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ABSTRACT

CHARACTERIZATION OF SHAPE MEMORY POLYMERS FOR USE AS A 
MORPHING AIRCRAFT SKIN MATERIAL

Bortolin, Robert S.
University of Dayton

Advisor: Dr. Brian Sanders

The research presented in this thesis investigated the characteristics of Shape 

Memory Polymers (SMPs) for potential use as a skin material on morphing aircraft. Out 

of the many possible morphing techniques to investigate, this research centered on in

plane morphing, which provides the skin with a varying geometry while it must resist the 

aerodynamic and structural loads presented to it. For this geometry change, it is necessary 

to understand the behavior of the material in shear, as that is how the material will be 

deformed. The shear properties were obtained by designing a unique test fixture to induce 

pure shear in the SMP. With this fixture, the rate dependence of the material, the amount 

of prestrain in the material and varying specimen geometry were tested in order to assist 

in the understanding of the behavior of the SMP in shear. Additionally, a Finite Element 

(FE) analysis was conducted to better comprehend the observed experimental results. The 

tests showed that the behavior of the SMP was that of a nonlinear viscoelastic material, 

indicating a high strain rate dependence of the material properties. There was a large out- 

of-plane deformation noticed during the testing, and with the use of the FE model it was
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possible to identify this as buckling of the material. The results indicated that shape 

memory polymers are a young technology in need of more research if they are to be used 

for morphing aircraft skins. The end result is that SMPs are still a strong candidate 

material for long term goals, but not enough is known about them for their use in the near

future as a deformable skin.
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CHAPTER I

INTRODUCTION

Starting with the first powered flight on 17 December 1903, humans have been 

interested in changing the shape of aircraft for various reasons. Initially the Wright 

brothers used wing warping for roll control, but as aircraft began moving faster structures 

needed to become stiffer, making it harder for the wing to deform. Now aircraft are 

controlled by distinct control surfaces using rigid body motion, such as flaps and ailerons 

that change the lift characteristics of the wing, with minimal deformation of the structure.

Figure 1: Aircraft with Variable Sweep Wings. Left to Right: F-lll, B-l, F-14

More recently changes in wing shape have been used to improve the 

aerodynamics of fighter aircraft. This can be observed in the variable sweep wings of the 

F-14, B-l and the F-lll in Figure 1. These wings allow the aircraft to have good 

aerodynamics at multiple points in the flight envelope of the aircraft instead of optimal 

performance at one point and poor to acceptable aerodynamics at other points. Most 

noticeably swept wings reduces drag at higher Mach numbers, while long straight wings
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are better for performance at low speeds and generally increase the range and endurance 

of an aircraft. Figure 2 illustrates how the coefficient of drag (CD) for a given wing 

sweep angle increases with Mach number, but with an increase in wing sweep angle the 

associated increase in the CD with Mach number is reduced. With variable sweep wings 

an aircraft can combine the attributes of both straight and swept wings for increased 

range over a swept wing aircraft and increased speed and maneuverability over a straight 

winged aircraft.

Figure 2: Effect of Sweep on Drag vs. Mach Number 
Figure 2 used with Permission from www.aerodyn.org

The Air Force Research Laboratory defines morphing aircraft as aircraft that are 

capable of large scale controlled deformation to allow for a change of state of the aircraft. 

This change of state allows the aircraft to have improved aerodynamic performance 

throughout its entire flight envelope, even when compared to multiple aircraft 

simultaneously. This is because current aircraft are designed with a specific wing 

geometry that provides optimal performance at one point in the flight envelope that is
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considered the most critical point. Performance decreases drastically as the aircraft moves 

away from that one point in the flight envelope.

© NextGen Aeronautics
Figure 3: Spider Plot

Figure 3 shows what is called a spider plot. This plot compares how efficient 

different configurations are for different phases of flight, though does not necessarily 

show all possible flight regimes. The blue plot that almost fills the circle corresponds to 

the morphing concept shown by the aircraft figures surrounding the circle. Each radial 

line indicates a different phase of flight, such as take off, cruise, or maneuver, with more 

efficient configurations filling more of the circle along that direction. As is easily seen 

the blue plot is the most efficient of the three shown because it fills most of the circle. 

The green plot bordered by the dashed line is the next smaller plot, representing a less 

efficient aircraft design, possibly that of a variable sweep wing. The aircraft has good 

efficiency at most points on the plot, but is not as good as the morphing concept. The 

smallest plot, shown in red, is more representative of a typical aircraft design, with some
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points of decent efficiency, while being almost incapable of obtaining some of the flight 

regimes shown in the spider plot.

Recent research efforts have focused on large planform changes, on the order of 

100% change in area. Key elements to allow these changes are distributed high power 

density actuators, new structural designs, mechanized structures, and flexible skin 

concepts, with the latter being the focus of these efforts.

Mechanized structures provide the desired motion to shape the aircraft. These 

structures are highly engineered to provide one particular motion when it is requested. 

High power actuators are needed to overcome aerodynamic loads and provide this 

motion. Keeping the overall weight of the aircraft in mind these items must be as light as 

possible, while still providing the requisite stiffness. To reduce the weight, composites 

and lightweight actuators are needed. This results in high power density actuators being 

used to deform the structure. The deforming structure is covered by a flexible skin that 

can maintain aerodynamic characteristics while withstanding the air loads and providing

minimal resistance to the desired motion of the structure.

There are currently two funded companies working on morphing aircraft 

concepts, which can be seen in Figure 4 below. Out of an infinite number of ways to 

achieve morphing, each company has picked one that it is working with. Both of the 

concepts require the use of many new technologies including flexible skins, mechanized 

structures, and high power density actuators. Both of the concepts have long straight
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wings for cruise and loiter, while the in-flight morphing provides a change in aspect ratio 

and area to increase speed and improve maneuverability.

Figure 4: Out-of-Plane and In-Plane Morphing Aircraft Concepts

Lockheed Martin is using out-of-plane morphing for their folding wing concept. 

By using the different fold angles for the wing the aircraft can achieve the desired 

aerodynamic performance throughout its flight envelope. At cruise the wing is 

completely unfolded, providing the largest possible aspect ratio, and low drag. For 

maneuverability and high speed flight the wing will be folded up against the fuselage in 

the shape of a “Z” when viewed from the front, with the root and tip sections parallel and 

the middle section folded past vertical. Finally, for takeoff and landing the proposed 

configuration hash the middle section of the wing nearly vertical to enable some form of 

yaw control with the flaps.

The other concept, from NextGen Aeronautics, uses in-plane morphing, which 

involves complex manipulation of the wing planform to achieve maximum aerodynamic 

performance throughout the flight envelope. This aircraft varies the sweep of the wing 

through four key settings in fifteen-degree increments, from 15° to 60° sweep. The low 

sweep is used for cruise, with the maximum sweep is used for the dash and maneuvering 

configuration. The other two main settings are used for loiter and landing. In addition to 

the change in sweep, there is a change in chord as well, with different chord settings 

coupled to each of the sweep settings.
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These are just two of many potential morphing aircraft geometries, and both of 

these concepts require the use of the aforementioned technologies. High power density 

actuators are needed to produce motion in mechanized structures, and flexible skins are 

needed to cover the structure and change shape with it. These skins must be able to carry 

shear loads while still transferring the aerodynamic pressures to the aircraft structure. 

Here is where a major problem occurs. A material that allows for the deformation of the 

structure will not transfer the aerodynamic loads very well. The more compliant the 

material the more it will need to be attached to the structure to prevent pillowing of the 

skin [Keihl et al, 2005]. Using an elastic material for the skin also requires a holding 

force when the skin is deformed because it wants to return to its original shape when 

strained. With Shape Memory Polymers (SMPs) this is not the case because once the 

SMP is cooled it will require no input force to maintain its deformed shape, and thus 

could require less power overall, compared to other candidate materials.

It is crucial that the skin of the aircraft be smooth and continuous, while at the 

same time allowing for these radical changes in geometry. A significant problem lies in 

finding a skin that can provide both simultaneously while not siphoning all of the 

available power on the aircraft to actuate the change in shape. A smooth skin is only 

possible without any out-of-plane deformation. This allows for laminar, as opposed to 

turbulent airflow over the wing. Laminar flow is preferred because it produces less drag 

under the same conditions, which in turn reduces the power required to fly the aircraft, 

and increases the range and endurance of the aircraft. Having a wavy or inconsistent
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(layered) skin reduces the velocity at which the airflow over the wing becomes turbulent 

causing the aerodynamic detractions associated with turbulent flow to appear faster and 

have a larger impact.

Possible skin concepts to allow for the deformation while still maintaining a 

smooth skin are: scales, sliding panels, elastomers, and SMPs. A skin of scales would 

operate much like the scales on a fish; they would overlap enough to allow the desired 

motion through expansion of area and flexure of the wing and not be limited to a 

particular motion. A sliding skin would operate in a similar manner, but would be on a 

larger scale with fewer, more intricate panels used to allow a specific motion. Elastomers 

can be stretched in any direction to a point of maximum strain to allow wing 

deformations, but must be held in place because when in tension they constantly exert a 

force to return to their initial position. The final potential concept is to use shape memory 

polymers, with their ability to be soft and ductile when heated above their glass transition 

temperature, but be rigid and strong when below that temperature.

SMPs are just one of a long list of potential materials for use as skins in morphing 

aircraft. Other investigations have compared certain physical properties of SMPs, to 

various polyurethanes, copolyesters (a type of thermoset), and woven materials such as 

Spandex® [Kikuta, 2003]. Whatever material is investigated there are two key properties 

that should be present. First, the material must be able to deform to allow for the large 

shape changes that most morphing concepts see, and secondly, the material must be able
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to withstand the aerodynamic loading that is applied on them with minimal out-of-plane

deformation.

Shape Memory Polymers, with their ability to change shape and desire to return to 

their original, or lowest potential energy, shape are a very promising material to be used 

for the skin of a morphing aircraft wing. This research provides a foundation to make an 

initial assessment of just how promising SMPs are by determining their ability to be 

deformed in shear in both rigid and ductile states.

In order to help make this assessment this research had four main goals; the first 

was to devise a repeatable test process for large amounts of shear strain using a tensile 

loading machine, the second was to perform basic characterization of an SMP, next it was 

desired to model the behavior of the SMP, specifically in the tests preformed, and finally 

to understand the effect of prestrain on the SMP.

Shape Memory Polymers (SMPs) exhibit different properties at different times, or 

under different external conditions. This ability has the potential to allow a material to be 

rigid enough to carry loads, and also soft enough to allow deformations. These materials 

do not solve all of the problems, but instead limit the scope of the problems to specific 

intervals instead of throughout the entire flight envelope. When the material is soft to 

allow morphing it still must be able to resist the aerodynamic loads that allow the aircraft 

to fly. Many people believe that these materials are the primary candidate for a morphing 

skin material, as they can handle the required loadings, and need to be reinforced only at
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specific times, thus changing the requirements of the reinforcement because it does not 

see a constant load, but rather only sees a load for a brief amount of time.
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CHAPTER II

BACKGROUND

This section will provide the reader with an idea of some of the possible materials 

and desired characteristics for skins on morphing aircraft. The materials must be able to 

deform to large strains, while carrying the aerodynamic loads that are applied to the 

structure. There is a brief history of some previous attempts at morphing, in a broader 

sense of the term, and how new materials provided the solutions to enable them, so the 

reader can understand where the program is coming from. Finally, there is an in-depth 

discussion about polymers, specifically shape memory polymers, and their properties.

All of the historical examples mentioned below shared many of the same 

problems that are being seen with the morphing aircraft program today. Each program 

needed a flexible skin to allow the desired deformations. These skins needed to be rigid 

enough resist the aerodynamic loads seen by the aircraft while allowing the deformations 

to be actuated with minimal power.
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2.1 Previous Component Shape Control Demonstrations with Flexible

Skins

In the early 1980’s Boeing and the United States Air Force began work on a 

program call the Mission Adaptive Wing (MAW). The objective was to use a fly-by-wire 

technique to improve the aerodynamic efficiency of the F-l 11. This manifested itself in 

the form of a computer program that would act autonomously to control the camber of 

the wing by using leading and trailing edge variable camber devices that were connected 

to a fixed wingbox. Constraining the program to a fixed wingbox would allow the MAW 

to be installed on any F-l 11 without any significant structural changes being made to the 

wing.

At a weight penalty of 1% actuators were added inside the wing to deform the 

structure with a deformable fiberglass skin. The inputs to these actuators were reviewed 

multiple times a second to ensure that the wing was constantly at its optimal 

performance, according to predetermined calculations. These calculations were based on 

the coefficient of lift, wing sweep, and Mach number, and other parameters, and 

tabulated within the computer for referencing. The optimal camber for different 

variations in these factors was determined during many hours of wind tunnel testing, and 

tabulated for the flight control computer to read [DeCamp et al, 1987].

The deformable fiberglass skin is not what is thought of today as deformable, but 

was rather a flexible sliding skin. The skin did not need to deform over a large range of 

motion, but more accurately only over a few degrees of bending at a specific location on
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the wing. This allowed for materials of the day, such as fiberglass, to be used for the 

deformable part, while a standard aluminum skin could cover the majority of the aircraft.

Even though the skin did not deform on the scale of what is desired today it was 

an achievement of the times. The skin was needed to deform, in this case primarily 

through bending, while still maintaining contact with other structural elements, which 

was done by allowing the skin to slide. Proper design of this component allowed for a 

near seamless integration with the existing skin. Their solution was to use specifically 

constructed fiberglass sections that would allow for a bending deformation when 

requested by the flight control computer.

During the testing it was proven that this concept with a flexible skin could be 

used for almost any size aircraft over a range of wing thicknesses. The concept also 

proved that it could be used to either increase the wingloading to a maximum allowable 

value for a given structure, or minimize the weight of the structure at a given loading 

[DeCamp et al, 1997]. Because the computer used a set of tables to determine the 

deflection of the various control surfaces many people do not see this as true morphing, 

but as an early proof that morphing can provide the desired results.

Another program investigated changing the inlet geometry during flight, as the 

optimal inlet geometry for an aircraft is highly dependant upon where in the flight 

envelope the aircraft is. At low speeds a larger inlet with blunt lips is desired, while at 

higher speeds sharp lips produce less drag and a smaller area can provide the necessary
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airflow to the engines. The DARPA funded Smart Aircraft and Marine Project System 

demonstratiON (SAMPSON) project goal was to design a smart inlet that would change 

shapes to optimize engine performance over the flight regime, while avoiding the high 

life-cycle cost commonly associated with variable geometry inlets.

Figure 5: SAMPSON Lip Z Flexskin / Cowl Geometry

The lip / flexskin / cowl interaction of the SAMPSON inlet can be seen in Figure 

5. This smart inlet uses Shape Memory Alloy (SMA) wire bundles to act as actuators to 

induce motion in the inlet cowl. The system also has an SMA rod integrated into a 

reinforced elastomeric structure, called flexskin. The flexskin is compliant enough to 

allow deformation, while still maintaining its shape under the applied aerodynamics 

[Dunne et al, 2000]. With the flexskin I SMA composite attached on either side of a rigid 

lip and affixed to the lower edge of the cowl the inlet geometry could be controlled.

The flexskin covered the hinge and provided a smooth cover to the lip hinge line. 

In order to remain smooth and resist the aerodynamic loads placed on it the elastomer had 

structural rods as well as the SMA imbedded in it [Pitt et al, 2001]. Knowing the pressure 

loads that the flexskin would see it was possible to determine the number, strength, and
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location of the structural rods that were added to increase the out-of-plane strength of the

material.

The SAMPSON inlet was designed using smart materials to achieve near optimal 

performance from the inlet over the entire flight envelope. A flexible skin was needed to 

allow the rotation of the bottom lip of the inlet that was needed for the optimal 

performance. The loads on the skin were known from wind tunnel testing, and thus the 

skin could be designed so that it would withstand the out-of-plane loads while still 

allowing actuation to the desired positions.

More recently, the DARPA I AFRL / NASA sponsored smart wing program 

(1995 - 2001) was created to develop control surfaces to optimize aerodynamic 

performance, and ultimately lead to an aircraft wing with seamless control surfaces 

[Kudva, 2004]. A seamless control surface will improve the overall pressure distribution 

along the wing and reduce the chances of premature flow separation that is often seen 

with hinged control surfaces [Sanders et al, 2001]. To allow for the seamless deformation 

of a wing a sliding skin, like that used in the MAW program, or a flexible skin, similar to 

the one employed with the SAMPSON project, must be used at the hinge and along the

control surface.

A sliding skin would be rigidly attached to the deformable structure but not to the 

skin of the rest of the wing. Instead it would run through a seal just under the skin in front 

of the trailing edge, so that when the control surface moved, the skin could slide in and

14



out. This configuration would be the same on the top and bottom of the control surface, 

and would allow a rigid material to be used in order to resist the air loads seen on the 

control surface. This method creates additional complications because it requires joints 

and slides to be added. These complications drove the designers to use a flexible skin for 

the control surface because it was thought the complications associated with such a skin 

would be easier to overcome [Wang, 2001]. The wind tunnel model that was used for the 

phase II testing of the smart wing can be seen in Figure 6, with the smart wing on one 

side and a traditional control surface on the other wing.

Figure 6: Smart Wing Phase II Wind Tunnel Model

The smart wing control surface consisted of ten independent segments, each 

actuated by an ultrasonic pizeo-electric motor. By actuating different segments different 

amounts allows for various shapes to be obtained, such as the ‘bathtub’ or sine wave 

shapes seen in Figure 7, instead of only the traditional uniform deflection of the entire 

control surface. All ten segments of the smart wing were covered with one continuous 

high strain silicone skin on the top and bottom to provide a smooth continuous surface.
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Figure 7: Two Different Configurations of the Smart Wing Control Surface 
Top - Sine Wave; Bottom - Bathtub

There were minimal worries about out of plane deformation of the elastomer 

because the skin was attached to each section and the spaces between sections were quite 

small. The gap at the hinge line that the elastomer covered was quite small as well 

allowing for a smooth skin in the chordwise direction. The fact that the elastomer was 

attached at almost every location on the wing means that there is a minimal chance of the 

material being deformed out-of-plane, even under dynamic pressures of 300 psf that the 

wing was tested in.

2.2 Morphing Aircraft Skin Materials

The skin of a morphing aircraft must be flexible enough to obtain specific 

targeted shapes and have a repeatable behavior. Currently, the targeted shapes require 

skin deformation up to 300% while carrying the out-of-plane aerodynamic loads. The
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primary candidate materials for this application are categorized as elastomers or shape 

memory polymers.

There are many potential skin materials for morphing aircraft. These materials 

possess the capability to change their shape and surface area significantly, some with 

almost no applied force. The majority of materials that are being investigated are 

compliant materials that will allow deformation to occur. This leads to a problem of 

preventing unwanted deformation due to aerodynamic loads on the aircraft.

There have been a number of investigations into the potential materials that can 

be used for morphing aircraft skins, primarily different elastomers and shape memory 

polymers. These studies generally select a few materials and perform standard tests on 

the materials to determine their physical characteristics in tests that are believed to 

approach the real world use of the material for a morphing aircraft skin. The material 

properties are compared to each other, and often to an ideal, but non-existent, material to 

determine which materials would be appropriate for the skin of a morphing aircract. For 

more on the various potential materials the reader is referred to Kikuta [2003.]

Maintaining the desired shape of the airfoil is crucial to an aircraft. The airfoil 

shape directly affects how much lift the aircraft produces, and how much total drag is 

acting on the aircraft. Once the shape of the airfoil is obtained, preserving it’s smooth 

cross section is necessary to keep the lift and drag properties optimal. Out-of-plane
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deformation of the aircraft skin would interrupt the smooth cross section, reducing lift 

and increasing drag.

To prevent out-of-plane deformation of a complaint material, like Spandex®, there 

are a few possibilities. One is to attach the material to the underlying structure in many 

locations. This limits the amount of material that can deform due to the out-of-plane 

loads, therefore limiting the total deformation. A second possibility is to stretch the 

material so that it is very taught over the spaces where it is not attached, which would 

increase the loads required to deform the material. A third approach would be to add a 

substructure to the material itself to help prevent out of plane deformations from 

occurring by increasing the out-of-plane stiffness of the material.

The first possibility requires a significant, and intricate, underlying wing 

structure. This may increase the weight and cost of the aircraft considerably. The second 

idea might end up limiting the amount of possible morphing deformation that is available 

from the material because it is pulled so tight over the structure that the skin can not 

deform much more. The final theory has the most potential, in that while it will increase 

the weight it can be done so that there is only a minor increase in the weight of the 

aircraft and minimal, if any, limiting of the possible deformation of the material.

Polymers are a prime candidate for morphing aircraft skins because they have a 

large range of properties, which can be tailored for a specific task. This section will
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explain some of the behavior of polymers, and provide a more in depth look at shape 

memory polymers specifically.

With such a large number of polymers available, there are many ways to classify 

and group them. For this research the familiar classification used by Keihl et al [2005], 

dividing polymers into four groups based on their molecular structural alignment, was

used.

The first group is natural polymers occurring in plants and animals, such as 

cellulose and protein. The behavior of these polymers varies greatly. Next come 

thermoplastics, which are also known as linear polymers. This group typically behaves in 

a ductile fashion. The third grouping is that of thermosets, which are made by combining 

a resin and hardener and curing the mixture at temperature. This set of polymers has 

many crosslinks, which help to increase the strength of the polymer. The last 

classification consists of elastomers, or rubbers, that have some crosslinks, and a nearly 

linear elastic behavior. This allows the elastomers to elastically deform very large 

amounts without permanent deformation. The crosslinks induce a form of memory effect 

in the material that allows it to return to its original shape when the loads are removed.

The different materials have different mechanical properties, as can be guessed 

from the descriptions above. Overall, polymers appear to have a combination of viscous 

fluid and elastic solid properties, and are called viscoelastic materials. Different groups of
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polymers have different combinations of these properties, among other properties, that 

allow for the different classifications of polymers.

By definition, viscoelastic materials flow internally when there is an applied 

force, but they return the energy and recover elastically. The amount of energy imparted 

to deform the material and the amount and speed of the elastic recovery are highly 

dependent on the temperature of the material and the rate of deformation imparted on the 

material. At higher rates or lower temperatures polymers display elastic characteristics, 

while at low deformation rates and higher temperatures they display more viscous 

characteristics. When at a high rate and temperature, or low rate and temperature the 

material’s reaction depends on which characteristic dominates at that particular rate and 

temperature combination.

All of these materials have a glass transition temperature, which is where the 

viscous characteristics begin to dominate over the elastic ones, at a constant middle range 

rate of deformation. In thermoplastics the glass transition temperature, or Tg, can be 

increased with increasing molecular weight. The Tg is always less than the melting 

temperature of the polymer though, because it does not require all of the bonds to melt, 

and therefore it requires less energy to arrive at the Tg, molecularly speaking.

For thermosets the same trend of increasing the Tg is seen with increasing the 

number of crosslinks in the material. These materials do not have a melting temperature
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because of their manufacturing process, but as the temperature increases well above the 

Tg the material degrades, and will eventually bum [Strong, 1996].

When a material is considered an elastic material all of the energy from the 

applied force is stored in the material, and is then used to return the material to its initial 

position, very similar to a spring. The stress / strain plot of an elastic material can be 

either linear or nonlinear, as long as the material fully returns to its undeformed shape 

when the load is fully removed. Elastomers are in this state at room temperature.

Viscous materials show no recovery when the force is removed, rather all of the 

force gets dissipated into making the material move or generating heat. Often the viscous 

properties of a material are dependant on the rate of deformation. If the material becomes 

thinner, or less viscous, with higher shearing rates the material is said to be pseudoplastic. 

This characteristic is often seen in polymers, and is the result of the applied force 

increasing the internal energy of the material, which encourages movement and 

untangling of the polymer chains, which reduced the viscosity of the material. If a 

material gets thicker with increasing shear rates it is said to be shear-thickening, or 

dilatant. As a general rule, an increase in the temperature of a material decreases the 

viscosity of a material. Finally, the force relationship of a viscous material is similar to 

that of a dashpot, where the force is equal to a material constant multiplied by the rate of

deformation.
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Figure 8 shows various ideal force I displacement relationships for elastic, 

viscous, and viscoelastic materials in response to a step force. An elastic material will 

strain a finite amount immediately after the force is applied, and remain at that strain until 

the force is removed, providing there is no creep. A viscous material will deform at a 

constant strain rate, dependent upon the viscosity of the material, until the force is 

removed, at which point it will remain at a constant strain until another force is applied. 

A viscoelastic material will be strained, linearly or nonlinearly, until the force is 

removed, at which point it will return to a state of zero strain after a period of time under

no load.

Time Time

a) Force b) Elastic

Figure 8: Mechanical Response Curves of Various Materials to an Imposed Constant Force 
Figure redrawn from Strong [1996]

c) Viscous d) Viscoelastic

A viscoelastic material can be either a solid or a liquid, with a force / 

displacement curve somewhere in the middle of the two previously mentioned models. If 

the rate of displacement is increased polymers offer a stiffer, or more viscous reaction. 

This is because the polymer chains have less time to untangle and slide past each other, 

so they are forcibly pulled past each other, which requires a higher force.

The long-range, or viscous, effects take more energy to activate, generally done 

by heating the polymer above its Tg. Upon recovery to zero displacement, viscoelastic
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materials usually show hysteresis. Also, once the material is pulled beyond its yield point 

it will not completely recover, but rather return to zero stress at slightly less strain than 

the strain when the load was removed. The modulus that the material exhibits upon 

recovery in either case is the same modulus exhibited in the elastic region.

Depending on whether the viscoelastic material is a liquid it can be approximated 

by a Maxwell, or series, model. If a material is a solid it can be approximated by the 

Voigt/Kelvin, or parallel, model. Within the solid model plastic deformation is 

represented with a pick & notch that slips at a particular force [Strong, 1996]. This model 

does not catch all of the details of a viscoelastic-viscoplastic model with all of the 

intricate relationships between the molecules in different states. To fully capture all of the 

behavior of a viscoelastic-viscoplastic material one would need to perform a number of 

tests at various conditions to obtain the large number of constants needed to understand 

and model the material. These materials also have a very good resistance to impact due to 

their high ductility (near and above the Tg for SMPs), but this is also what makes them 

hard to model [Frank and Brockman, 1998].

SMPs do not fall into any of the polymer groupings mentioned above, but can 

exhibit characteristics similar to different groups at different times. In fact, depending on 

the kind of crosslinking that is present within the SMP it can be molecularly considered 

to be in any of the groups mentioned earlier, except that of natural polymers [Cullen et al, 

2002]. Many currently available SMPs are a combination of thermoplastics and 

elastomers, but not all SMPs are combinations of existing polymers, they are actually
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new polymer formulations that exhibit a shape memory effect. The material used for this 

research is a one of the few SMPs that is a thermoset, even though it is based on 

polystyrene, which itself is an amorphous linear thermoplastic.

As a linear material, the polystyrene will soften as it is heated because the 

secondary bonds in the material melt, allowing the polymer to flow viscously within 

itself. Being an amorphous material, the Tg, shown in Figure 9, is not a distinct value, but 

is actually a range of temperatures over which the secondary bonds melt, because of 

different molecular weights (chain length) inside the material [Keihl, et al, 2005]. When 

obtaining properties of an SMP there is a distinct value for the Tg (the green vertical line 

in Figure 9,) which is actually a value at the upper end of the range over which the 

modulus changes.

Figure 9: Typical Modulus vs. Temperature Plot for an SMP

Shape Memory Polymers have a unique set of characteristics that allows them to 

be rigid and carry air loads, while at another point being soft enough to deform with 

minimal force, allowing for a change in the shape of the underlying structure. These 

polymers take advantage of a property change at the glass transition temperature, in that 

the material can be reformed with minimal force at temperatures above it’s Tg. Once
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cooled below the Tg the SMP becomes rigid again, with crosslinks rejuvenated by the 

lowering temperature, maintaining the shape that was given it in its viscous state. The 

induced strain gets frozen in the material. This frozen strain can be recovered by heating 

the SMP back above the Tg, which reduces the number of crosslinks present, allowing the 

material to flow in its viscous form again. The unique property of SMPs is that the few 

remaining crosslinks drive the material to return to its original manufactured shape. 

Additionally, SMPs can be deformed plastically while below their Tg, storing the induced 

strain imparted to it in this form as well. When it is heated back above the Tg the same 

recovery effect is noticed [Abrahamson et al, 2002].

When an SMP is deformed at temperature creating a stress-strain plot one can see 

that there appear to be two stiffnesses, one in the elastic range and one in the plastic 

range. This is a result of the viscous properties of the material, and unlike plastic 

deformation in most materials, the deformation in the plastic range of an SMP can be 

fully recovered. If there is any residual strain from the loading cycle (usually from 

loading well below Tg) it can be recovered by heating the SMP back above its Tg for a 

short time, allowing the material to flow back to its original shape.

SMPs provided by Cornerstone Research Group (CRG) of Beavercreek, OH were 

used for this research. With these styrene-based SMPs from CRG the Tg is controllable 

over a large operating range. This is done by varying the ratio of the styrene, vinyl 

monomers and a crosslinking agent in the composition. The material properties, such as 

storage modulus, can also be adjusted by varying the composition of the monomer matrix
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that is used to make the SMP. Lastly, these SMPs are of a fairly low cost and easy to 

process, especially when compared to metals that are currently used as aircraft skins 

[Cullen, et al, 2002].

2.3 Chapter Summary

Throughout the years there have been many attempts to control the wing shape 

while in flight. As technology and materials advanced, larger and more difficult

controlled deformations, have been desired and achieved. With the continued

advancement of materials and technology, concepts that were impossible a decade ago 

are becoming possible. Theses concepts introduce new ideas and improve on old ones to 

allow for an aircraft that can have optimal performance over an ever expanding flight 

envelope.

The mechanical behavior of SMPs is well understood, however the material is not 

well characterized for use in aerospace structural applications. This research will provide 

insight into the structural capabilities of shape memory polymers, specifically for in

plane, large shear loading for morphing aircraft applications.
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CHAPTER III

EXPERIMENTAL SETUP & EXPERIMENTS

In this chapter the test set-up and fixtures are described, and the experiments 

performed are discussed as well. In-plane, large shear deformation tests were performed 

on specifically sized specimens that mimicked the desired geometry and deformations of 

a skin panel on a potential morphing aircraft to characterize SMPs as a prospective skin 

material. This experiment required that the entire test be performed within an 

environmental box, and it also needed a unique fixture to allow a tensile machine to 

perform a shear test with a large amount of shear strain. Another set of experiments was 

performed using ASTM tensile standards to obtain material properties that could be 

compared to data taken on any other material.

3.1 Experimental Setup

In order to conduct the experiments the SMP needed to be heated above it’s Tg 

and have it’s temperature held constant. The first specimens obtained had a Tg of 

approximately 95°C, so it was decided that the tests would be run at that temperature. 

Ideally it would have been run at a temperature slightly above the Tg to ensure that all of 

the material was adequately heated, but limits on the equipment prevented the use of 

higher temperatures. The specimen needed to be maintained at this elevated temperature 

for the duration of the test, and since the temperature is so close to the Tg, the temperature
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must also be accurately measured and controlled. This led to the construction of an 

environmental box that was able to hold the specimen at a constant temperature 

throughout the test.

The experimental setup for the shear characterization of shape memory polymers 

consisted of an environmental box set inside a loading unit, fixtures to hold the 

specimens during testing, and the specimens themselves. The environmental box and the 

fixtures provided unique problems based on the desired size and geometry of the test. 

Once a load frame was designated for these experiments, the other components could be 

designed to ensure the setup was capable of the full range of motion.

Figure 10: MTS 858 Table Top Load Frame

The loads unit was an MTS 858 Table Top System, Model 359, seen above in 

Figure 10, which used an MTS Force Transducer, Model 661.19F-01 load cell, with a 

force capacity of 1100 pounds. MTS provided their TestStar Ils Control System to 

control the load unit and for use as a data acquisition system. The TestStar Ils is 

described by MTS as
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“an automated digital system used to control single station, single 

channel closed loop dynamic testing systems. TestStar Ils uses graphical, 

mouse-driven system software to set up and manage tests and to collect data. 

Time-critical processes such as closed loop control, limit detection and data 

acquisition take place in the controller firmware,” [MTS website].

The user specified what data was recorded and the rate at which it was recorded. 

For this experiment the force, displacement and time were recorded at a set rate, which 

was varied depending on the rate that the sample was loaded (2Hz for a rate of 2” per 

minute.) All of the desired data was recorded to a user specified file, which was later 

imported into a spreadsheet to ease the calculations.

The environmental box, which can be seen below in Figure 11, was needed to

maintain a heated environment that the SMP was submersed in to obtain and maintain a

desired temperature within the specimen. The box itself was fabricated from 0.25 inch 

Plexiglas, with one aluminum side that would be used to attach inline heaters. 16 inches 

wide, 21.5 inches high and 18 inches deep, the box was insulated with 0.4 inches (1 cm) 

thick R3 Styrofoam insulation on three sides (excluding the access door I viewing 

window) and the top, to help limit heat loss. There was a small hole on the top of the box 

to allow a connection between the load frame and fixture, and another small hole in the

back of the box that was filled with the front end of the thermometer. The bottom had

five small holes, four of which were used to attach the grip plate for the bottom grip to 

the box and both the grip plate and box to the base of the load frame. The fifth hole was
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to allow space for the bolt that held the grip to the grip plate that was attached to the box 

and frame. The temperature was controlled with the use of an infra-red laser thermometer 

- a Raytek Thermalert IV, Model RAYT4BALT, with a Model RAYSHLTSFLS1 sensor 

that was accurate within ± 2° F. The green circle at the middle left in Figure lib shows 

the location of the thermometer. The output from the thermometer was displayed on a 

control box which controlled the power to one of two inline heaters. The inline heaters, 

seen in the yellow oval on the right side of Figure 11a, were AHP-5051 model, 0.5 inch 

diameter, 4.5 inch heated length, capable of delivering 88 watts/inch heated length at 10 

cfm. These were fed room temperature air at 40 psi, which they heated as it passed 

through them into the environmental box. The heater that was not linked to the 

thermometer was on continuously, as this was the best method found for maintaining the 

specimen at a constant 203° F. The air inside the box was circulated by an exhaust fan, 

indicated by the red circle on the rear view, pulling air out near the top, and reintroducing 

it to the box on the bottom via a 2.5 inch diameter, 3.5 foot long rubber feedback hose. 

The rubber hose was insulated with a thermal wrap to help prevent heat dissipation. The 

recirculation fan was a Cooltronic, Inc. #716-0931, type U62B1 AO, 2500/300 rpm. The 

load cell mentioned above is visible in the blue oval at the top of Figure 1 la.
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a) Front b) Back
Figure 11: Front and Back View of Experimental Set-up

Within this setup three different fixtures were used, one for the shear tests and 

two, seen below in Figure 12, for prestraining the SMP. The tensile fixtures consisted of 

two pairs of semi-triangular plates, with each pair being attached to opposing edges of a 

small sheet of SMP by use of nuts and bolts clamping the SMP between the plates 

through two rows of offset holes in the fixture, and subsequently in the SMP. The first 

fixture had a few large holes, and could accommodate a specimen up to five inches 

across. The second fixture had many more holes, at approximately half the diameter, 

spread along a plate that allowed for specimens up to thirteen inches across to be pulled. 

After using both fixtures it was noticed that the material was held better with more, but 

smaller, bolts clamping it, so the second fixture was used much more than the first.

Figure 12: Prestraining Fixtures

31



Figure 13: Shear Test Fixture

The fixture to test the SMP in pure shear within a tensile machine had the basic 

geometry of four bars pinned at the comers, generally in the shape of a square (Figure 

13), and allowing deformation along either axis to the shape of a diamond with smaller 

interior angles of just less than 30°. This geometry allows the area of the sample to 

change without any change in the length of the sides, as is shown in Figure 14, with a 

maximum when the bars are perpendicular in the shape of a square. This also allows the 

specimen to be attached along its edges, except in the immediate vicinity of the pins. For 

the test it was decided to vary the angle of the small comer between 90° and 30°, which 

allows for a change in area of 100%, which meets the requirements for the area changes 

on the in-plane morphing aircraft concept that was seen in Figure 4.
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Figure 14: Geometry Changes and Associated Area Changes

Figure 15: SMP in Shear Fixture; Not Clamped

To clamp the specimen into the fixture each of the four bars had a groove down 

the length near the inner edge, and three tapped holes near the outer edge of the bar. The 

specimen was clamped with four smaller bars, which had a lip to match the groove in the 

base fixture, and three holes drilled through that lined up with the tapped holes. The 

fixture was sized so that the SMP could be placed on the fixture covering the grooves, 

while not covering any of the holes, as in Figure 15. When bolts were put through the 

smaller bars and tightened into the threaded holes the SMP was pressed between the two
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bars, with the lip and groove combination adding extra clamping force to the fixture. 

Even with the extra clamping of the lip and groove combination, the fixture had to be 

tightened twice during heating of the SMP because of the softening of the material 

associated with the rise in temperature.

Figure 16: SMP Bulk Sheet

All of the specimens were cut out of flat sheets of the bulk SMP that were 

approximately 0.154 inches (~4 mm) thick (Figure 16.) Each sample had a variation in 

thickness of up to 0.02 inches (~0.5 mm) from the minimum to maximum thickness. The 

specimens that were used for the shear test were cut into squares with 4.25 inch sides,

with a two inch diameter hole centered on each comer cut out in order to limit the

possibility of the specimen getting caught in the comers of the fixture during testing. 

Specimens 1, 2, 5, 6, 7, and 8 were cut out of bulk sheets of SMP as received. Specimens 

3, 4, 9, 10, 11, and 12 were cut from material that had been prestrained various amounts. 

The first four specimens were cut out of the first formulation received, that had a Tg of 

approximately 95° C, whereas the remainder of the specimens were cut from a second 

formulation that had a Tg of about 65° C. All other properties of the two different SMP 

formulations were comparable. Using this second formulation allowed the tests to be run 

at a higher increment above the Tg while not changing the actual temperature of the test.
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For the tensile tests the test specimen configuration of ASTM D-638 Type I was 

used, with an extended overall length. This shape was chosen because the material was 

deemed rigid or semirigid over most of the temperature rage, and only nonrigid at the 

highest temperatures, and it was desired to use the same shape for all of the tests.

As seen below in Figure 17, the narrow section had a width of 0.5 inches and a 

length of 2.25 inches, allowing for a gauge length of up to 2 inches to be used. The wider 

section had a width of 0.75 inches, and was set so that the overall length of the specimen 

was 9 inches. This allowed for the specimen to be within a clamshell furnace with the 

grips comfortably far away so that they would not be endangered by any excessive heat. 

A radius of 3 inches was used to change between the sections of the specimen with 

different widths. All of the specimens were cut from the same stock SMP that provided 

the shear and prestrain specimens, with a thickness of 4 mm that varies up to 0.5 mm

from minimum to maximum thickness.

9.00

3,38

------- 2.25

L
0.75

T

Figure 17: ASTM D-638 Type I Specimen Geometry
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The tests were run on the same machine as the shear tests, with a distance of 6 

inches between the grips between which a clamshell oven was used to heat the middle of 

the specimen. The load frame with the oven in place for tensile testing can be seen in 

Figure 18. The oven used to heat the SMP was an Applied Test Systems, Inc. (ATS) 

series 3210, with one heating zone capable of temperatures up to 1650° F. To heat itself 

the oven used 610 Watts of 115 Volt electricity, drawing 5.3 amps. The temperature 

control system was an ATS temperature control system series XT 16 single zone TCS that 

drew up to 20 amps of 115 Volts and controlled the power going to the oven.

The machine controls and data acquisition were the same for the tensile tests as 

they were for the shear tests.

Figure 18: Load Frame Setup for Tensile Testing

3.2 Test Procedures

Since there are no current test procedures for SMPs the procedures used had to be 

extrapolated from other work done on SMPs [Abrahamson et al, 2002]. Much of this 

work generally follows standards for plastics, with some modifications to accommodate

36



the differences between normal single-state plastics and SMPs. As SMPs continue to 

grow in popularity, dedicated testing procedures will be developed, quite probably based 

on the efforts that were reviewed at the beginning of this research.

The procedures explained here created a repeatable test used to obtain information 

over a large amount of shear strain with a tensile machine. During these tests it was 

desired to obtain the shear properties of the material to characterize it for potential use as 

a morphing aircraft skin material. Also, the reaction of the material to different amounts 

of prestrain was desirable as well.

The output from the tests in the form of load, displacement, and time at each data 

point was saved. The load and displacement data from each experiment was operated on 

within a spreadsheet to obtain the shear stress and shear strain. The shear strain can be 

defined as ‘the change in angle between two originally perpendicular line segments that 

intersect at a comer’ [Craig, Jr., 2000]. The segments obviously have an initial angle of

90° between them, so the shear strain can be measured and the difference between rc/2

(90°) and the angle, in radians, at the top or bottom of our test specimen. With the large 

magnitude of shear strain seen in the testing, it was not possible to use small angle 

assumptions for this calculation, but rather it was required to calculate the interior angle 

based on the displacement of the load frame with basic geometry.

In order to determine the shear stress acting on a specimen, one must first 

determine the resultant forces. Figure 19 depicts a unit vertical force whose resultants
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along both sides must each have a downward component of 0.5 lbs, which leads to a 

resultant of 0.707 lbs on each side at the beginning of the test. Figure 20 shows the 

resultant force as a percentage of the total applied force. One can see that it decreases 

from 71% of the applied force down to 52% of the applied force over the range of the test 

This is because as the test continues the vertical component of the resultant must remain 

one half of the applied load, but with the changing angle more of the resultant vector is in 

the vertical direction, making the overall resultant less. To obtain the shear stress, this 

shear force was divided by the area it was acting on. The specimens were 0.154” thick, 

and the sides were 2.125” long after the comers were removed, creating an area of 0.327 

in2. The geometric relations used to make the above calculations are shown in Appendix 

A.

-0.5 lbs -0.5 lbs
Figure 19: Resultants from a Unit Force
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The vertical force in the above explanation corresponds to the force applied to the 

test fixture. As the applied force increases so do the resultants, or shear forces, but they 

maintain in fixed relation to the applied force, as a function of the interior angles at the 

top and bottom of the test fixture.

A summary of the shear tests that were performed and some of the variables can 

be seen in Table 1. For any given test the four-inch square specimen is placed in the

shear fixture, and attached to an extension of the load frame inside the environmental
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box, shown in Figure 21. On top of the extension was the load cell to record the force. 

The whole unit was actuated by hydraulics. The basic setup allowed the sample to be 

deformed from a square to a diamond, with interior angles of 30° and 150°, by pulling on 

the end (top comer) of the shear fixture to a displacement of 2.07 inches.

Table 1: Tests and Test Variables, With Specimens Used
Type Sample

Status
Temp
(°F)

Rate
(in/min)

Angle at Fixture
Top (deg.)

Test Purpose Sample
Numbers

1 Monotonic Shear Bulk 203 2.0 90 to 30 Prove set-up 1,2,7

2 Uni-axial Pre-strain Bulk to 
prestrained

203 2.0 Pure tensile Poisson’s ratio 
Young’s
Modulus

3,4,9,10

3 Monotonic Shear Prestrained 203 2.0 90 to 30 Eliminate sample 
folding

3,4,9, 10

4 Monotonic Shear Prestrained 203 2.0 30 to 90 Eliminate sample 
folding

11, 12

5 Cycled Shear Bulk 203 2.0 90 to 30 to 90 Repeatability 1 (X8),
2 (XI6)

6 Cycled shear at 
varied rates

Bulk 203 0.2, 2.0, 
20.0

90 to 45 to 90 Rate
Dependency

5,6

7 Extreme Reverse
Shear

Bulk Room 0.05 90 to 87 Load Limit 1

8 Extreme Reverse
Shear

New shape Room 3.0 45 to 27 Load Limit 2

9 Extreme Positive
Shear

Bulk Room 0.05 90 to 68 Load Limit 5

10 Extreme Positive
Shear

New shape Room 0.05 45 to 51 Load Limit 2

11 Low load, High 
cycle

Bulk Room 0.05 90 to 89 Repeatability,
Shear Modulus

7 (X10)
5 (X25)

12 Low load, High 
cycle

New shape Room 0.05 45 to 43 Repeatability,
Shear Modulus

7 (X10)

Figure 22: Shear Fixture (Without Specimen), Setup to Run Diamond to Square Shear Test
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The initial tests were done monotonically, but could easily be reversed for cyclic 

testing. For all of the shear tests, except those done on rate dependence, the specimen was 

deformed at a rate of 2” per minute [Ram, 1997; Anon, 2005.]. As testing progressed it 

was desired to run the test in the opposite direction as well, pulling the SMP from a 

diamond to a square. Figure 22 shows how the same test fixture could easily be used, but 

a new, taller, bottom grip was needed because the extension to the load frame was not 

long enough to reach the specimens with the new geometry, and the bottom grip was

easier to fabricate.

All the samples except sample #7 were allowed to recover to their original shape 

between tests, either rapidly in a boiling water bath or slowly lying on the floor of the test 

set-up environmental box during other testing at T>Tg. This was done so that each test 

would begin with a flat specimen, even if it were not freshly cut from the bulk material.

Figure 23: Prestrained Specimen Showing Where Shear Specimens Are Cut

Once the test process was validated by our initial tests it was expanded to include 

some investigation of prestrain effects, cycling, and rate dependency of the SMP. Figure 

23 shows prestrained material, with images of the shear test specimens drawn where they

41



would be cut out. The arrows indicate the direction of the applied force during the shear 

testing. The prestraining was accomplished with the tensile fixtures described above by 

pulling a small sheet of the bulk material to a predetermined percent strain. The SMP was 

then allowed to cool in this new shape, and the shear specimen was then cut out of the 

material. The shear tests on these specimens were done so that the direction of prestrain 

was perpendicular to the direction of tension for the shear tests. This was so that the 

prestrain would be relaxed as the two sides of the shear fixture acted in compression on 

the specimen.

The tensile specimens were cut from bulk material as received from Cornerstone 

Research Group. All of the tests were performed on the same load frame as previously 

described, with some preliminary comparison tests done elsewhere.

To perform the ASTM tensile testing, an accurate way to measure the strain was 

needed in order to compute the modulus. Normally this is done with a laser extensometer 

and reflective tape for polymers, but the cost of an extensometer prevented the purchase 

of one for these experiments. A Tinius Olson load frame packaged with a laser 

extensometer was available for some tests, but the laser would not be able to obtain data

when the specimen was in the oven attached to the load frame.

It was noted that Abrahamson, et al. [2002] had a similar problem with their work 

on elastic memory composites. In their research, they showed that using the displacement 

of the load frame crosshead to measure strain resulted in only a minor difference in the
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strain, and that was only below approximately 3% strain. Above 3% strain data from a 

video system and the crosshead were identical, and since they were concerned about data 

at greater strains it was not crucial as to what measurement they used.

It was decided that, faced with a similar problem, a similar solution would be 

sought. Having access to the Tinius Olson frame and laser extensometer combination 

provided the means to run the tests. The software that came with the machine was not 

able to read two displacement inputs, so multiple tests were run using each of the two

measurement devices. The results are tabulated below in Error! Reference source not

found., with the average and standard deviation calculated as well. The “L” and “CH” 

columns indicate which method was used to measure the displacement, Laser or

CrossHead.

Table 2: Summary of Comparison Test Results
SMP E (psi) L CH

10 182139 X
11 204793 X
12 205000 X
13 180580 X
14 174890 X
15 202024 X
16 200338 X
17 176842 X
18 206279 X
20 217411 X
21 205663 X
22 205079 X
23 237000 X
24 202500 X

AVG
modulus 200038.43 208456 193726

SD 16850 18456 13330
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Based on these results, a correction factor for the specimen was calculated to be 

1.076. As long as the tests use the same specimen geometry and distance between the 

grips the correction factor holds true. This is more critical to these tests than the ones

mentioned above because these tests are concerned with the modulus as well as material

properties and reactions at other locations along the stress-strain curve.

To perform these tests, the cut specimens were clamped into the load frame with a 

thermocouple taped to the specimen approximately one-third of the length from the 

bottom. The output from this thermocouple was used to determine the temperature of the 

specimen. There was a second thermocouple imbedded in the oven that was used to help 

prevent overheating of the specimen from the oven becoming too hot. Once the straining 

had begun, the thermocouple taped to the material came off, preventing the tape from 

effecting the strength of the material.

The oven was closed around the specimen, with insulation added in the gap at the 

side where the two halves of the oven locked together. The temperature was then set at 

250° F for the thermocouple on the oven itself. When this value was obtained the set 

point was increased to 265° F. Once the oven held stable at this temperature control was 

switched to the thermocouple taped to the specimen, which at this point would be nearly

the desired 203° F.

This form of temperature control was used to prevent a large overshoot of the 

desired temperature that was likely to occur because of the low conductivity of the
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specimen and the rapid temperature change the occurred in the ovens heating elements. If 

the thermocouple on the SMP were to be used alone the temperature within the oven 

would be well over 300° F before the specimen was at temperature, and it would not cool 

off quickly, and therefore continue to raise the temperature of the specimen well over the 

desired test temperature, and possibly above the degradation temperature of the material.

Once the specimen was stable at the desired temperature the tensile test was 

preformed, which involved the bottom of the specimen remaining fixed, while the top 

was pulled out of the oven. While not desirable, this occurrence was inevitable because 

the heating area of the oven was only four inches high. During testing at the slower rates 

this could allow the material to cool enough to increase the stiffness slightly, which 

would also drive up the calculated modulus at these rates as well. At higher rates the 

material would not have enough time to cool off while the test was being conducted.

3.3 Chapter Summary

The above pages described the setup for the shear and tensile tests that were 

performed, the items critical to the test in addition to the load frame, and the procedures 

used during those tests. There were three fixtures designed to be used for the tests, two 

for prestraining the material and one for the shear tests. In the end, to simplify data 

acquisition, the same load frame was used for both kinds of testing, with the gripping 

mechanism changed from pinning to hydraulic, and the heating device changed between 

the environmental box and a small clamshell oven for the shear / prestrain tests and the 

tensile tests, respectively.
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CHAPTER IV

RESULTS

Chapter four discusses the experimental results of the individual 

experiments that were conducted to obtain the shear properties of the material. These 

properties are a function of the specimen geometry, the rate at which the specimen was 

sheared, and how much the specimen was prestrained. This chapter will also show how 

the desired properties were calculated from the experimental data.

4.1 Monotonic Shear Testing

In order to determine how well the test fixture worked the initial tests were

monotonic. By performing a simple test over the full range of shear strain, it was possible 

to work out most of the problems that otherwise would have occurred during the more 

important and complicated testing. This also allowed familiarization with the load frame 

and the associated data acquisition and control software.

A small flaw in the specimen / fixture combination was noticed during the testing. 

The specimen would begin folding almost as soon as the test began because the sides 

were in compression. Beyond approximately 100% shear strain it was possible for the 

folded specimen to become pinched in the fixture at one of the comers. This increased the
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required force to continue to strain the specimen because in addition to straining the 

specimen, the applied force also had to compress the folded specimen. This phenomenon 

can be noted in Figure 24, “Specimen l_Test2” with a sharp increase in shear stress seen 

starting at approximately 120% shear strain.

Moving past these learning experiences, data from the first specimen and third 

specimen (after being prestrained 28%) was successfully obtained from the monotonic 

testing. Figure 24 shows the data from these tests, with the specimen being pulled so that 

the smaller interior angle was 30° at the end of the test, and the fixture was held briefly at 

the resulting final strain. The first specimen tested shows a fairly smooth curve until it 

begins to be pinched in the test fixture. The specimen that was prestrained has a plot that 

can be divided up into three sections. The initial, linear, section, which lasts until 50% 

shear strain; the second section is identified by the nearly constant stress until almost 

100% shear strain; the last section is where the shear stress increases again, until
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maximum strain is obtained. This test will be discussed in more detail with other tests

done on prestrained specimens, in section 4.4.

To alleviate the pinching mentioned above it would be possible to run the tests to 

only 100% shear strain (45° /135° interior angles) but that would not cover the full range 

of motion that was desired. Another possibility was to cut out the comers. Initially the 

comers were all clipped slightly to allow the fixture rotation to occur about a pin located 

on each comer. This problem led to the final specimen shape described earlier, and 

shown below in Figure 25, with a one-inch radius hole centered on each comer being cut 

out of the originally square specimen. This cutout allowed the specimen to fold while 

significantly reducing the possibility of the fold being pinched in the fixture during 

testing.

4.2 Cyclic Testing

Cyclic tests were conducted in the same manner as the monotonic, but with the 

specimen being returned to the original position. For many of the tests this was done
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multiple times without cooling the specimen. The results from these tests indicated that 

the test was highly repeatable.

Sample2_Test2_1-4 Sample2_Test3_1-4

Figure 26: Stress-Strain Curve Showing Repeatability of Tests at 203°F

Two different specimens went through a total of 24 cycles, with typical results 

shown in Figure 26. To reduce clutter in the graph, stress-strain data for only two tests are 

shown. The samples were cycled four times in the fixture without being cooled. All four 

cycles of both specimens are essentially the same. The set of curves beginning near the 

origin are from the loading portion of the test. Once the maximum strain was reached, 

seen at the peak stress, the specimens were immediately returned to zero strain at the 

same displacement rate. The curves for each test are continuous, dropping to negative 

stress at low strains during the unloading portion of the test. The steep decline in shear 

stress near the maximum strain shows that by simply removing some of the applied force 

the material will reduce its strain. This plot indicates that not only is the test repeatable 

between specimens, but also that the test does not change the properties of the SMP or 

induce plastic strain, and that the specimens did not slip out of the fixture.
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Knowing that the test was fully repeatable allowed data from different cycles to 

be compared, not just data from corresponding cycles. This shows that the test, and 

material, can be deformed numerous times, similar to the operating requirements that the

skin would see.

For measuring the rate-dependence of the SMP properties, rates an order of 

magnitude on either side of the test standard of two inches per minute vertical 

displacement were used (0.2” / min, 2.0”/ min and 20.0” / min.) For these tests, two 

different specimens were cycled twice each at each rate, and held for 15 seconds at zero 

displacement between the two cycles and again after the test. The zero displacement 

condition was held to allow the SMP to return to its initial state, should it be needed, 

before being tested again. This was done for each of the three rates, as shown in Figure 

27. As expected, there is a high rate dependence of the SMP properties. With each 

increasing rate, there is more hysteresis and more relaxation during the hold. The increase 

in hysteresis with rate was expected and is caused by forcibly deforming the SMP back to 

its original shape faster than the material wants to return solely due to the memory effect. 

Additionally, one can see that the slopes of the curves are different for the different rates. 

A slower rate allows the material to flow at it’s own pace and not be pulled out. The 

faster rate pulls the material initially, shown by the higher slope at the beginning of each 

pull. Once the material reaches a certain strain, the slope levels off to nearly that of the 

slowest rate. Also, at the higher rates, the repeatability between tests decreases, as seen 

by the larger variation among the plots within the higher rates.
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For both samples at each rate the second cycle had slightly lower stresses 

throughout the entire cycle, indicating a lower force was needed to deform the material 

for the second cycle. This is most prevalent at the highest rate, and is possibly the result 

of the material not having a complete viscoelastic recovery between cycles. The small 

peak near the maximum strain point for one of the tests (2 cycles) at twenty inches per 

minute vertical displacement indicates that specimen was pinched slightly at the end of 

the test. Other than the small peak, the data is indistinguishable between the two different

tests.

Figure 27: Stress-Strain Curve at Each of Three Different Rates for Four Cycles Going From 90° 
to 30° at 203°F

4,3 Post Test Observations

Once cyclic testing began, it was apparent the SMP would not return to its initial 

flat form at the end of these tests; rather, it would have a slight out-of-plane deformation, 

as shown in Figure 28. Later use of finite element analysis tools indicated that this
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phenomenon was from the material buckling during the testing. The buckling happened 

with every specimen cycled and resulted in the need to heat the SMP in an unfettered 

situation to gain the full benefit of the shape memory effect and reacquire a flat sample. It 

is possible this occurred because of the restriction of the test fixture, preventing the out- 

of-plane deformation that occurred during the test from returning to a flat position. 

Another possibility is that once buckled the material requires more energy input to fully 

remove the buckle. One of the specimens had an out-of-plane deformation occur during 

heating with no stress or strain (Figure 29.) It is believed this out-of-plane incident was a 

function of the sample geometry (too much of the comers were removed,) and prestrain. 

Further testing to prove either of these two hypotheses is warranted.

Figure 28: Sample #2 after cycling

Figure 29: Sample #4 Showing Relaxation at T>Tg, Before Deformation
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Additionally, it was noticed that the force required to hold the SMP in its 

deformed shape, while minimal at temperature, increased as the SMP cooled, as seen in 

Figure 30. Before the SMP is cooled there is a relaxation of the applied force, seen as a 

reduction in shear stress at maximum strain. As the SMP cools below its Tg the force 

required to hold the same displacement doubles the initial force required to bring the 

material to that displacement. Once the SMP was completely cool the force would be 

removed with no significant change in shape of the specimen. This indicates that there is 

a small coefficient of thermal expansion in the SMP, and that as the specimen cools it 

also shrinks a small amount, exerting a force. This must be taken into account when 

designing a deformable structure that is covered with this material, because more power 

will be needed to hold the material in place unless the structure is designed to deform 

slightly more than required and upon cooling of the material obtain the desired shape.

Figure 30: Specimen #1, Strained then Cooled Under Displacement Control
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This phenomenon might be controlled with different forms of activation. 

Currently, some material research companies are looking into light activated SMPs, 

where, instead of heating the SMP over its Tg, the Tg of the SMP is actively changed 

between two values by shining UV light of a specific wavelength on it [Snyder & Tong, 

2005]. Since this does not involve heating and cooling of the material, thermal expansion

would not be an issue.

4,4 Pre-strain Effect on Out-of-Plane Deformation

The initial results from monotonic testing showed promise. At temperature the 

SMP was viscous and could act like a membrane because of its very low modulus. 

Because the specimen is in tension in one direction and compression in the other, 

compression of the membrane would result in an immediate out-of-plane deformation. 

The other possibility was that the specimens were buckling, and because the modulus was 

so low the critical force required to induce buckling was extremely low as well. Either 

theory produced an out-of-plane deformation which continued into a folding of the 

specimen, seen in Figure 31 at interior angles of both 45° (left) and 30° (right.) The 

folding that occurred was later proven to be buckling with the use of a finite element 

analysis.
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Figure 31: Samples #2 and #1 Showing Folding of SMP During Testing

It was desired to determine if reduction and prevention of this buckling was 

possible. The initial method investigated for reducing the folding was uni-axially 

prestraining the SMP. Prestraining was accomplished by pulling the material in tension in 

one direction and letting it cool in the deformed shape. Then a shear specimen would be 

cut out of the deformed material, and located in the shear fixture so that the direction of 

prestrain was perpendicular to the direction that the shear fixture was loaded in. This 

placement resulted in a shear sample that wants to reduce its length along the horizontal, 

or prestrained, axis, and at the same time slightly increase its length along the vertical 

axis because of Poisson’s ratio effect. The logic used is that as the shear fixture is pulled, 

the prestrain in the material will hold it in tension along the horizontal axis, even as it is 

constricting, thus reducing or eliminating the buckling that was witnessed. As part of the 

pre-straining, the Poisson’s ratio was also measured. To review how the specimens were 

cut out of prestrained material the reader is referred back to Figure 23, on page 41.

By prestraining the SMP to 28% strain the buckling was delayed, but not removed 

completely, as expected by the comparably small amount of prestrain. The data from the
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sample that was prestrained 28% had a very identifiable knee that began at approximately 

45% shear strain, representing where the sample buckled (Figure 32.) The presence of 

buckling indicated that the prestrain in the sample had been recovered, and although the 

magnitude of the buckle (out-of-plane displacement) at the final displacement was less 

severe than the fold in any of the non-pre-strained specimens, it was not removed 

completely. The plot does not provide much useful information from a mechanical 

standpoint, but rather helps to understand prestrain by indicating when the prestrain has 

been fully recovered from the material, allowing buckling to occur.

------ 0 prestrain - SMP1 —B— 0.28 prestrain - SMP1

—*— 0.60 prestrain - SMP1 ------ 0.66 prestrain - SMP2

Figure 32: Shear Stress vs. Strain for samples in shear with different pre-strains

Sample #4 was pre-strained 60% and tested. This specimen showed a significantly 

longer delay in the folding with a much gentler knee in the plot, indicating that the 

buckling occurred at different times in different locations of the specimen as the prestrain
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was eliminated in that section. At the maximum displacement, the fold of this specimen 

was significantly smaller than in any other specimen.

Figure 33: Illustration of Test Fixture Changes Which Induce Strain in the Sample

Sample #9 (from SMP2) was prestrained 66%, just above the -63% the SMP is 

strained along the horizontal during the test when the distance between the comers is 

reduced to less than 2.1 inches (Figure 33.) With this new formulation, there is a small 

change in the physical properties of the SMP, but the overall data is still very useful in 

understanding prestrain and its ability to remedy the buckling. This specimen began to 

buckle near 50% shear strain, which is earlier than the specimen that was prestrained only 

60%. These results, however, were only single samples and that difference could be 

reduced, or even changed, with a large number of tests at each amount of prestrain. 

Another possibility would be that the different formulations account for the small 

difference in properties. In either case there was not enough material available to fully 

investigate this anomaly to the theory that increased prestrain would delay the onset of 

buckling in the specimen.
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After testing, the pre-strained samples recovered back to their shape before 

prestraining which rendered them smaller than the 4 inch square tested, specifically in the 

direction of the pre-strain. This phenomenon can be seen in Figure 34.

Figure 34: Samples with Increasing Prestrain, From Left to Right (0%, 28%, 60%) Recovered to 
Their Original Shape after Testing

Specimens 11 and 12, which were prestrained 66%, and were tested from a 

diamond shape to a square instead of vice versa, did not fare well with the test fixture.

The reader is referred back to section 3.2 to see how the diamond was cut out of the

material, and the test conducted for this geometry. The clamping method used to hold all 

four sides of the SMP artificially increased stresses at the edge of the clamp, which was 

verified in the finite element modeling. The additional stress, combined with the sharp 

comers of the fixture, the SMP’s memory effect, and soft material, led to tearing of both 

samples that were prestrained. The first one that was tested was tom beyond use during 

heating, as seen in Figure 35. The second specimen had only a minor tear when heated to 

temperature, so it was tested. During the test the tear increased a small amount, and 

another small tear appeared on the opposite side of the specimen. Using a different 

sample connection to the fixture, or a different fixture, may prevent this occurrence 

during the test. It would be possible to fasten the SMP with an epoxy, but the specimen
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would have to be burnt off to remove it. This solution could work for a final product 

where the SMP would not be removed prior to replacement, but it is not practical for 

testing samples intended for reuse.

Figure 35: Specimen 12 after Tearing During Heating

One test that was desired, but beyond the scope of this work at this time was the 

use of bi-axial prestrain, coupled with a different starting geometry. To properly induce a 

constant bi-axial prestrain requires a complicated mechanism capable of expansion in two 

directions, with attachment points that move with the specimen. With the specimen held 

rigid at any location, especially in the comers, there will be a gradient in the amount of 

prestrain in the surrounding areas, which could lead to faulty tests.

30° Initial Strain 90°
ex = 35%
£y = 35%

♦o40°^^
Figure 36: Requirements for Symmetric Bi-axial Prestrain

Figure 36 shows the required geometry for symmetric bi-axial prestrain that will 

theoretically keep the material in tension over the range of the test, therefore preventing 

the buckling from occurring. Using bi-axial prestrain reduces the total amount of
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prestrain needed to keep the specimen in tension throughout the test because the material 

is initially pulled in two directions. With the corresponding change in test geometry 

(starting with 40° comers, then apply positive and negative displacement to achieve 30° 

and 90° comers) the material should never be in compression, and therefore not be 

susceptible to buckling. Also, the smaller amount of prestrain introduced into the material 

will allow for larger strains during the actual testing.

4.5 Cold Testing

One part of this research is to understand what happens to the SMP during the 

shape change, and what forces it can withstand. Another part is to understand the 

materials’ behavior while it is cool, in both the undeformed and deformed positions. To 

achieve this, the material would have to be cycled in each position while at room 

temperature. First, the load limits of the material had to be known, so the during the 

cycling tests the material would not be readily fractured. To fmd these limits a basic load-

to-fracture test was conducted.

For the load-to-ffacture test, two samples were heated above the Tg, formed into 

the new shape, and cooled. As plotted in Figure 37 the specimens were pulled in tension, 

bringing the load cell near its upper limit, and pulling the fixture as far as it would allow, 

but the samples did not fracture. Shear compression was applied by trying to return the 

sample to its original state while cooled. The loads were then allowed to increase until 

the sample fractured. The fractured sample, loaded in compression from the top and 

bottom in the picture, can be seen in Figure 38, while the plot of the compressive fracture
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test is shown in Figure 39. For the compression plot the shear strain is a function of the 

original shape of the material, which is why it starts at 90% and decreases. Once the 

specimen has been reduced to below 88% strain it becomes weaker, taking less force to 

reduce the strain the same amount, as is noticed by the change in slope of the plot at that

strain.

Figure 37: Tensile Test After Specimen was Deformed and Cooled

Figure 38: Specimen 2 Fractured from Compression
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Percent Shear Strain [in/in]

Figure 39: Fracture Plot of Specimen 2 Cold

For low-load testing, sample #7 was cycled to a small deformation while at room 

temperature (T<Tg.) This was done to simulate real-world use and flexing of the 

morphing structure. After the cycling at room temperature, the specimen was heated, 

shaped, cooled back to room temperature, and cycled again. The sample was then heated 

above the Tg again in the test fixture, and reshaped again, this time from the diamond 

back to it’s original position in the shape of a square. The data from the low-load cycling 

indicates there is some hysteresis as the deformed material is cycled, but it appears to 

converge during the last two cycles. The same trend was found during the load-cycling of

the bulk SMP.

Figure 40 shows the results of SMP being cold cycled to a small displacement 

while deformed. The material requires slightly less load each cycle to achieve the set 

displacement of 0.05 inches from the starting position.
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Figure 40: Shear Stress-Strain Curve for Sample 7, Cycled to 0.05” Displacement, After 
Deformation and Cooling Below Tg

Figure 41 contains the results from the material being cold cycled in the 

undeformed condition. Since the material did not appear to require any force to obtain 

part of the displacement it was decided to run the test again with a different specimen, 

and for more cycles to determine if there is convergence in the load reduction trend 

mentioned above. From the results in Figure 42 below, it was noted that after 

approximately 20 cycles this force reduction trend stopped, indicating that the material 

had stabilized. This can be seen by the abundance of data plotted on top of each other. 

The one line cutting across the plot is from the first cycle. After that initial cycle the 

second specimen shows the same trend that led to the decision to test a second specimen, 

almost no force is required to move the initial displacement. One possibility for this is 

that the material is settling into the fixture on the first cycle, and therefore has a small 

amount of freedom of motion. Also, there could be some free play in the fixture,
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specifically in the pinned comers, allowing a small amount of motion to occur at no load. 

Another possibility is that the cycling imparts a small amount of plastic strain or into the 

material in the first cycle, but if this were the case there should be some negative stresses 

compressing the plastic strain during the unloading part of the cycle. Additionally, the 

material could buckle slightly during the initial cycle, thus changing shape and creating a 

slight amount of free play in the fixture.

Percent Shear Strain [in/in]
----- Cycle 1 ----- Cycle 2 Cycle 3 Cycle 4 ----- Cycle 5
----- Cycle 6 Cycle 7 ----- Cycle 8 Cycle 9 Cycle 10

Figure 41: Shear Stress-Strain Curve for Sample 7 in Undeformed State, Cycled to 0.05” 
Displacement
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Percent Shear Strain [in/in]

— P1 ------P2 P3 P4 ------P5 ------P6 ------P7 ------P8 P9
P10 P11 P12 P13 P14 P15 P16 -P17 P18
P19 ----- P20 P21 P22 ------P23 ....  P24 ------P25

Figure 42: Sample #5, Cold Cycled 25 Times

During this test regimen the SMP appears to soften during loading, in that it takes

less force to strain it the same amount. This could be the result of a small amount of

plastic strain being induced each cycle, or from the material cracking under the load. 

Whatever the reason, there was no cracking observed, and as noted above, there appears 

to be a convergence in this behavior, which indicates that there is a finite amount that the 

material will ‘soften’ during use.
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Figure 43: Deformation Plots of Sample #7, Shown With Both Cycles from Sample #6 Test2

When undergoing the series of tests for the cold cycling, the SMP performed 

similarly to other tests during the heated deformation process; but when it was heated to 

be returned to its initial position, there was some discrepancy that can be seen in Figure 

43. The start of the unloading curve, after sample #7 was cooled, cycled and reheated, is 

much lower than the end of the loading curve. A potential source of error in this test was 

the intermittent data acquisition; instead of gathering data constantly, it was collected 

only during the actual testing. At least one hour is needed to both heat and cool the 

specimen. Currently the temperature control is done by an external controller, not one 

linked to the MTS machine. Had the data acquisition run the whole time, one would 

notice an increase in force as the SMP cools as mentioned previously, and the force 

would stabilize again once the SMP is well below its Tg, and no longer experiencing a 

change in temperature. These force and temperature changes that were not recorded could 

produce the difference in forces seen in the figure.
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Since the natural aerodynamic loads cause a structure to flex slightly during 

flight, the SMP will experience cycling similar to the cold cycling test. When this test is 

done on more samples, it can be determined if the SMP will experience a permanent 

change or if it will recover completely every time it is heated up. Should the SMP 

experience a permanent change, over time it will be able to carry less of the shear loads. 

The implication for an aircraft wing’s design is that it would require a stronger internal 

wing structure to prevent failure. If the SMP recovers fully after heating, the structure can 

be designed to allow the SMP to carry some of the shear loading, allowing the planform 

to change.

Each of the above described tests provided information on the properties of the 

SMP. The averaged results for the basic material characteristics obtained from each test 

are shown in Error! Reference source not found.. It is noted that prestraining the 

material appears to have an effect on the shear modulus, though more tests are needed at 

each amount of prestrain to verify the significance of prestrain on the modulus. Another 

important point is that if one were to calculate the shear modulus from the tensile 

properties (E = 87 psi, v = 0.28) it would be slightly higher than the one listed in Table 3. 

The most likely cause of this is error in the property measurements, especially in 

Poisson’s Ratio, as it was not measured in a controlled experiment for tensile properties 

but rather was obtained during a prestraining of the material, where the specific 

properties were not as important as the final shape obtained.
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Table 3: Basic Structural Material Properties of an SMP
Shear Modulus, G, of bulk material at 203°F 25.8+3.0/-3.5 psi

Shear Modulus, G, of pre-strained material - 28% pre-strain 
at 203°F

38.9 psi

Shear Modulus, G, of pre-strained material - 60% pre-strain 
at 203°F

28.8 psi

Shear Modulus, G, of bulk material at room temperature 17385 psi
Poisson’s ratio from 60% pre-strain at 203°F 0.28
Extreme Positive Shear Load Limit to fracture with formed 
samples at room temperature

3855 psi

4.6 Tensile Test Results

Tensile tests were conducted to determine the modulus of the SMP over a range 

of temperatures, determine the strain mechanism of the material. It was only possible to 

conduct a few of the desired tensile tests, so the testing was limited to tests performed at 

the same temperature at which the shear tests were performed. This would allow for an 

improved value for the modulus at temperature to be determined, when compared to the 

properties obtained from prestraining, but of primary interest was the ascertainment of 

the materials reaction, be it linear or non-linear, and viscoplastic (VP) or viscoelastic 

(VE.)

Of the five tensile tests that were run, three were done at a deformation rate of 2 

inches per minute, which was the same rate used for the majority of the shear tests. The 

stress-strain plots resulting from these tests are seen in Figure 44. After analyzing the 

data it was found that the SMP provided for this research has a modulus of 87 psi when

heated to 203° F.
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Strain [in/in]

— Test 2 — Test 3 Test 4 
Figure 44: Tensile Data from 3 Tests at 2" /min Deformation Rate

Generally, to determine the linearity of a materials strain behavior a specimen is 

tested at multiple rates. The results are plotted on stress-time and strain-time graphs, and 

at least one time of interest is used. The strain of the material from each rate, and the 

corresponding stresses at this time are recorded, and plotted on what is called an 

isochronous stress-strain plot. If the material is a linear viscoelastic the resulting stress- 

strain plot will be linear, and pass through the origin. In order to determine linearity and 

whether the material went through a VP or VE straining process two higher deformation 

rates, each an order of magnitude faster than the last (2 inches per minute, 20 inches per 

minute, 200 inches per minute,) were used (Figure 45.) The smoothed curves shown were 

obtained by placing a curve fit over the data, then plotting the equation obtained from the 

curve over the range of strain from the actual data.
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Figure 45: Tensile Results from Different Rates (Smoothed)

The rates that these tests were performed at limited the times available at which 

all three rates has useful data, as the first data point at the slowest rate corresponds to 

nearly the last data point at the highest rate, preventing a large sampling range over which

the data could be used.

With the use of the curve fit equations used in Figure 45 stress-time and strain

time plots were made, with the only overlapping physical data point being at a time of 

0.0025 seconds. The resulting isochronous stress-strain plots are shown in Figure 46. 

From Figure 46b one can see that the material is linear VE up to at least 5% strain. Figure 

46a shows that somewhere between 5% and 50% strain the material goes nonlinear or 

plastic. By testing other rates it would be possible to obtain data to fill in the spaces 

between the data points on Figure 46 to confirm the linearity, and to determine where the 

material stops its linear behavior.
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a) All Data Points b) First Two Data Points
Figure 46: Isochronous Stress-Strain Plots

To determine if the SMP is VP or nonlinear VE is a simple matter of observing 

what happens to the material when it is returned to zero strain. If, after a time, the

material returns to zero stress it would be considered a viscoelastic material. If it does not

return to zero stress, then there was some plastic deformation that occurred. The test can 

also be conducted by returning the material to zero stress and waiting to see if it returns

to zero strain over time.

The shape memory effect of the SMP is such that, when above Tg and with no 

applied load, the material will return to the initial shape that it was formed in, which was 

a flat sheet for this research. Based on this knowledge, and observations made in 

returning the material to its initial condition after tests, it would be safe to say that, at 

temperature, SMPs are most likely a nonlinear viscoelastic material.
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4.7 Chapter Summary

This chapter broke down the results of the various experiments performed, 

describing the behavior of SMPs. Some observations were made during the testing that 

were not expected, so the tests were expanded to help understand these phenomena. At 

the end of the chapter there is a table summarizing the results from the shear testing, 

which indicate the SMPs ability to function structurally. The final section, on the tensile 

tests, provides a more accurate value of the modulus of the SMP at temperature, and 

evidence for SMPs to be a nonlinear viscoelastic material, when heated above their Tg.
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CHAPTER V

MODELING

A Finite Element (FE) analysis was conducted to aid in the understanding of the 

experimental analysis. PATRAN was used as the visual interface, and ABAQUS used to 

do the nonlinear material analysis. Even though the model was symmetric, due to the 

translational complexity of the problem, and it’s comparably small size, a full model was 

used. The model build up, various constants, elements used and the process in going from 

the initial elastic model to a more accurate elastic-plastic model are explained. 

Additionally, a buckling analysis was done to determine at what force and displacement 

buckling would occur in the model, if at all.

5.1 Basic Geometry and Model Development

Figure 47 shows the FE model, and an example mesh. The outer square in the 

figure represents the fixture, while the other areas represent the material. In the cutout at 

each comer there is no material, as is noticed by the lack of mesh for those regions on the 

right side of the figure.
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Fixture Clamped SMP

Figure 47: Drawing of the SMP I Fixture Used for Modeling & Early FEM Model

The model was initially meshed with the automatic edge length calculation 

feature in PATRAN recommending an edge length for the elements. This was done for

all of the surfaces and all of the curves that were meshed. The surfaces were all meshed

with two dimensional shell elements. The edge surfaces, where the SMP was held into 

the fixture, had a thickness of 0.5 inches and a modulus of 29,000,000 psi, which is the 

modulus of steel. This was done to represent the fact that the SMP was being held rigidly 

between two pieces of steel. The rest of the SMP was modeled with a thickness of 0.154 

inches, which is equivalent to 4 mm. As the model progressed data from prestraining the 

SMP 60% was used to obtain a value of 115 psi for the modulus of the SMP. This value 

was used on all models until the tensile testing was completed, which provided a slightly 

lower modulus of 87 psi (Figure 48).
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Figure 48: Stress-Strain Plot from Tensile Testing

The fixture was modeled with the B31 element in ABAQUS, which is a one

dimensional beam element. These elements were given a cross-sectional area of 0.45 in2 

and a moment of inertia of 0.0152 in4.

The model is made of multiple areas, and each area must be meshed separately, 

creating extra nodes where the surfaces met, or where surfaces and curves, which 

represent the fixture, overlapped. Once the model was meshed all nodes that were 

meshed twice had to have the second mesh removed. Removing these duplicate nodes 

essentially glues the different areas, or areas and curves, together, creating a solid model. 

In order to allow the fixture to move realistically, rotating around the comers, each comer 

needed to have two nodes to represent the two different sides of the fixture. If a comer 

had only one node it would be equivalent to making that comer rigid instead of making it
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out of two bars pinned together. This resulted in all of the duplicate nodes, except those at 

the four comers, being removed.

Since the four sides of the fixture were now modeled as four separate entities they 

had to be pinned at their comers. This was done with the use of Multi-Point Constraints 

(MPCs.) An MPC requires that motion of a set of independent nodes be exactly copied by 

the set of dependant nodes. Four MPCs were used, one for both the ‘x’ and ‘y’ directions

at each of the two side comers.

To prevent the model from pure translation the two bottom nodes were 

constrained from all motion except rotation about the ‘z’, or out-of-plane axis. The 

comers on the two sides were constrained from out-of-plane translational motion, while 

allowing a rotation about the ‘z’ axis only. The top comer of the model was only allowed 

to move vertically, or in the ‘y’ direction, while the only allowable rotation was once 

again about the ‘z’ axis. These boundary conditions ensured that the model would rotate 

about pinned comers, with motion of the fixture in the x-y plane only. Finally, a 

displacement was prescribed at the top comer. This displacement was originally only one 

inch to validate the model, but as the model progressed the displacement was increased to 

2.07 inches, which was the final displacement in the shear tests, and resulted in an 

interior angle of 30° at the top and bottom comers.

Many model iterations were required to advance the fidelity of the FE model due 

to the complexity of the test being modeled and in properly quantifying the actual
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properties of the material for the analysis. The FE analysis was first done on a purely 

elastic material, with the thought that as the model was refined the material would 

progress to an elastic-plastic model, and finally some form of a viscoelastic-viscoplastic 

model, based on the properties obtained from the testing that was conducted in parallel 

with the modeling.

The first models used S4R5 elements for the shells. This indicates that the shells

had four nodes, used reduced integration, and were allowed five degrees of freedom. 

Reduced integration means that the element stiffness matrix was calculated with a lower 

order integration, which greatly reduces running time for large analyses. Generally 

speaking, instead of using four points within the element for integration, only one is used. 

This method also often provides more accurate results when the elements are not 

distorted [ABAQUS, 1995].

Initially the models had a singularity at the boundary between the two material 

models of the SMP. There was an increase of modulus of multiple Orders Of Magnitude 

(OOM’s) at the intersection, as well as a thickness change, because the edge of the SMP 

was modeled as being the steel fixture since it was held rigidly. This singularity caused 

the softer elements on the boundary to deform greatly and eventually enough that the 

element could not be integrated across and the analysis had to be stopped.

The modeling progressed with a few small changes at each iteration to improve 

the fidelity of the model and ensure the proper inputs to ABAQUS. The next model had
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the mesh refined to approximately one third the size suggested by the automatic edge 

length calculation feature. The initial displacement was set to 0.05 inches to ensure that 

the model would run. Once the model ran smoothly the next model was made with no 

changes, other than increasing the desired displacement to the full 2.07 inches. Failure 

occurred at approximately 0.5 inches of displacement, with the softer elements at the 

singularity deforming beyond use. This is the failure mechanism for the analysis at every

iteration unless otherwise noted.

Figure 49: Close-up of Element Failure

Figure 49 shows part of the model and a close-up of a comer where the elements 

failed. All of the blue lines on the left picture indicate different elements. In the close-up 

one can see the individual element shapes. All of the elements were initially square like 

the elements at the top or bottom of the figure. At the material discontinuity it is easy to 

see that the soft elements deformed significantly to various forms of trapezoids and 

triangles. When the elements degrade to triangles and beyond (arrowhead shapes), 

usually from the straining of the material, the stress and strain equations that are solved 

for the element can no longer be solved, preventing the analysis from continuing.
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For the next iteration the S4R element was used instead of the S4R5 element. This

new element has a full six degrees of freedom, and is geared towards use in large strain 

situations, such as those observed in the experiments. Additionally the model was not 

seeing any out of plane deformation like that noticed in the testing, so a very small 

pressure in the ‘z’ direction was placed on the eight elements at the center of the model. It 

was hoped that this small pressure would provide a catalyst to the out of plane motion 

that was witnessed. This still did not have the desired effect so the pressure was increased 

two orders of magnitude to 0.001 psi. When this did not provide the desired outcome the 

original pressure of 0.00001 psi was placed over the entire surface.

The tenth iteration, being the first one with the full surface pressure, also had 

mesh seed of sixty placed along each side where the change in SMP properties was 

located. This sets a requirement that there be sixty elements along that line between the 

two different properties. Also, because of the failure mechanism that has been witnessed, 

and the fact that in reality there is no clear jump between properties, but rather a gradient 

between them, a small variation in the modulus was placed at the comers where the 

elements were degrading. Instead of a jump of six OOMs the four elements on the stiffer 

side of the comer were set at an intermediate modulus with the hope that they would 

deform slightly providing something akin to the gradient that occurs in reality.

For the next iteration the variation in modulus at the comers of the edge where the 

two properties met was increased. The element in the comer itself was the same modulus
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as before (400 psi), but the three elements surrounding it were changed to a modulus of 

4000 psi, once again with the hopes that it would more closely resemble the changes that 

are naturally seen in the test. The twelfth iteration added plastic effects to the previously 

elastic model. The stress-strain relations that were needed as input for the plastic 

deformation were obtained from the same stress-strain curve as was used for determining

the modulus.

With continued failure to obtain the full range of desired motion it was decided to 

limit the property variation of the SMP at the junction between the material and the 

fixture. At first the modulus was modeled with an order of magnitude variation between

the two surfaces. The next iteration the entire SMP model had the same modulus of 115

psi. The fifteenth iteration had a mesh refinement along the edge of the SMP, as the 

failure location moved from the joint between the two properties within the SMP to the 

joint between the fixture and the SMP, as this is where the property variation now occurs.

The mode of failure was still the same.

With the increased refinement of the mesh on the edge of the SMP and a mesh 

seed of thirty there were many elements that were not square shaped. The mesh seed was 

increased to 67 so that the elements would more closely resemble squares for the next 

iteration. Also, the modulus was set to vary over a range of elements and the edge of the 

SMP would not be set with the properties of the steel that was holding it in place. This 

led to expanding the variation in modulus from the comer to the whole quarter-inch wide 

edge of the SMP. Since it did not appear possible to vary properties over a range of a
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material easily, the properties were set as a function of temperature, with the temperature 

varied on the edge of the SMP. This is possible because the modeling is taking place with 

the properties of the SMP above its Tg, not across a range of temperatures. The 

temperature was set to vary linearly from 0° to 100°, with the modulus being a function 

of temperature, ranging from 115 psi to 11500 psi.

By the next iteration the tensile testing had begun and a newer, more veritable, 

modulus was determined to be 87 psi. Over the same 100° temperature variation the 

modulus would now vary from 87 psi to 8700 psi. Also, due to the minimal out-of-plane

deformation in the model a material defect was added. The material defect came in the

form of the center of the model being given an out-of-plane displacement of 0.01 inches. 

During these later analyses the STABILIZE command was added to the displacement 

step, and the out of plane deformation was finally properly captured in the model. It is 

notable enough to mention that the out-of-plane deformation in the model actually 

occurred opposite the direction of the induced displacement from the material defect.

The final model had a modulus of 87 psi, which varied quadratically along the 

clamped edges up to 8700 psi where the material was held in the grooves of the fixture. A 

total of 41,845 nodes were used to create the 41,808 elements needed for the model. This 

model was not able to obtain the full desired displacement, but did provide some insight 

into the testing. Further mesh refinement, and obtaining a full set of viscoelastic 

properties for the material could lead to the model obtaining the full 2.07 inch 

displacement that was used in the experiments.
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5.2 Analysis & Results

Even though the model was unable to complete the full displacement that was 

performed during the physical testing, it was able to provide some useful information. 

Using the results from these models it was possible to construct a stress-strain plot similar 

to the ones obtained from the tests performed. This was done taking the resultant forces at 

each step, and the associated displacements, which is the same basic output that was used 

to perform the calculations for the tests. Also, useful plots of the stress and strain 

distribution within the specimen could be obtained from the model. Finally, a buckling 

analysis was conducted in order to determine if the out-of-plane deformation observed 

during the tests was buckling behavior, or membrane folding. Knowing what mechanism 

creates the deformation will be useful in the efforts to prevent it from occurring in the

future.

Due to the failure of the analysis, it was impossible to complete the full stress 

strain plot, but the data that was available results in a stress-strain plot very similar to that 

from the tests, as seen in Figure 50. The data for the higher modulus started very near the 

origin then runs slightly above the data obtained from the experiments. The data using the 

lower modulus actually began with a negative stress and was corrected to a near zero 

origin, where is lies within the test data. If the curves were all corrected so that they all 

had the same approximate origin they would lie very close to the results obtained from 

the ABAQUS model.
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This proves that the ABAQUS model provides a good representation of what is 

happening during the tests because the forces and displacements are similar, though it 

will be nearly impossible to get an exact model because of the different displacement 

rates that the material sees at different points of the specimen, which has a direct effect 

on the effective modulus of the material. One would have to determine the displacement 

rates and associated moduli at different locations on the specimen in order to obtain an 

exact model of what occurs during the testing.

Figure 51 is a plot of the von Mises stress in the specimen at a displacement of 

approximately 0.65 inches, plotted on an undeformed view to more easily show where 

the stress concentrations occur. The right hand side indicates the value of the stress for 

each color, and while it is difficult to read, the important fact is that the stress increases 

from blue to red. While the majority of the specimen is a shade of blue, the eight comers
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show stress concentrations, especially the four comers at the top and bottom, where the 

force is directly applied (or the reaction occurs.) The edges of this model are located at 

the center of the grooves in the fixture that rigidly hold the SMP. This figure indicates 

that there is a stress concentration at the comers of the material, as previously mentioned.

Figure 51: von Mises Stress Plot at a Displacement of 0.65 Inches

The buckling analysis was originally done on a perfectly square model so that the 

analysis itself could be properly understood before beginning the more complicated 

problem at hand. This plate model was the same shape of the actual model, with some of 

the dimensions rounded off for simplicity (i.e. thickness of 0.16 instead of 0.154.)

Because this was not being used for actual forces, a modulus of 1150, an order of 

magnitude larger than the actual models (before tensile testing), was used to ensure 

buckling, and not folding, would occur. The entire model was made of shell elements 

with the same properties, creating a flat plate instead of the multi-material (steel and
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SMP) true model. A density of this material was arbitrarily chosen somewhere between 

the actual densities of the two materials, at 0.0005 slug/in3.

For a simple buckling analysis a fine mesh is not required, so a very coarse mesh 

of 10 elements per inch was used. Boundary conditions preventing the bottom from 

translating at all, allowing the sides ‘x’ and ‘y’ translation and the top ‘y’ translation only 

were applied. Additionally, all four sides were constrained from any out-of-plane, or “z” 

displacement to mimic the clamped boundary conditions in the physical test.

The shear force was applied as a force of 6 pounds on each node, which results in 

an equivalent of 348 pounds force pulling on opposing comers. The entire model had a 

pressure of 0.0001 applied on one face of the material, as in some of the earlier modeling 

attempts, to try and induce some out-of-plane deformation that had not yet been captured 

by the model. The results in this case were not important except to show that the analysis 

ran correctly, and to aide in the interpretation of the results, but they did show that the 

first buckling mode was of the same shape as the out-of-plane deformation that was 

witnessed during the testing.

Once the buckling analysis deck and the resulting eigenvalues were understood a 

buckling analysis was done on the actual model that was being analyzed for the stresses 

and strains. This model had the material at the comers removed, and included the fixture 

as well. The modulus was set at a constant value of 87 psi and not varied at the edges for 

simplicity. Since the buckling modes occur generally in the center, especially the mode
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that that analysis is concerned about, the variation in modulus along the edge was deemed 

insignificant.

The meshing of the buckling model was once again coarse compared to the 

analytical model, but was acceptable for a buckling analysis. There were 52 elements 

along each of the sides of the model, with 66 elements along the circular edges where the 

comers were cut out. The thickness of the shell elements and the properties associated

with the beam elements used for the fixture were the same in this as in the actual

analytical models.

The ABAQUS user manual describes buckling as the following eigenvalue 

problem:

(^™+2,xr>,*'=o di

Where:

KqM is the stiffness matrix corresponding to the base state, including preloads PN

K™ is the differential initial stress and load stiffness matrix due to the incremental

load Qn

2, are the eigenvalues

v,w are the buckling mode shapes, or eigenvectors

M & A refer to degrees of freedom M and N of the whole model

i refers to the zth buckling mode
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Using the first eigenvalue, the critical buckling loads are then

Pn+^Qn (2)

Where is the preload on the material and Q? is the incremental load applied for the 

buckling analysis.

The results from the buckling analysis indicated that the first buckling mode 

occurred at an eigenvalue of 0.04946. The eigenvector associated with this mode can be 

seen in Figure 52. The analysis that was performed had no preload, so PN was zero, and 

had a constant perturbation load pattern, QN. For this scenario Equation (2) states that the 

eigenvalue is multiplied by the perturbation force to obtain the force at which the 

buckling shape associated with the eigenvalue occurs. This results in the first buckling 

mode occurring at a load of 1.19 pounds, based on the applied perturbation force of 

twenty-four pounds.

Figure 52: Two Views of First Eigenvector (Buckling Mode)

Additionally, hand calculations were done to determine the theoretical buckling 

load from Timoshenko’s exact solution for a clamped square plate buckling under shear.
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The following derivation can be found in its full form in Theory of Elastic Stability by 

Timoshenko and Gere [1961].

First, it is assumed that the plate buckles in two half-waves, one representing the 

deflection along each pair of parallel sides. With this assumption the total deflection can 

be represented by the following equation:

. 2nx . ny
w = a2l sm-----sin —

a b
(3)

Expanding the assumption so that the out-of-plane deformation can be represented 

by multiple half waves in each direction leads to

mm . nny
vv =a„„ sin----- sm-mn mn a

(4)

This is similar to expanding a Taylor series. To get the actual deflection one must sum 

Equation 4 over a significantly large range of m and n. Therefore the total deflection is

written as

zn=oo/j=oo mxx . nny----- sm——
a b

= yy a sin----- smZ j “mn 
m=\ «=1

(5)

From this equation one can determine that the strain energy of bending will be

n~ + ~
a
m n 
~+b* (6)

W
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Next the equation for the work done by external forces is found to be

AT = -MJdw dw 

dx dy
dxdy (7)

Substituting Equation (5) into Equation (7) gives two results in integral form, one 

for m ±p being an even number, and the other for m ±p being an odd number. When

these are solved we obtain

mnpq

mnpq
(8)

Equating the work from external forces (Equation (8)) and the strain energy of the system 

(Equation (6)) we obtain an equation for determining the critical value of the shearing 

forces seen in Equation (9).

m2^2
,n

abJJ m=l n=I
■ + -

V

32 « 7—tZ-Z-Z.Z. - ^(WJ2_p2^2_„2)

(9)

mnpq

The critical shear force is that which occurs when Equation (9) is at its minimum. 

To determine this point one must take the derivative of Equation (9) with respect to each 

of the coefficients and set them equal to zero. This provides a system of linear equations 

than can be divided into two groups: equations with constants amn where m + n are odd 

numbers, and one for which m + n are even numbers. For square plates both sets of 

equations are needed, resulting in mn equations. As more of the equations are used the 

results become more accurate. Using five equations and setting their determinant equal to
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zero one can find an equation for the calculation of the critical shear stress, which is 

introduced when solving for the coefficients in Equation (9).

(10)

where:

k is a constant depending on the aspect ratio of the plate,—, and the boundary conditions
b

(14.71 for our case)
a and b are the length and width of the specimen, respectively
h is the height, or thickness, of the material

12(1 - v2)
E is Young's Modulus
vis Poisson's Ratio

This results in:

=1.714 = ^2 
1262(l-v2) A (11)

Based on the properties of the test specimen, Equation (11) indicates a critical 

shear force of 1.056 pounds, which translates to a vertical force of 1.49 lbs at zero 

displacement for the shear test. The FE buckling model and eigenvalue problem, 

discussed above, produced results indicating that a vertical force of 1.19 pounds would be 

required to induce buckling. As expected, the FE results indicated a lower force because 

Timoshenko’s equation is for a square plate, and the actual specimen is not square, but 

rather a square with comers cut out, which should reduce the specimens ability to carry 

shear loads, resulting in a lower actual force.
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Taking this data back to the model an analysis was run to determine at what force 

and displacement the out-of-plane deformation first occurs. This was done by reviewing 

results showing that the deformation occurred before 0.2 inch displacement. The analysis 

was run to that displacement, with a small initial step size, and reaction forces requested 

at each step.

The results were reviewed to see at which step the out-of-plane deformation was 

first visible. The displacement at this step was 0.112 inches, which occurs only six 

seconds into the minute long straining of the material. The resultant force at this step was 

looked up, and found to be 1.42 pounds. The step before the displacement was noticed is 

at 0.08 inch displacement, with a force of 0.72 pounds. So the deformation is first noticed 

in the model at a step that has a load slightly above the predicted buckling load, which 

indicates that buckling had just occurred. This means that the out-of-plane deformation 

that is witnessed during the testing is buckling, not membrane folding.

The same model was run again, with the same initial time step, but a maximum 

time step of 0.1, which requires that there would be a minimum of 10 data points. The 

resulting 13 data points were broken into the resultant force and the “z”, or out-of-plane, 

displacement and plotted against the “y” displacement of the specimen in Figure 53. This 

plot is shown with the “z” displacement on the primary axis and the force on the 

secondary axis. The horizontal red line indicates a force of 1.19 lbs, which occurs at 

approximately 0.09 inches of displacement in the “y” direction.
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"Y" Displacement [inches]
"z" Disp Force

Figure 53: Force and Displacement Data from Model

From the plot it is easily seen that the force increases at a nearly constant rate 

through the buckle, while the “z” displacement increases significantly after the bucking 

has occurred. Visually this states that once the SMP buckles, it simply continues to fold 

in the shape of the first buckling mode as it continues to be compressed in the first mode, 

and not progress to other eigenvectors. This is believed to be stable buckling - when 

there is no distinct ‘snap through’ of the material. Figure 54 shows a cooled specimen 

after being tested to the full displacement. When compared to Figure 52 (or the top of 

Figure 55), one can see that the first mode shape has been compressed, with larger out-of

plane displacements resulting and that the specimen has not snapped to the next mode 

shape with the continued application of force, which would be characteristic of unstable 

buckling. The first and second mode shapes, or eignvectors, are compared in Figure 55.
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Figure 54: Folded Specimen

Figure 55: First (top) and Second (bottom) Mode Shapes Seen Together

Stable buckling is so named because once the system has deformed it can still be 

in equilibrium in its deformed position; it is just not the exact same shape as before the 

buckling occurred. Essentially the equilibrium equation is continuous, and it’s first 

derivative is positive, over an appropriately large enough range when plotted on a force- 

displacement graph. Unstable buckling would occur if there were multiple stable 

buckling curves for the equilibrium equation, and at least one unstable curve (when the 

derivative is negative) that intersects multiple stable curves at their critical force. When 

the load along one of the stable curves reaches its critical value, the structure will buckle 

from one stable mode to another nearly instantly, and with a noticeable change in force.
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Since, for the case presented here, there is no distinct change in slope of the force, and the 

buckling deformation appears smooth this cannot be unstable buckling [Hjelmstad, 

1997],

5.3 Chapter Summary

This chapter established that it is possible to model shape memory polymers with 

a finite element model, but only for small strain situations where the material strain 

mechanism is nearly elastic. Under high strains the strain mechanism is more 

complicated, and is therefore harder to model. The modeling was able to verify that the 

out-of-plane deformation noted in the testing is in fact buckling. It was possible to verify 

the fidelity of the model through comparison of shear stress-shear strain curves, and by 

noting at what applied force and displacement the buckling occurred at during the testing.
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CHAPTER VI

CONCLUSIONS

This final chapter provides a brief summary of the thesis and the conclusions that 

were obtained from the research. This includes potential future work that can be used to 

expand on the data presented here, and items to pursue to more fully model the 

phenomena occurring in the SMPs during these tests.

6.1: Thesis Summary

This thesis began with an introduction to morphing aircraft and their inherent 

advantages over current designs, including some current aircraft that exhibit a shape 

change on a very small scale that improves their efficiency, speed, and range. A review of 

some shape control concepts illustrated the types of shape control required. These 

program descriptions focused specifically on their use of different technologies to 

provide the flexible skin needed to achieve the project goals. The oldest program, the F- 

111 Mission Adaptive Wing, used new technology of the time, with engineered fiberglass 

skins to flex where needed. The two newer programs used elastomers attached nearly 

continuously along actuators producing small deformations (Smart Wing) and a 

reinforced elastomer actuated by a shape memory alloy (SAMPSON.) Key technologies 

to enable these morphing aircraft in the near future include distributed, high power
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density actuators, mechanized structures, and flexible skins. To allow for flexible skins 

there are many technologies available, including a scaled skin (i.e. like a fish), sliding 

skin panels, or making the skin out of elastomers or shape memory polymers, though 

recent trends have been leaning away from scales and sliding panels due to their added 

complication and hardware requirements.

The procedures used during the experimental process were described so they 

could be repeated in the future, should one have access to the same equipment and 

materials. This includes the environmental box that was designed to bring the test 

specimen up to temperature and maintain the desired temperature throughout the test. 

Also, a unique test fixture was needed to induce pure shear, from a tensile machine, over 

a large range of shear strain. Chapter four provided the results of the experiments, and a 

description of the material reactions to the experiments, ending with a brief list of 

material properties.

Finally, a description of the modeling is provided. This includes the geometry, 

elements, mesh, boundary conditions and constants for the initial models, and the 

variations in mesh refinement, and modulus distribution with the use of temperature 

dependent properties, that followed with each improvement to the model.

This research produced a number of ‘firsts’ in SMP testing. A shear fixture was 

designed and manufactured to test shear in a tensile machine over extremely large 

deformations, with shear strain up to and over 150%. A CRG employee who visited to
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watch some of the testing indicated that it was the first time anyone at the company had 

seen such a large amount of SMP strained so much (a 5” x 5” specimen strained 60%,) all 

other tests witnessed by CRG employees were conducted on much smaller size 

specimens (1” x 0.5”.)

The tensile tests were the first known testing of this SMP to specifically 

determine the modulus at temperature. Previous testing was done with a Dynamic 

Mechanical Analysis machine with one specimen tested continually over a range of

temperatures.

The procedures used were often modifications from some of the references, 

helping push towards a core standard for testing shape memory polymers, which is 

crucial to expanding use of the material and for properly classifying different formulas.

Finally, this research provided a solid base for further SMP testing and expanding 

capabilities for modeling SMP behavior.

6.2: Conclusions & Recommendations

Based on the research conducted and the results obtained, shape memory 

polymers remain a strong candidate material for skins on a morphing aircraft. There are 

still some hurdles to clear with this young technology before it will be able to be used for 

a full scale, large deformation aircraft, but many of the needed advancements are already 

being researched.
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To assist in the carrying of aerodynamic loads when above the Tg without 

deforming there should be some form of reinforcement added to the material. In addition 

to allowing higher pressures, this could have the added benefit of hindering the buckling 

that was witnessed during testing. Additionally, prestrain should continue to be 

investigated, including bi-axial prestrain. It is now known that it has an effect on the 

buckling, but complete control of the buckling was not realized during this research, 

though it appears to be possible. Finally, by advancing light activated SMPs and moving 

away from thermally activated SMPs any effects of thermal expansion will be negated.

As was noted earlier the shear fixture increased the stress on the material at the

edge of the fixture. Creating a new design that does not do this would improve the 

experiment by allowing a greater range of tests to be performed without premature 

material failure. Also, with a larger supply of material more tests could be performed. 

This is especially needed for prestrained specimens and for the tensile tests, as these two 

tests lead to a better understanding of minimizing the buckling that occurs and providing 

a more complete understanding of the strain mechanism seen in the material.

The analytical solution, while proven to have high fidelity at low strains, requires 

more information from testing in order to provide accurate results at higher strains. Once 

the strain mechanism is fully understood constants can be calculated to input into the 

model to produce better results at high strains, and thus fully model the SMP during the

shear test.
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APPENDIX A

Geometric Relations Used to Calculate Shear Stress

F

Figure 56: Reaction Forces & Geometry

In Figure 56 above, with equivalent forces acting on the two different geometries the 
vertical components of each reaction, Rly and R2y, must be the same, */2 F.

7?l*cos# = 1/2F = 7?l.y
A2*cos^ = l/2F = /?2y

With differing angles ^and 9, the resultants will be different, and can be found by 
rearranging equations Al and solving for Rly and R2y.
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A2
COS#

«2 = 1^
COS^

These reaction forces are acting down each side of the fixture and are transferred to the 
specimen as shear forces. To get the shear stress one must divide by the area the force is 
acting on. Since equations A2 are of the same form, removing characters that identify 
with a specific geometry will give the governing equation for the shear forces as a 
function of the applied force and the smaller interior angle. The final equation to obtain 
the shear stress for the specimens is shown as Equation A3.

r * W F AJ
Lt LtcosQ 0.327 cos#

The interior angles of the specimen can be found as a function of the displacement using 
the relationships in Equation A4, known as the law of sine’s.

Using the notation from Figure 57,

Figure 57: Triangle Side and Angle Naming for Law of Sine's

The specimen can be divided into four right triangles at any point during the test by 
drawing a line between the two sets of opposing comers, with all four right angles 
occurring at the center, and the hypotenuse of each triangle equal to four inches. Using 
the top right of the four triangles as an example, with the notation below in Figure 58:

# _ 4 _ 7
sin h sinx siny

A5
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Figure 58: Law of Sine's Definitions for Test Specimen

The value for Y is simply the one half of the initial height of the specimen (comer to 
comer), plus the displacement, stated mathematically in A6. Where lo is the initial height 
(sqrt(32) = 5.65) and AZ is the displacement.

_ Zo + A /
1 - ------ Z-------  A6

With two of the interior angles known, it is simple to find the third. Combining all of the 
above, the interior angle 0 is found from Equation A7.

0 90-sin"1
ft

V u.I)= 2x = 2(180-90-y) = 2

p0 + AZ^

2 90-sin’1 2
4

v J J

90-sin 1
A7

/q+a/J

Now the shear stress can be calculated as a function of the applied force and the 
displacement of the specimen.
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APPENDIX B

Shear Data

This appendix contains the plots of each individual shear test, with notable events 
pointed out under the respective plot.

Figure 59: Sample #1 Testl
Note the increase in shear stress (applied force required to hold a position) when 

the specimen was cooled and held in a particular shape, at the maximum shear strain.
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Figure 60: Sample #1 Test2

Material is pinched by the fixture at strains above 100% shear strain, this can be 
more readily seen by comparing to the plot for Sample #lTest4.

pull 1 — pull 2 pull 3 pull 4 J

Figure 61: Sample #1 Test3

103



Figure 62: Sample #1 Test4

Note a significantly larger shear stress above 100% shear strain, when compared to most 
other plots. This is from the material getting pinched by the fixture.

Figure 63: Sample #1 Cold Test
Note the change in shear stress just above 1% shear strain where specimen 

slipped.
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Figure 64: Sample #2 Test2

First pull----- Second Pull — Third Pull Fourth Pull

Figure 65: Sample #2 Test3
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Figure 66: Sample #2 Test4
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Figure 67: Sample #2 Tests

Specimen pinched by fixture above 100% shear strain.
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1600

Figure 68: Sample #2 Cold Tension
While deformed the cold SMP could withstand maximum load and deformation 

allowed by the test equipment without failure.

Figure 69: Sample #2 Cold Compression
This is a plot of the cold compression fracture of a deformed specimen. Fracture 

occurred just above 80% shear strain.
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Figure 70: Sample #3 Testl

Knee in data at 50% shear strain indicates where buckling began

Figure 71: Sample #4 Testl
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Figure 72: Sample #5 Testl
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Figure 73: Sample #5 Test2
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Figure 74: Sample #5 Test3

Figure 75: Sample #5 Test4
Cold deformation of the material reached the preset deformation limit of 1.0”. The 

material shows yielding, but no fracture, in cold shear tensile tests.
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Figure 76: Sample #5 Test5
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Figure 77: Sample #5 Test6
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Figure 78: Sample #6 Testl
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Figure 79: Sample #6 Test2
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Figure 80: Sample #6 Test3

160

140

120

'g 100

I 80 

1

W 60

40

20

0.8% 1.0% 1.2% 1.4% 1.6%0.2% 0.4% 0.6% 1.8%
Percent Shear Strain [in/in]

I — Cycle 1 — Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 101

Figure 81: Sample #7 Testl

Cold cycling of undeformed specimen
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Figure 82: Sample #7 Test2

Heated deformation

Cycle 1 —Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9—Cycle 10

Figure 83: Sample #7 Test3
Cold cycling of deformed specimen
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Figure 84: Sample #7 Test4

Heated undeforming to return to initial shape

Percent Shear Strain [in/in]

Figure 85: Sample #8 Testl
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Figure 86: Sample #10 Testl

Figure 87: Sample #12 Testl
Specimen tore in fixture
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APPENDIX C

Prestrain Data

This appendix contains the plots of each individual prestraining that was done

Figure 88: Sample #4

Figure 89: Sample #9
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Figure 90: Sample #10

Percent Strain [in/in]

Figure 91: Sample #11
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Figure 92: Sample #12
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APPENDIX D

Tensile Data

This appendix contains the plots of each individual tensile that was done

Figure 93: Tensile Specimen #1

Figure 94: Tensile Specimen #2
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Figure 95: Tensile Specimen #3
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Figure 97: Tensile Specimen #5
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