p.p,)

(5-20)

if the assumption of ATrans«XL is made. The total irradiance lR,giint at the receiver plane

is then simply the magnitude squared of UR. Given that the transmitted beam is 

untruncated and that we are looking at a resolved glint target [i.e. T( p,) = Tg and f2 has

gone to infinity], the bounds on the At integral can be extended to infinity. With the

simplifications, the irradiance can be written as

where ^rawis the Fourier transform of transmitted field in Eq. (5-9). Substituting the

transform of transmitted field back into Eq. (5-21) above gives an integral identical to the

Fourier transform kernel of Eq. (5-11). Thus, using the result of Eq. (5-15), the irradiance

at the receiver aperture is given by

Ir, glint — 2B2PTranSTg exp
i2B7XL I_ p

|Pr|co:

— 2B2PTransTg exp[ 2kB2 |pR| j

exp[-rcB2 |pR|2
(5-22)

where B2 is given by Eq. (5-17).

The above expression is then the irradiance across the receiver plane, however,

the total power received will be limited by the finite extent of the receiver aperture.
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Therefore, the power received for coupling into the fiber can be found by integrating the 

result of Eq. (5-22) over the area of the receiver to obtain

P„„, = 2B2Pt_T,2 JJdp„ exp[- 2nB2 |pR|2] . (5-23)
ar

Extending the limits of integration over the receiver plane out to infinity by substituting 

the receiver aperture function WR(p) of Eq. (3-21) into Eq. (5-23), the total collected 

power becomes

Pr,glint = 2B2PTransTg JJdpRcirc^D exp—2kB2 |pR| j (5-24)

The total power at the receiver can readily be found by scaling the dpR variable of

integration by DR and rewriting the entire integral in polar coordinates. Performing these

operations gives us the following expression for the received power

1
Pr.,,,. = 4kB2Pt„,D2T2 J/drrexp[-27lB2D2R r2]

= P,Trans g
2 f kB2Dr

T„ 1 - exp-----------
(5-25)

Finally, dividing Eq. (5-19) by Eq. (5-25), we obtain the final expression for T|f/r for glint

target analyzed by a general illumination ladar system incorporating a single mode optical 

fiber receiver. This equation, expressed in terms of the truncation ratio at the transmitter

R, is given by

F/R,glint —

32na2DR

1 - exp
7iD2 B2

2

r2D2
2B,AL 7i
------2+~

®o

J02 drrexp[- D2 r2(2a2 + kB2) ]

(5-26)
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XL

2 \
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where the “a” parameter is given by Eq. (3-25).

Equation (5-26) can now readily be compared to the coupling efficiency

expression in Eq. (3-35) for diffuse resolved target with a single mode return, by letting f2 

in the N parameter of Eq. (3-24) go to infinity. After some manipulation, this gives us the 

following expression

F/R,diffuse

(5-27)

fJP’L i , 2 2\ f^DR2ryA 
xj ',4 2dyexp(-4a2y2)cos ——-—

0 7

where the beam at the transmitter has already been assumed to be untruncated. Upon

inspection of Eq. (5-27), one soon notices that it is slightly different from Eq. (31) found

in Reference 2. Although both presentations of T|f/r,diffuse contain mostly the same

components, the dy integral in Eq. (5-27) above has been altered to account for several

false assumptions made during Jacob’s original analysis. A complete derivation of Eq.

(5-27) and a full explanation of where each corrective term arises from can be found in

Appendix B.

The optical fiber receiver we will be coupling into is again the Corning SMF-28

fiber with a core diameter of 8.3 pm and a NA of 0.13. Yet, unlike in earlier models

where this fiber was used with an illumination wavelength of 1.5 pm [i.e. the geometric

model and full analysis], we will now switch to a wavelength of 1.064 pm. This change

in wavelength will enable us to use the pre-calibrated phase vs. voltage curves developed 

by Missy15 for a particular liquid crystal spatial light modulator (LCSLM) device that will
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be used in Chapters VI and VII for the phase filtering experiments. Although we will not 

go into the specifics of exactly how the LCSLM will be used at this time, it is necessary 

to motivate the reason for changing the operating wavelength.

When changing the operating wavelength of the system, however, care must be 

taken to make sure that the optical fiber still behaves as a singlemode fiber. Using

Eq. (2-9), the V number at 1.064 pm for this fiber can be readily determined to be 3.184.

Then employing the classical table developed by Gloge for the normalized propagation 

parameter b vs. V number in weakly guiding fibers,17 our fiber at this wavelength 

corresponds to a slightly multimode fiber where both the LPoi and LPn modes are

present.

Applying the computational techniques developed by Jacob,2 an expression for the 

power coupled into a multimode fiber receiver can easily be obtained for a glint target

with a multimode return. Note, since both the x and y polarization states of the LPn have

the same mode profile, they will be treated as one mode throughout the remainder of this 

argument. With two modes propagating down the fiber, Psig is now the magnitude 

squared of the overlap between the field at the fiber endface and both the LPoi and LPn

fiber modes. Thus, Eq. (2-6) becomes

P =Sig
fjdp, uf(p,)u;,(p,)+JJdp, Cf(p,)u;,(p,)|' (5-28)

This equation can be greatly simplified by examining the LPn mode a bit more carefully. 

Unlike the LPOi mode which can be approximated with a Gaussian profile, the LPn 

modal field is the odd function10 displayed in Figure 5.1.
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Figure 5.1: LPn modal field in an optical fiber.

Substituting the expression for the field at the fiber endface given by Eq. (5-1) and 

recalling that T(pt) = Tg for a glint target, the contribution of the second half of

Eq. (5-28) to PSjg can be quickly determined. By inspection, we see that this portion of 

the coupled signal power becomes the overlap integral between the even function 

Uf(pf) and the odd function of the LPn modal field. Extending the limits on the integral

out to infinity by defining a fiber receiver aperture function, the area resulting from this 

field overlap will be equal to zero, leaving us with the same identical expression for PSig 

developed earlier. Therefore, even though the Coming SMF-28 fiber is slightly

multimode at 1.064 pm, the LPn modes will not be excited by the return from a glint

target, allowing us to treat the fiber as singlemode.

For the diffuse case though, this will not be the case. Due to the diffuse nature of

the target, the second double integral in Eq. (5-28) will no longer be zero. To properly 

evaluate this expression for PSig, we must expand the magnitude squared and take the
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expectation of each of the resulting terms as in Chapter DI. As one can imagine, this 

process quickly becomes very complicated. Therefore, for simplicity and because it will 

be the most dominant term of the two, we will merely focus on the PSig power coupled 

into the LPOi mode of the fiber. This simplification also allows us to use Eq. (5-27) to 

theoretically model the F/R coupling efficiency for a resolved, diffuse target with a single 

mode return. However, it is important to note that if these results were verified

experimentally, the actual coupling efficiency measured would be higher than predicted

due to the coupling into the second fiber mode.

With these issues in mind, one can determine the maximum F/R coupling 

efficiency for a glint target in the far field by letting L->infinity in Eqs. (5-10) and (5-21). 

As a result, all complex exponential terms drop out of each expression and upon

evaluation of the remaining terms, we can obtain the following relationship,

4 ap 

2y
(5-29)1 - exp^1f/R — 2

a

where “a” is given by Eq. (3-25). We can now make a direct comparison between Eqs.

(5-26), (5-27), and (5-29). First, we assume an optimum truncation ratio of R=4 and a

transmitter diameter of DTrans=10 cm. Thus, a transmitted beam diameter can be

readily calculated to be 2.5 cm for inclusion in the B2 constant. Then, letting the distance

to the target L equal 20 km, the wavelength X equal 1.064 pm, and the diameter of the

receiver equal 10 cm, both equations can be plotted vs. the “a” parameter again given in

Eq. (3-25). This particular plot is shown in Figure 5.2 below.
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Figure 5.2: Receiver/fiber coupling efficiency vs. the “a” parameter for 
a diffuse and a glint target in the near field, as well as a 
glint target in the far field. Each target is resolved and has a 
singlemode return. Range to the diffuse and glint targets 
in the near field is 20 km.

Note, a value for T|f/r has been singled out on each of the curves in Figure 5.2 at

“a”= 2.58. These coupling efficiencies will be compared to the computer simulations of

Chapter VI, for a fiber 8.3 (im in diameter, for any coupling efficiency enhancement

resulting from phase only filtering with a liquid crystal beam steerer.

As expected, the F/R coupling efficiency for a glint target is much higher than that 

of an identical diffuse target when the numerical apertures of the fiber receiver and the

coupling optics are closely matched to each other. From Figure 5.2, when the “a”

parameter is equal to 1.84 and both coupling efficiencies are near their maximums with

the T)f/r for the glint target being more than twice as great as the r|F/R of the diffuse target

(t|f/r,glint = 73.39% vs. T|f/r,diffuse = 30.32%). This dramatic difference results from 

different nature of the two targets. By definition, the surface variations across a diffuse
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target will cause the reflected light off the target to scatter over a much larger area of 

space leading to more interference in the wavefront across the plane of the fiber. 

Therefore, less collected light falls within the acceptance cone of the optical fiber, giving 

a lower coupling efficiency for the diffuse target. On the other hand, the return from the

smoother, glint target does not experience this effect nearly as much and the field at the

fiber has a greater F/R coupling efficiency. One also notices that a maximum coupling of

81.5% can be obtained for a glint target in the far field, thus setting an upper limit for F/R 

coupling efficiency.



CHAPTER VI

Coupling Efficiency Enhancement with Phase Only

Filtering for Singlemode Glint and Diffuse Targets

In Chapter V, expressions for the F/R coupling efficiency were developed for a

glint target. From Figure 5.2, we saw that the coupling efficiency of singlemode returns

from resolved, diffuse targets was nearly half that of an identical glint target in a NA

matched, general illumination ladar system. With this t|F/r trend between glint and

diffuse targets in mind, we will now investigate the prospect of enhancing the coupling

efficiency by phase only filtering the singlemode return from a target with a liquid crystal

spatial light modulator.

In this chapter, we will present a computer simulation technique capable of 

predicting a corrective, phase filter across the receiver aperture for a resolved, glint target

with a singlemode return. Once this phase profile is known, we will apply it to the return

signal with a liquid crystal spatial light modulator LCSLM, recalculate the F/R coupling

efficiency. Once these routines are established, we will investigate the F/R coupling

efficiency for a specific example of a circular target with a singlemode return and 

compare it to the baseline glint coupling efficiency in Figure 5.2 for any enhancement.

Then we will use the same phase mask generated for the glint target to filter the return
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signal from a diffuse target. The resulting values for diffuse F/R coupling efficiency will 

also be compared to the data in Chapter V with and without the phasemask across the

device.

6.1 Gerchberg-Saxton Algorithm

Although there are several error reduction algorithms available today capable of 

minimizing the difference or error between two functions,18 one of the most widely 

accepted is the Gerchberg-Saxton algorithm. First developed in 1971, the Gerchberg-

Saxton algorithm is an iterative process that allows one to find an ideal phase filter that

converts a known intensity pattern in the diffraction plane into a desired pattern in the 

imaging plane.19 This phase filter is found by substituting the modulus of the diffraction 

pattern to the modulus of the desired image pattern at each individual step in the 

algorithm. However, while matching the two moduli of the fields, the phase is left to

vary freely until the error between the two patterns is minimized [i.e. a stable solution is

reached].

We will now apply this process to the receiver end of our direct detection ladar 

system. To allow for phase filtering of the return signal collected by the receiver, the

LCSLM is inserted into the return path of the laser radar system, as shown in Figure 6.1,
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Figure 6.1: Modified laser radar system with a liquid crystal 
spatial modulator (LCSLM) in the receiver.

where all of the other variables in the above figure are the same as in Figure 3.1. Also 

notice that I3 is no longer in the receiver aperture plane, but is merely a Fourier transform 

lens positioned between the liquid crystal device in the receiver plane and the fiber 

endface. It is important to note that the input receiver aperture in Chapter DI was located 

at lens I3. However, any slight shift in the receiver aperture plane due to the insertion of 

the LCSLM will result in an extra quadratic phase term at the fiber endface that is 

negligible. Thus, the mathematics developed earlier will not be effected.

With this new system, one can clearly see that in order to obtain the maximum

F/R coupling efficiency, the shape of the Fourier transformed LCSLM field must match
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the shape of the modal field supported by the fiber as nearly as possible. This gives us 

two very distinct fields with which to perform the Gerchberg-Saxton algorithm, the target 

return at the receiver aperture plane and the LPOi mode of the fiber. The basic Gerchberg- 

Saxton algorithmic process can readily be applied to the receiver of the general

illumination ladar system shown in Figure 6.1. For ease of understanding, a flowchart

depicting the steps of the algorithm, as applied to our system, is shown in Figure 6.2.

Figure 6.2: Flowchart depicting the steps involved 
in the Gerchberg-Saxton algorithm.

Walking our way through the process, we see the field at the target plane, after 

multiplying by the target’s reflectivity, o(xi) is propagated to the plane of the receiver.
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This field is then multiplied by the initial phase across the LCSLM. The resulting field 

F(a) is then expressed in terms of its modulus o (a) and phase <|>i. F(a) is now the 

diffraction field we use as the starting point for the Gerchberg-Saxton algorithm. To 

obtain the image field at the fiber endface, we simply take the Fourier transform of F(a) 

with Z3, giving us a new field modulus f (x2) and phase 02.

Now, here is where the power of the Gerchberg-Saxton algorithm to solve our 

particular problem becomes apparent. Since we ultimately want to phase filter the field at 

the LCSLM in an effort to make the resulting field at the fiber more like the Gaussian 

mode of the fiber, we satisfy the constraints in the plane of the fiber. That is, we 

mathematically replace the modulus of the transformed field with the modulus of the LPoi 

fiber mode g(x2) in the algorithm, but leave the accumulated phase 02 at the fiber

endface alone. The field at the fiber is then inverse Fourier transformed back to the plane 

of the receiver aperture, generating a new field modulus g(a)and a new phase 03. This

new phase 03 now contains the original object phase 0i plus an extra phase term that

alters the image of the received field at the fiber endface such that it more closely matches 

the fiber mode. Replacing g (a) with modulus o (a) from the received field and

combining it with 03, we now have the starting point for another iteration through the

algorithm. This process is repeated until the solution stabilizes after a number of 

iterations. The ideal phase mask for minimizing the error between the received beam and

the fiber mode can then be obtained by subtracting the original object phase from the

resulting phase in the diffraction plane field at the receiver aperture.
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6.2 Glint Target Coupling Efficiency Enhancement Analysis

To perform the following glint target coupling efficiency enhancement analysis,

we will employ the Matlab software package. The ease with which this package 

simulates complex vector fields gives us the ability to not only model our system 

effectively, but allows us to easily incorporate the Gerchberg-Saxton algorithm into the 

routine as well. The steps involved with calculating the coupling efficiency using the 

computer simulations are very similar to those of the numerical integration technique

developed in Chapter V. The amount of power coupled into the fiber mode can be found 

by adapting the steps outlined by Eq. (5-3) to typical Matlab modeling techniques. These 

steps are outlined by the flowchart depicted in Figure 6.3.
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Figure 6.3: Flowchart depicting the steps involved in calculating the F/R 
coupling efficiency via the Matlab computer simulations.

Working our way through the flow chart, first a Gaussian function that simulates 

the LPoi mode of the fiber is represented here by the two dimensional array fibermode(i, 

j), with i and j the indices of the array in pixels. The fibermode(i, j) array is then inverse 

Fourier transformed to the receiver plane, generating a temporary array FTfibermode(i, j).
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Multiplying the FTfibermode(i, j) array point-by-point with a separate 2-D array, 

rxaperture (i, j), that simulates the shape of the aperture, another temporary array, 

fiber_ aperture (i, j), can be generated. Finally, fiber_ aperture (i, j) is back propagated

fiber in the target plane, giving us a new array fiber_target(i, j).

Once the fiber mode is propagated to the target plane, the final overlap integral is 

performed between fiber_target(i, j) array, the illumination beam array, IllumBeam (i,j), 

and the target array, target(i, j). At this point, all of the information about a specific target 

is defined. Depending on how the parameters of IllumBeam (i, j) and target(i, j) are set,

the F/R coupling for any combination of resolved/unresolved, glint/diffuse targets with 

singlemode/multimode returns can be examined. With all the field arrays now 

characterized, the power coupled into the fiber mode Psig can be calculated by numerically 

integrating the final Psig(i, j) and taking the magnitude squared of the resulting sum.

Here, the numerical integration was approximated by summing all elements of the two-

dimensional array and multiplying by the sampling period in x and y.

Yet, to find the F/R coupling efficiency we also need to know the amount of 

power collected by the receiver aperture. This is found separately by propagating the 

product of the IllumBeam (i, j) and target(i, j) arrays to the receiver aperture and 

multiplying resulting array on a point by point basis with the aperture array, 

rxaperture (i, j). Thus, PR can be readily calculated by numerically integrating the 

magnitude squared of the resulting field, FTtarfield (i, j). We then divide the summed 

value from Psig (i, j) by the corresponding value from the FTtarfield (i, j) array. This
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result is then multiplied by a single constant, accounting for the all of the Fourier 

transform scaling terms generated throughout this process, to finally obtain the F/R 

coupling efficiency. Note, the methodology involved in determining the specific scaling 

constant for both glint and diffuse targets will be discussed in greater detail in 

Appendix C.

After the above routine for determining the F/R coupling efficiency is established, 

incorporating the Gerchberg-Saxton algorithm into the process is rather straightforward. 

Before running the subroutine that calculates the F/R coupling efficiency, the optimal 

phasemask for increasing coupling is determined using the error reduction algorithm 

outlined in Section 6.1 with the Matlab software package. This phasemask is then 

another 2-D array across the plane of the receiver given by phasemask (i, j). Thus, when 

FTfibermode(i, j) is multiplied by rxaperture (i, j) on a point-by-point basis, including the 

phasemask (i, j) array into the coupling efficiency subroutine can be accomplished simply

by performing another point-by-point multiplication in the plane of the receiver before

proceeding with the calculation.

Continuing with our analysis, we now calculate the F/R coupling efficiency for a

specific resolved, glint target with and without the phasemask across the LCSLM using 

the Matlab code found in Appendix C. Again we will examine a general illumination 

ladar system illuminating a circular resolved target with a singlemode return and

incorporating a singlemode optical fiber receiver, 8.3 pm in diameter and a wavelength of

X=1.064 pm. Furthermore, we will also assume that vignetting does not occur with the

addition of the liquid crystal spatial light modulator directly in front of the receiver
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aperture. This allows us to keep our original 10 cm circular receiver for consistency. The 

other relevant parameters that will be used in this analysis are the following: an optimum

truncation ratio of R=4, a beam waist of (% = 2.5 cm at the transmitter, a target range of

L = 20 km, an illumination wavelength of X = 1.064 pm, a receiver numerical aperture of

NA = 0.13, and a diameter of Dr = 10 cm. Incorporating these specific parameters into

the routine allows us to directly compare our results with those of Figure 5.2.

Inspecting the Matlab computer code in Appendix C, one finds that after each of 

the arrays are initially defined, the Gerchberg-Saxton phasemask can be determined. 

Figure 6.4 displays the phasemask across the receiver for the circular glint target

described above.

Phase Mask Across Receiver Aperture

Figure 6.4: Gerchberg-Saxton phasemask across the liquid crystal spatial light 
modulator for a resolved, glint target with a singlemode return.
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As we can see, the magnitude of the beam shaping phase mask across the entire aperture 

is fairly constant. Only at the edges of the lens, where the Fresnel phase curvature is 

more pronounced, do we see any appreciable change in the optimal phasemask and even 

then, the magnitude of the difference from the center of the pattern is only about 14

radians.

It is also important to note that for the computer simulations, a circular target with 

a diameter of Dt = 1 m was assumed in order to define the target(i, j) matrix. However,

because we ultimately want to compare the simulation results with results for the resolved 

targets of Figure 5.2, the portion of the IllumBeam (i, j) array that actually overlaps with

the target(i, j) array is small. Thus, the illuminated portion of the target still falls within 

the diffraction limited spot size of the receiver, and thus we have a singlemode return.

Having calculated the ideal error reduction phasemask with the Gerchberg-Saxton

algorithm, we can now determine the F/R coupling efficiency with and without the

phasemask across the receiver. Table 6.1 displays the values of F/R coupling efficiency

for the numerical integration found in Figure 5.2 as well as the values for coupling

efficiency found by the Matlab simulations.

Table 6.1: Glint target F/R coupling efficiency values from the numerical
integration and Matlab computer simulations for a singlemode target.

Calculation Technique
F/R Coupling 

Efficiency Without 
Phasemask

F/R Coupling
Efficiency With 

Phasemask
Numerical Integration (Figure 5.2) 51.52% NA

Matlab Computer Simulations 52.09% 52.38%
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Note, by calculating the F/R coupling efficiency after each iteration through the 

Gerchberg-Saxton routine, it was observed that the solution stabilized after only five 

times through the error reduction cycle and remained constant through ten thousand 

iterations of the routine. Therefore, the above values of F/R coupling efficiency 

incorporating the phasemask have been found for one hundred iterations through the 

Gerchberg-Saxton error reduction algorithm.

As we can see in Table 6.1, there is a slight discrepancy between the numerical 

integration and computer simulation baseline values for coupling without the phasemask. 

This effect can be readily attributed to the discrete sampling of the functions necessary for 

the computer simulations.20 When a function is modeled within the framework of the 

Matlab computer software, one can not simulate the original, continuous function with 

infinite support exactly [i.e. the function must be truncated]. Instead, the truncated 

function is sampled at a regular pixel interval, and individual magnitude values calculated 

at these positions. These values are then substituted into the array describing the specific 

function to be incorporated into the program routine. Thus, it becomes the responsibility 

of the programmer to set the discrete sampling such that the simulated computer function 

matches the original, continuous function as closely as possible.

To illustrate this point more clearly, let us examine the Gaussian modal field of

the fiber shown in Figure 6.4.
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Figure 6.4: Discrete sampling example for the LPOi mode of 
the fiber as used in the computer simulations.

Here Ns is the number of samples across the Gaussian and co is the 1/e waist of the

Gaussian mode in pixels. To model the Gaussian mode of the fiber with the Matlab

software appropriately, the modal function must be sampled at a minimum interval in 

order to ensure that aliasing does not occur.21 This minimum sampling rate is generally 

accepted to be at least twice the highest spatial frequency contained within the function

and is known as the Nyquist rate. Since the Gaussian function extends out to infinity, we

must assume an upper frequency limit, above which there is very little remaining energy. 

To accomplish this, the Fourier transform of the Gaussian mode function can be 

calculated analytically and the spatial frequency below which 99% of the energy is still 

present can be found. This then leads to the sampling rate necessary to avoid aliasing.
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Once this sampling rate is determined, one can quickly ascertain the minimum 

number of Ns sample points across the Gaussian needed to model the length of the mode 

radius © in pixels. Yet, by sampling the function at a frequency higher than the Nyquist 

rate, one can simulate the given function more accurately. For this simulation we have 

set the sampling rate at 15 times greater than the minimum Nyquist rate in the plane of 

the fiber. Here, it is important to note, that this rate was chosen so that when the fiber 

mode was propagated to the receiver plane and then to the target plane for the F/R 

coupling efficiency calculation, the Nyquist criteria would still be satisfied in both the 

planes. Setting this limitation becomes especially difficult when the magnitude or phase

is rapidly varying at the receiver plane and care must be taken to avoid any aliasing in

each plane.

Having addressed the sampling issues, we now turn our attention to the effects

observed with the inclusion of a phasemask across the LCSLM. From Table 6.1, we see

that incorporating the phasemask across the aperture has almost no effect whatsoever on

the F/R coupling efficiency for a resolved, glint target with a singlemode return. This

result can be readily explained by carefully examining the nature of the overlap integral 

between the back propagated fiber field in the target plane and illuminated portion of the

target. Since we have assumed that the focal length of the negative lens l2 is infinity, the

illumination beam in the target plane is simply an expanded Gaussian given by Eqs. (3-

36) and (3-38). This beam is then completely reflected off of a glint target and

overlapped with the back propagated LPOi mode of the fiber, which is also Gaussian.

Thus, for a singlemode glint target, the two fields are already spatially matched to each

other and as a result very little beam shaping occurs.
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6.3 Diffuse Target Coupling Efficiency Enhancement Analysis

Although the F/R coupling efficiency did not improve for a resolved, glint target,

we will now investigate the effects of filtering the same glint target phasemask from the

return signal of a resolved, diffuse target. However, properly simulating a random phase 

across a diffuse target presents an interesting problem. By definition, a diffuse target will

scatter reflected light off of it in all directions with some sort of random scintillation

across the reflected wavefront. Predicting these phase fluctuations in the wavefront is

nearly impossible unless specific, statistical information about the target’s surface is

known a priori. Unfortunately, under normal circumstances, this data would never be

known by a real world, ladar operator.

Modeling this effect with computer software packages becomes rather

challenging. To simulate a certain group of random targets with specific mean variances,

correlation sizes, etc., we must generate an ensemble of phase functions. However, just

by picking a random target phase for the simulation means that the phase is no longer

random, but is now deterministic! When the F/R coupling efficiency is calculated for

each sample function, the r|F/R results obtained are only valid for that particular target

phase and not a purely diffuse target. Thus, to overcome this problem and truly simulate

a diffuse target, several different phase profiles across the target can be chosen and a 

separate F/R coupling efficiency calculated for each one of them. These coupling

efficiency values are then averaged in the following manner

Bf/r — S
i=i < N

(6-1)
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where Np is the number of different phase profiles chosen within the computer simulation 

and r|F/Ri is the individual t|fzr results calculated with each new target phase. Although 

this function may oscillate wildly at the beginning, as Np increases, more and more phase 

profiles are averaged together. As a result, the value for the computer simulated, F/R 

coupling efficiency should approach the results obtained through the numerical 

integration techniques of Chapter V.

Integrating this technique of averaging distinct, phase profiles into the routine

developed in Appendix C is merely a matter of using a random variable to establish a

separate array of random numbers between zero and 2n with the Matlab software 

package. This array objectphase(i, j) then multiplies the same target (i,j) array of the

glint target routine on a point-by-point basis and the F/R coupling efficiency for a diffuse 

target is calculated in the manner outlined above. The balance of the glint target routine

[i.e. the phasemask calculation and field propagations] however, remains unchanged. 

This process is illustrated in the flowchart of Figure 6.5 below.
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Figure 6.5: Flowchart depicting the steps involved in calculating the F/R coupling 
efficiency for a diffuse target via the Matlab computer simulations.
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Diffuse Coupling Efficiency wo/Phasemask

(a.)

Figure 6.6 illustrates the results of the diffuse coupling efficiency simulations with and 

without the phasemask across the device for Np = 1024 iterations of Eq. (6-1).

(b.)

Figure 6.6: F/R coupling efficiency for a resolved, diffuse target with 
a singlemode return a.) without and b.) with the glint 
target phase mask across the liquid crystal device.

Again, all parameters such as the truncation ratio and beam waist at the transmitter, target 

range, illumination wavelength, receiver numerical aperture and a diameter, and target 

diameter are identical to that of the glint target.

A comparison of the resulting values for diffuse F/R coupling efficiency at 

Np = 1024 iteration with the numerical analysis data in Chapter V is shown in Table 6.2

below.
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Table 6.2: Diffuse target F/R coupling efficiency values from the numerical 
integration and Matlab computer simulations.

Calculation Technique
Diffuse F/R 

Coupling Efficiency 
Without Phasemask

Diffuse F/R 
Coupling Efficiency 

With Phasemask
Numerical Integration (Figure 5.2) 26.57% NA

Matlab Computer Simulations 26.68% 26.54%

Once again, we observe that the values for the computer simulation coupling efficiencies 

are slightly different. This is again due to the aforementioned truncation error embedded 

within the Matlab software. Since the results of the Matlab computer simulations with

and without the phasemask do not change in Table 6.2, we can conclude that phase

filtering the singlemode return from a resolved target does not increase the F/R coupling

efficiency.



CHAPTER VII

Theoretical and Experimental Analysis of Phase Only

Filtering Multimode Returns from Unresolved Targets

As we saw in Chapter VI, phase only filtering the singlemode returns from 

circular, glint and diffuse targets had no effect on the F/R coupling efficiencies for either

target. This trend can be directly related to the plot of tif/r vs. illuminated target diameter 

shown in Figure 3.5. From the figure, we see that the F/R coupling efficiency for a truly 

singlemode target is already relatively high. With such a high F/R coupling efficiency 

already present, any room for improvement resulting from phase only filtering the return 

from smaller, resolved targets is limited. On the other hand, if a larger, multimode target 

with an inherently lower coupling efficiency is interrogated, any enhancement in coupling 

should be easily seen.

In this chapter, we will focus on investigating the F/R coupling efficiency from 

unresolved, glint and diffuse targets with multimode returns. Again, we will apply a 

phase filter calculated with the Gerchberg-Saxton algorithm in an effort to enhance the 

coupling into the LPoi mode of the fiber. Yet, instead of merely expanding the

illumination beam and the size of the circular target to simulate an unresolved target with 

multimode return, we can tailor the shape of our target with a bit of intelligent foresight
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to be more representative of a real world target. However, since we only have access to a 

1-D LCSLM, we will switch from a circular target to a simple, separable target [i.e. a 

rectangular target] in all of the following simulations.

7.1 Imaging a Rectangular Target

In Chapter HI, we saw that for a 10 cm target to be in the far field with respect to a 

single lens receiver with Dr = 10 cm in a general illumination ladar system operating at 

X = 1.5 pm, L must be greater than 52 km. This requirement remained unaffected by the 

addition of the liquid crystal spatial light modulator in Section 6.1 since we assumed that 

the device was at least as large as the receiver. However, by changing to the operating 

wavelength to A. = 1.064 pm, our far field requirement is extended to L = 74 km. 

Therefore, if a rectangular target is 20 km away from the receiver, we are not in the far 

field and a Fresnel pattern of the target is generated at the liquid crystal device.

The collected portion of the return from an unresolved target 20 km away is 

simply the integral of the irradiance of the Fresnel propagated field from the target over 

the area LCSLM. If the target is highly multimode though, its Fresnel pattern across the

LCSLM is much larger than the area of the aperture. To illustrate this point more clearly, 

the one dimensional intensity profile l(xR) of Figure 7.1 for the propagated field can be 

found using the Fresnel integrals given by Goodman for a rectangular target aperture,12

(127^
exp

T(xr)
iXL

[c(xR) + i-s(xR)] (7-1)
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where

c(xr)=Edgcos ^(x*-g) (7-2)

and

s(xr) = J_Ldgsin ^(XR"g)2 (7-3)

Furthermore, L is the propagation distance, A, is the illumination wavelength, w is the 

diameter of the target, and g is a dummy variable of integration.

Figure 7.1: Normalized, 1-D Fresnel field from a 20 m unresolved 
target with multimode return at the receiver aperture.

Figure 7.1 displays the Fresnel field at the receiver for a uniformly illuminated target 20 

km away and 20 m in width. As we can see, with the Fresnel field still nearly 20 m wide, 

a 4 cm X 4 cm liquid crystal device would only sample a very small portion of total field
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near the origin. From Figure 7.1, we can also see that the intensity over the LCSLM will 

be essentially uniform, but still possess all of the phase information about the target.

7.2 Fraunhofer Diffraction from a Slit Target

In the previous section, we saw that the multimode return from a target in the near 

intensity profile is much larger than the extent of the LCSLM aperture but still contains 

the phase information about the target. Unfortunately simulating this phase profile in the 

laboratory would be nearly impossible. However, this difficulty can be overcome by

modifying the receiver in such a manner that we first image the target with an imaging

lens Zil and then Fourier transform the image with a second transform lens Z4. As a result,

a very different phase pattern can be generated across the liquid crystal device. These

alterations to the current receiver in Figure 6.1 are shown in Figure 7.2.

Figure 7.2: Modified general illumination ladar receiver with an
imaging and Fourier transform lens before the LCSLM.
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Here, the DiS denotes the width of the imaged rectangular target and fiL, f* and f3 and the 

focal lengths of the imaging lens, the second transform lens, and the receiver coupling 

optic respectively.

With the addition of the second transform lens into the system, several advantages 

are gained. Situating Z4 such that the image of the rectangular target is in the front focal 

plane, a Fraunhofer pattern of the target can be formed across the device if the spatial 

light modulator is placed in the back focal plane of the lens. Thus, we effectively move 

the target out to the far field regardless of its actual distance from the receiver. For a 

rectangular target, this far field pattern at the LCSLM is the all too familiar sine pattern 

given by22

rect X1
D, 1 / X1 Xf

/D,.x,X2^
Xf4 , (7-4)> = sin c

4 J

with its zeros located at

x2
Xf4 (7-5)

t,x,D

Here, Dtxis the x dimension of the target image, xi and X2 are the spatial variables

associated with the front and back focal planes of l4 respectively. At this stage, it is also 

important to note that due to the separable nature of the x and y coordinates of a 

rectangular target, a similar expression can be generated for the y dimension simply by

replacing every x in Eqs. (7-4) and (7-5) with y. Thus, throughout the remainder of this

argument, we will focus our attention only on the 1-D pattern in the x direction while still

maintaining that an identical process can be performed along the y dimension.
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By knowing the locations of the sine pattern’s zeros, the spatial extent of the sine 

function on the device may be adjusted by varying the focal length of Z4 if the size of the 

target image is also known. Since the target is several kilometers away, the approximate 

Fresnel magnification Mil of the imaging lens in Figure 7.2 can be found using the 

relationship11

Multiplying Eq. (7-6) by the dimensions of the target, we can readily attain the size of the 

imaged target in the focal plane of Zn,. Now choosing some typical ladar parameters such

as L = 20 km and that Zil is a f/3 lens with a focal length of fiL = 30 cm, the association

between the image size and the true target width can be determined as shown in Figure

7.3. Note, this relationship will be the same for either the x or y dimension and is

independent of the whether or not the target is glint or diffuse.

Target Width (m)

Figure 7.3: Imaged spot size vs. true target diameter.
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With the size of the imaged target now known, the sine pattern across the 

LCSLM can readily be determined. For this example, let us consider the normalized 

intensity pattern shown in Figure 7.4 for a target image diameter of Dt = 300 pm, a

focal length of f4 = 1 m, and a wavelength of A, = 1.064 pm.

Figure 7.4: Sine pattern across the LCSLM.

Looking at the figure, one recognizes that the majority of energy is contained in the

central lobe and the three side lobes of the pattern. Thus expanding the sine pattern until 

only the central lobe and the three side lobes are incident on the LCSLM, not only

increases the number of device electrodes under each of the main intensity lobes, but still

allows most of the energy to be passed through the aperture. Upon inspection of

Eq. (7-5), we see that by increasing the focal length f4, the zeros of the sine pattern can be 

moved further away from the origin until the desired, seven lobe pattern is achieved.
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Relating the f4 that generates this seven lobe pattern on the liquid crystal device to the 

real target diameter, Figure 7.5 can be generated for a wavelength of A, = 1.064 pm.

Figure 7.5: Transform lens focal length f4 required to produce a seven lobe 
pattern on SLM vs. true target diameter at 20 km.

7.3 1-D Beam Shaping Simulations

Armed with the data from Figure 7.3 and Figure 7.5, we can now effectively 

model a real world system both theoretically and experimentally for any given target size.

The image size can be simulated by illuminating a rectangular slit of the appropriate 

dimensions, as determined from Figure 7.3, for a specific target. Once this target is 

chosen, the focal length of 1$ can be extracted from Figure 7.5 to generate our sine pattern

on the spatial light modulator. In this section, we will specifically examine an unresolved

target at 20 km that is 10 m in diameter and has a multimode return. Again we will

assume that imaging lens is a f/3 lens with a focal length of fn, = 30 cm. From the graphs

in Section 7.2, this target would correspond to a 150 pm slit aperture and a 750 mm focal
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length transform lens Z4. With the experimental criteria now established, computer 

simulations of the receiver system shown in Figure 7.2 can be performed to evaluate the 

possibility of enhancing the coupling efficiency.

Now, to ensure that we are properly modeling our system, let us briefly turn our 

attention to the actual components that will be used later on in the experimental setup. In 

Section 6.1, we assumed that the LCSLM device was at least as large as the receiver. 

Unfortunately, beam steering devices of this extent are commercially unavailable.

Therefore, we will “exchange” the LCSLM used earlier for a more typical device, the 

Raytheon Demo 4 Fine 1-D device with a 4 cm x 4 cm clear aperture, and continue to 

operate the device at a wavelength of A. = 1.064 Jim. Therefore, even though it may be

possible to develop a 2-D phase mask capable of increasing the T|F/r coupling into a

singlemode fiber receiver, our device only possesses 1-D beam steering abilities. Thus, 

the degree of correction we can impose upon the incoming wavefront will be limited. 

With this in mind, all of the subsequent modeling and corresponding experiments will 

investigate the effects of applying a corrective phasemask across only one dimension of 

the receiver aperture. Furthermore, to minimize the spherical and coma aberrations in the 

transform pattern across the LCSLM and in the plane of the fiber, both Z3 and Z4 for this

set of experiments will be two achromatic lenses (Newport model PAC094) with focal

lengths f3 = f4 = 750 mm. By choosing the same focal length for f3 and f4, we have

strictly a one-to-one magnification relationship between the image planes of the system.

However, the effects of varying both focal lengths will be examined in Section 7.5.

Having set the experimental parameters, we again employ the Gerchberg-Saxton

algorithm outlined in Chapter VI to find the ideal 1-D phasemask for a rectangular, glint
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target. Yet, it is important to realize that though an imaging lens and Fourier transform 

lens have been inserted before the spatial light modulator, we more or less still have the 

same general illumination system as in Figure 6.1. Instead of Fresnel propagating the 

reflected field from a 10 m target, 20 km to the receiver as before, we are now merely 

imaging the target with the imaging lens first and then performing a Fourier transform 

operation to the receiver with a second transform lens Z4. Modifying the Matlab computer 

code in Appendix C to account for these changes as well as the new experimental

guidelines, the ideal phasemask for a 150 pm target image and a 750 mm focal length

transform lens I4 is displayed in Figure 7.6.

Phase Mask Across LCSLM

Figure 7.6: Ideal phasemask for increasing the F/R coupling efficiency 
from a 150 mm rectangular, target image that has been 
Fourier transformed onto the LCSLM with a 750 mm lens.
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Upon inspection of the figure, one can see seven distinct regions of alternating zero and rc

phase. This effect arises from the alternating side lobes in the sine pattern of the field 

across the device. Every time the field pattern crosses a zero, the values of the sine

pattern change from positive to negative, causing an abrupt phase shift of -rc in the

wavefront. Thus, everywhere the field at the receiver has a negative value, the ideal

phasemask compensates for this with a region of tc phase

Once the Gerchberg-Saxton phasemask has been determined, the F/R coupling

efficiency with and without the phasemask can be calculated by following the same

process outlined in Chapter VI. Yet, this time instead of calculating the overlap integral

in the target plane, the overlap integral is performed between the back propagated LPoi

fiber mode and the slit target in the front focal plane of I4. The ideal phasemask is then

calculated and used to phase only filter the returns from various targets/image spots.

Figure 7.7 illustrates the results for the factor increase in F/R coupling efficiency .

Figure 7.7: Factor increase in coupling vs. target diameter resulting
from 1-D phase only filtering the return from a glint target.
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As in Chapter VI, we again see that for singlemode targets and targets whose diameters 

are less than three meters, no increase in F/R coupling is realized. Yet, as the target’s 

diameter is slowly increased, the factor increase in coupling steadily improves until a 

factor of 12x for a 25 m target is achieved. Form this point, the factor increase in

coupling decreases for larger targets. We can attribute this decrease to the fact that for

larger targets, the sine pattern across the LCSLM narrows. This reduces the number of

sample points [i.e. electrodes] across each oscillation of the sine pattern in the receiver

plane, and thus causing an under sampling problem within the Matlab routine.

Close inspection of Figure 7.7 also reveals a slight oscillation in the curve where

regions of lower coupling increases are created. This effect is especially prominent in the

target diameter region between 5 and 10 m. After reaching a maximum coupling increase

of 2.48x for a 5.5 m target, the factor increase drops to 2.21x for an 8 m target before 

climbing to 3.25x for a 10.5 m target. This peculiarity arises from the changes in the

number of zero and n phase shifts within the calculated phase mask. In the areas where

coupling increases actually turns and starts to decrease, another region of zero phase shift

is added to either side of the phase pattern in Figure 7.6. Therefore, the edging effects

caused by the Discrete Fourier Transform (DFT) within the Matlab routine are slightly 

enhanced19 and the energy in the target plane of the back propagated LPOi mode is spread 

out over a wider area. This brings the magnitude of the corrected Ps;g integral down and 

decreases the overall change in coupling increase. Once the target size is sufficiently

increased, the phase mask reaches its next transition point, another region of n phase is

added to Figure 7.6, and the curve in Figure 7.7 starts to increase again. Alternation

between these zero and rc phase additions continue, but as the target sizes get larger, the
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time between these transitions decreases. As a result, the sine pattern across the LCSLM

narrows and the effect becomes less obvious. In the next section, we will examine

experimentally several points along the curve in Figure 7.7 to verify the theoretical data 

and test the feasibility of the phase filtering process in a general illumination ladar

system.

7.4 Experimental Phase Only Filtering of Multimode Returns

Having completed the necessary system modeling, we will now investigate the

methodology involved with experimentally verifying the factor increases in T|f/r for

several different targets. As stated earlier, a real world target can be imaged to the front

focal plane of Z4. Using the relationship developed in Figure 7.3, this image size can be 

simulated experimentally by back illuminating an air slit of the appropriate dimensions.

For the following analysis, we will specifically look at a series of precision air slits

100 pm, 150 pm, and 200 pm by 3 mm manufactured by Melles Griot. These particular

slits correspond to set of rectangular targets 20 km away and 6.67 m, 10 m, and 13.67 m

in width respectively.

The experimental setup used for the phase only filtering measurements is shown

in Figure 7.8.
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Collimating
Optics

Detector
Display

Figure 7.8: Experimental setup.

To aid with the alignment of the 1.064 pm beam from a Lightwave 120-03 Nd:YAG laser

system, a green HeNe laser beam (X = 532 nm) was initially passed through two pinholes

spaced three meters apart along the optic axis. A high energy laser mirror Ml, reflective

between 1053-1064 nm, was then placed in the path of the HeNe beam at a 45° angle.

While maintaining the alignment of the green HeNe beam through the two pinholes, the

one micron beam was passed through a Faraday isolator, reflected off Ml, and the

position of the Lightwave laser adjusted until the 1.064 pm beam was coincident with the
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green beam through the pinholes. Once the alignment of the two beams was established, 

the remainder of the components where added one at a time.

Proceeding through the optical setup, the one micron beam is first collimated and 

then passed through a half waveplate X/2. This waveplate allows one to adjust the 

polarization of the light such that it is parallel to the axis of the extraordinary refractive

index of the liquid crystals in the Raytheon Demo 4 device required for proper phase 

modulation. After emerging from the collimator and half waveplate assemblies, the 

infrared beam has been expanded to approximately 6 mm in diameter. Therefore, by the 

time the beam reaches the apparatus holding either the 100, 150, or 200 micron slit, the

extent of the beam is large enough that we can assume that the illumination over the

narrow dimension of the slit is nearly uniform. Now we have our simulated target image

in the front focal plane of Z4 and the remainder of the components including the fiber are

identical to those described in Section 7.3. From here, the signal coupled into the optical

fiber is measured with a Coherent LabMaster-E power meter equipped with a LP-2

silicon photodiode detector.

Table 7.1 gives the experimental results for the 100, 150, and 200 micron slits and

compares these results with the specific theoretical values from Figure 7.7.
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Table 7.1: Theoretical and experimental results for factor increase in coupling 
for a.) 100 pm slit, b.) 150 pm slit and c.) 200 pm slit.

Quantity Theoretical Results, 
100 pm Slit

Experimental Results, 
100 pm Slit

Power coupled w/o phasemask NA 96 ±5 nW
Power coupled w/ phasemask NA 207 ±5 nW

Total power in fiber plane NA 209 ±5 nW
T|f/r w/o phasemask 0.0488% 0.046 ± 0.003 %
rip/R w/ phasemask 0.1144% 0.099 ± 0.003 %

At] F/R 2.35x 2.16 ± 0.12x

(a).

Quantity Theoretical Results, 
150 pm Slit

Experimental Results, 
150 pm Slit

Power coupled w/o phasemask NA 185 ±5 nW
Power coupled w/ phasemask NA 550 ±5 nW

Total power in fiber plane NA 0.48 ±0.01|LiW
T|f/r w/o phasemask 0.038% 0.038 ± 0.001 %
T|F/r w/ phasemask 0.122% 0.114 ±0.002%

AHf/r 3.22x 2.97 ± 0.08x

(b.)

Quantity Theoretical Results, 
200 pm Slit

Experimental Results, 
200 pm Slit

Power coupled w/o phasemask NA 184 ± 5 nW
Power coupled w/ phasemask NA 630 ± 5 nW

Total power in fiber plane NA 0.53 ± .01 mW
T|f/r w/o phasemask 0.0302% 0.0347 ± 0.002%
T|f/r w/ phasemask 0.1184% 0.1188 ±0.009%

An f/r 3.87x 3.42 ± O.lOx

(c.)
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Note, all experimentally measured values contain a ± error for the power coupled into 

the fiber. This inaccuracy arises from the fluctuations in the position of the fiber due to 

the air circulation in the laboratory area. Even after taking this discrepancy into 

account,23 one can see that the experimental results for both the 100 pm and 150 pm slits 

are very close to the theoretical predictions from the Matlab routine. The 200 pm slit on

the other hand, does differ somewhat and has a slightly lower factor increase than

expected.

Inspecting Table 7.1, one realizes that the experimental F/R coupling efficiency

enhancements is slightly lower than theoretical predictions for each slit. These

discrepancies can easily be attributed to the difficulty involved with aligning the specific

phasemasks in the system. Since the spacing between each zero and it phase transition

within the phasemask is only 80 pm, it is very difficult to align the phasemask with the

diffraction pattern from the slit across the LCSLM. Any deviation from the proper

position will decrease the amount of beam shaping we can perform upon the incoming

wavefront. The effects of this misalignment can be seen by profiling the corrected

dimension of the beam in the plane of the fiber. Employing a simple knife-edge scanning

technique and measuring the power incident on a detector at various positions, beam 

profiles for the uncorrected and corrected wavefronts may be found. These experimental

profiles are shown in Figure 7.9 while the theoretical profiles are given in Figure 7.10.
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Experimental Beam Profiles

Figure 7.9: Experimental beam profiles in the plane of the fiber 
with and without the phasemask present.
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(a.) (b.)

Figure 7.10: Theoretical beam profiles in the plane of the fiber 
a.) without and b.) with the phasemask present.
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Comparison of the two beam profiles show that unlike Figure 7.10b, the corrected 

wavefront in Figure 7.9 is shifted to the right of center and fluctuates a bit near the peak. 

These effects are most likely due to the misalignment of the phasemask itself and will 

ultimately affect the degree of coupling realized. Figure 7.9 also shows a significant 

fluctuation in the difference between the filtered and unfiltered wavefronts depending on 

where the fiber is located. This could further explain the discrepancy in the factor 

increase between the experimental and theoretical models. Correcting for these mistakes 

in the future could only improve the results.

7.5 Further Observations

Although we have just seen that improperly aligning the phasemask or the 

fiber within the system can greatly effect the factor increase in F/R coupling efficiency, 

changing any other component in the system will also effect the degree of coupling

increase obtained. As in Chapter HI, by changing the back focal length of I3 after the

LCSLM one runs the risk of mismatching the NA of the lens to the NA of the fiber. If f3 

is too small, the NA of the lens is much bigger than that of the fiber. This mismatch in 

NA will then cause the F/R power coupling to drop off. The opposite is true if the focal 

length gets too big. Even though the NA of the lens gets smaller, there is a trade off in

coupling due to the increased size of focused spot. As a result, if f3 is too big, most of the 

focused energy fails to overlap with the core of the fiber and the F/R power coupling will

again decline. This effect is displayed in Figure 7.11 for a constant slit size of 150 (im, a

front focal length f4 = 750 mm, and a transmitted power of 1 Watt.
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Figure 7.11: Power coupled vs. back focal length of I3 for a 150 pm slit.

Again we see the same edging effects as in Figure 7.7. However, it is relatively simple to 

determine the effect on the F/R coupling enhancement by dividing the value of the power 

coupled while the LCSLM is on by the value when it is off. These results are shown in 

Figure 7.12.

Figure 7.12: Factor increase in coupling vs. back focal length of I3 for a 150 pm slit.
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Using Eq. (2-12) with M = 1, one can calculate that the system would be NA matched to 

the 8.3 pm fiber when the focal length of f}~ 1.95 m. As expected in the above figure, 

we see the maximum enhancement in F/R coupling efficiency occurs near this value as

well.

Changing the focal length of the front transform lens Z4 has a similar effect on the 

factor increase in coupling. This trend can best be explained by recalling Eq. (7-5) and

focusing on the patterns at the LCSLM, we see that by increasing the zeros in the

transform pattern for a given slit/image size will move further apart. This will cause the

pattern across the device to become more spread out and its shape to look more Gaussian. 

Thus, the back propagated fiber mode looks more like the received field and the overall 

F/R coupling efficiency will improve. Eventually increasing the front focal length too

much pushes the first zeros of the sine pattern past the edge of the liquid crystal device,

leaving us with only the central lobe upon which to perform any beam shaping

operations. After this point, the pattern changes very little and the effects of the

phasemask on F/R coupling efficiency will level off. The baseline tif/r, on the other

hand, will continue to rise and thus cause the factor increase in coupling to decline. This

effect of varying the front focal length is shown in Figure 7.12 for a slit size of 150 |±m

and a back focal length of f3 = 750 mm. Again, the actual values of F/R coupling 

efficiency calculated with the Matlab routine of Appendix C, with and without

phasemask, are examined.
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Figure 7.13: Power coupled vs. varying front focal length with and
without the phasemask across the device for a 150 (xm slit.

The effect on the F/R coupling enhancement can again be verified by dividing the values 

for coupling efficiency from the top curve in Figure 7.13 by the bottom curve. These

results are displayed in Figure 7.14 below.

Figure 7.14: Factor increase in coupling vs. front focal length of I4.
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Altering the nature of the target itself will effect the increase in F/R coupling as 

well. Applying the computer simulation techniques developed in Chapter VI to a slit, the 

targets in Figure 7.7 may be changed from glint targets to purely diffuse targets and the 

factor increase in coupling efficiency for each target diameter determined. This can be 

accomplished by choosing several different random phase profiles Np across the actual 

target and then propagating each profile to the plane of the imaging lens. Here, the

imaging lens acts as a low pass spatial filter which only allows certain frequencies to pass 

through the aperture. The filtered phase profile is then propagated to the image plane and

overlapped on a point-by-point basis with the slit target. Finally, the F/R coupling

enhancement can be determined by calculating a separate F/R coupling efficiency for 

each Np phase profile, and using Eq. (6-1) to find the overall coupling efficiency with an 

without a phase filter across the receiver. Figure 7.15 illustrates the results of the F/R

coupling efficiency enhancement for a diffuse slit target with and without the phasemask 

across the device. Note, these results are for Np = 512 iterations of Eq. (6-1).

Figure 7.15: Factor increase in coupling vs. target diameter resulting 
from phase only filtering the return from a diffuse target.
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Inspecting the above figure, one notices that instead of increasing the F/R coupling 

efficiency, the application of the Gerchberg-Saxton phasemask actually decreases the 

coupling. With a diffuse target, the reflected wavefront is scattered out in all directions

by the tiny variations across the surface of the material. Since the spacing between the

scattering elements is so small, the phase profile of the return contains a wider range of

spatial frequencies than do the glint targets. Therefore when the back propagated fiber

mode is overlapped with the reflected target field, more of the energy is located in the

higher spatial frequencies [i.e. the side lobes outside of the LCSLM aperture].

Thus, for a small target, the Fourier transform of the target in the plane of the

LCSLM is dominated by shape of the target itself and not the diffuse scatters of the target.

The resulting sine pattern then interacts with the phasemask across device as in Section

7.3 and we again see the same effects of Figure 7.7. However, as target size increases,

more and more diffuse target scatters are present. This causes the magnitudes of the

lower spatial frequencies that overlap with the phasemask to decrease and cancels out any

F/R coupling efficiency gains from the phasemask. Thus effect becomes more

pronounced as the target size increases, causing the curve in Figure 7.15 to decline.

7.6 Ronchi Ruling Experiment

Having established that it is possible to increase the F/R coupling efficiency into a 

SMOF ladar receiver by phase filtering the return from a glint target, we will now

investigate more complicated target will contain several other higher spatial frequencies 

not present in a simple rectangular slit target. However, since we are limited to only 

correcting across one dimension by the Raytheon device, the target we choose must be
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constant along the other dimension. These requirements can be met by merely inserting a 

Ronchi ruling in front of one of the slits used earlier. The alternating bands of light and 

dark across the ruling gives us the desired spatial complexity and the lines are symmetric.

With this target in mind, a Ronchi ruling having a line spacing of 300 lines/inch 

was placed in front of the 200 pm precision air slit. Converting the line spacing to

lines/pm, each light and dark band was calculated to be 46 pm wide. Therefore, the

resulting slit target consisted of two complete line pairs and 16 pm of another line. For

simplicity, the air slit was aligned under a microscope such that the edge of the slit was 

parallel to the leading edge of one of the dark bands of the Ronchi ruling. Thus, the 

fractional portion of the fifth band corresponded to a third dark band across the slit. This

arrangement is shown in Figure 7.16.

Figure 7.16: Ronchi ruling target.

Once the Ronchi ruling and slit were aligned, the target was placed in the front 

focal plane of It,. The necessary computer simulations were then completed by modifying
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the Matlab routine in Appendix C to account for the Ronchi ruling and the ideal 

phasemask shown in Figure 7.17 generated via the Gerchberg-Saxton algorithm.

Phase Mask Across Receiver Aperture

3>

Figure 7.17: Phasemask for Ronchi ruling target.

Note, all system components such as the fiber receiver, the transform lenses, and

operating wavelength in the experimental setup remained the same. Writing this 

phasemask across the LCSLM, the F/R coupling efficiency enhancement for the Ronchi 

ruling target was determined. Table 7.2 displays both the theoretical and experimental

results for this target.
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Table 7.2: Theoretical and experimental results for factor increase 
in coupling for the Ronchi ruling target.

Quantity Theoretical Results, 
Ronchi Ruling

Experimental Results, 
Ronchi Ruling

Power coupled w/o phasemask NA 59 ± 5 nW
Power coupled w/ phasemask NA 183 ± 5 nW

Total power in fiber plane NA 0.46 ± 0.01 mW
A'Hf/r 3.11x 3.10 ± O.Olx

Here we see that even though the ideal phasemask has become much more complicated, 

the experimental and theoretical results match each other very well and a significant

factor increase in F/R coupling can be obtained.



Chapter VIII

Conclusions and Recommendations

Incorporating a SMOF detector into a real-world ladar system limits one’s ability 

to couple a return signal. Previous models2 have demonstrated that received power 

coupling efficiency for a purely diffuse target, based on system parameters, can be 

optimized by adjusting the truncation ratio at the transmitter and matching the NA of the

coupling optics with the NA of the fiber receiver. However, this optimization technique

assumed a resolved target generating a singlemode return and did not allow for variations

in target size. In this thesis, we have developed a general model for predicting coupling

efficiency in terms of general target illumination, target size, and system parameters.

Through numerical analysis, we have shown that received power coupling 

efficiency depends not only on optimizing transmitter and receiver optics, but on the size 

and range of the target as well. If the illuminated portion of a target falls within the 

receiver’s diffraction limited spot size at the target plane, a larger amount of the collected 

return will be coupled into the fiber mode. Thus, singlemode returns will have a higher

T|f/r than multimode returns from targets at the same range. However, for a target of

constant size, whether or not its return is singlemode or multimode depends on the 

target’s range and the receiver’s diameter. As the distance from the receiver increases,

110
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the receiver’s diffraction limited spot size in the target plane also increases. Therefore, at 

some distance from receiver, the spot size and target diameter will be identical. At any 

point beyond this range, the target will have a singlemode return and a higher received

power coupling efficiency.

A model has also been developed to determine the transmitted power coupling 

efficiency in terms of general target illumination. Transmitted power coupling efficiency 

and the resulting signal-to-noise ratio has been shown to decrease with increasing target

range. For singlemode returns, the signal-to-noise ratio was shown to be well above the

noise levels even at significant target ranges. Unfortunately, if one expands the

transmitted beam to illuminate a larger target, we have shown that T|f/t will decrease

rapidly with increasing range.

To offset these declining trends in T)f/t and T|f/r for unresolved targets with

multimode returns, it is possible to insert a phase modulating device such as a liquid

crystal spatial light modulator (LCSLM) into the path of the ladar receiver. This device

allows one to compensate for the phase accumulated upon propagation from the target to

the receiver and filter it from the collected return signal. By incorporating the Gerchberg-

Saxton error reduction algorithm into a theoretical Matlab simulations of the general

illumination ladar system, this target specific, phase profile can be found. Applying this 

modeling technique, the F/R coupling efficiencies for several uniformly

illuminated/unresolved, rectangular glint targets [i.e. diffuse targets with zero random

phase] were examined with and without the phasemask present in the system. Through

theoretical simulations it was shown that factor increase in F/R coupling efficiency by

applying an ideal phase filter across the receiver has no effect for targets with singlemode
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returns. Yet for some larger targets generating multimode returns, the 1-D factor increase

in coupling was found to be as high as 12x greater with the insertion of the phasemask.

The factor increase results were then verified experimentally for several different 

glint target sizes and found to agree well with their predicted values. Once establishing

that it was possible to increase the F/R coupling efficiency into a SMOF ladar receiver by 

phase filtering the return, a Ronchi ruling target containing several higher spatial 

frequencies not present in the simple rectangular target was investigated. In spite of the 

fact that a noticeable change was seen in the ideal phasemask, both the theoretical and 

experimental F/R coupling efficiency was found to improve by a factor of 3.lx.

In this thesis, we have seen that almost no effect occurs for a 1-D phase filtering 

of singlemode target returns while the 1-D F/R coupling enhancement of multimode 

returns from very large targets appears to be greatly enhanced, almost 12x in some cases.

However, one must remember that in the singlemode fiber receiver regime where we are

working, both tjf/r and He/t are very small and thus a 2-D of 144x increase, although

substantial, may never be realized. Several factors are seen to adversely affect the factor 

increase in coupling such as improperly aligning the phasemask within the system or 

changing the focal lengths of any of the transform lens. In addition to these effects, if the 

target is not centered within the illumination field, its image in the front focal plane of the 

first transform lens will move off axis and may never overlap with the back propagated 

fiber mode. Thus the system is not shift invariant. This type of alignment nightmare 

could easily be overcome by increasing the size of the fiber receiver to a larger multimode 

fiber and then amplifying the received signal with a multimode fiber amplifier to improve

both t1f/r and t^f/t efficiencies.
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Finally the effects of applying the same glint target phasemask to the returns from

a diffuse target of identical proportions was investigated. Unlike for the glint case, F/R 

coupling efficiency improvement actually decreased with the application of the 

phasemask across the LCSLM. The phenomenon can be attributed to the fact that most 

of the energy in the return signal is scattered into the higher spatial frequencies by the 

individual diffuse scatters on the target’s surface. As the target gets bigger, more and 

more energy fails to overlap with the back propagated fiber mode. Thus, this energy is 

unaffected by the application of the glint target phasemask. Therefore, if the coupling for 

this type of target is to be improved, another method for determining the ideal phasemask

must be found.



Appendix A

F/R Coupling Efficiency for an Unresolved, Glint

Target with a Multimode Return

A.l Coupled Signal Power

First we recall the general expression given by Eq. (5-6) for the power scattered 

off of a glint target and coupled into an optical fiber receiver in a general illumination 

ladar system,

„ 4BPTransG)2T21 ff [• |2-|p«"-K)wlJJdp’expl _B|p’IJ

xexp -l
Bkco2 2kY_|2 

+ — JIPtI
2f, XL.

circ Pt , (A-l)

JJ dpRcircCPr?
J

exp
7t(O 171

XL
lp» exp

i2n. 
XL Pr ' Ptx +

where B has been defined as

47t2f2tO2
(XL)2(4f22+(kco2)2)

(A-2)

From this branch point, one can derive an expression for the F/R coupling efficiency for 

the complicated case of an unresolved target with a multimode return. Applying Euler’s
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rule to each of the complex exponentials in Eq. (A-l) and scaling both the 

dpR and dpt variables of integration by Dr and Dt respectively, PSig,giint becomes

P -sig, glint —

4BPTrans<o2Tg2D:D4R
(«,) (XL)

D‘t^r+xL

xJJdpRcirc(pR)exp

|p

xcos
/Bko)’ 2k

JJdp, exp[-BD2|p,|2] 

irc(pt)

[ KCOD
(A-3)

IprIR hr-

V. ^3

I 2DR i i2 2kDrD. _ _xcos HrW +^^PrP'

Expressing the both integrals in polar coordinates and using the circ functions to define 

the bounds over the receiver and target area, we obtain the following for the coupled

signal power from a glint target,

P -sig, glint —

1 I
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(Xf5) (XL)2
1

J02 drR eXP
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A slight rearrangement of terms then yields
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Unfortunately, the nested integral relationship of Eq. (A-5) for the coupled signal power 

can not be simplified any further. Therefore, to calculate the F/R coupling efficiency this 

complicated expression must be divided by the total received power.

A.2 Total Received Power

Providing the assumption of Ajrans«^L is made, the field across the receiver

plane (from Eq. (5-20)) is given by

x JJ dpuTra„s(P)expf^r exP^(|Pt|2"2P-Pt)
ATrans V 2 J

■ (A-6)

Thus total irradiance lR,giint at the receiver plane is simply the magnitude squared of UR.

Given that the transmit beam is untruncated and that we are looking at an unresolved glint 

target [i.e. T(pt) = Tg], this irradiance can be written as

A
lR,glint (XL)"

JJ

A,

dp, exp©ptl2^
exp

i2rc _
Il pR'Pty

. (A-7)

where “UTrans is the Fourier transform of transmitted field in Eq. (3-15). Substituting the

transform of transmitted field back into Eq. (5-20) and using Eq. (A-2), the irradiance at 

the receiver aperture can be written as

IR,glint
2PTransBTg ff,- (i27t |_ .2 ( i27t _-JJ dp, exp| —|p,l jexp^- — pR.p,

A,rc(XL)4
(A-8)

xexp exp
iBto; 12
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The limits of integration for the dp, integral can be extended to infinity by defining a 

specific aperture function in the target plane W,(p). Then letting Wt(p) be given by 

Eq. (3-21) and scaling the circ function to Dt, Ir becomes

IR,glint

2PTransBTg2D* <i27tD2,2A

rc(XL)4 

( i2itD

JJdp,circ(p,)exp ^y^pj

x exp - •
XL -pR-P,

/ „~2l—I2) {iBco2D2, ,2^
^exp(-BD,|pt| J exp w lp'l

I At2 )

(A-9)

Once the field at the receiver plane is known, the total power collected is simply

the integral of this field over the area of the receiver. That is, after some manipulation

Pr,glint ~ JJdpRIR glint — JJdpRcirc^PrA

kdR J R,gl int

2PT BT2D2D2 WdP*cirC(PR) JJdPtcirc(Pt)exPri2rcD21 .2' (A-10)
V
2p\2

XL

X Cxpl " 12TlPR PR ' Pt jeXP(_ BD‘ lpt |2 )eXP[lBXf,Dt lPt 12 ,

Applying Euler’s rule to the complex exponentials, expressing the both integrals in polar 

coordinates, and then using the circ functions to define the bounds over the receiver and

target area yields

P =A R,glint

2PTransBT2D?D2 1

rc(XL)4
— J02drR rR jf^R J02drt f. C0S

a2kD2 + B(O2D2A

XL Xf

x exp(- BD2];2) J/dO, cosf 2K^Dr rtrR cos[0R - 0t]
• (A-ll)

2 y

Finally dividing Eq. (A-5) by Eq. (A-ll), we attain the F/R coupling efficiency 

expression for an unresolved, glint target with a multimode return,
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Appendix B

F/R Coupling Efficiency for a Resolved, Diffuse

Target with a Singlemode Return

B.l Field at the Fiber

Recalling the paper originally written by Jacob et. al.,2 we extract the following 

expression (Eq. 8) for the received field at the fiber endface

Uf (Pf} = (iXf )(ZL)2 CXP^2f I )jJdpRWR(pR)eXP^"7PfpR)

x JJdptT(pt)expf-^-(|pt|2 +|pR|2 -2pt.pR)J , (B-l)

At
x JJdpUTrans(p)exp^(|p|2 +|pt|2 -2p. pt)J

A Trans

where as earlier a boldface quantity represents complex fields, an overscore denotes a 

vector quantity, and a tilde represents a random fields. Furthermore, A^ns and At 

represent the transmitter aperture area and the target area respectively. Upon examination 

of Eq. (B-l), several assumptions can be made. The quadratic phase term due to pf is

negligible since, the diameter of the fiber core is only a couple of microns while the focal 

length of the receiver optics is on the order of several centimeters. The phase term
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resulting from pcan also be ignored as well. In the far field, Atrans«XL and this

quadratic term will be insignificant.

At this point, two of the original assumptions made by Jacob was found to be 

incorrect. Initially, the quadratic term arising from pR was assumed to be insignificant.

The previous analysis concluded that, in the far field, Ar« XL. Unfortunately, this is not

the case. If one evaluates this expression for a target range of 20 km, a transmitted

wavelength of 1.064 mm, and a receiver diameter of 10 cm, this relationship does not 

hold. Therefore, this phase term can not be ignored and must included in the final 

analysis. Another inconsistency was also found in the reflected wavefront from the 

target. As the transmitted beam propagates toward the target, its wavefront diverges. 

This is apparent in positive exponential associated with the ATranS integral in Eq. (B-l). 

Upon reflection from the target, the resulting wavefront will continue to diverge. 

However, the exponential within the At integral is negative, implying a converging 

wavefront. This error is easily corrected by making entire exponential positive.

Correcting these false assumptions and rearranging terms, Eq. (B-l) can be

rewritten more compactly as

C' (?-) = ^^JJdP,T(P,)expg|p,| j

At

x JJdpUTrans(p)exp^--^p• pt) (B-2)

^Trans
xJJdj5RWR(j5R)exp^|pJ2]exp[-i2KpR.^ + ^^

Now, if we assume that the truncation of the transmitted beam is insignificant, the limits

of integration over the Ajrans integral can be extended out to infinity. Equation (B-2) is
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now a series of Fourier transforms resulting in the following expression for the field at

the focal plane of the receiver

X JJdpE WR(pR)exp(^-|pRf)exp(-i2rcpR ■(£ + £))

where ^rans is the Fourier transform of the transmitted field and % is the Fourier

transform of the generalized pupil function.

B.2 Coupling Efficiency

Using Eq. (B-3) above for the field at the fiber plane, the amount of power 

coupled into the fundamental mode of the fiber is merely the correlation between this 

field and the complex conjugate of the modal field, Ug,(pf). This coupled, signal power 

can then be approximated via an overlap integral between the two fields,9

P„e- jJdp,U,(p,)IJ-|lip,;2 . (B-4)

Substituting Eq. (B-3) into Eq. (B-4) and rearranging terms we obtain the following

expression for signal power,

Slg (iXf)(XL) A,
J exp

klrfkJF
XL XL

x JJdpfU;i(pf)WR(pR)expf^|pR|2 lexp
(B-5)
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Now, using the following statistical relationships given in Eq. (3-10) for a purely

diffuse target, we see that after some rearrangement and manipulation, the expectation of

the signal power coupled into the fundamental fiber mode can be expressed as

iPsig]"f2(ZL)4^dpt

x JJd pXi ( yj)wR ( Pr ) exp( 571PR I2)exp
( itt i- |2

XL

i2rc. 

XL
PR-Ptj 

i2ft _

(B-6)

X JJ dp'^01 (PR > exP( ■ if |PRI' ) eXP( “ ^7 pR ' pt
XL1 XL

where ^oi is the Fourier transform of the fiber mode and pR and pR are arbitrary variables

of integration in the receiver plane.

A change of variables is now order to simplify the integration. By defining the

following variables

po = pR + PR and Ap pf( - pR JJ dpR JJ dp' = JJ dp0 JJ dAp , (B-7)

and making the appropriate substitution back into Eq. (B-6), we obtain

E[p„E]=7^ndAp
f2(XL)4

JJdPo^(

JJdP'

Po Ap 
01 Xf 2Xf

exp

"'t Xf 2Xf J

i27t _ _
-XLP'AP

(B-8)

i2ft.
xWR(p0 -yAp)W*R(p0 +fAp)expl-yj-p0 ■ Ap

X
V

A \

7

Up until now, we have made no assumptions about the nature of the target. 

However, if we assume that the target area is much larger than the illuminating beam, the 

target is said to be resolved. Therefore, the limits of integration over At can be extended
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out to infinity and the dpt integral merely becomes the inverse Fourier transform of the 

transmitted field, ?l{}. This allows us to rewrite Eq. (B-8) as follows

E^^JJdAp?
Ap
XL

Po Ap 

Xf 2Xf y 

x WR(p0-|Ap)W‘R(p0 +|Ap)

( - i2rt

(B-9)

xexp
XL

Po Ap

n A

thus obtaining an expression for expected signal power coupled into the fundamental 

mode of the fiber. Any further development of this equation requires a priori knowledge 

of the transmitted field, the aperture function, and the field in the fiber.

We can now define the transmitted field UTrans(p), normalized to the transmitted

power, as

L Trans (p) —
2P.

TCCO
^exp

r
(B-10)

and let our aperture function Wr(p) be given by Eq. (3-21), and Uoi be given by 

Eq. (2-7). Substituting these expressions into Eq. (B-9) and scaling all spatial variables, 

we obtain the following expression for E^Psig j after some rearrangement
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2 n24TnPTranSDRa 
tcL2

JJdAp exp

xJJdp0circ(p0-|Ap)circ(po+|Ap)exp(-4a2|po|2) , (B-ll) 

-i2rcDR_
Po-Apxexp

XL

where a is a collection of constants associated with the receiver and defined as

2 _ 1 (7tG)DR 
a =2l Xf . (B-12)

and co is given by Eq. (2-8). It is important to note that Eq. (3-23) of the general 

illumination model for a resolved, circular diffuse target reduces to the above expression

simply by letting f2 go to infinity in the N parameter.

Recalling that we have defined the two circ functions as unit diameter functions

centered at ± Ap/2 in the p0 plane, the dp0 integral is merely the area of overlap between 

the two functions. Upon inspection on the Figure 3.2, if the separation between the two 

centers of the circ functions is greater the one [i.e., |Ap| > 1 ], there will be no overlap

between the two functions and the expected signal power will be zero. One also notices

that the two circ functions are weighted by an extra exponential term in the second 

integral. If we employ Euler’s relationship, this exponential can be expanded into a sine 

and cosine term. The dp0 integral now contains two even circ functions, an even cosine

function, and an odd sine function. With the limits on the integral extended to infinity, 

the area resulting from the sine term will be equal to zero due to the odd nature of the

function. Equation (B-l 1) then becomes
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I-lyR'+a2 Ap|E[pJ,lM^JJdApeXp

x JJdpocirc(p0 -yAp)circ(p0 +|Ap)exp(-4a2|p0|~) , (B.13)

A2kDr _ A_
X C°S ~XL~ Po'Ap

where the system truncation ratio R = DR/(0o has been introduced.

Now, recognizing that the exponential associated with the dAp integral is a

modulated, circularly symmetric Gaussian, the limits of integration can be replaced by the

bounds of the overlap area between the two circ functions. Expressing the dAp integral

in polar coordinates and making the following vector substitutions,

Ap' = r cos 0x + r sin 0y and p0 = xx + yy

the dot product yields

p0 • Ap = rx cos 0 + ry sin 0

(B-14)

(B-15)

However, with the modulated Gaussian being circularly symmetric, it is independent of 

the angle associated with Ap . This makes it possible to choose a convenient direction of

Ap in which to calculated the area of overlap. In this case we will consider a shift along

the y axis, 0 = 90°. Expressing the dAp integral in polar coordinates and making the

above vector substitutions, integration of Eq. (B-l 3) yields

32TnP_D;a2 fi0x Trans

7tL2

Ra2 fi
---- JodrexP -I — R2+a212 j

1
e[p,]^

xj2 dxexp(-4a2x2)

1 ? r
x J J4 2 dy exp(- 4a2 y2) cos

(B-l 6)
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Dividing the above expression by the expectation of the total power received e[p] , the

coupling efficiency can be determined. If the average power is then given by,

p[pl _ T0PTransAR _ T0PTrans7tDR
ErJ= - ^2 > (B-i7)

the F/R coupling efficiency for a resolved, diffuse target with a single mode returns

becomes

11
E[Psig] 128a2 fi 

e[
AsigJ izoa r*

n J^drexp

x Jo dx exp(- 4a2 x2)

— R2+a2 lr2

x Jo4 2 dy exp(- 4a2 y2) cos /27tDR2ryA
XL

(B-18)

This equation can be directly compared to Eq. (31) developed by Jacob2 by rewriting the 

Erf function in integral from, changing the variables of integration to x,y coordinates, and 

letting u = r2, we obtain

E[Psig] ~ 128a2 fi
11c = e[p]

J drexp - —R2+a2 r2

xJq2 dxexp(-4a2x2) £4 2dyexp(-4a2y2)

(B-19)

Although both presentations of r|F/R,diffuse contain mostly the same components, the dy 

integral itself in Eq. (B-18) has an extra cosine modulation not present in Jacob’s original 

analysis. The effect of this added term can be seen in Figure B.l where both the corrected 

model of Eq. (B-18) and Jacob’s original model of Eq. (B-19) are displayed vs. the “a”

parameter.

I 1 i
y

1 2 r
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Figure B.l: F/R coupling efficiency vs. the “a” parameter for a resolved, 
circular target at 20 km with singlemode return. This figure 
displays the comparison between the earlier analysis developed 
by Jacob2 and the general illumination model of Chapter IIL

As we can see, even with the corrective cosine term, the only noticeable difference

between the two developments is near the peak of the curve. Here the corrective term

lowers the overall F/R coupling efficiency by 0.5%



Appendix C

Matlab Computer Simulations

C.1 Field Scaling

In this section we will examine the methodology involved in determining the

specific scaling constants for both glint and diffuse targets associated with the computer 

simulations in Chapter VI. When simulating the fields at various points throughout the 

path of the general illumination ladar system, care must be taken to ensure that each field 

is sampled at the Nyquist rate so that aliasing is avoided. Generally this minimum 

sampling rate is twice the highest spatial frequency contained within the field profile.

Once this sampling rate is determined in the spatial domain say for the modal field of the 

fiber, the total number of Ns samples or pixels can be easily calculated. The number of 

pixels then becomes the new width of the fiber mode and this field to be programmed 

into the simulation routine. Yet, fixing sampling ratio in one plane means that all other 

sampling rates, scaled appropriately in accordance with the Fourier transform of the 

reference field, must be the same throughout the system. This way, the transformed target 

field and the back propagated fiber field in the receiver plane correspond to the same

dimensions.
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For the remainder of this simulation, we will assume the sampling of the LPoi

modal field of the fiber as our reference sampling rate and scale everything else

accordingly. Thus a pixel spacing in the fiber plane of Axi (m/pix) corresponds to a pixel

spacing in the receiver plane Ax2 (m/pix) of

Ax2 = Xf3
Ax,K

(C-l)

and a pixel spacing in the target plane Ax3 (m/pix) of

Ax3 =
Ax,L

(C-2)

where K is the total number of pixels in the array, L is the range to the target, f3 is the 

focal length of the coupling optics, and X is the operating wavelength. With these ratios

set, the widths and scaling constants for every field associated with the diffuse and glint 

targets can be converted to pixels and included within the simulation.

C.2 Mattab Simulation Routines

The remainder of Appendix C outlines the actual steps involved for calculating 

the F/R coupling efficiency with and without the Gerchberg-Saxton phasemask across the 

LCSLM. Specifically the Matlab routines are given for the glint/diffuse targets in 

Chapter VI and the slit target of Chapter VII.

1. Glint Target

fibermode=zeros(512,512);
rxaperture=zeros(512,512);
IllumBeam=zeros(512,512);
target=zeros(512,512);
fresnel=zeros(512,512);
im=sqrt(-l);
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******* j)QFne the Vanous Fields ^^’i5**********

%---------------------------------------
% *** Aperture Width Calc. *** 
%---------------------------------------

wf=4.77*10A(-6);
focal=.384;
Lambda= 1.064* 10A(-6);
L=20000;

samp=27;
sampfiber=wf/samp;
dap=Lambda*focal/(sampfiber*512);
dap2=.l/dap;

for i=256-dap2/2:256+dap2/2; 
for j=256-dap2/2:256+dap2/2;

R=sqrt((i-256)A2+(j-256)A2); 
if (R<=dap2/2);

rxaperture(i,j)=l;
end

end
end

c 1 a=sum(sum (rxaperture));
rxaperture = rxaperture /cla;

tmp( 1:256,1:256) = rxaperture(l:256,1:256); 
rxaperture( 1:256,1:256) = rxaperture(257:512,257:. 
rxaperture(257:512,257:512) = tmp(l:256,1:256);

%(actual width of fiber)
% (focal length of coupling optics)

%(range to target)

%(# of samples across the fiber) 
%(Axi)
%(Ax2)
%(width of aperture in pixels)

%(aperture function)

%(aperture function normalized to unit power)

tmp(l:256,257:512) = rxaperture( 1:256,257:512); 
rxaperture( 1:256,257:512) = rxaperture(257:512,1:256); 
rxaperture(257:512,1:256) = tmp(l:256,257:512);

%--------------------- -----------------
% *** normalized fiber field *** 
%---------------------------------------

for i=256-(samp):256+(samp); 
for j=256-(samp):256+(samp);

fibermode(i,j)=exp(-((i-256)A2+(j-256)A2)/sampA2); %(fiber mode) 
end

end

In=(abs(fibermode))A2;
In=sum(sum(In));

cl=sqrt(In);
fibermode = fibermode /cl; %(fiber mode normalized to unit power)

tmp( 1:256,1:256) = fibermode( 1:256,1:256);
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fibermode(1:256,1:256) = fibermode(257:512,257:512); 
fibennode(257:512,257:512) = tmp(l:256,1:256);

tmp(1:256,257:512) = fibermode(1:256,257:512); 
fibennode(l:256,257:512) = fibennode(257:512,1:256); 
fibermode(257:512,1:256) = tmp(l:256,257:512); 

magfibermode =abs(fibermode);

% *** Illumination Beam ***
%----------------------------------

wo=.025; %(actual width of transmitted beam)
sampobj=sampfiber*L/focal; %(Ax3)
wos=L*Lambda/(sampobj*wo*pi);
wos l=-2*im*pi*sampobjA2/(L*Lambda)+ l^wos)^;

for i=256-(wos):256+(wos); 
for j=256-(wos):256+(wos);

HlumBeam(ij)=exp(-((i-256)A2+(j-256)A2)*wosl);
end

end

Inobj=(abs(IllumBeam))A2;
Inobj=sum(sum(Inobj));

c2=sqrt(Inobj);
IllumBeam = IllumBeam /c2; %(normalized transmitted beam in target plane)

% *** Multiply by the Target Reflectivity ***
%----------------------------------------------------

r=.5/sampobj; %(target radius in pixels)
for i=256-r:256+r;

forj=256-r:256+r;
R=sqrt((i-256)A2+(j-256)A2);
if(R<=r);

target(ij)=l;
end

end
end

IllBtar= IllumBeam .* target;

tmp(l:256,1:256) = IUBtar(1:256,1:256);
IllBtar(l:256,1:256) = BlBtar(257:512,257:512);
IHBtar(257:512,257:512) = tmp(l:256,1:256);

tmp(l:256,257:512) = IllBtar(l:256,257:512);
IllBtar(l:256,257:512) = IllBtar(257:512,1:256);
IllBtar(257:512,1:256) = tmp(l:256,257:512);
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% ******* Start Gerchberg-Saxton Algorithm*******

%----------------------------------------
% *** Transform of Object ***
%------------------------------------

FTIllBtar = fft2(IllBtar);

%-------------------------------------------------------
% *** Field Passed Through the Aperture ***
%-------------------------------------------------------

for i=256-(dap2):256+(dap2); 
for j=256-(dap2):256+(dap2);

fresnel(i,j)=exp(2*im*pi*dapA2/(Lambda*L)*((i-256)A2+(j-256)A2));
end

end

obj = atan2(imag(FTIllBtar),real(FTIllBtar));
Fp = rxaperture .* (abs(FTIllBtar) .* exp(im*obj)) .* fresnel;

%------------------------------------ --------
% *** Begin error reduction loop *** 
%----------------------------- ---------------

gs_iterations=l;

for i=l:gs_iterations; 
f=ifft2(Fp);

spacephase = atan2(imag(f),real(f));
fprime = magfibermode .* exp(im*spacephase);
Fprime = fft2(fprime);
freqphase = atan2(imag(Fprime), real (Fprime));

Fp = abs(Fp) .* exp(im*freqphase); 
end

%------------------------------------------------
% *** Phase Mask Across Aperture *** 
%------------------------------------------------

phasemask = (freqphase - obj); 
a2=fftshift(phasemask .* rxaperture);

%*****Calculate Coupling Eff. W/ and WO/phasemask*********

%------------------------------------------------------------------------
% *** Field Passed Through the Aperture w/Phasemask*** 
%-------------------------------- -------- --------------------- ,-------------

FTfibermode = fft2(fibermode);
phase_FTfibermode = atan2(imag(FTfibermode),real(FTfibermode));
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fiber_aperturel = rxaperture .* (abs(FTfibermode) .* exp(im* phase_FTfibermode));
fiber_aperture2 = rxaperture .* (abs(FTfibermode) .* exp(im*(phasemask+ phase_FTfibermode)));

%---------------------------------------------
% *** inverse Trans, of Ap. Field *** 
%---------------------------------------------

fiber_targetl = ifft2(fiber_aperturel); 
fiber_target2 = ifft2(fiber_aperture2);

%------------------------------------
% *** Coupling Efficiency *** 
%------------------------------------

c4=piA3*(abs(wosl)*512)A2/(2*(Lambda*focal)A2); % (glint scaling constant)

Psigl=sum(sum(fiber_targetl .* IllBtar));
Psig2=sum(sum(fiber_target2 .* IllBtar));
FTtarfield=(abs(sum(sum(FTIllBtar))))A2;
coupeffl=c4*(abs(Psig l))A2/(sum(sum(rxaperture .* FTtarfield))) %(coup. eff. wo/phasemask)
coupeff2=c4*(abs(Psig 2))A2/(sum(sum(rxaperture .* FTtarfield))) %(coup. eff. wo/phasemask)

2. Singlemode, Diffuse Target

The heart of this code is identical to the above code for the glint target. Therefore

only the alterations for the section titled ***Coupling Efficiency*** will be shown here.

%---------------------------------------------------
% *** Put a Random Phase on Object *** 
%---------------------------------------------------

c_diff=(4*wos*512)A2/(2*(piA2*dap2*Lambda*focal)A2); %(diffuse coup. eff. constant)

n=1024; %(# of random phase iterations)
for i=l:n

objphase = rand(512,512)*2*pi; 
o = IllBtar .* exp(im*objphase);
Psigl= sum(sum(fiber_targetl .*o));
Psig2= sum(sum(fiber_target2 * o));

FTtarfield=(abs(sum(sum(FTIllBtar))))A2;
coupeff 1 (1 ,i)=c_diff*(abs(Psig 1 ))A2/(sum(sum(rxaperture .* FTtarfield))); 
coupeff2( 1 ,i)=c_diff*(abs(Psig2))A2/(sum(sum(rxaperture .* FTtarfield)));

end
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%-----------------------------------------------
% *** Diffuse Coupling Efficiency ***
%----------------------- --------------- --------

for i=l:n;
coupeff_ave 1(1 ,i)=(sum(coupeff 1 (1,1 :i)))/i; 
coupeff_ave2( 1 ,i)=(sum(coupeff2( 1,1 :i)))/i;

end

coupeff_ave 1 (1 ,n) %(coup. eff. wo/phasemask)
coupeff_ave2(l,n) %(coup. eff. wo/phasemask)

3. Slit Target

Again, only the alterations to the original glint target code will be shown.

%----------------------------------------
% *** Aperture Width Calc. *** 
%----------------------------------------

wf=4.77*10A(-6);
focalback=.75;
focalfront=.75;

samp=5;
sampfiber=wf/samp;
dap=Lambda*focalback/(sampfiber*512);
dap2=.04/dap;

%-------------------------------------------------------
% *** Multiply by the Target Reflectivity *** 
%-------------------------------------------------------

xslt=200*10A(-6);
sampobj=sampfiber*focalfront/focalback;
rx=xslt/sampobj;
yslt=.OO3;
yscale=yslt*4/xslt;
ry=yslt/(sampobj*y scale);

%(focal length of front transform lens) 
%(focal length of back transform lens)

%(actual x width of the slit) 
%(Ax3)
%(x dimension of slit in pixels) 
%(actual y width of the slit)
%(y dimension slit scale)
%(y dimension of slit in pixels)

for i=257-(rx/2):257+(rx/2); 
for j=257-(ry/2):257+(ry/2);

target(i,j)=l;
end

end

%------------------------------------
% *** Transform of Object *** 
%------------------------------------
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FTIllBtar= fft2(target);

%-------------------------------------------------------
% *** Field Passed Through the Aperture ***
%-------------------------------------------------------

obj = atan2(imag(FTIllBtar),real(FTIllBtar));
Fp = rxaperture .* (abs(FTlllBtar) .* exp(im*obj));

%--------------------------------------------------------------
% *** Coupling Efficiency and Factor Increase ***
%-------------------------------------------------------------

c_slt = (512A2)/(yscale*rx*ry*(Lambda*focalback)A2); %(slit scaling factor)

Psigl=sum(sum(fiber_targetl .* target));
Psig2=sum(sum(fiber_target2 .* target));
FTtarfield=(abs(sum(sum(FTIllBtar))))A2;
coupeffl=100*c_slt*(*(abs(Psig l))A2/(sum(sum(rxaperture .* FTtarfield))) %(coup. eff. wo/phasemask) 
coupeff2=100*c_slt*(*(abs(Psig 2))A2/(sum(sum(rxaperture .* FTtarfield))) %(coup. eff. wo/phasemask) 

delta_coupeff3 = coupeff2/coupeff 1 %(factor increase in coupling)
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