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ABSTRACT

GAS-PHASE AND SURFACE KINETICS OF MERCURY CHLORINATION

Name: Brahman, Rajender Kumar
University of Dayton

Research Advisors: Dr. Philip H. Taylor and Dr.Takahiro Yamada

Academic Advisor: Dr. Kevin J. Myers

Speciation of mercury (Hg) in utility exhaust streams is poorly understood. A 

better understanding is needed to more effectively manage the air quality 

impacts from coal utilization for electricity generation. Gas-phase and gas- 

surface reaction kinetics of mercury chlorination is conducted to elucidate the 

complex Hg transformation pathways in the post-combustion zone of coal-fired 

power plants.

A fused silica, flow reactor with an Atomic Absorption (AA) Hg Analyzer was used 

to study the homogeneous (gas-phase) and heterogeneous Hg oxidation reaction 

kinetics (using TiC>2, a-Fe2O3 and y-Fe2O3 surfaces) for following reactions. Only 

elemental mercury loss was measured and reactions were relatively slow 

(second time scale):

Hg + (Cb and HCI) products
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Hg + (Cl2 and HCI) + (TiO2, a-Fe2O3 and y-Fe2O3)-> products

Elemental Hg decays were analyzed to obtain reaction kinetic parameters. 

These reactions exhibited measurable temperature dependences. The new 

kinetic parameters are compared with previous measurements and other related 

studies published in the literature.

In the gas-phase experiments, Hg was 10 to 50 times more reactive with Cl2 than 

HCI. In the heterogeneous studies, a large increase in the rate coefficient was 

observed for the y-Fe2O3 surface compared to the TiO2 and a-Fe2O3 surfaces 

which show a relatively modest increase when compared to the baseline gas- 

phase rate coefficients. Gas-phase and gas-surface reactions promoted Hg 

conversion. Analysis of total Hg on the surfaces in a few experiments suggests 

that chemical reaction dominated elemental Hg conversion; however, surface 

adsorption may have also played a role in the observed elemental Hg loss. The 

gas-phase kinetic measurements provide valuable inputs for models of Hg 

conversion in combustion systems. The surface-based rate coefficients are an 

important first step in the development of a more rigorous kinetic treatment of 

gas-surface reactions involving mercury and fly ash constituents.

Keywords:

Mercury, chlorine, hydrogen chloride, homogeneous kinetics, heterogeneous 

kinetics, titanium dioxide, iron oxide
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CHAPTER I

Introduction and

Statement of the Problem

Mercury occurs naturally in the environment and exists in a large number 

of forms. Like lead or cadmium, mercury is a constituent element of the earth, a 

heavy metal. In pure form, it is known alternatively as “elemental” or “metallic” 

mercury (also expressed as Hg(0) or Hg°). Elemental mercury is a shiny and 

silver-white metal that is a liquid at room temperature. It is virtually insoluble in 

water at room temperature and its vaporization rate almost doubles for every 10K 

increase in temperature. It can undergo transformation into inorganic mercury 

forms in the atmosphere providing a significant pathway for deposition of emitted 

elemental mercury. The most common organic mercury compound that micro­

organisms and natural processes generate from other forms is methyl mercury. 

Methylmercury is of particular concern because it can build up (bioaccumulate 

and biomagnify) in many edible freshwater and saltwater fish and marine 

mammals to levels that are many thousands of times greater than levels in the 

surrounding water.
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Being an element, mercury cannot be broken down or degraded further. 

Mercury may change between different oxidation states and species, but its 

simplest form is elemental mercury, which itself is harmful to humans and the 

environment. Once mercury has been liberated from either ores or from fossil 

fuel and mineral deposits hidden in the earth’s crust and released into the 

biosphere, it can be highly mobile, cycling between the earth’s surface and the 

atmosphere. The earth’s surface soils, water bodies and bottom sediments are 

thought to be the primary biospheric sinks for mercury.

Under natural conditions, mercury exists as metallic vapor and 

liquid/elemental mercury, bound in mercury containing minerals (solid), ions in 

solution or bound in ionic compounds soluble ion complexes, gaseous or 

dissolved non-ionic organic compounds, bound to inorganic or organic 

particles/mafter by ionic and electrophilic or lipophilic adsorption.

Mercury is one of the most toxic elements in nature. Depending on its 

chemical form and time of exposure, mercury can be toxic to both humans and 

wildlife. Harmful effects due to short-term exposures are rarely seen but long­

term exposure to high concentrations of mercury can produce harmful effects on 

kidneys, the nervous system, and the respiratory system and developmental 

effects in a fetus as well. Symptoms of mercury inhalation are headache, metallic 

taste, fever, chills, burning pains in the chest, shortness of breath and 

inflammation of the lungs. Methyl mercury is one of the most toxic forms of
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mercury and is slightly soluble in water (1). It is easily accumulated in the aquatic 

food chain and consumed by humans and birds such as bald eagles and 

kingfishers. Others that feed on fish are particularly at risk because of the 

potential for methyl mercury to bioaccumulate in fresh water fish.

A large portion (60% or higher) of the mercury present in the atmosphere 

today is the result of many years of anthropogenic emissions. The natural 

component of total atmospheric burden is difficult to estimate, although available 

data suggest anthropogenic activities have increased levels of mercury in the 

atmosphere by roughly a factor of 3, average deposition rates by a factor of 1.5 

to 3 and deposition near industrial areas by a factor of 2 to 10 ((2), 

http://www.chem.unep.ch/mercury/Report/Key-findings.htm).

Coal-fired electric generation stations have been identified by the US-EPA 

as a significant source of anthropogenic mercury emissions to the environment. 

The 1,032 coal-burning power plants in the U.S. now emit an estimated 48 tons a 

year of Hg(3). On March 15, 2005, US-EPA announced the nation’s first 

regulation on mercury (Hg) pollution from coal-burning power plants. This 

regulation aims to reduce Hg emissions to 31.3 tons in 2010, 27.9 tons in 2015,

and 24.3 tons in 2020.

Mitigation of coal-fired power plant Hg emissions is needed because of the 

serious health effects associated with Hg transformation products in the
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environment. Power plant emissions are typically reduced with existing 

environmental controls, including flue gas desulphurization (FGD), selective 

catalytic reduction (SCR), and electrostatic precipitators (ESPs). Based on the 

EPA’s Information Collection Request (ICR) database, coal-fired power plants in 

the U.S. demonstrate an average 40% Hg capture, but the amount of capture 

varies widely(4). The reasons for this variability are poorly understood, but 

appear to relate to the oxidation state of the mercury, the properties of the 

mineral matter associated with the coal, and the type of existing air pollution 

control equipment installed on the furnace. The essence of the problem is that 

the fundamental pathways governing the fate of mercury in the post-combustion

environment are not known.

Mercury emissions from coal-fired power plants are highly dependent 

upon mercury speciation, also dependent on nature of coal i.e. fly ash. Mercury is 

catalyzed by metals in fly ash in the presence of HCI or NOx. Knowledge of the 

physical and chemical transformations of mercury within the coal-fired power 

plant is absolutely necessary for controlling the amount of mercury being 

released into the environment. The oxidized forms of mercury can be removed 

easily by acid gas scrubbers because of their solubility in aqueous solutions. 

Oxidized mercury from coal combustion is generally thought to be HgCI2. 

Relative to elemental mercury; HgCI2 is slightly less volatile at stack 

temperatures and at lower ambient temperatures. A key differentiation aspect 

between two types of mercury is that HgCI2 is water-soluble and that it tends to
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interact with the mineral matter and char and with cold-end air pollution control 

equipment whereas elemental mercury does not. This is believed to be the 

source of the positive correlation between the fraction of mercury in the oxidized 

state and the removal of mercury from the flue gas. The factors that control the 

division of mercury between the elemental and oxidized states are thought to be 

of critical importance in understanding mercury emissions.

Thermodynamic calculations predict that all mercury leaving the 

combustion zone is elemental in nature (5). Mercury chlorination, the reaction of 

Hg° (g) with Cl, Cb (g) and HCI (g), is believed to be the most important mercury 

transformation mechanism in coal combustion (6, 7). Thermodynamic 

calculations further indicate the elemental mercury is completely oxidized to 

HgCb in the presence of parts per million levels of chlorine (5). The predicted 

abundance of oxidized mercury does not materialize in actual exhaust systems

due to a combination of effects. Kinetic limitations are believed to be the most

important of these effects. The gas-phase competition between reaction of 

elemental mercury with atomic chlorine and the recombination of atomic chlorine

to molecular chlorine and the conversion of molecular chlorine to the less

reaction hydrogen chloride are important factors. Other effects include the rapid 

quenching of the post-combustion gases thus minimizing the time permitted for 

gas-phase reactions to take place and the conversion of atomic chlorine to 

surface bound chlorine through surface reactions that involve metal species
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associated with fly ash particles. The literature review in the next chapter will

consider these effects in more detail.
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CHAPTER II

Literature Review

The experimental data on the Hg chlorination reaction is extremely limited. 

Until recently, most of the research dealt with understanding the various gas- 

phase chemical reaction mechanisms that were involved, and applied various 

modeling techniques to calculate the rates of mercury chlorination. In recent 

years, a few studies that directly measure the gas-phase kinetics of Hg 

chlorination experimentally have been reported. Recently, emphasis has also 

shifted to heterogeneous studies of mercury chlorination due to prevailing opinion 

is that gas-phase reactions are not fast enough to account for observed mercury 

chlorination at post-combustion temperatures and residence times. This section 

summarizes previously-published relevant experimental and modeling studies. 

Before starting the literature review, a brief summary of Hg-chlorine chemistry is 

provided.

During combustion, chlorine in coal is converted to atomic chlorine and 

undergoes the following reactions:

Cl + H o HCI AHrxn,298K= -431.61 kJ/mol, (i)
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2CI <-> Cl2 AHrxn,298K - -242.60 kJ/mol, (ii)

4CI + 2H2O +* 4HCI + O2 AHrxn.MSK = -371.10 kJ/mol, (iii)

4HCI + O2 <-> 2CI2 + 2H2O AHrxn,298K = -114.10 kJ/mol, 0V)

At the same time elemental mercury from coal reacts with chlorine species 

to form oxidized mercury, as shown in the following reactions:

Hg + Cl o HgCI AHrxn,298K = -104.2 kJ/mol, (v)

HgCI + Cl2 HgCI2 + Cl AHrxn,298K = -103.4 kJ/mol, (vi)

Hg + Cl2 > HgCI2 AHrxn,298K = -217.6 kJ/mol, (vii)

2Hg + 4HCI + O2 <-> 2HgCI2 + 2H2O AHrxn,298K = -549.4 kJ/mol, (viii)

Elementary reactions for reaction (viii) are:

Hg + HCI <-> HgCI + H AHrxn,298K = 327.4 kJ/mol, (ix)

HgCI + HCI HgCI2 + H AHrxn,298K = 246.4 kJ/mol, (x)

2H + 1/2O2 H2O AHrxn,298K = -677.8 kJ/mol, (xi)

Reaction (v) is the initial step of the mercury oxidation process because of its fast 

rate as shown in the rates for mercury chlorination in Table 1. This provides 

some evidence that the mercury oxidation process in the combustion process is 

kinetically limited, although the oxidation process is thermodynamically favored. It 

also demonstrates that the concentration of Cl atoms is the key factor that 

controls the oxidation process of elemental mercury in high-temperature 

combustion processes. The slowness of reaction (viii) controls the oxidation 

mechanism as the flue gas cools in the post-combustion area, where chlorine
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atoms are instead converted to molecular chlorine and hydrogen chloride as 

illustrated by reactions (ii), (iii) and (iv). Thus, the short lifetime of chlorine atoms 

in the flue gas limits the completion of the oxidation process of elemental

mercury.

Table 1: Literature data for Gas-Phase Mercury Chlorination

Reaction Reference Rate Constant 
(cm3/molecule-s) 

or
Arrhenius Rate Expression

Approach

HgCI + CI2-»HgCI2 + Cl Widmer et 
al. (11)

1.39 x 10+14 e(-1(Kcal/mol)/RT) Modeling

HgCl + HCI^ HgCI2+H Senior et al. 
(9)

2 6 x10+14 e(’3,6 (Kca,/mo|)/RT) Modeling

HgCI + HCI-» HgCI2+ H Sliger et al. 
(8)

4 6 x 10+°3 T2 5 e(9-1(Kcal/mo|)/RT) 

at 900-1500 K
Modeling

Hg + Cl -»HgCI Niksa et al. 
(10)

8±1 x10'12at 398-573 K Modeling

HgCI + Cl -> HgCI2 + Cl Niksa et al. 
(10)

9±1 x 10‘13at 398-573 K Modeling

Hg + Cl HgCI Mallipeddi
(14)

6x 10'11 at 423 K Modeling

HgCI + Cl -> HgCI2 Mallipeddi
(14)

(2.61 ±2) x 10'11 
at 398-573 K

Experimental

HgCI + Cl2 -> HgCI2 + 
Cl

Mallipeddi
(14)

(1.23±0.05) x 10'11 at 473-673 
K

Experimental

HgCI + HCI -> HgCI2 + 
H

Mallipeddi
(14)

9.9x1 O’19 (T)2 *exp(450(J/J Experimental

Hg “i" CI2 —HgCl2 Hall et al. (7) 5.6x1 O'15 at 373-673 K Experimental

Hg + HCI -> HgCI + H Gasper et al. 
(6)

3.6 x 10’14 at 673-1173 K Experimental

Comprehension of the reaction mechanism for homogenous mercury 

oxidation in the post-combustion zone is very important to manage mercury

9



emissions in coal-fired power plants. Sliger et al. (8) used a flow reactor system 

to study the oxidation of elemental mercury by HCI. The concentration of Hg was 

53 pg/m3, HCI concentration was varied over a wide range (50, 500, 5000 ppm) 

and the experiments were performed over a temperature range of 573-1273 K. 

Sliger et al. (8) proposed that, due to the high energy barrier for the Hg + HCI 

reaction, the direct elemental oxidation of mercury by HCI is not a key pathway in 

Hg chlorination. They suggested that the oxidation of Hg is achieved by a 

reactive intermediate, Cl atoms, derived from HCI as shown in reaction (ix), 

which first oxidize Hg to HgCI (i) and then HgCI to HgCI2 «vi) and (x)). HgCI is the 

proposed intermediate in a two-step sequential reaction mechanism for oxidation 

of Hg to HgCI2:

Hg + Cl -> HgCI AHrxn,298K = -104.23 kJ/mol, (i)

HgCI + HCI -+ HgCI2 + H. AHrxn,298K = 246.4 kJ/mol, (x)

HgCI + Cl -» HgCI2 AHrxn,298K =-356.04 kJ/mol, (xii)

Senior et al. (9) performed kinetic calculations of the homogeneous 

oxidation of elemental mercury by chlorine containing species using global 

reactions from the literature. They suggested that among various constituents in 

the post-combustion zone, the chlorinated species are most important for 

oxidation of elemental mercury.

Niksa et al. (10) tried to predict the interactions of Cl atoms with other 

pollutants such as NO in coal-derived exhausts and also the effects of moisture
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and O2 on Hg oxidation. HCI was the primary chlorinated species for their 

simulations which were performed over broad ranges of temperatures (573-1273 

K) and HCI concentrations (50-3000 ppm). They developed a reaction 

mechanism based on the kinetic framework of Widmer et al. (11) and simulated 

the laboratory test conditions that were reported by Sliger et al. (8), Widmer et al. 

(11), Hall et al. (7) and Mamani-Paco and Helble (12). The core Hg oxidation 

reactions are presented in Table 2 with rate constants for these reactions are of 

the form k= ATnexp(-E/RT). Based on the simulations, Niksa et al. (10) concluded 

that the oxidation of Hg is accomplished by a Cl atom recycling process. Hg° is 

oxidized by Cl to HgCI which is then oxidized to HgCb by Cb as the Cl atoms 

regenerate. They suggested that over a range of O2 and moisture 

concentrations, O2 is a weak promoter of homogenous mercury oxidation, 

whereas moisture is a strong inhibitor of Hg oxidation. The effect of NO on Hg 

oxidation depends on its concentration. The presence of NO seems to increase 

Hg oxidation for faster quenching which was in contrast to the decrease in 

oxidation due to faster quenching in the absence of NO.
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Table 2: Hg° Oxidation Sub-mechanism

Reaction A n E
kcal/mol

Hg°+ Cl + M HgCI + M 9.00x1015 cm6/mol2-s 0.5 0
Hg° + CI2 0 HgCI + Cl 1.39x1014 cm3/mol-s 0 34.3
Hg° + HCI <-> HgCI + H 4.94x1014 cm3/mol-s 0 79.3
Hg° + HOCI 0 HgCI + OH 4.27x1013cm3/mol-s 0 19.0

HgCI + Cl2 <-> HgCI2 + Cl 1.39x1014 cm3/mol-s 0 1.0

HgCI + Cl + M 0 HgCI2 + M 1.16x1015 cm6/mol2-s 0.5 0

HgCI + HCI 0 HgCI2 + H 4.64x103 cm3/mol-s 2.5 19.1

HgCI + HOCI 0 HgCI2 + OH 4.27x1013cm3/mol-s 0 1.0

Edwards et al. (13) developed a chemical kinetic model of gas-phase 

mercury speciation consisting of 60 reactions and 21 species. Results indicated 

that the performance of the model was very sensitive to temperature. Starting 

with pure HCI, for lower reactor temperatures (less than approximately 903K), the 

model produced only trace amounts of atomic and molecular chlorine, leading to 

a drastic underprediction of Hg chlorination compared with the experimental data. 

For higher temperatures, model predictions were in good accord with 

experimental data. For conditions that produce an excess of Cl and Cb relative to 

Hg, chlorination of Hg is determined by the competing influences of the initiation 

step, Hg + Cl -» HgCI, and the Cl recombination reaction, 2CI Cb. If the Cl 

recombination reaction is faster, Hg chlorination will eventually be dictated by the 

slower pathway Hg + CI2 -> HgCb. Based on simulation results at higher 

temperatures, Edwards predicted that when CI2 and Cl concentrations are high, 

Hg conversion is controlled by Hg + Cl -» HgCI and Cl + Cl -> CI2 as both of

12



these reactions try to access the available Cl. When the recombination rate of Cl 

is faster than the reaction of Hg with Cl, then Hg is oxidized by the slower 

reaction Hg + Cb -> HgCb.

Mallipeddi (14) concludes from his experimental studies that reactions (x) 

and (xii) are more important than (ix). He was the first to employ a laser-based 

spectroscopic approach to measure the kinetics of mercury chlorination under 

post-combustion zone temperatures. The aim of these experiments was to 

directly measure the rate of mercury chlorination by observing the formation and 

decay of the HgCI(l) intermediate using laser-induced fluorescence. A water bath 

system was employed for mercury generation and an excimer and dye laser 

combination with appropriate filters was used to carry out the laser photolysis 

and laser-induced fluorescence tests. Mercury chlorination reaction in the post­

combustion zone was expected to be a fast reaction and experiments were 

conducted to verify this. Rate constants of 4 ± 1 x 10‘12 cm31 (molecules-s), and 

1.2 ± 0.1 x 10'11 cm31 (molecules-s) were measured for the reactions of HgCI 

with Cl and CI2 to confirm that they are fast reactions. The reaction between HgCI 

and HCI was slightly slower and had small activation energy of 4.5 kJ/mol. The 

lack of consistency of the measurements with kinetic models discussed earlier 

suggests that the existing gas-phase models should be revised to accurately 

predict Hg speciation in coal fired power plants.
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Mercury interactions with inorganic and carbonaceous ash particles 

entrained in coal combustion flue gas (i.e. fly ash), especially at the gas- 

particulate surface interface, are important to consider in understanding mercury 

transformations. Reactive chemical species and oxidation catalysts on fly ash 

particles can convert elemental mercury to oxidized mercury. Fly ash particle 

surfaces also host active sites for mercury adsorption.

Kellie et al. (15) have shown that chlorine has a tendency to encourage 

the removal of mercury from the flue gas. The total amount of vapor phase 

mercury was observed to decrease in response to coal chlorine content and 

increased HCI in the flue gas. However, Hg+2 was observed to decrease only in 

response to coal chlorine content, not the HCI content of the flue gas, suggesting 

that coal chlorine content has a role in the chemisorption of mercury.

Bench scale studies performed by Laudal et al. (16) using simulated flue 

gas and Ontario-hydro method found that addition of Cb (10 ppm) decreased the 

amount of flue gas elemental mercury by 31.49%, whereas the addition of HCI 

(50 ppm) only caused a 0.99% decrease. When the same work was carried out 

by Norton et al. (17), the addition of 50 ppm HCI increased the percentage of 

mercury in the oxidized form by as much as 15% in the presence of fly ash. 

Galbreath et al. (18) observed that, when simulated flue gas was spiked with 100 

ppmv HCI, less than 35% of the input elemental mercury was recovered and only 

80% of the input HCI was recovered, suggesting the formation of HgCb and its
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adsorption in the combustor. In addition, almost all of the reduction in gaseous 

mercury was a reduction in gaseous elemental mercury. The percentage of gas- 

phase mercury converted to oxidized mercury remained the same when spiking 

with elemental mercury or when spiking with elemental mercury and HCI. 

Because some of the HCI was converted to Cb (10% of the amount input), which 

form was responsible for HgCb formation was unclear.

Measurements by Schager et al. (19) and Hall et al. (20) indicate that 

some fly ashes actually adsorb mercury at rates greater than various sorbents, 

including activated carbon. Brown (21) reviewed mercury speciation analysis 

results and identified several coals that produce significant concentrations of 

oxidized and particulate mercury in the post-combustion environment of pilot and 

full-scale utility boilers. Apparently the flue gases and/or fly ashes produced from 

certain coals possess intrinsic properties that promote mercury oxidation and/or 

mercury-fly ash sorption. Mercury sorption by fly ash can occur via physical 

adsorption, chemisorption, chemical reaction, or a combination of these 

processes. Although it is well established fact that fly ash particles capture 

mercury species, the nature of mercury-fly ash interactions is not well

understood.

Galbreath et al. (22) have presented an excellent review of the status of 

elemental mercury transformation in coal combustion flue gas. The physical and 

chemical transformations that mercury undergoes during coal combustion and
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subsequently in the resulting flue gas are summarized in Figure 1. Theoretical 

and experimental investigations indicate that although HCI will react with Hg°(g), 

Cb is much more active mercury chlorinating agent as indicated by Schager (23), 

Hall et al. (24) and Laudal et al. (16) In addition to Cb(g) and HCI(g), 02(g) and 

NO2(g) are potential mercury oxidizing agents in flue gas. In the presence of 

inorganic and carbonaceous ash particles, these gases are apparently important 

in Hg°(g) adsorption and oxidation processes.

Catalytic
Oxidation

Chlorination 

I HgCI2(g) ■ HgClz(g)

Sorption

AshW
Formation

Coal Combustion Postcombustion

Figure 1. Potential Mercury Transformations during Coal Combustion and 
Subsequently in the Resulting Flue Gas. Adapted from ref. 22.
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Chlorine is evolved from coal during combustion primarily as HCI(g). In the 

post-combustion environment, Cl2(g) is formed according to the following Deacon 

reaction (25):

2HCI(g) + 1/2O2(g) Cl2(g) + H2O(g), AHrxn.assK = -57.05 kJ/mol

Although the Deacon reaction is thermodynamically favorable at relatively low 

temperature (703-748K), it proceeds only in the presence of a metal catalyst 

(26). The process consists of two steps: (1) a chlorination step in which the HCI 

makes contact with the catalyst at an elevated temperature. This step converts 

the transition metal oxide to a transition metal chloride with elimination of water, 

and (2) an oxidizing step in which the transition metal chloride from step one 

makes contact with molecular oxygen. Cl2 is evolved and the transition metal 

chloride is reconverted to a transition metal oxide. Experimental investigations 

indicate that the presence of SO2 (g) in combustion flue gas can inhibit the 

formation of chlorinated compounds by depleting chlorine concentration or 

reducing the catalytic activity of fly ash (27, 28).

Cl2(g) + SO2(g) + H2O(g)-» 2HCI(g) + SO3(g), AH^sk = -41.88 kJ/mol

In the post-combustion zone, oxidized mercury such as HgCI2 and HgO 

can also be reduced. HgO can be reduced with SO2 and CO according to 

following overall reactions:

HgO(s,g) + SO2(g)-> Hg°(g) + SO3(g), AHrxn,298K = -79.39 kJ/mol and 

HgO(s) + CO(g)-> Hg°(g) + CO2(g), AHren,298K = -282.99 kJ/mol
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Galbreath et al. (22) reported that mercury interactions with inorganic and 

carbonaceous ash particles entrained in coal combustion flue gas, especially at 

the gas-particulate surface interface, are important to consider in understanding 

mercury transformations. Their experimental results using a 42 MJ/hr combustion 

system containing Ch-Ar and C>2-N2-rich mixtures show that both AI2O3 and TiCh, 

or mixtures of these compounds are not Hg°(g) oxidation catalysts. The presence 

of a chemically complex coal combustion flue gas may have interfered with the 

capability of AI2O3 (s) and TiO2 (s) to promote Hg°(g) oxidation.

Ghorishi (29) and his group (30) studied mercury oxidation in a simulated 

flue gas (N2, O2, CO2, with HCI, NO, NO2, and H2O) in the presence of model fly 

ashes composed of mixture of AI2O3, SiO2, Fe2O3(lll), CuO, and CaO. Both CuO 

and Fe2O3 (III) were found to be active promoters of Hg° oxidation. SiO2 and 

AI2O3 were inactive in the presence of HCI. The addition of CaO to model fly ash 

mixture of either CuO or Fe2O3 (III) in a SiO2/Al2O3 matrix caused a marked 

reduction in the oxidation rate, likely due to the removal of gas-phase HCI by 

CaO. Tests using actual fly ash indicate that the catalytic effects of fly ash 

components are more complex than would be indicated by the results for model 

mixtures, but the bulk of the experimental work indicated that heterogeneous 

reactions play a significant role in the formation and capture of mercury.

Bench scale investigations using heated (<370°C) simulated flue gases 

have also demonstrated that specific metal oxide components of fly ash including
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maghemite promote the formation of Hg+2 in the presence of HCI and NOx, 

possibly via surface-redox reactions. Bench scale experiments by Miller et al. 

(31) indicate that maghemite (y- Fe2O3), a polymorph of a-Fe2O3 that also occurs 

in fly ash, does not catalyze Hg+2 formation, but rather reacts readily with Hg° at 

155°C, resulting in Hg° removal from simulated coal combustion flue gas.

Galbreath et al. (32) investigated the effect of NO2 and a-Fe2O3 addition to 

the post-combustion zone of a 7 kW system burning sub-bituminous Absaloka 

and Lignitic Falkirk coal. The addition of 80-190 ppmv NO2 at 440-880°C did not 

significantly affect Hg oxidation. Similarly a-Fe2O3 injections (15 and 6 wt.%) at 

450°C did not catalyze heterogeneous Hg° oxidation reactions. Although NO2 

and a-Fe2O3 promoted the conversion of Hg° to Hg+2 in simulated combustion 

flue gases, these flue gases produced from burning sub-bituminous Absaloka 

and Lignitic Falkirk coals were chemically inert with respect to Hg transformation 

in actual coal-combustion flue gas. The lack of conversion in the 7 kW 

combustion system suggests that components of Absaloka and Lignitic Falkirk 

combustion flue gases and/or fly ashes inhibit heterogeneous Hg°-NOx-a-Fe2O3 

reactions or that the flue gas quench rate in the 7 kW system is much different 

relative to those in the bench-scale flue gas simulators.

A bench-scale investigation of heterogeneous reactions by Hitchcock (33) 

involving a relatively simple simulated flue gas composition has shown that y- 

Fe2C>3 reactively captures Hg°. In this investigation an abundance of Hg2+, HCI
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and Y-Fe2C>3 in Blacksville coal combustion flue gas suggested that y-Fe2O3 

catalyzes Hg2+ formation and that HCI may be an important Hg° reactant. The 

filtration of Absaloka and Lignitic Falkirk combustion flue gases through a 150°C 

fabric filter containing «65 g/m2 y-Fe2O3 indicated that about 30% of the Hg° was 

converted to Hg +2 and/or Hg(p). HCI injection into the flue gas converted most of 

the Hg° to Hg+2 and/or Hg(p).

Norton et al. (17) reported that fly ash plays a vital role in mercury 

oxidation and the flue gas composition was more important than fly ash 

composition. The gases NO2, HCI, NO, and SO2 had strong effects on the 

potential of fly ash to oxidize Hg° and the role of iron oxides as catalyst was 

insignificant.

Li et al. (34) studied simulated ash mixtures and actual ash samples in a 

fixed-bed experiment using simulated flue gas. They identified HCI and NOx as 

gases that were important for the oxidation of elemental mercury. Both copper 

oxide and iron oxide were identified as active compounds for the oxidation of 

elemental mercury in the simulated ash mixtures. In the presence of NOx, even 

alumina and silica became active in promoting mercury oxidation.

Dunham et al. (35) studied the fixed-bed interactions between mercury 

and coal combustion fly ash. They concluded that many of the ash samples 

oxidized elemental mercury but not all the samples that oxidized mercury also
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captured mercury. Oxidation of elemental mercury increased with increasing 

amount of magnetite in the ash. They also concluded that iron oxide with a 

spinel-type structure is active in fly ash in promoting oxidation. Surface area of 

the fly ash and the nature of the surface were important for oxidation and 

adsorption of elemental mercury.

Sondreal et al. (36) reported that maghemite, an intermediate-state iron 

oxide mineral, has been shown to catalyze Hg oxidation - its effect being 

enhanced by the addition of HCI as a reactant. The mechanism for the interaction 

of HCI and maghemite has not been determined, but it is thought to involve either 

activation of surface sites for the oxidation of Hg or catalytic formation of 

additional atomic chlorine for oxidation of Hg in the gas phase. Conversely, high

levels of calcium and other alkaline constituents in coal ash have been found to

reduce mercury oxidation. High levels of sulfur in coal have also been reported to 

reduce mercury oxidation and capture based on a statistical analysis of an EPA 

Information Collection Request (ICR) for units equipped with a cold side 

electronic precipitator (ESP) (37).

The mercury oxidation process in the coal-fired power plant post­

combustion zone is obviously complex. Chemical kinetic models suggest that the 

chlorine content of the flue gas is the main contributor to mercury oxidation. 

Chemical kinetic models further suggest that concentration of atomic chlorine 

(Cl), the dominant Hg° reactant in coal combustion flue gas, is controlled by
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interactions and concentrations of other gases, including HCI, CO, H2O, O2 and 

NO. Increases in HCI and CO concentrations promote Cl and HgCb formation, 

whereas increases in H2O concentration inhibit their formation (37). NO can 

either inhibit or promote Cl and HgCb formation, depending on the NO

concentration. Yet another theory is that the gas-cooling (quench) rate effects 

the concentration of atomic chlorine under post-combustion conditions (8). The 

calculated mercury oxidation level based on homogeneous gas reaction, 

however cannot solely account for the transformation that occurs in the 

combustion system (10). Other possible routes of mercury transformation are by 

heterogeneous oxidation and physical and chemical adsorption on fly ash 

particles. Mercury can be oxidized as well as reduced and absorbed. There is a 

strong indication that the surface catalytic (maghemite and titanium dioxide) 

reaction plays an important role in mercury oxidation.

Despite these observations, the literature review clearly indicates a lack 

of detailed kinetic and mechanistic information for mercury heterogeneous 

oxidation reaction on the surface. This thesis will focus on gas-phase and gas- 

surface kinetics of mercury chlorination at temperatures 100, 200, 300 and 400°C 

and at residence times of 1, 2 and 4 seconds. This data will be valuable in 

understanding the mercury transformation process in the post-combustion zone 

and then in designing and developing more advanced mercury oxidation and 

removal techniques.
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Chapter III

Objectives

The main objective of this research was to study the gas phase and 

surface kinetics of mercury chlorination reaction under post-combustion 

conditions. Specifically, the objective was to directly measure the gas-phase 

bimolecular rate constants for the reactions of elemental mercury with HCI and 

Cb to form mercury (II) chloride, which are two important reaction steps in the 

gas-phase oxidation of elemental mercury in the post-combustion zone of coal- 

fired power plants. These two reactions will also be examined in the presence of 

surfaces (quartz wool, TiC>2, a-Fe2O3 and y- Fe2C>3) to identify kinetic parameters 

for major reaction pathways.

The reactions to be studied are summarized below:

• Gas-Phase Hg Chlorination

Hg + (Cl2 and HCI)

• Hg Chlorination

Hg + (CI2 and HCI) in the presence of quartz wool

• Hg Chlorination

Hg + (CI2 and HCI) in the presence of TiO2
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• Hg Chlorination

Hg + (Cl2 and HCI) in the presence of Fe2O3 (a)

• Hg Chlorination

Hg + (Cb and HCI) in the presence of Fe2O3 (y)

Specific questions to be addressed include:

1. Reaction of Hg° with chlorine is suspected to be an important pathway for the 

oxidation of Hg in post-combustion systems. What are the rates of reaction 

for conversion of Hg° to HgCb?

2. What are the effects of surfaces on the rate of Hg chlorination? Do TiO2, 

a-Fe2O3 and y- Fe2O3 influence the rate of Hg chlorination?

3. What other Hg transformation processes are important in simulated post­

combustion environments of utility systems?
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CHAPTER IV

Experimental Approach

This section discusses the experimental approach employed in this project 

in detail. This section will address the set up of new flow reactor apparatus, the 

acquisition and operation of a trace level Hg analyzer, and the data acquisition 

procedure and data reduction methods for homogeneous and heterogeneous 

kinetic studies on the chlorination of elemental mercury.

Detection of Elemental and Total Mercury

Accurate measurements of total mercury in flue gas at concentrations 

below 10 pg/dscm of the total mercury (elemental mercury, oxidized mercury, 

and particulate-bound of mercury) are needed to both support research on 

mercury conversion chemistry and capture and to monitor regulatory compliance 

at coal-fired power plants. The Ontario Hydro Method (EPA Method 29), and 

EPA Method 101A provide accurate measurements and high sensitivity for 

measuring total and speciated mercury for research purposes, but they are costly 

and cannot provide real-time data for compliance monitoring. Continuous 

measurements on coal flue gases are challenging because of the low mercury 

concentrations and the presence of fine particulates and acid gases that interfere
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with sampling and detection. Gas filtering and conditioning systems are needed 

to clean gas samples without removing mercury from the sample stream. 

Thirteen continuous monitors based on cold-vapor atomic absorption, atomic 

fluorescence (AF), Zeeman-modulated atomic absorption spectrometry, and 

differential optical atomic spectroscopy have demonstrated different levels of 

success. The most tested continuous analyzer is the PS Analytical Sir Galahad 

atomic absorption instrument, which uses a wet chemistry interface for sample 

conditioning and provides a very high level of sensitivity. The wet conditioning 

system used on this analyzer requires substantial maintenance, and work on a 

dry chemical system is in progress (39).

For effective monitoring of environmental contaminants, it is often 

necessary to use analytical techniques that provide sample pre-treatment. Many 

techniques exist for mercury determination in various samples, and almost all of 

them involve an intermediate stage of mercury preconcentration in absorption 

traps (38, 40). Air or carrier gas is delivered from an atomizer or reaction vessel 

through the absorption trap where mercury is collected. After the 

preconcentration step is completed, the trap is heated and the mercury collected 

on the trap is released into an absorption or fluorescence spectrometer for final 

quantification. Practically all available continuous monitors include the 

preconcentration step in the absorption trap.
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RA-915+ AA Hg Analyzer

From a recommendation from Dr. Jeff Ryan of Environmental Protection 

Agency, Office of Research & Development and National Risk Management 

Research Laboratory, we selected a method in which the preconcentration step 

is eliminated. Elemental Hg was measured using a RA-915+ AA Hg Analyzer 

(Manufacturer: Ohio Lumex). The analyzer (as shown in Figure 2) operates using 

the principle of Zeeman Atomic Absorption Spectrometry using High Frequency 

Modulated light polarization (ZAAS-HFM).

A radiation source (mercury lamp) is placed in a permanent magnetic field. 

The mercury resonance line A=254 nm is split into three polarized Zeeman 

components (it, a- and a+). When radiation propagates along the direction of 

magnetic field, a photodetector detects only the radiation of the a-components, 

one of those falling within the absorption line profile and another one lying 

outside. When mercury vapor is absent in the analytical cell, the radiation 

intensities of both a components are equal. When absorbing atoms appear in the 

cell, the difference between the intensities of the a components increase as the 

mercury vapor concentration grows. The a components are separated in time by 

the polarization modulator. The spectral shift of the a components is significantly 

smaller than the widths of molecular absorption bands and scattering spectra; 

hence, the background absorption by interfering components doesn’t affect the 

analyzer’s readings.
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Due to the high frequency Zeeman correction for the background 

absorption (a background interference attenuates 20 times and the radiation 

does not bring false response, thus false positives and false negatives do not 

occur) and the use of a multi-path analytical cell (its optical length of 9.6 m 

provides a low mercury detection limit without the need for mercury collection on 

the sorbent), the technique made it possible to develop a very simple and easy- 

to-use analyzer for the detection of mercury in gaseous samples. A logarithm of 

the intensity ratio of o+ and o', which is proportional to the mercury atom 

concentration in the cell, is determined upon detecting the radiation by a 

photodetector and subsequent analog-digital conversion of its electric signal by a 

built-in microprocessor. The measurement results are read from a built-in Liquid 

Crystal (LC) display and are transmitted to a computer for further processing or 

data storage. In this measurement technique, the analytical signal depends only 

on mercury concentration and is independent of the presence of dust, aerosols, 

and other foreign contaminants in the analytical cell.

The detection limits for elemental Hg in ambient air using this detector are 

2 ng/m3 with multi-photocell and 500 ng/m3 with the single photocell. The 

detection limit for stack gas samples is 0.1 ng/m3. A schematic of the fused silica 

flow reactor with AA Analyzer used for the experimentation is shown in Figure 2.
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Figure 2: Block Diagram of Fused Silica Flow Reactor with AA Hg Analyzer

Fused Silica Flow Reactor

Fused silica quartz is a product resulting from high temperature treatment 

of naturally occurring quartz crystals or sand (SiCh). Fused quartz has a nominal 

purity of 99.995%. Fused quartz has an extremely low coefficient of thermal 

expansion which imparts a high resistance to thermal shock. Quartz Scientific, 

Inc., (QSI, Ohio) fused quartz products can be heated to 1500°C, or higher, and 

immersed in cold water without resultant physical damage. The annealing point 

of fused quartz is 1140°C, strain point is 1070°C, and fusion point is between 

1700 and 1800°C. Under normal conditions, devitrification of fused quartz does 

not usually occur at temperatures below 1150°C.
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Table 3: Specifications of Quartz Reactor Tube

Inside Diameter (mm) 10

Outside Diameter (mm) 12

Wall thickness (mm) 1

Length (mm) 122

Furnace Selection

The three zone tube furnace design provides a stable and uniform 

environment for materials research, metallurgy work, thermal testing and 

thermocouple calibration. The temperature in the reactor was controlled by using 

a three-zone temperature controlled electric furnace (TZF 12/38/400, Carbolite, 

Inc.) with a maximum operating temperature of 1200°C. The tube diameters that 

can be accommodated range from 1 - 3 cm. The furnace has an effective heated 

length of 30 cm. Three resistance wire heating elements in the furnace wind 

around the ceramic work tube to integrate it into the heating element. The three 

control systems independently control the power to the heating elements to 

ensure excellent thermal uniformity. The control thermocouple is located in a 

protected position between the outside of the work tube and the heating element, 

allowing the full work tube diameter to be used and protecting the thermocouple 

from mechanical damage. Technical specifications of the three zone furnace are 

provided in Table 4.
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Table 4: Three Zone Tube Furnace Specifications

Model TZF 12/38/400

Maximum temperature (°C) 1200

Tube length (mm) 450

Heated length (mm) 400

Maximum inner tube diameter (mm) 38

Power rating (kW) 1.5

Outer measurements excluding tube

(mm: h xwxd)

430 x 450 x 375

Uniform zone length (mm) 305

Heat up time (min) 25

Temperature sensor Type N Thermocouple

Weight (kg) 18

The gas temperature inside the reactor was measured at 100, 200, 300 

and 400°C by introducing argon gas continuously. The temperature profile is 

reasonably flat in the effective high temperature zone of 30cm as shown in 

Figure 3. For this study, the furnace was configured horizontally although a 

vertical option is possible with a separate control box.
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Figure 3: Reactor Wall Temperature Profile

Introduction of Mercury

Mercury permeation tubes were initially used to introduce mercury into the 

reactor. Mercury permeation tubes contain liquid mercury, which release mercury 

into the gas-phase when the tube is heated. The permeation rate of the mercury 

depends on the temperature to which the permeation tube is heated. Permeation 

tubes were purchased from VICI Metronics and permeation rate at a temperature
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of 100°C was certified. The amount of mercury being introduced into the system 

and the related calculations are discussed in detail in the next chapter.

Two mercury generation setups were employed for these tests. The first 

involved a single mercury permeation tube and the second one involved 

developing an in-house Hg vaporization/saturation tube. In the first case, a 

mercury permeation tube was introduced as the primary source for mercury 

generation. This permeation tube was placed in a U-tube holder purchased from 

the VICI, Inc. The U-tube had an inlet and outlet for the gas flow and the gas 

entering the U-tube was preheated using glass beads before it encountered the 

permeation tubes and carried the permeated mercury to the reactor. The U-tube 

was placed in a rectangular Pyrex glass jar filled with water, which served as the 

water bath system. The purpose of water was to maintain the constant desired 

temperature. The water bath was maintained at the desired temperature using an 

electric heater. Argon was used as diluent and carrier gas for these studies. The 

transfer line from the mercury generation system to the reactor was heated to 

100°C to prevent mercury condensation. Teflon fittings were used for the various 

tubing connections because of their inertness to mercury. It was impossible to 

maintain the concentration of Hg°(g) at 10 yg/m3 because of the system 

configuration shown in Figure 2, the amount of Hg introduced into the main 

stream controlled only by the temperature applied to the permeation tube, not by 

the carrier flow applied. For example, if Hg carrier flow is doubled at the fixed 

temperature (consequently fixed permeation rate), the amount of gas volume 

introduced into main stream becomes double, but the Hg concentration is diluted
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by half due to fixed permeation rate with doubled flow rate. Therefore, the 

amount of Hg introduced into the main flow is same, and the concentration in the 

reactor cannot be changed. Also Hg permeation rate was certified only at 100°C, 

and the permeation rate at the different temperature is not guaranteed. 

Therefore, Hg concentration cannot be adjusted by the applied temperature 

either. Thus, I decided to develop a simple saturation tube and the desired 

concentration was obtained using vapor-pressure data at different temperatures. 

In the second set up, a mercury vaporization/saturation tube was developed to 

generate the appropriate concentration. A small amount (50 pL) of mercury was 

introduced in a glass tube with both the ends open. Mercury was immobilized in 

the tube using silica wool. Argon was used as the carrier gas. The concentration 

of mercury in the reactor was maintained at 10 pg/m3 by changing the flow rate of 

carrier gas. The temperature of the tube was maintained at room temperature.

Introduction of Chlorine Sources

In this experimental effort, Cb and HCI were the chlorination sources. 

Helium gas [1% Cb (certified)] was purchased from Air Products for these 

experiments and was introduced into the system using Teflon tubing. The 

concentration of chlorine (CI2) in the reactor depended on the amount of dilution 

which was controlled using a differential mass flow controller (Model No. VCD 

1000) purchased from the Porter Instrument Company, Inc. By varying the 

amount of CI2 gas flow into the system, the desired amounts of CI2 concentration
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could be achieved. The concentration of chlorine for this set of experiments was 

set at 10 ppm.

Pure certified HCI (99+%) was purchased from Air Products. HCI was 

diluted to about 1% in argon by injecting 4950 cm3 of argon and 50 cm3 of HCI. 

The concentrated HCI was introduced into the system using the syringe (50 mL) 

and syringe pump (Model No. 780100V) purchased from KD Scientific Inc, MA.

Surfaces Studied

The following surfaces were examined: quartz wool (QW), TiO2, a-Fe2O3 

and y-Fe2O3. TiO2 was purchased from Sigma - Aldrich, Inc. Properties of 

titanium (IV) oxide (rutile) are shown in Table 5.

Table 5: Properties of Titanium Dioxide

CAS 1317-80-2

Form Powder

Particle size <5 pm

Density 4.17g/mLat 25°C

Purity 99.9+%

Two forms of iron oxides were also examined- a-Fe2O3 and y-Fe2O3. The 

first, a-Fe2C>3, is called hematite which is an important ore of iron and is reddish
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brown in color. Hematite was purchased from Sigma Aldrich; Inc. Properties of

hematite are shown in Table 6.

Table 6: Properties of Hematite

CAS 1309-37-1

Form Crystals

Particle size 5 pm

Density 5.24 g/cm3

Purity 99.999%

The gamma form of iron oxide, y-Fe2O3, is also called maghemite. It has the 

same structure as magnetite, that is, it is spinel-ferrite and is also ferrimagnetic. 

Maghemite can be considered as an Fe (ll)-deficient magnetite with formula 

(Feelll)A[Felll4oz3T8/3]B032 where Y represents a vacancy. A indicates tetrahedral 

positioning and B octahedral. Maghemite is formed by topotactic oxidation of 

magnetite (a topotactic transformation is characterized by internal atomic 

displacements, which may include loss or gain of material, so that the initial and 

final lattices are in coherence). Maghemite was purchased from Alfa Aesar Inc. 

Its properties are shown in Table 7.
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Table 7: Properties of Maghemite

CAS 1309-37-1

Form Powder

Density 5.24 g/cm3

Purity 99+% (metals basis)

Particle size APS 20-30 nm

Surfaces were introduced into the reactor immobilized with quartz wool. 250mg 

of TiO2, a-Fe2O3 and y-Fe2O3 was used for our experiments.

Exhaust System

The highly toxic nature of Hg required appropriate measures for the 

careful handling of elemental mercury and HgCb generated during the course of 

these tests. Hg, HgCb, CI2 and HCI were trapped in a tube filled with activated 

carbon (Alltech Associates Inc, 60/80 mesh).

Transfer Lines

Chemically inert 1/4 and 1/8 inch Teflon tubing was used for the transport 

of chlorine sources, elemental Hg and the carrier gas (Ar).

Data Reduction

This section gives a brief introduction to the data reduction employed for 

measuring the kinetics of Hg chlorination. This is followed by the various 

calculations pertaining to the Hg chlorination in the reactor and calculations of the
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concentration of Hg and chlorine source in the reactor. Since all the reactions 

involved in the mercury chlorination studies are bimolecular reactions, pseudo- 

first-order conditions were used to treat the kinetics of these reactions. A pseudo-

first order condition exists when the concentration of one of the reactants is

present in great excess to another reactant so that its concentration during the 

course of the reaction can be regarded as effectively constant.

Experimental conditions for measuring the rate constant for the reduction 

of Hg in gas-phase and gas-surface reactions were established such that the 

concentration of chlorine source was maintained in excess of elemental mercury; 

the concentration of the chlorine source was over 103 times higher than the 

concentration of elemental mercury. The concentration of chlorine in excess will 

always remain nearly constant during the course of the reaction under the 

assumption that there are no other sinks for chlorine loss. Thus the dependence 

of the reaction rate on concentration of elemental mercury can be isolated and

the rate law can be written as:

^^ = k[CI2][Hg]
dt

= k'[Hg] (Equation 1)

Where k’ = kfCb]- Equation 1 represents the differential form of the rate law. 

Integration of this equation and evaluation of the integration constant produces 

the corresponding integrated law.

(Equation 2)
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Integration of the (Equation 2) yields:

In [Hg] = -k't + C (Equation 3)

The constant of integration C can be evaluated by using an initial condition. At t = 

0 the concentration of [Hg] is [Hg]o. Therefore:

C = ln[Hg]0 (Equation 4)

Accordingly:

I n [Hg] = -k't+ln[Hg]o (Equation 5)

and the mercury concentration time dependence can be expressed as

ln(I!M) = _|<[ci2]t (Equation 6)
[Hg]o

Equation 6 is the final form of the equation for the rate constant where: [Hg]o = 

initial Hg concentration at t = 0, [Cb] = chlorine source concentration, k = 

bimolecular reaction rate (units of cm3/molecule-s), and t = time (s). The rate 

constant k was determined experimentally for each temperature for gas-phase 

and gas-surface reactions and then plotted as a function of temperature and fit to 

the Arrhenius expression:

k = A exp (-Ea/T).

Hg decay curves were obtained at 100, 200, 300 and 400°C. Plots of Hg 

as a function of time produced an exponential decay curve from which the 

pseudo-first order rate constant k’ was measured as the negative of the slope of
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ln([Hg]/[Hg]o) vs. time. The reaction rate constant (k) was determined by dividing 

the pseudo first order rate constant by the chlorine concentration (k=k’/([Cl2])-

Calculations

This section summarizes the calculations pertaining to: 1) the 

concentration of mercury, 2) the flow rates of primary carrier gas (Ar) and Hg 

probe carrier gas (Ar) and the flow rates of chlorine (Cb and HCI) sources and 3) 

packed bed reactor.

Mercury Concentration

Total mercury concentrations in coal combustion flue gas generally range 

from 5 to 10 pg/m3; however, Hg°, Hg2+, and particle associated mercury Hg (p) 

concentrations are variable, depending on coal composition, combustion 

conditions, and flue gas quench rate. Based on this information and the desire to 

run experiments under realistic conditions, the target initial concentration of 

gaseous elemental mercury was set at 10 pg/m3. This concentration of Hg can 

be converted to a gas-phase concentration at room temperature as follows:

10 pg of Hg = 10 x 10"6 g

mole of Hg = 10 x 10'6 g / 200 g/mol

nRT
Using Gas Law, V = at 1 atm and 298 K,

V (L) = (10x1 O’6 g)/200 g/mol x 0.0821 x 298 

= 1.22 x 10’6 L/1000 L (1 m3 = 1000 L)
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= 1.22x10'9

= 1.22 ppbv

The residence times used for the experiments were 1, 2 and 4 seconds. 

All calculations shown here are for a residence time of 1 s. The temperatures at 

which the reactions were carried out were 100, 200, 300 and 400°C. Examples of 

calculations for determining the flow rate and concentrations of mercury and

chlorine sources are shown for 100°C.

The terms hydrodynamic residence time or mean residence time are of 

central importance for the understanding of residence time function t. The terms 

are defined here as the relationship of the reaction volume (or a reactor volume) 

to the volume flow of the reaction mixture at the input of the respective reactor.

Residence time, t = Volume of Reactor/Volumetric flow rate

Volumetric flow rate = Volume of Reactor/Residence time

= Trd2l/4t

Diameter of the reactor (r) = 1 cm

Effective length (I) = 30 cm

Therefore, for a 1 s residence time, the volumetric flow rate is equal to: 

= tt/4x12x30/1

=23.56 cc/sec

=23.56 x 60 cc/min
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= 1413.72 cc/min

» 1.4 L/min

Gas flow rate at 100°C:

Volumetric flow rate = ^°-?-rP-emPera^ure xfiow Rate at Room Temperature 
Reactor Temperature

298
(273 + 100)

-X1413.72

1129 cc/min

■ 1.13 L/min

Flow rates of 1% Cb and 1% HCI sources required to maintain concentration of 

10 ppmv in the reactor at 100°C:

1 1
Concentration of chlorine = (flow rate of chlorine x----- )x----------------------

100 total flow rate

1 110 x 10‘6 = (flow rate of chlorine x----- ) x--------
v 100 1129

Flow rate of chlorine = 1.129 cc/min

Hg Carrier (Ar) gas flow rate

Concentration of mercury= VaporPressure Hg Carrier Gas FlowRate 
Ambient Pressure Total FlowRate

1 22 x 10'9 - Q x Hg Carrier Gas FlowRate
X " 740 * 1129

Hg Carrier Gas Flow Rate = 0.714 cc/min.
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Experimental conditions at 100, 200, 300 and 400°C are summarized in Tables 

8, 9,10 and 11, respectively.

Table 8: Experimental Conditions at 100°C

Residence time (s) 1 2 4
Primary carrier gas 
flow rate (cc/min)

1129 564 282

Hg sample carrier gas 
flow rate (cc/min)

0.714 0.357 0.178

Chlorine gas flow rate 
(cc/min)

1.129 0.564 0.282

Hydrogen chloride gas 
flow rate (cc/min)

1.129 0.564 0.282

Table 9: Experimental Conditions at 200°C

Residence time (s) 1 2 4

Primary carrier gas 
flow rate (cc/min)

890 445 223

Hg sample carrier gas 
flow rate (cc/min)

0.564 0.282 0.142

Chlorine gas flow rate 
(cc/min)

0.89 0.445 0.223

Hydrogen chloride gas 
flow rate (cc/min)

0.89 0.445 0.223
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Table 10: Experimental Conditions at 300°C

Residence time (s) 1 2 4

Primary carrier gas 
flow rate (cc/min)

735 368 184

Hg sample carrier gas 
flow rate (cc/min)

0.466 0.233 0.116

Chlorine gas flow rate 
(cc/min)

0.735 0.368 0.184

Hydrogen chloride gas 
flow rate (cc/min)

0.735 0.368 0.184

Table 11: Experimental Conditions at 400°C

Residence time (s) 1 2 4
Primary carrier gas 
flow rate (cc/min)

626 313 156

Hg sample carrier gas 
flow rate (cc/min)

0.396 0.198 0.099

Chlorine gas flow rate 
(cc/min)

0.626 0.313 0.156

Hydrogen chloride gas 
flow rate (cc/min)

0.626 0.313 0.156

Packed Bed Reactor

Partially packed bed quartz reactor was used for gas-surface studies (see 

Figure 4). 250mg of TiO2(<5pm), a-Fe2O3 (<5pm )and y- Fe2O3 (20-30nm ) were 

placed in the middle of the reactor (10mm i.d x 12mm o.d) and immobilized with 

quartz wool on both the sides of the reactor. Experiments were conducted at 

residence times of 1, 2 and 4 sec for temperatures of 100-400°C. Surfaces 

occupied part of the reactor tube diameter and reactant gases passed through 

the quartz wool (60 mg) and then contacted the surface material. The
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approximate length of quartz wool section and surface material region was 

30mm. Surface materials act as catalyst in mercury chlorination resulting in 

reduction of activation energy and an increase in the elemental mercury

conversion rate.

Quartz Wool

Gas Flow

Surface Material

Figure 4: Partially Packed Bed Quartz Reactor

Contact time of reactant gases and surface material is very small when 

compared to residence time of reactant gases in the reactor. An example 

calculation is given below:

Approximate length of surface material region = 1 cm

Volume of the Partially Packed Quartz Reactor = ird2l/4

= tt/4x12x1

= 0.76 cc

Volume of the surface material = mass/density

= (250x1 O'3 g)/(5.24g/cc) x 1.35 

= 0.06 cc

1.35 factor in the above equation is the estimated void space correction factor for 

small void space among catalyst powders using Face Centered Cube (FCC) as a
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model (see below for the calculations) and this factor accounts for it. Small void 

space was estimated 1.35 times larger than actual catalyst volume.

Void Space above the catalyst is obtained by subtracting volume of the surface 

material from volume of the partially packed quartz reactor.

Void Space = 0.76 - 0.06

= 0.70 cc

Main gas flow rate at 100°C at a residence time of 1 sec in the reactor

= 1129 cc/min

Contact time= void space/main gas flow rate

= 0.70/1129

= 0.04 sec

The approximate contact time of reactant gases and surface material at all

conditions is 0.04 sec.

Estimation of Catalyst Volume with Void Space

Catalyst volume with void space among catalyst powders was estimated 

using Face Centered Cube (FCC) as shown in Figure 5.

a: 4R = 1 : a/2

a = 2a/2 R

Volume of Cube = a3 = (2a/2 R)3 = 16^2 R3
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Volume of Sphere with in the cube = 4/3nR3 x 4

Ratio of volume of cube vs. occupied sphere = 16^/2 R3 :16/3nR3 = 1.35: 1

Therefore catalyst volume with void space among catalyst powders was 

estimated as 1.35 times larger than actual catalyst volume.

Figure 5: Face Centered Cube (FCC)
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CHAPTER V

Results

System Operation

The quartz tube is placed in the three zone furnace, and all the transfer 

lines are connected using Teflon tubing. The quartz tube is heated to 100, 200, 

300 and 400°C with continuous flow of the main (Ar) gas. After the temperature 

of the quartz tube stabilizes, the carrier gas valve is opened to introduce mercury 

into the system. The measurement results are transmitted to a computer from the 

RA-915+ analyzer. The system is run blank for calibration by introducing known 

elemental mercury concentration at different reactor temperatures. The inlet 

mercury concentration of 10 pg/m3 is introduced into the reactor at temperatures 

of 100, 200, 300 and 400°C and the calibration data indicates the consistency in 

the analyzer reading.

From the calibration data shown in Table 12, analyzer reading deviates by 

2% of the actual value. After the reading is stabilized on the display screen, the

chlorine sources are introduced into the system. Extreme caution is taken in 

introducing chlorine and mercury into the system.
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Table 12: Mercury Analyzer Calibration data

Inlet Hg Cone. 
(ng/m3)

Temperature, °C Analyzer reading 
(ng/m3)

Deviation %

10000 100 9791 -2.1

10000 200 9844 -1.6

10000 300 9830 -1.7

10000 400 9863 -1.4

Example: Data Reduction Procedure at 100°C, 1 s

Initial elemental mercury concentration introduced into the system,

[Hg]0 = 9496 pg/m3

Final elemental mercury concentration, [Hg] = 7621 pg/m3

c, * , . ([Hg].-[Hg])Elemental mercury reduction = 1 — 1 —
[Hg].

. (9496-7621)
9496

= 0.197

ln([Hg]/[Hg]0) = -0.21995

The values of Hg° conversion and ln(Hg/[Hg]0) at 100°C at residence times of 1

2 and 4s are shown in Table 13.
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Table 13: Elemental Mercury Conversion for Hg+Cb at 100°C

Residence time Conversion ln(Hg/[Hg]0)
1 0.197 -0.2199

2 0.360 -0.4466

4 0.550 -0.7990

Gas-Phase Kinetic Studies

Elemental mercury loss was measured in the mercury chlorination reactions in 

the gas-phase kinetic studies. Figure 6 shows a plot of In ([Hg]/[Hg]o) vs. time for 

Hg + Cb reaction. The slopes of these plots were used to determine the rate 

coefficient of the reaction. Hg decay curves at 100, 200, 300, and 400°C showed 

good linearity (R2 £ 0.99) for reactions with both Cb and HCI.
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Figure 6: Kinetics of the Hg+Cb Gas-Phase Reaction.

The rate coefficient was determined by dividing the negative of slope by 

the concentration of excess reactant (chlorine, in this case). The values of k 

(cm3/molecule-s) are plotted against 1/T to determine the Arrhenius pre­

exponential factor and activation energy. The resulting curve for both reactions 

was exponential and indicated typical Arrhenius behavior for these reactions (see 

Figures 7 and 8 for the Cb and HCI reactions, respectively).
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• This Study 
---------- Hall et al.(7)

1/T (K'1)

Figure 7: Arrhenius Plot of the Hg + CI2 Gas-Phase Reaction.

yhjS gtudy

---------- Gaspar et al.(6)

l/T (1C1)

Figure 8: Arrhenius Plot of the Hg + HCI Gas-Phase Reaction
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The Arrhenius equations resulting from this study are expressed as follows (units 

of cm3/(molecule-s) with T in Kelvin):

Hg + Cl2: k = 1.83x10‘15 exp (-322/T)

Hg + HCI: k = 1.78x10‘15 exp (-1740/T).

In the homogeneous tests, Hg was 10 to 50 times more reactive with Cl2 

than HCI. For the homogeneous reaction of Hg with Cl2, our results indicate small 

temperature dependence, and a reaction rate 5 to 7 times slower than reported 

by Hall et al (7). For the homogeneous reaction of Hg with HCI, this reaction is 

also temperature dependent, and our data is consistent with Gaspar et al. (6) at 

temperatures above 300°C. Gaspar et al. reported a rate constant for Hg + 

HCI->products as 3.65 x10'14 exp (-3460/T) cm3 molecule'1 s'1 over a 

temperature range of 400 to 900°C. The data was extrapolated to lower 

temperature for comparison with our results.

Heterogeneous Gas-Surface Kinetic Studies

Heterogeneous gas-surface mercury chlorination reaction studies were 

also conducted using quartz wool, titanium dioxide (TiO2) and iron oxide (Fe2C>3, 

a and y forms studied separately) powders using the following fixed bed reactor 

configuration (10 x 12 mm i.d. x o.d., 30 cm effective length). Other than the 

reactor dimensions, the experimental apparatus and conditions were identical to 

the gas-phase studies. Elemental mercury loss was measured in the gas-surface 

reactions similar to gas-phase reactions.
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Quartz wool experiments were performed by placing quartz wool in the 

middle of the reactor. These experiments were performed under the same gas- 

phase conditions to study the effect of open tube studies in the presence of 

quartz wool (QW). Rate constants for the Hg + Cb and Hg + HCI reactions in the 

presence of quartz wool showed no significant change when compared to the 

gas-phase rate constants under the same conditions indicating the absence of 

wall effects in the presence of quartz surface. Comparison of rate constants in 

the Tables 14 and 15 shows that open tube studies were not affected by 

presence of quartz wool.

Table 14: Comparison of Rate Constants for Hg+Cb and Hg+Cb+QW Reactions

T(K) Hg + Cl2 rate constants 
(cm3/molecule-s)

Hg + Cl2 + QW rate constants 
(cm3/molecule-s)

373 8.09x1 O’16 9.11x10*ie

473 8.31x1 O’16 9.14x10'1C

573 1.04x1 O’15 1.04x10'1s

673 1.18x1 O’16 1.22x1 O’15
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Table 15: Comparison of Rate Constants for Hg+HCI and Hg+HCl+QW 
Reactions

T(K) Hg + HCI rate constants 
(cm3/molecule-s)

Hg + HCI + QW rate constants 
(cm3/molecule-s)

373 1.49x1 O'17 2.86x1 O’17

473 5.76x1 O'17 6.85x1 O’17

573 8.12x1 O’17 8.92x1 O'17

673 1.24x10'w 1.34x1 O’16

The reactions between Hg and chlorine sources (CI2, HCI) in the presence 

of TiO2 immobilized with quartz wool were performed under pseudo-first order 

conditions (CI2, HCI in excess). The surface experiments were performed 

between 100 and 400°C at residence times of 1, 2 and 4 sec. Figures 9 and 10 

present Arrhenius plots of these reactions. The heterogeneous studies indicated 

an increase in reaction rate (mercury loss) with the addition of various surfaces. 

CI2 was more reactive with Hg than HCI under these conditions.

55



Figure 9: Arrhenius Plot of the Hg + Cfe Reaction. Hg + Cfe: Gas-Phase Rate, 
Hg + Cb (TiC>2): Gas-Surface Rate

1/T (K1)

Figure 10: Arrhenius Plot of the Hg + HCI Reaction. Hg + HCI: Gas-Phase Rate, 
Hg + Cb (TiO2): Gas-Surface Rate
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The net surface reaction rate on the TiO2 surface was derived by 

subtracting the reaction rate of Hg chlorination with quartz wool from that with 

quartz wool and TiO2, and is expressed below (units in cm3/ (molecule-s)):

Hg + Cl2 w/ TiO2: k = 2.50x1 O’15 exp (-354/T)

Hg + HCI w/ TiO2: k = 5.91 x1 O’17 exp (-525/T).

The same set of experiments was also performed using Fe2O3 (a) immobilized 

with quartz wool. Figures 11 and 12 show Arrhenius plots of these reactions.

Figure 11: Arrhenius Plot of the Hg + Cl2 Reaction. Hg + Cb: Gas-Phase Rate, 
Hg + Cb (a-Fe2O3): Gas-Surface Rate
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1/T (K-1)

Figure 12: Arrhenius Plot of the Hg + HCI Reaction. Hg + HCI: Gas-Phase Rate, 
Hg + HCI (a-Fe2C>3): Gas-Surface Rate

The net surface reaction rate on the Fe2O3 (a) surface was derived by 

subtracting the reaction rate of Hg chlorination with quartz wool from that with 

quartz wool and Fe2O3 (a) and is expressed below (units in cm3/(molecule-s)):

Hg + Cl2 w/ Fe2O3 (a): k = 2.75x1 O’15 exp (-332/T)

Hg + HCI w/ Fe2O3 (a): k = 9.58x1 O'17 exp (-550/T).

The same set of experiments was also performed using Fe2O3 (y) immobilized 

with quartz wool. Figures 13 and 14 show Arrhenius plots of Hg chlorination with 

Cb and HCI, respectively, in the presence of Fe2O3 (y).
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Figure 13: Arrhenius Plot of the Hg + Cb Reaction. Hg + CI2: Gas-Phase Rate, 
Hg + Cb (Y-Fe2O3): Gas-Surface Rate

1/T (K'1)

Figure 14: Arrhenius Plot of the Hg + HCI Reaction. Hg + HCI: Gas-Phase Rate, 
Hg + HCI (y-Fe2O3): Gas-Surface Rate
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The net surface reaction rate on the Fe2O3 (y) surface was derived by 

subtracting the reaction rate of Hg chlorination with quartz wool from that with 

quartz wool and Fe2O3 (y) and is expressed below (units in cm3/ (molecule-s)):

Hg + Cl2 w/ Fe2O3 (y): k = 5.55x1 O’15 exp (-310/T)

Hg + HCI w/ Fe2O3 (y): k = 8.81 x1 O’16 exp (-432/T).

The comparative effect of various surfaces (net rate coefficients) on the 

reaction of Hg with CI2 and HCI is shown in Figures 15 and 16, respectively. Also 

shown are the baseline gas-phase rate coefficients for each reaction. For CI2, the 

TiO2 and Fe2<D3 (a) surfaces show a relative modest (< a factor of 2) change on 

the rate coefficient. A larger effect (about a factor of 3) was observed for the 

Fe2O3 (y) surface. For HCI, the TiO2 and Fe2C>3 (a) surfaces did not exhibit a 

measurable effect (within experimental scatter) in the measured rate coefficient 

compared to the baseline gas-phase rate coefficient. A large increase in the rate 

constant (about a factor of 5 to 10 depending on the temperature) was observed 

for the Fe2O3 (y) surface. TiO2 and Fe2C>3 (a and y) promoted conversion of 

elemental mercury but this conversion may not have been due solely to chemical 

reaction as adsorption of elemental mercury might have occurred (15, 33 and 

35). Using the Ontario Hydro Method, the total mercury adsorbed on a few of the 

surfaces used in gas-surface experiments was analyzed using Hydra Atomic 

Fluorescence (AF) Gold Plus Hg Analyzer. No adsorbed mercury was observed, 

suggesting that mercury conversion likely occurred via chemical reaction with 

involvement of the surface. There are, however, chances that Hg was absorbed,
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but desorbed later due to high temperatures as the last experiment temperature 

before the catalyst was took out for the analysis was 400°C. Since these tests 

were limited, the possible role of surface adsorption cannot be ruled out.
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Figure 15: Arrhenius Plot of the Hg + Cb Reaction. Shown are Gas-Phase Rate 
coefficients and Net Rate Coefficients for Various Surfaces.
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1/T (K-1)

Figure 16: Arrhenius Plot of the Hg + HCI Reaction. Shown are Gas-Phase Rate 
Coefficients and Net Rate Coefficients for Various Surfaces

Comparison with Previous Heterogeneous Studies

Galbreath et al. (41) performed experiments by injecting AI2O3(s) and 

TiO2(s) at 650°C into Absaloka coal combustion flue gas. These surfaces were 

ineffective in promoting the formation of additional Hg2+X(g). Their results 

indicated that Hg°(g) and Hg(tot) concentrations did not vary significantly in the 

presence of these surfaces. Either the chemically complex flue gas hindered the 

catalytic effect of TiO2(s) and AI2O3(s) or these compounds are simply not good 

Hg°(g) oxidation catalysts.

Thorwarth et al. (42) studied the behavior of mercury along the flue gas 

path in coal fired power plants. They did a comprehensive study of the effect of 

TiO2(s) on mercury speciation depending on flue gas temperature and the HCI
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and SO2 content in the flue gas. Their results showed that TiC>2(s) can promote 

the conversion of HgCbCg) to Hg°(g), which is a disadvantage especially in the 

power plants equipped with flue gas desulphurization units. In the 150 to 350°C 

temperature range, the conversion rate increases with increasing temperature. 

Generally TiO2 absorbs mercury. The sorption rate is temperature dependent, 

increasing with decreasing temperature. The highest sorption rates for TiO2 were 

reached at 150°C. Our experiments indicated an increased conversion (loss) of 

elemental Hg with increasing temperature, though we couldn’t separate the Hg 

sorption rate from the overall Hg conversion rate.

Wu et al. (43) concluded from their studies of Hg capture using different 

sorbents that Hg was removed effectively by sorbents containing iron oxide in the 

60-100°C temperature range. The efficiency of elemental Hg capture increased 

with the increasing temperature.

Galbreath et al. (32) investigated Hg chlorination reactions in the presence 

of a-Fe2C>3 and y-Fe2O3. The transformations were evaluated by injecting a- 

Fe2C>3 with an average particle diameter of 2.5 pm and y-Fe2O3 with an average 

particle diameter of 0.6 and 47.5 pm into actual combustion flue gases produced 

from burning sub-bituminous Absaloka and Lignitic Falkirk coals in a 7 kW down- 

fired cylindrical furnace. A bituminous Blacksville coal known to produce Hg+2- 

rich combustion flue gas was also burned in the system. Injection of a-Fe2O3 (15 

and 6 wt %) at 450°C into Absaloka and Falkirk coal combustion flue gases did
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not significantly affect Hg speciation. Injection of y-Fe2O3 at 150°C into Absaloka 

and Falkirk coal combustion flue gases indicated that about 30% of the elemental 

Hg was converted to Hg+2 or Hg(p).

Galbreath et al. (44) reported the effect of NOx and hematite (a- Fe2C>3) on 

Hg transformation by injecting NOx and a-Fe2O3 into actual coal combustion flue 

gases produced from burning bituminous (Blacksville), sub-bituminous 

(Absaloka), and Lignite (Falkirk) coals in a 7 kW combustion system. It was found 

that the Blacksville fly ash had high Fe2O3 content (12.1%), and the Absaloka 

and Falkirk fly ashes had significantly lower Fe2O3 contents (4.5 and 7.9%, 

respectively). A portion of the Fe2O3 in Absaloka fly ash was present as hematite 

(a-Fe2O3). The flue gas generated from the combustion of Blacksville coal 

contained Hg+2 as the predominant Hg species (77%), whereas Absaloka and 

Falkirk flue gases contained predominantly elemental Hg (84 and 78%, 

respectively). Injections of NO2 (80 to 190 ppm) at 440 to 880°C and a-Fe2O3 (6 

and 15%) at 450°C into Absaloka and Falkirk coal combustion flue gases did not 

change Hg speciation. They suggested that the lack of transformation from Hg° 

to Hg+2 in the 7 kW combustion system was possibly due to components of either 

Absaloka and Falkirk coal combustion flue gas, or their fly ashes, inhibiting the a- 

Fe2C>3 catalyzed heterogeneous oxidation of Hg° by NOx. They also stated that 

an abundance of Hg+2 in Blacksville coal combustion flue gas and y-Fe2O3 in the 

corresponding fly ash, and the inertness of injected a-Fe2O3 with respect to
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heterogeneous elemental Hg oxidation in Absaloka and Falkirk flue gases are 

indications that y-Fe2O3 rather than a-Fe2O3 catalyzes Hg+2 formation.

Norton et al. (45) studied the role of fly ash in the speciation of Hg in coal 

combustion flue gases. Bench-scale laboratory tests were performed in a 

simulated flue gas stream using two fly ash samples obtained from the 

electrostatic precipitators (ESPs) of two full-scale coal-fired electric utility boilers. 

One fly ash was derived from burning a western sub-bituminous coal (Powder 

River Basin, PRB) while the other was derived from an eastern bituminous coal 

(Blacksville). Each of the two samples was separated into three subsamples with 

particles sizes greater than 10, 3, and 1 pm using three cyclones. The amount of 

sample collected in these three size ranges was 85 to 90 %, 10 to 15%, and 1% 

of the total ash, respectively. Only the two larger size samples were tested for 

Hg° oxidation reactivity. The Blacksville sample was also separated into strongly 

magnetic (20%), weakly magnetic (34%), and nonmagnetic (46%) fractions using 

a hand magnet to test Hg° oxidation reactivity on the individual fractions. Since 

magnetism of the fly ash samples is mainly due to the presence of iron oxides in 

the samples, the iron oxide content of the magnetically separated samples is in 

the following order: strongly magnetic>weakly magnetic>nonmagnetic. The low 

iron content PRB fly ash is nonmagnetic and was not magnetically separated for 

testing. The Blacksville fly ash showed more catalytic reactivity (16 to 19% Hg 

oxidation) than the PRB fly ash (4 to 10% Hg oxidation). The difference in 

reactivity was attributed to differences in surface area.
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Lee et al. (46) conducted experiments on actual fly ash samples with 

different coal ranks and iron contents to understand the effects of iron in coal fly 

ashes on speciation of Hg. It was observed that one sub-bituminous (3.7% iron) 

and three Lignite coal fly ash (1.5 to 5.0 % iron) samples tested with low iron 

content did not oxidize elemental Hg in the presence of HCI. However, a 

bituminous coal fly ash sample (Valmont station) with a low iron content (2.3% 

iron) completely oxidized elemental Hg in the presence of NO and HCI. It was 

also found that, upon adding Fe2O3 to the low iron content sub-bituminous and 

Lignite fly ash samples to reach an iron content similar to that of Blacksville 

sample, significant elemental Hg oxidation reactivity was measured (33 - 44% 

oxidation).

Our results support the findings of Thorwarth et al. (42), Wu et al. (43), 

Galbreath et al. (32), Galbreath et al. (44), and Norton et al. (45), where metal 

oxides used in our experiments showed modest loss of elemental Hg to Hg+2(g). 

The oxidation increased in the investigated temperature range between 100 and 

400°C for all the oxides used i.e. elemental mercury loss increased with the 

increase in temperature. The oxidation rates for the Fe2O3 (y) was the highest of 

all the oxides used in our experiments. The differences in oxidation can be 

attributed to the composition of the metal oxide and the presence of flue gas

constituents.
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Chapter VI

Conclusions

Gas-phase and gas-surface reaction rates were measured, with quartz 

wool and with surface materials (TiCh, a-Fe2O3 and y-Fe2O3) immobilized with 

quartz wool using a newly designed and constructed tubular flow reactor coupled 

to an on-line AA Hg analyzer.

In the homogeneous tests, Hg was 10 to 50 times more reactive with Cb 

than HCI. For the homogeneous reaction of Hg and CI2, our results indicate very 

little temperature dependence and a slower reaction rate (5 to 7 times) than Hall 

et al. (7). For the homogeneous reaction of Hg with HCI, this reaction was clearly 

temperature dependent, similar to the studies done by Gasper et al (6).

For Cl2, TiO2 and a-Fe2O3 surfaces show a relatively modest (increase by 

a factor of 2) rate coefficient compared to the baseline. y-Fe2O3 shows a larger 

effect (about a factor of 3) with rate coefficient compared to the baseline. For 

HCI, the TiO2 and a-Fe2O3 surfaces did not exhibit a measurable effect (within 

experimental scatter) in the measured rate coefficient compared to the baseline
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gas-phase rate coefficient. A large increase in the rate coefficient (about a factor 

of 5 to 10 depending on the temperature) was observed for the y-Fe2O3 surface. 

Overall, Cb was much more reactive than HCI. The Cl2 results demonstrate the 

high chlorination effectiveness of CI2 versus HCI. There is a paucity of data on 

the relative amounts of HCI and Cb in full-scale systems. Additional studies of the 

relative concentrations of these chlorination agents in full-scale systems would 

provide further insight into the variability of Hg removal in these systems. 

Modeling studies may also provide insight into the HCLCfe ratio in the absence of 

experimental data.
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Chapter VII

Recommendations for Future Work

In this work, the surface material was immobilized with quartz wool in the 

middle of the reactor. The surface material occupied part of the reactor tube, and 

part of the reactant gases passed through the bed without contacting the surface 

material (excluding the quartz wool). A better design is needed so that the 

chlorine sources and flue gas pass through the reactor tube with more intimate 

contact with the model surface materials. A design has been implemented in 

recent experiments as shown in Figure 17 (Yamada, T., personal 

communication).

With the new configuration, the surface material can be loosely packed, 

with relatively uniform thickness, so that there is no chance that the flue gases 

would pass through without contacting surface materials. The porous quartz disk 

(pore size less than 500 pm) can be installed to prevent the surface materials 

from being dislodged from their location in the center of the reactor due to the 

relatively high gas flow rate.
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Quartz Wool

Gas Flow

Surface Material

Figure 17: Surface Material Packing Modification, Previous (Upper) and Current 

(Lower) Configuration

In addition to the new design for providing intimate contact between the 

carrier gas and the surface material, several reactant/carrier gases and mass 

flow controllers should be added to the inlet system to generate a more realistic 

flue gas to provide further insight into the variability of Hg removal in actual coal- 

fired post-combustion systems (see Figure 18) and other potential improvements.

In future experiments, the surface area and the nature of the surface need 

to be fully characterized to allow the measured rate coefficients to be normalized 

to surface area. Characterization of the surface may also provide insight into the 

reaction mechanism. In addition, total mercury concentrations (oxidized and 

elemental) need to be measured to examine possible mercury (adsorption/
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desorption) behavior and total mercury mass balance in simulated post 

combustion conditions of coal-fired power plants.

Acid Gases

Figure 18: Block Diagram of Advanced Experimental Setup 
to be used for Future Hg Chlorination Study.
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