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ABSTRACT

Arbuscular Mycorrhizal Fungal Dynamics in Wetland Habitats: An Assessment of 
Seasonal and Soil Gradient Effects

Kelly E. Bohrer
University of Dayton, 2001

Advisor: Dr. Carl Friese

Arbuscular mycorrhizal (AM) fungi are important soil microbes that influence 

plant nutrition, community composition, and species diversity. Recent research has 

indicated that AM fungi are abundant in wetland soils; however, the ecosystem dynamics 

of AM fungal colonization in wetlands is still not fully understood. This study set out to 

assess the soil factors affecting mycorrhizae in differing wetland habitats and to describe 

the seasonal and moisture gradient dynamics of the AM fungal colonization levels. The 

effect of season, gradient, and edaphic factors on colonization levels was investigated by 

sampling both soils and specific plant species in fen and marsh habitats. It was found 

that mycorrhizae were present in both habitats and that the colonization levels of AM 

fungi varied with gradient position and with month. Principle components analysis of 

edaphic factors revealed differences among the wetland sites and separated fen habitat 

from marsh habitat based on these factors. Further analysis indicated that site had a 

significant effect on all edaphic variables (p<0.001). Site did have an effect on %AM 

colonization; however, this was not significantly related to specific edaphic factors of the 

two wetland habitat types. Spatial analysis of AM fungi indicated that moisture gradient 

position did not have a strong effect on %AM colonization; however, the inundated areas 

had significantly less colonization levels (p<0.05) than other areas of the wetlands. 

Month did have a significant effect on %AM colonization at all sites with colonization
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levels significantly higher at the beginning of the growing season (March/April) than at 

the end (September) (p<0.05). The seasonal trend found for colonization levels was not 

correlated to phosphorus or soil moisture, both of which are commonly found to regulate 

mycorrhizae in terrestrial ecosystems. Rather, it is speculated that the seasonal trend is 

largely controlled by phenology of wetland plants. These temporal results indicate the 

need for mycorrhizal investigations that are more thorough than the typical one time 

sampling approach. In summary, the variation in edaphic factors of the four wetlands 

were primarily controlled by site while variation in %AM colonization was mostly 

controlled by month and inundated soils and slightly controlled by plant species. AM 

fungi were found in all four wetlands and 100% of the plants species sampled were 

mycorrhizal to some extent (38% of the species had arbuscules). This suggests that AM 

fungi do have a functional role in wetlands and that their presence is not completely 

dependent on soil edaphic features of a specific wetland habitat. This study indicates the 

importance of both the time of the growing season and plant phenology for assessing the 

distribution and functional roles of mycorrhizal fungi in wetlands. Furthermore, this 

study not only provides insight into the dynamics of mycorrhizae in these ecosystems, but 

also has implications for wetland restoration and preservation.
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Chapter 1

Introduction

Wetlands are unique and complex ecosystems that provide numerous benefits for 

society and for nature. Wetlands play a key role in geochemical cycling, groundwater 

aquifer recharge, flood mitigation, and water quality improvement. Furthermore, they 

support highly diverse communities of plants and animals (Mitsch and Gosselink 1993, 

Kent 1994, Kadlec and Bevis 1990). The uniqueness and complexity of these ecosystems 

is due to their hydrology, soils, and vegetation. Typical characteristics of these three 

components in a wetland include the presence of water at the soil surface or within the 

root zone of plants, the presence of soils which either accumulate organic plant material 

or are high in clay (good water holding capacity), and the presence of hydrophytic 

vegetation. The differences in hydrology, soils, and vegetation (All influencing each 

other) determines the type of wetland found in a particular area. For instance, based on 

these three components, wetlands can range from freshwater to saltwater ecosystems and 

from having a canopy of trees to having a vegetative cover of sedges and grasses (Mitsch 

and Gosselink 1993). It is important to understand how the three above named 

components of a wetland influence each other in maintaining a healthy wetland 

ecosystem. In addition, it is important to understand the general functions of a wetland 

and the community of organisms that might be influencing these functions.

The complexity of wetlands is amplified by the numerous stresses induced in 

wetland ecosystems. In particular, plants in wetlands are subjected to stresses such as 

flooding, anoxia, reducing conditions, and great fluctuations in nutrient loading. Because 

of these stresses, hydrophytes are forced to develop adaptations to their environment.
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Those that do not adapt well occur less frequently in wetland ecosystems. Based on the 

plants’ probability of occurrence in a wetland, scientists have designed a classification 

system which categorizes plants into wetland indicator categories. These categories 

range from “upland” plants (rarely found in wetlands) to “obligate” (probability of 

occurrence in wetlands is 99% or more) (Resource Management Group, Inc. 1992). 

Those that occur more often than not in wetlands, the obligates, typically will have 

adaptations to the anoxic environment. These adaptations include pneumatophores, 

hypertrophied lenticels, buttressed trunks, and aerenchymatous tissue (Mitsch and 

Gosselink 1993, Hammer 1992).

Other factors, outside of plant structures, may enhance plant survival in these 

stressful environments. One possibility is arbuscular mycorrhizae (AM), which are now 

well known to enhance survival in stressful terrestrial environments (Allen 1991, Smith 

and Read 1997). Mycorrhizae are symbiotic relationships between a fungus and a plant 

in which the fungus actually penetrates the tissue of the root. They occur in 85% - 90% 

of all terrestrial plants (Jurgensen et al. 1997) and, of all mycorrhizae, arbuscular 

mycorrhizae (AM) are the most common type. These fungi are so named because of the 

arbuscules they form in the cortical cells of the plant root. Arbuscules are the site of 

nutrient exchange between the fungus and the plant in which the fungus gives the plant 

phosphorous (Smith and Read 1997). Mycorrhizae can enhance plant survival in 

terrestrial ecosystems by increasing photosynthetic rates and biomass production, 

increasing nutrient uptake, enhancing resistance to pathogens, alleviating drought stress, 

and stabilizing soil particle aggregates (Smith and Read 1997, Brown and Bledsoe 1996, 

Miller and Jastrow 1992, Pfleger and Linderman 1994, Brundrett 1991).
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Historically, research on mycorrhizae in wetlands has been limited. Thirty years 

ago scientists assumed that mycorrhizal fungi did not colonize hydrophytic vegetation 

(Ragupathy and Mahadevan 1990). Now, not only is it well known that these AM fungi 

do colonize hydrophytic vegetation, but it also has been found that AM fungi are a 

significant component of wetland ecosystems (Ragupathy and Mahadevan 1990, 

Stenlund and Charvat 1994, Turner et aL 2000). The distribution and ecological role of 

mycorrhizae in these wetland ecosystems is, at this time, poorly understood. In recent 

studies, researchers have considered either the role of phosphorous levels or soil moisture 

to explain the regulation of mycorrhizal fungal colonization levels in wetlands (Wigand 

and Stevenson 1997, Cantelmo and Ehrenfeld 1999, Miller and Bever 1999, Thormann et 

al. 1999, Stevens and Peterson 1996). A more comprehensive and possibly enlightening 

study would consider both the phosphorous and the soil saturation levels along with other 

environmental factors as regulators of mycorrhizae in wetlands.

Certain environmental factors may be important regulators of mycorrhizae in only 

one type of wetland or in a particular season of the year; therefore, it is important to 

compare and contrast mycorrhizal associations in different wetlands and in different 

seasons. Although research on mycorrhizae has been conducted in several different types 

of wetland ranging from the Carolina bays (Miller 2000) to the prairie potholes in North 

Dakota (Wetzel and van der Valk 1996), these studies have not compared the occurrence 

of mycorrhizae in contrasting types of wetlands. Such a comparison would provide 

insight into how similar variables might regulate the mycorrhizal symbiosis in different 

habitats. Another important aspect of wetlands is the seasonal variations in soil moisture 

and nutrient levels. Wetzel and van der Valk (1996) have suggested that these seasonal
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variations could have a substantial influence on the extent of the mycorrhizal fungal 

colonization in wetland plants; therefore, they advise the assessment of seasonal 

variations in AM fungal colonization levels.

Research Objectives

More often than not, the status of a wetland is determined by the health and 

biological diversity of the plant community present as well as the physical and chemical 

factors that affect this community. Unfortunately, little attention is given to the other 

organisms and their functional roles in the wetlands, especially the microorganisms and 

their important roles in soil processes and nutrient cycling (Cooke and Lefor 1998; 

Schneble 1997). The health and stability of the plant soil system in habitats largely 

depends on the microorganisms in the rhizosphere, which includes the roles of 

mycorrhizae (Bethlenfalvay and Linderman 1992). AM fungal colonization levels are 

known to vary temporally and spatially in wetlands, yet little is understood about which 

biotic or abiotic factors are the main controls for this variation. Understanding the 

relationships between mycorrhizal fungal colonization and the environmental gradients 

within a wetland will only help the success of restoration projects throughout Ohio.

In this study, I conducted a seasonal study on the arbuscular mycorrhizal (AM) 

dynamics in two types of wetland habitats, fen and marsh, found in Greene County, Ohio. 

Characteristics of the soil, plant community, and mycorrhizae found in these two habitats 

were analyzed. The overall objective of this research was to study the effects of spatial 

and temporal variation on mycorrhizal colonization levels in two wetland ecosystems in 

order to thoroughly assess the significance and distribution of AM fungi in wetlands.
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The temporal variation was assessed by surveying mycorrhizal colonization levels 

throughout the entire growing season, while the spatial variation was assessed by 

sampling along a moisture gradient in each wetland site. Information from this research 

provided further understanding of the role of mycorrhizal fungi in wetlands in addition to 

broadening our understanding of the basic ecology of mycorrhizae. This research 

revealed important data that can be applied towards developing better restoration 

techniques to reestablish fully functional wetland ecosystems.

The following objectives and hypotheses are addressed in this thesis:

Objective 1: To determine the AM status of wetland plants and to determine how AM 

colonization levels vary in response to spatial and temporal dynamics within fen and 

marsh habitats. These dynamics include both abiotic factors (edaphic characteristics) and 

biotic factors (plant community).

Hypothesis 1: Marsh habitats will have lower colonization levels compared to

fen habitats.

Hypothesis 1A: Marsh habitats will have lower colonization levels since 

these wetland habitats have higher soil moisture.

Hypothesis IB: Marsh habitats will have lower colonization levels since 

these wetland habitats have higher available P.

Hypothesis 1C: Marsh habitats will have lower colonization levels since 

these wetland habitats have completely inundated soils.

Hypothesis 2: Colonization levels of AM fungi in marsh habitats will vary 

seasonally while the colonization levels in fen habitats will remain constant.
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Hypothesis 2A: Habitats with periodic drawdowns, as in marsh habitats, 

will show periodic change in colonization levels.

Hypothesis 2B: Habitats with soils that remain saturated year round, as in 

fen habitats, will show consistent colonization levels.

Hypothesis 3: AM colonization levels will be related to changes in soil nutrient 

and moisture availability across a spatial gradient.

Hypothesis 3A: AM colonization will be higher where availability of 

phosphorus is lower.

Hypothesis 3B: AM colonization will be lower where soil moisture is 

higher.

Hypothesis 3C: AM colonization will be lower where water levels are 

higher.

Hypothesis 4: Changes in AM colonization levels will be related to changes in 

the wetland temporal gradients.

Hypothesis 4A: AM colonization will be higher at times that the

wetlands are drier.

Hypothesis 4B: AM colonization by arbuscules will decrease throughout 

the growing season.

Hypothesis 5: Plants found in the wetter parts of the wetlands will have lower 

colonization levels than plants in the drier soils.

Hypothesis 5A: Facultative obligate and obligate plants and members of 

Cyperaceae and Juncaceae will have lower colonization levels.
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Objective 2: To determine the relative importance of different environmental factors in 

distinguishing marsh habitats from fen habitats in Ohio.

Hypothesis 1: Fens will be distinguished by their low nutrient availability and 

their high organic matter content.

Hypothesis 2: Marshes will be distinguished by their high nutrient availability

and their inundated soils.
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Chapter 2

Literature Review

Introduction

Wetland ecosystems are unique habitats that support highly diverse communities 

of plants and offer numerous functional roles for the environment. Wetlands act as 

sources, sinks, and transformers of nutrients, and therefore play a large role in ecosystem 

nutrient cycling. Other functions of wetlands include providing water purification, 

groundwater recharge, valuable wildlife habitat, and floodwater control. Unfortunately,

over 50% of the United States’ wetlands and 90% of wetlands in Ohio have been

destroyed and lost; thus, it is of utmost importance that the remaining wetlands are well 

described and understood (Mitsch and Gosselink 1993, Tiner 1998). Restoration efforts 

are currently taking place that need more background studies on the driving forces of 

wetland ecosystems and the characteristics of a healthy wetland habitat. For example, 

restoration success could increase with knowledge of how the biotic and abiotic factors of 

a wetland interact and influence each other in maintaining a fully functional and natural

wetland.

More often than not, the status of a wetland is determined by the health and 

biological diversity of the plant community present as well as the physical and chemical 

factors that affect this community. Unfortunately, little attention is given to the other 

organisms and their functional roles in the wetlands, especially the microorganisms and 

their important roles in soil processes and nutrient cycling (Cooke and Lefor 1998, 

Schneble 1997). The health and stability of any plant-soil ecosystem largely depends on 

a wide diversity of soil microbes including mycorrhizae (Bethlenfalvay and Lindermann
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1992). This chapter will examine the characteristics of wetlands, will describe the 

differences between fens and marshes (the most common wetland habitats in the 

Midwest), will examine the role of mycorrhizae in wetlands, and will examine current 

wetland restoration practices.

Characterizing Wetlands

Over the years, many different definitions for describing a wetland have been 

developed, none of which has fully suited researchers, managers, and delineators. The 

reason for the complexity in developing an agreed upon wetland definition is due to the 

ambiguity of the parameters designated as important in defining a wetland. These 

parameters include the presence of water at or near the soil surface, the presence of 

hydrophytic vegetation, and the presence of hydric soils which either accumulate organic 

plant material or are high in clay (good water holding capacity) (Mitsch and Gosselink 

1993, Brady and Weil 2000). Compounding the situation is the issue of individual 

organizations having different perspectives on how important each of these parameters 

are and the usefulness of a wetland to their organization (Kent 1994). Furthermore, 

because these ecosystems are extremely diverse and are typically found as a “boundary” 

between aquatic ecosystems and terrestrial ecosystems, there is a lot of confusion as to 

where a wetland begins and where it ends.

The current definition used for delineating wetlands in the United States was 

established in 1987 by the U.S. Army Corps of Engineers and the Environmental 

Protection Agency and is as follows:

The term wetland means those areas that are inundated or saturated by surface or 
ground water at a frequency and duration sufficient to support, and that under
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normal circumstances do support, a prevalence of vegetation typically adapted for 
life in saturated soil conditions.

This definition is used to enforce the Clean Water Act of 1977 and currently regulates the 

dredging and filling of wetlands (Brady and Weil 2000). With the Clean Water Act and 

the wetland definition in place, preservation of wetlands has become a major issue and 

the destruction of wetland habitats has, at least, been slowed. What this definition lacks 

is answers to questions regarding the exact locations of the wetland boundaries. The 

wetter end of a wetland is easily definable and recognized as where the water is too deep 

to support rooted, emergent vegetation. What is not so clear is the drier end beyond 

which upland species thrive and the biotic communities are no longer driven by the 

presence of saturated soils. Straightening out this vagueness can be accomplished by 

wetland delineations which are necessary for wetland regulation and preservation by the 

government. In the delineation manual put out by the U.S. Corps of Engineer (1987), a 

wetland delineator identifies wetland boundaries based on three primary wetland 

components: wetland hydrology, hydric soils, and hydrophytic vegetation.

Most essential to the maintenance of wetland structure and function is the

hydrologic regime of the wetland. The hydrology of wetlands is balanced by the inflows 

(groundwater, surface run-off^ tides, and/or precipitation) and the outflows (surface and 

subsurface flows and evapotranspiration). Based on the balance of these, the hydrology 

can range from the wetland being permanently to periodically flooded or having saturated 

soils within the root zone. Wetlands can be flooded on a daily basis, seasonal basis, or 

randomly fluctuating basis. Some wetlands never flood but remain saturated for the 

entire year. What is most important is not if the site is flooded or saturated, but for how 

long the site has anaerobic conditions due to the water levels, especially during the
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growing season (Brady and Weil 2000, Mitsch and Gosselink 1993, and Tammi 1994). It 

has been determined that the development of anaerobic, reduced conditions could take at 

least 14 to 28 days of inundation or saturation of the wetland soils (Megonigal et al. 

1993). Using hydrology parameters to delineate wetlands becomes complex not only 

because of the need for a time period of inundation, but also because hydrology often 

varies annually and seasonally. Therefore, a one time glance at hydrology can give 

spurious results (Richardson and Vepraskas 2001).

The specific hydrology of a wetland greatly influences both biotic and abiotic 

factors in that wetland. Soil formation, decomposition, nutrient cycling, plant 

composition, and soil microbial communities are all affected by the hydrologic regime 

(Anderson and Perry 1996, Mitsch and Gosselink 1993). The physical and chemical 

nature of soils and water in wetlands, along with the boundaries of the wetland habitat, 

are affected by hydrology. For example, Miller (2000) found pH to be significantly 

correlated with water depth in Carolina Bay wetlands with higher water levels leading to 

higher pH levels. Such changes in pH due to hydrology can influence soil and water 

nutrient availability, plant community composition, and the solubility of toxic substances 

(Richardson and Vepraskas 2001, Brady and Weil 2000). Furthermore, plant species 

distribution, productivity, and biomass are controlled by the physiological tolerance of 

plants to different water levels (Bridgham et al. 1996). These plant community changes 

then will influence the fauna that utilize the wetland for various activities. Therefore, 

hydrology can affect all parameters and food web levels within a functional wetland

ecosystem.

Due to the large variation in the hydrology of different wetlands, the presence of
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hydric soils is probably the better indicator for delineating wetlands. Wetland soils are 

classified as hydric soils. A hydric soil is defined by the Federal Register as: “A soil 

that formed under conditions of saturation, flooding, or ponding long enough during the 

growing season to develop anaerobic conditions in the upper part.” These soils are also 

developed by undergoing reduced conditions for a large period of time. The amount of 

time needed to develop hydric soils is highly dependent on other factors such as the 

amount and the frequency of flooding in the wetland. All of this must occur during the 

growing season, which is defined as the part of the year during which the moisture 

conditions and temperature of the soil permit microbial activity (Keddy 2000, Richardson 

and Vepraskas 2001).

Wetland soils are altered in very distinct ways by the chemical reactions that 

occur when water moves into, through, and from the soil. These alterations are often 

visible and are used as hydric soil indicators that help a wetland delineator appropriately 

identify hydric soils. These indicators are often formed due to reduced and anoxic 

conditions of flooded soils and include mottling, gleying, oxidized root zones, redox 

depletions, and organic matter buildup (Brady and Weil 2000, Mitsch and Gosselink 

1993). The extent to which the indicators are developed depend on the frequency, 

duration, and intensity of flood events in which the soil at the root zone is saturated or 

inundated. With extensive flooding, oxygen is severely depleted and can be completely 

unavailable to the belowground soil organisms as well as to the plants, thus having 

significant effects on the structure and function of wetlands (Tammi 1994).

There are two main types of hydric soils: mineral and organic (U.S. Department 

of Agriculture Soil Conservation 1991). Compared to organic soils, mineral soils contain
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lower organic matter (only 20-35%) and are formed where the soil is poorly drained. 

Organic soils have at least 46cm of organic matter made up of plant fibers and other 

decomposed material in the upper portion of the soil profile. Which soil is most 

dominant in one particular area is first a function of parent material and the change in this 

material over time due to biotic and abiotic factors (Keddy 2000). Second, it is a function 

of the chemical and physical changes due to the hydrology of the area. In anoxic 

environments, where decomposition is greatly reduced, organic matter can build up 

enough to form very thick layers of organic soil, especially if the wetlands are very 

productive. These soils are often termed peat, peaty-muck, mucky-peat, and muck based 

on the amount of decomposition that has taken place (Tammi 1994, Mitsch and Gosselink 

1993). These organic soils have very low bulk density, high water holding capacity, high 

nutrient content (although largely unavailable), high cation exchange capacity (CEC), and 

high organic matter content. The temperature and the moisture levels of wetland soils 

affect accumulation and decomposition of organic matter - the colder and moister soils 

typically having lower rates of decomposition, thus organic matter accumulation is 

enhanced. Organic matter accumulation can further be influenced by nutrients and toxins 

that affect the ability of organisms to survive and grow in and upon the soils (Mitsch and 

Gosselink 1993, Brady and Weil 2000, Richardson and Vepraskas 2001). On the other 

hand, mineral soils are soils high in cations such as Mg, Ca, Fe, and Al and are often 

supplied with excess cations from groundwater discharges into wetlands. Due to the 

large cation content, pH levels are usually above neutral and cation exchange capacity is 

high (Richardson and Vepraskas 2001). Wetlands with these soils are usually nitrogen 

limited while wetlands with organic soils are mainly phosphorus limited (although they
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could also be nitrogen limited) (Bedford et al. 1999).

Wetlands are not restricted to one of these two types of soils. In feet, it is possible 

to find soils that contain both mineral and organic soils. Often times, a wetland can have 

a mineral base and, due to flooded conditions, an organic layer of muck or peat. The 

ramification of such situations is that the soil characteristics will be very heterogeneous 

and will influence wetland processes in a variety of ways. The amount of organic matter 

and/or mineral that does accumulate will have large influences on plant productivity, 

fauna habitat quality, and nutrient availability (Mitsch and Gosselink 1993, Richardson 

and Vepraskas 2001).

One very important plant nutrient, phosphorus, can be expected to vary greatly 

according to the conditions of the soil since the cycling of this nutrient remains largely 

within sediment and living organisms. Phosphorus (P) is important to plants for energy 

storage and structural integrity and is mostly found in nucleic acids and phospholipids. 

Soil P can be found as organic P, fixed mineral P, and/or orthophosphate P (Brady and 

Weil 2000). In wetlands rich in cations, such as Ca and Mg, ortho-P becomes fixed 

mineral P (unavailable) as it binds to these cations to form phosphate complexes 

(Bridgham et al 1996, Richardson and Marshall 1986). Organic P is also unavailable 

when bound to organic compounds found in partially decomposed plant tissue. This 

fixed mineral P and organic P make up 80-90% of P in wetlands. The rest of the P in 

wetlands is tied up in living biomass (Richardson and Vepraskas 2001, Brady and Weil 

2000).

Long term storage of P in wetlands is dependent on slow decomposition, low 

mineralization rates, and inorganic P removal from the water by soil adsorption (Patrick
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and Khalid 1974). Wetlands can actually be a huge source of P; however, most of this P 

is relatively unavailable to plants due to processes stated above. The concentration of P 

in the wetland soil solution and the sorption power of the soils play a huge role in the 

availability of P to the plants and the amount of P stored in the wetland. For example, 

Patrick and Khalid (1974) found that anaerobic soils (typical in wetlands) can release 

additional phosphate to the soil solution having low levels of available P and, when the 

soil solution has high levels of available P, wetland soils can sorb more phosphate from 

it. The transformation of fixed mineral P to available, soluble P is largely controlled by 

waterlogging, soil and water pH, organic matter content, and clay content. When soils 

become greatly waterlogged and reduced, P becomes substantially more soluble and 

available to plants due to both the solubilization of iron phosphates and release from soil 

microbes killed under anaerobic conditions (Richardson and Vepraskas 2001, Willet 

1989, Brady and Weil 2000, Shahandeh et al. 1994). The level of P in hydric soils, along 

with other nutrients, has great effects on many wetland ecosystem processes and is, 

therefore, important to consider and understand in each wetland habitat studied.

Together, the hydric soil composition and hydrologic regime of a wetland 

influences plant community dynamics - the third parameter for wetland delineations. 

Wetland plants are called hydrophytes and are plants that grow in water or on a substrate 

that is deficient of oxygen due to excessive flooding or saturation. They are not restricted 

to areas that are constantly devoid of oxygen, but can also be found in and adapted to 

wetlands where there is annual or seasonal variation in hydrology (Tiner 1998). The lack 

of oxygen in wetland soils is the factor that limits the survival of most plants in wetlands. 

The plants that are able to survive and thrive in waterlogged soils posses anatomical and
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physiological adaptations to the limited oxygen availability (Tammi 1994). In general, 

plants require the presence of oxygen around their roots for the uptake of nutrients and 

water and for use in respiration. Without this oxygen, necessary cellular processes 

cannot occur and the plant will eventually die. Anoxia of soils is also associated with the 

accumulation of potential phytotoxins produced by anaerobic microorganisms in soil and 

can be associated with the deficiency of essential nutrients such as nitrate (Crawford 

1989, Armstrong 1978). Those plants that do not adapt well occur less frequently in 

wetland ecosystems. Based on the plant’s probability of occurrence in a wetland, 

scientists have designed a classification system which categorizes plants into wetland 

indicator categories. These categories range from “upland” plants (rarely found in 

wetlands) to “obligate” plants (probability of occurrence in wetlands is 99% or more) 

(Resource Management Group, Inc. 1992).

Hydrophytic plants find ways to tolerate or to avoid the stresses of anaerobic and 

reduced substrates. Tolerators withstand low oxygen concentrations typically by 

modifying their metabolism. These plants often cannot withstand waterlogged conditions 

for excessive periods of time. On the other hand, the avoiders have actually developed an 

anatomical or physiological adaptation to the environment in which oxygen is made 

available to the roots in some way. Some of these adaptations include pnuematophores, 

hypertrophied lenticels, and buttressed trunks. The main plant adaptation used to avoid 

the stress of flooded soils is to develop air spaces within the root that allows the transport 

of oxygen from the leaves, through the stem, to the roots. These air spaces are called 

lacunae and the system of the spaces are referred to as aerenchyma (Hammer 1992, 

Mitsch and Gosselink 1993, Keddy 2000).
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Aerenchymatous tissue allows the passive diffusion of oxygen from leaves and 

stems to roots and rhizomes and can also allow bulk flow of air if an internal pressure 

gradient exists. The air cells of aerenchyma that allow gaseous diffusion are formed by 

either cell breakdown or by cell separation during maturation, and this change is initiated 

by the concentration of ethylene in hypoxic tissues. These cellular changes in the plant 

lead to a honeycomb structure of air spaces through which oxygen can easily diffuse 

(Keddy 2000, Crawford 1989). The amount of aerenchyma developed in flood tolerant 

plants will increase with increased flooding and decreased availability of oxygen (Brix 

1989). The amount of pore space in flood tolerant species can exceed 60% of the plant 

body while porosity of normal upland plants is usually only 2-7% (Mitsch and Gosselink 

1993). It is this large amount of root porosity in hydrophytic plants that maintains 

adequate oxygen levels to prevent mitochondrial degradation should oxygen be 

completely unavailable (Levitt 1980).

Aerenchyma development and oxygen diffusion to roots has ramifications beyond 

helping wetland plants tolerate stress. It has been shown in numerous cases that when 

oxygen arrives in the root, some of it can leak out into the anaerobic soils and can 

oxygenate the rhizosphere (area extending out to 2mm from the root) of wetland plants. 

This diffusion of oxygen leads to oxidation of the soil immediately surrounding the root 

and is visually evident by an orange halo of oxidized iron around the roots (Moore et al 

1994, Wigand and Stevenson 1997, Tiner 1998). This oxidation of the rhizosphere is 

actually essential for the plant to avoid the uptake of toxic soil chemicals (Mitsch and 

Gosselink 1993). Gries et al. (1990) found that a well developed reed stand released 

oxygen from their roots at a rate of up to 65-129mg O2 m'2 h'1. Iron precipitation of the
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rhizosphere (expected when soil is oxidized) of these roots in the spring was very low 

when little oxygen was being transported to the anoxic roots, but increased to the above 

stated level when above ground biomass developed. In addition to this seasonal effect on 

oxygen diffusion from the roots, there is also a plant species effect in the amount of 

oxygen released into the rhizosphere. Steinberg and Coonrod (1994) found cattails and 

alpine rush to have a well developed aerobic root zone while canary grass showed less of 

an aerobic root zone. Furthermore, there is a plant anatomical effect in that proximal 

roots are better supplied by oxygen, and therefore can release more oxygen, then distal 

roots of a hydrophytic plant (Keeley 1980).

Many researchers believe this loss of oxygen to the rhizosphere is significant in 

that it has large effects on the microbes, on interactions between wetland plants, and on 

soil chemistry in the area. Callaway and King (1996), in studying the effects of 

temperature on oxygen release from Typha roots, found that Typha plants can help the 

growth of other wetland plants by oxygenating the immediate soil environment. This 

finding has also been supported by research done by Bertness and Hacker (1994) who 

suggest that positive associations, such as enhancing oxygen conditions through an 

oxidized rhizosphere, is very common among marsh plants in times of physical stress. 

As for the effect of rhizosphere oxygenation on soil chemistry, the most well understood 

effect is on phosphorus availability. Oxygen release into the rhizosphere can contribute 

to phosphate limitation and potentially can be a mechanism for sequestering P in 

wetlands (Moore et al 1994, Wigand and Stevenson 1997). On the other hand, other 

researchers believe that the radial loss of oxygen by the roots is so little that it is virtually 

unimportant to soil processes (Bedford et al. 1991, Howes and Teal 1994). Bedford et al.
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(1991) found that little oxygen from the root was leftover after taking into account root 

respiration, oxidation of soil minerals, and microbial decomposition of plant materials. 

Whether a lot or a little oxygen is released into the soil, the oxidation of the rhizosphere, 

especially to decrease the amount of reduced phytotoxins, appears to be at least a 

secondary benefit to plant adaptations in anaerobic soils.

Fen vs. Marsh Wetland Habitats

Wetlands can be and have been classified based on soil type, geographical 

location, hydrology, organic matter accumulation, and nutrient content (Keddy 2000, 

Mitsch and Gosselink 1993, Brady and Weil 2000). The differences in hydrology, soils, 

and vegetation can determine the type of wetland found in a particular area. For instance, 

based on these three components, wetlands can range from freshwater to saltwater 

ecosystems and from having a canopy of trees to having a vegetative cover of sedges and 

grasses (Mitsch and Gosselink 1993). Two of the most common wetlands in Ohio are 

fens and marshes. These two areas can have anywhere from subtle to stark differences in 

soil types and vegetative communities based largely on the substrate and the source of

water to the wetland. These two wetland habitats were chosen for this research to

encompass all of the variables in question (and explained later) such as differences in 

phosphorus levels, soil organic content, seasonality, and moisture levels.

The general characteristics of fens include low available nutrient levels, a water 

table near the soil surface, and high organic matter accumulation. Fens are groundwater 

fed and, therefore, the soils can be very rich in minerals (Mitsch and Gosselink 1993). In 

Ohio, where the parent rock is limestone, the calcium content of the groundwater is high
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producing alkaline conditions in the fens (Dykyjova and Ulehlova 1998). Furthermore, 

because the fens of Ohio are mineral rich, phosphorus is largely unavailable to plants as it 

is tied up in calcium and magnesium phosphate complexes (Richardson and Vepraskas 

2001). The soils of a fen are saturated for much of the year and the saturation never sinks 

below the plant roots. This year-round soil saturation is largely due to the groundwater 

supply and to the water table near the soil surface. Fens are peatlands and accumulate 

organic matter in the forms of peat and muck due to the low rate of decomposition as a 

result of these saturated soils (Keddy 2000). As peat accumulates, the soil saturation will 

be further enhanced by the high organic matter content which increases infiltration rate 

and water holding capacity of the soils (Richardson and Vepraskas 2001, Brady and Weil 

2000). Furthermore, as the peat accumulates, soil available P will decline further as 

phosphorus is tied up by the organic matter - making the fen habitat largely P limited 

(Bedford et al. 1999).

The vegetation in fens is highly diverse and, in the Midwest, is typically 

dominated by grasses and sedges (Mitsch and Gosselink 1993, Richardson and Marshall 

1986). Species distribution, productivity, and live biomass in fens are controlled by the 

tolerance of plants to a range of soil saturation conditions (Bridgham et al. 1996, Slock et 

al. 1980). Primary productivity of fens is generally low, especially when compared to 

marshes (Maltby 1990) because they are nutrient limited. The plant community 

dynamics of fens can be greatly influenced by large deposits of marl (CaCO3) on the soil 

surface which will select for plants that can tolerate these conditions. The marl deposit 

areas are commonly referred to as marl flats and support a plant community of specialists 

(and rare species) which can outcompete the generalists in these areas (Mitsch and
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Gosselink 1993, Bridgham et al. 1996). Another important physical characteristic of fens 

affecting plant comminutes is the formation of hummocks. Hummocks promote the 

cohabitation of highly flood tolerant plant species living in the hollows with less flood 

tolerant species living on the hummocks (Cornwell et al. in review). Since fens have so 

many unique physical characteristics, the plant communities make up a mosaic of 

irregularities and are highly diverse due to the special conditions of the soil, the low 

productivity of the habitat (which has been found in studies to promote higher species 

richness (Bridgham et al. 1996)), the geomorphology of the area, and the consistency in 

moisture conditions and in soil/water temperatures (Walbridge 1994, Slack et al. 1980, 

Bedford et al. 1999).

Fens are classified as either mound or hillslope fens. Mound fens are made when 

groundwater upwells at a break in the low permeable substrate covering the aquifer. An 

actual mound or several mounds will form in this area with the wetter regions of the fen 

being at the top of the mound (Amon et al., in review). A hillslope fen forms when the 

break in the low permeable substrate occurs along a slope so that ground water is forced 

to discharge on the slope. The resulting point of discharge on the slope results in a 

calcerous fen. Typically there are several springheads coming out all along this slope 

with no one main discharge area. Above where the groundwater is forced out into the top 

soil layer the soil is much drier and supports upland vegetation. Often times, but not 

always, the groundwater will end up flooding the bottom of the slope, especially if there 

is a barrier helping it to pool. At this point in the wetland muck generally forms instead 

of the peat which forms thick layers below the points of groundwater discharge on the 

slope (Richardson and Vepraskas 2001).
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While fens are typically oligotrophic, biologically diverse, and have saturated 

soils, marshes can range from oligotrophic to eutrophic, from continually flooded 

conditions to infrequently flooded conditions, and from highly biologically diverse to a 

monoculture (Dykyjova and Ulehlova 1998). There are numerous kinds of marshes 

ranging from saltwater to freshwater. In the Midwest, marshes are typically in river flood 

zones or in depressions and can be fed by groundwater, precipitation, and/or run-off. The 

characteristics of a freshwater depressional marsh include high nutrient content, 

inundation of the soils, and seasonal fluctuations of nutrients and water levels. Marshes 

are typically rich in nutrients from runoff and flooding which causes release of P from the 

soil into the soil solution and standing water (Mitsch and Gosselink 1993). The soils in a 

marsh are hard to classify as one specific type since they can range from being mineral 

enriched clay soils to peat soils saturated with both minerals and nutrients (Keddy 2000). 

Equally as hard to define is the hydrology of marshes. Marshes portray a large spectrum 

of hydrological regime possibilities. The marshes typical in Ohio show seasonal 

fluctuations of water which includes a springtime flooding and a late summer drawdown. 

There are also seasonal effects on available phosphorous levels which depends upon the 

productivity of the wetland and the flooding frequency and intensity (Mitsch and 

Gosselink 1993).

Ohio marshes are not as diverse in their vegetation as fens and contain more tall 

reeds and broad leafed monocots. The dominant vegetation is herbaceous plants that are 

very well adapted to inundation (most common adaptation is aerenchymatous tissue). 

The plant community compositional changes are determined by the soil moisture 

gradient, topography, and extent of inundated soils in the wetland. For example, Nelsen
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and Anderson (1983) studied the plant compositional changes along a moisture gradient 

starting in an upland prairie habitat and ending in an inundated marsh habitat. Along this 

gradient, certain species were more well distributed than others based on their response to 

topography and soil moisture. They found grass leaved goldenrod, a generalist in these 

habitats, to be abundant throughout the gradient while, on the other hand, Carex stricta 

had a very discontinuous distribution indicating it to be more of a specialist to 

topographical changes. The discontinuous distributions could be due to plant competition 

and can be, in turn, creating plant competition. A large amount of this competition 

occurs among marsh plants due to the cycles of flooding and drawdown. Furthermore, 

herbaceous plants that have large shoots and deep rhizomes (cattails and reeds) create 

intense competition with their neighbors that do not possess this large amount of biomass 

in their underground structures (Keddy 2000). In summary, the plant community existing 

in a marsh largely reflects the costs imposed by living in an extreme environment of 

periodic flooding, drought, disturbance, and competition.

The main differences that stand out between fens and marshes are their hydrology 

(including both amount of water present and frequency of excessive water conditions), 

their plant diversity levels, and their nutrient levels. Marshes, with a higher available P 

content, can be expected to have greater productivity and thus, potentially lower species 

richness (Zedler 2000). Furthermore, the plant diversity of marshes may be kept lower 

than fens because of the extreme conditions of flooding with intermittent periods of 

drought (Bedford et al. 1999, Mitsch and Gosselink 1993). Fens, on the other hand, have 

a very consistent hydrology, are typically never flooded (except possibly at the end of a 

sloped fen where water can accumulate), and maintain a constant soil temperature due to
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the groundwater. Besides these consistent conditions promoting plant diversity, unique 

conditions of fen soils will also promote diversity by providing many micro-habitats 

(Keddy 2000, Mitsch and Gosselink 1993).

It is possible for the hydrology of both types of wetland habitats to be driven by 

groundwater, thus both habitats could have similar amounts of mineral deposition into 

their soils. This deposition will affect plant species presence and availability of nutrients 

for both types of wetlands (Richardson and Vepraskas 2001). However, because the 

hydrology of marshes typically includes flooding and of fens includes soil saturation, the 

two habitats will differ greatly and support different plant species and fauna. Therefore, 

these two wetland habitats are best compared and assessed by examining the effects of all 

three basic wetland components - hydrology, hydric soils, and wetland plant species.

Mycorrhizae in Wetlands

Wetlands ecosystems are driven by both soil biotic and soil abiotic factors. One 

very important biotic factor, and the one dominating the biomass and metabolic activity 

of many soils, is fungi. Currently, it is estimated that there are as many as 2500 species 

of fungi occupying a given soil volume and potentially more than one million different 

fungal species in soil yet to be discovered (Brady and Weil 2000). One very important 

group of fungi in almost all ecosystems is the mycorrhizal fungi. Mycorrhizal fungi have 

actually been around for a very long period of the Earth’s history - ever since the 

terrestrial environments of the Earth were colonized by vascular plants at the Silurian- 

Devonian boundary (395mya) (Miller et al. 1999). Mycotrophy is considered the 

ancestral condition in vascular plants making it the rule, not the exception, in many
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ecosystems (Taylor et al. 1995).

Mycorrhizae are symbiotic relationships between a fungus and a plant in which 

the fungus penetrates the tissue of the root and enhances plant nutrition and growth while 

the plant supplies carbon to the fungus (Allen 1991). They occur in 85% - 90% of all 

terrestrial plants (Jurgensen et al. 1997) and, of all types of mycorrhizae, arbuscular 

mycorrhizae (AM) are the most common. AM fungi are classified as Zygomycetes and 

are further classified according to the plant-fungal association. Often AM species are 

identified and classified based on the species spore morphology. So far 150 different 

species of AM fungi have been identified (Morton 1988). The AM fungus is the initiator 

of the association with a plant as it penetrates the host root and establishes a network of 

hyphae within the root and externally throughout the soil system (Allen 1991, Brundrett 

1991, Chanway et al. 1991, Friese and Allen 1991; Friese et al. 1997).

The AM fungi are so named because of the arbuscules they form in the cortical 

cells of the plant root. Arbuscules are the site of nutrient exchange between the fungus 

and the plant in which the fungus gives the plant phosphorous. Therefore, the arbuscules 

are considered the functional structures of arbuscular mycorrhizae. When arbuscules are 

absent from the colonized root system, scientists question the functional nature of the 

mycorrhizal relationship. It has been suggested that without the arbuscules, the AM 

fungi may actually be parasitic (they can still receive photosynthates from the plant via 

internal hyphae) (Smith and Read 1997; Allen, Allen, and Friese 1989; Anderson et al. 

1984).

Important considerations in the formation of mycorrhizal colonization is the 

availability of fungal propagules in soil. Formation of AM fungi is dependent upon the
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availability of inoculum which can be spores, colonized root fragments, and/or hyphae. 

Spores have relatively thick walls that are resistant to many environmental factors and 

could be the main mechanism in which mycorrhizal fungi disperse, although the extent of 

this has yet to be realized. The distribution of spores is affected by animal activity, water 

and wind dispersal, and microbial activity. The germination of spores is dependent on 

several environmental factors which can cause rather slow and variable germination rates. 

Therefore, spores may not be important in initial colonization of plants since they cannot 

be depended upon by the fungus or by the plant (Smith and Read 1997). Furthermore, 

spore productivity has been found to have no correlation with root colonization in certain 

habitats (Hetrick and Bloom 1983). The most probable means in which plants become 

newly colonized is through the mycelial network in the soil and extension of hyphae from 

colonized root fragments. These too, however, are affected by many factors especially 

including soil disturbance (Friese et al. 1997). Practices such as tilling and mining are 

very disruptive for the AM fungal hyphal network and could greatly lower the 

inoculation capabilities of AM fungi in any ecosystem (Smith and Read 1997, Jurgensen 

et al. 1997).

The significance of arbuscular mycorrhizae in terrestrial habitats has been well 

documented and studied. It has been found that mycorrhizal fungal colonization levels 

are negatively correlated with plant available phosphorous; therefore, it has been 

concluded that these fungi are most important to the plant when available phosphorous 

levels are limiting to the plant (Fitter 1988, Slankis 1974, Amigee et al. 1993, Hayman 

1983, Koide 1993). When this occurs, the fungi help the plants to obtain more 

phosphorous than they could on their own by acting as extensions of the plant root
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systems. These extensions (external hyphae) increase plant nutrient absorbance 

efficiency by providing up to 10X as much absorptive surface area as the plant root 

systems could alone and delivering up to 80% of the plants’ P requirement and 25% of 

the plants’ N requirement (Brady and Weil 2000, Marshner and Dell 1994). This 

assistance by the fungi not only affects plant nutrition and growth, but will also enhance 

survival by increasing photosynthetic rates and biomass production, enhancing resistance 

to pathogens, enhancing nodulation and N fixation by legumes, alleviating drought stress, 

and stabilizing soil particle aggregates (Smith and Read 1997; Brown and Bledsoe 1996; 

Miller and Jastrow 1992; Pfleger and Linderman 1994). Furthermore, the association has 

been known to have effects on plant competition within a habitat and ultimately on 

biological diversity of a habitat (Virant-Kim 1995; Hartnett and Wilson 1999, Allen 

1991).

The AM fungal association has been known to be more important for plants (and 

perhaps more mutualistic) at different times of the year. The seasonal variations of the 

association has been noted by many researchers and has been designated as dependent on 

temporal variations of abiotic factors, on phenological characteristics of the roots, and/or 

on phenological turnover in plants (Abbott and Robson 1991, Dhillion et al. 1988). The 

abiotic factors most well known to negatively affect colonization levels include high soil 

moisture, low temperatures, and high available phosphorus; thus in spring, when these 

conditions are dominant, colonization levels can be very low (Demars and Boemer 1995, 

Smith and Bowen 1979, Anderson et al. 1984). Within a grassland ecosystem, 

Bentivenga and Hetrick (1992) found peaks in colonization levels of warm and cool 

season grasses highly correlated with temperatures favoring growth of the two types of
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grasses. In this case, the changes in colonization levels were closely tied to metabolism 

of the plant regardless of plant phenology. Sporulation rates of AM fungi associated with 

these two types of grasses also changed in time with highest sporulation around warm 

season grasses occurring in October and highest sporulation around cool season grasses 

occurring in June. Typically, in temperate ecosystems, colonization levels are found 

highest in late spring when new root growth is maximum and lowest in late summer and 

fall when plants start to senesce (Stenlund and Charvat 1994, Brundrett 1991). In upland 

phosphorus limited ecosystems, most of the seasonal variation in AM colonization levels 

can be attributed to temporal variation in phosphorus availability and variation in plant 

requirement for phosphorus during its life cycle . This is one reason why arbuscular 

numbers are found to vary, with highest abundance in spring when the fungi most likely 

affect nutrient uptake (Smith and Read 1997). Overall, mycorrhizae have been found to 

be most important during seedling establishment (Grime et al. 1987), during flowering 

(Fitter 1989), and during periods of rapid growth (Dhillion and Anderson 1993).

Since the health and stability of the plant soil system in upland habitats largely 

depends on the roles of mycorrhizae, it is quite possible that mycorrhizae are just as 

important in wetland habitats. Historically, research on mycorrhizae in wetlands has 

been limited. Thirty years ago scientists assumed that mycorrhizal fungi did not colonize 

hydrophytic vegetation (Ragupathy et al. 1990). Now, not only is it well known that 

these fungi do colonize hydrophytic vegetation, but it also has been found that 

mycorrhizal fungi are a significant component of wetland ecosystems (Ragupathy et al. 

1990; Stenlund and Charvat 1994; Turner and Friese 1998). The distribution and 

ecological role of mycorrhizas in these wetland ecosystems is, at this time, poorly
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understood. In recent studies, researchers have considered either the role of phosphorous 

levels or soil saturation depth to explain the regulation of mycorrhizal fungal colonization 

levels in wetlands (Wigand and Stevenson 1997; Cantelmo and Ehrenfeld 1999; Miller 

and Bever 1999; Thormann et al. 1999; Stevens and Peterson 1995). The appearance of 

mycorrhizal associations in waterlogged habitats may also be dependent on the types of 

plant species or even AM fungal species present in the system, but, since wetlands are 

only recently being examined for mycorrhizae, a lot of questions remain unanswered and 

definite conclusions have not been drawn (Smith and Read 1997, Miller and Bever 1999).

Perhaps most important in studying mycorrhizae in wetlands is realizing and 

considering that these symbiotic fungi require oxygen and may not be able to tolerate 

saturated or inundated soils typical of wetlands. Flooding in wetlands reduces the 

availability of oxygen in the soil which is usually further reduced by other aerobic 

microorganisms (Mitsch and Gosselink 1993). Because AM fungi are aerobic organisms, 

this low oxygen concentration in waterlogged soils could prevent sporulation, 

germination, and/or even survival of the fungi (Miller and Bever 1999; Miller 2000; 

Turner and Friese 1998; Cantelmo and Ehrenfeld 1999). Limitation of AM fungi in these 

soils could also occur due to the accumulation of toxic byproducts produced in anaerobic 

soils (Mosse et al. 1981). Without adequate oxygen levels (below 0.4% oxygen tension), 

LeTacon et al. (1983) have shown that spores of Glomus mosseae (Nicol, and Gerd.) 

Gerdemann and Trappe fail to germinate unless first exposed to air. Several AM fungal 

wetland studies indeed indicate that lower AM fungal colonization levels are found in 

wetter (less aerated) soils of a wetland gradient. This has been exemplified in tidal 

saltmarshes (Brown and Bledsoe 1996; van Duin et al. 1989), hummock dominated
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wetlands (Cantelmo and Ehrenfeld 1999), fens (Wetzel and van der Valk 1996), 

freshwater wetlands (Rickerl et al. 1994), and many other wetland types (Keeley 1980; 

Wo Iters 1999; Lodge 1989). In many situations it has been found that flooding rather 

than phosphorus levels control the AM mutualism in wetlands (Miller 2000), and it is 

believed that as oxygen becomes limiting, there is a shift from a mutualistic association 

to a more parasitic one or a shift completely away from any association (Brown and 

Bledsoe 1996, Keeley 1980, Clayton and Bayarj 1984). Other factors that could limit the 

presence of the AM fungi in waterlogged soils include parasites (Jeffries 1995), lack of 

propagules (Anderson et al. 1984), or flooding conditions increasing specific root length 

lessening the plant’s need for the fungus (Miller 2000, Rubio et al. 1997).

Interestingly enough, even though AM fungi occur more often in soils that are 

drier, they are still found in the wettest soils and in hydrophytic vegetation. Ragupathy et 

al. (1990) indicated that up to 47% of 70 tropical hydrophytes surveyed were indeed 

colonized by AM fungi. Furthermore, Brown and Bledsoe (1996) found AM fungal 

colonization levels to be >20% in regions where soil moisture levels exceeded 120%, and 

Cooke et al. (1993) found colonized roots at soil depths of 42cm where there was no 

detectable oxygen. It is believed that the maintenance of AM inoculum potential in 

wetlands highly depends on the presence of wetland plant roots showing a decent amount 

of oxygen leakage into the rhizosphere or the presence of aerobic microsites within the 

waterlogged soil providing oxygen for the fungi (Lodge 1989, Miller 2000, Cantelmo and 

Ehrenfeld 1999). These aerobic microhabitats could help AM fungal spores germinate 

and colonize a root, and, once colonized, these fungi can survive extensive flooding 

(Miller and Bever 1999, Ellis 1998). These findings and beliefs suggest that the AM
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fungi are able to adapt to extremely low oxygen levels in some way. The fungal 

adaptations to low oxygen that have been hypothesized include the fungus tapping into 

the oxygen in the aerenchyma tissue of the plant (Brown and Bledsoe 1996; Miller 2000; 

Cooke et al. 1993) or using the oxygen that leaks into the rhizosphere from the root 

(Miller 2000; Cooke and Lefor 1998). Brown and Bledsoe (1996) observed AM fungi in 

the aerenchymatous tissue of saltmarsh plants, and Keeley (1980) found most 

mycorrhizal colonization occurring in the main proximal roots of Nyssa sylvatica 

individuals where the majority of root oxygen can be found. As for an oxidized 

rhizosphere, this could have a twofold positive effect on the AM association - the first 

and most important effect being the availability of oxygen to the fungi. The second 

positive effect on the association is based on a correlation between an oxidized 

rhizosphere and sequestering of available P in this rhizosphere due to oxidation of the 

soils. It is quite possible that coupling the AM fungi with the stored P in the rhizosphere 

could be a new mechanism for plant phosphate uptake (Wigand and Stevenson 1997).

Many fungal species appear to be better adapted to certain edaphic conditions 

(Fitter 1989, Sanders and Fitter 1992), and this could include being better adapted to 

flooded soils. Miller and Bever (1999) found that in Carolina bay wetlands, certain AM 

fungal species occurred only in the drier regions of a soil moisture gradient while AM 

fungi that occurred in the wetter regions were found along the gradient. In this case, 

water depth was indeed found to be a limiting factor for certain types of AM fungi. This 

study reveals that the AM fungi in wetlands are not physiologically equivalent to each 

other in their adaptations to flooded conditions. It also indicates that some kind of 

adaptation is necessary for the fungi to survive in these wetter areas of the wetlands.
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Similar trends of fungal species distribution in wetlands were found in tidal saltmarshes 

by Brown and Bledsoe (1996).

It has also been found that some biotic and abiotic factors vary with the type and 

number of fungal species in the mycorrhizal community of a wetland (van der Heijden et 

al. 1998). For example, in studying wetlands in Illinois, Anderson et al. (1984) found 

plant cover, spore abundance, plant species richness, and fungal species richness 

positively correlated with each other and with organic matter content and negatively 

correlated with pH, Ca, Mg, P, and percent soil moisture. Furthermore, in studying the 

species of fungi along a moisture gradient, they found one species of AM fungi 

distributed all throughout, one species only at the dry end, and one species only at the wet 

end of the gradient. Since AM fungal species are distributed in different areas of a 

wetland in relation to many abiotic factors and this distribution influences the distribution 

of other biotic factors, it can be assumed that AM fungi are important to many wetland 

ecosystem processes yet to be discovered.

The degree of AM fungal colonization in wetlands could also be largely 

dependent on host plant species (Wetzel and van der Valk 1996, Miller 2000, Keeley 

1980). The aspects of the fungus/plant association differs for plants in ways which 

include interspecific differences in root length colonized, width of vesicles, and 

occurrence of arbuscules (Sanders and Fitter 1992). The colonization levels in host 

plants can vary greatly even within a genus. For example, both Anderson et al. (1984) 

and Miller et al. (1999) concluded that Car ex species with low to no colonization levels 

have a specific root phenology not conducive to colonization (as expected by the Baylis 

hypothesis) (Baylis 1975). In the case of Carex, this unsuitable root phenology is the
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presence of numerous bulbous root hairs. Other similar conclusions have been made 

about specific plant species, but interestingly, many opposing reports have also been 

made. Many species of Typha and Carex have been found to be highly colonized in 

some studies (Cooke and Lefor 1998, Wetzel and van der Valk 1996) and in other studies 

have been found to have no colonization (Rickerl et al.1994, Cornwell et al. in review, 

Thormann et al. 1999). In these situations, the occurrence of colonization may not 

necessarily be dependent on the host, but rather the environment that the host is in (Miller 

et al. 1999). Anderson et al. (1984 and 1994) suggest that some plants have functional 

mycorrhizae at the dry end and not at the wet end of a moisture gradient, while others 

may have functional mycorrhizae throughout the entire gradient, including in flooded 

zones. All in all, this variation in colonization levels of different plants is quite beneficial 

to a wetland habitat as this can support high species diversity and enhance plant 

competition (Gange et al. 1993, Wilson and Hartnett 1998).

It has been suggested that colonization levels in wetlands may vary with the 

season. AM mycorrhizae show seasonal responses in non-wetlands which are often 

associated with changes in plant phenology and/or phosphorous levels (Smith and Read 

1997; Rabatin 1979; Sanders and Fitter 1992). In wetlands, seasonal differences in 

colonization levels could be due to not only changes in phosphorous levels and plant 

phenology, but also to changes in the water regime of a particular zone in the wetland 

(Jurgensen et al. 1997). For instance, many wetlands fed by runoff and precipitation have 

periods of draw-down where the soil in the upper parts of moisture gradients can 

experience significant amounts of drying (Mitsch and Gosselink 1993). During these 

times, mycorrhizal fungi could take advantage of the drier, more aerated soils to
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effectively colonize plants. This has been suggested in research by Miller (2000) in 

which the inoculum potential of soils from different wetness regimes of Carolina Bays 

was measured. In this study, the wetter soils had the same inoculum potential as the drier 

soils when placed under drying conditions. This indicates that AM fungal propagules are 

thriving in the wetter soils but may need dry conditions to establish new associations with 

wetland plants. Hence, occasional drying may maintain the inoculum potential necessary 

for new plant colonization thus causing temporal variation in colonization levels. AM 

fungal colonization could be most important for plant species during drawdown periods 

by helping plants survive drought stress, compete effectively, and acquire much needed 

nutrients (Smith and Read 1993; Cooke and Lefor 1998; Van Duin et al. 1989; Brown 

and Bledsoe 1996).

As before mentioned, the functionality of AM fungi is questionable if arbuscules 

are not present in the mycorrhizal association. Several wetland studies have noted the 

absence of arbuscules in the roots of wetland plants, especially the plants found more 

frequently in the wetter and more anoxic soils. These plants are still colonized by AM 

fungi, as evidenced by hyphae and vesicles, but appear to have no method of transferring 

phosphorous to the plant; therefore, the mycorrhizae are determined as non-functional by 

some scientists (Cooke et al. 1993; Cantelmo and Ehrenfeld 1999; Thormann et al. 1999, 

Clayton and Bayaraj 1984). On the other hand, Anderson et al. (1984) found that these 

mycorrhizal fungal associations lacking arbuscules are not necessarily always non

functional. They demonstrated this by using mycorrhizal roots from wetlands with only 

coenocytic hyphae and no arbuscules to inoculate com plants and discovered that 

functional associations and sporulation did occur as a result of the inoculation. Hence, it
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has been suggested that these AM fungi in wetlands are functional (and thus mutualistic) 

when conditions become more suitable to promote the mycorrhizal association as stated 

previously. Also, it is possible that the mycorrhizal benefit only occurs during certain 

stages of wetland plant life cycles which have yet to be identified in wetland habitats 

(Sanders and Fitter 1992). What the AM fungi is doing for the plant in the meantime 

remains an unanswered question.

Since the mycorrhizal association is postulated to be a functional mutualism at 

one time or another, it is important both for the plant and the AM fungus for the fungus to 

be able to persist in the wetter conditions as it awaits the periodic drier conditions to 

become functional. It has been found that once the association is established, a fungus 

can survive through flooding conditions as it awaits more amiable conditions to be 

functional for the plant (Miller 2000, Miller and Bever 1999). Anderson et al. (1984) did

note that the variation in functional versus non-functional associations were common in

wet sites where conditions fluctuated seasonally. An interesting correlation was 

discovered by Cooke et al. (1993) between the increase in abundance and species 

richness of wetland vegetation in wetlands with drawdowns (whether natural or human 

induced) and the increase in colonization of AM fungi in these drawdown areas. They 

suggested that the correlation is due to the fungi’s capabilities of functioning in these 

drawdown areas as they would function in a terrestrial environment (where they are 

known to increase biological diversity). Once functional, these AM fungi could act as an 

important source of inoculum, as enhancers of species abundance and richness, and/or as 

alleviators of nutrient, drought, or seedling establishment stress (Turner and Friese 1998; 

Miller 2000, Cooke et al. 1993). Nevertheless, the nature of the periodic non-functional
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association and how important this association is to wetlands both with seasonal 

fluctuations (marshes and Carolina bays) and without fluctuations (fens and other 

peatlands) still needs to be assessed.

The relationships between levels of AM colonization and P and soil moisture in 

wetlands are not very clear. In some cases it appears as if the levels of P in the wetlands 

are important in determining AM colonization levels (Jurgensen et al.1997, White and 

Charvat 1999), and in other cases it seems less important and percent soil moisture is 

more important (Rabatin 1979, Nelsen et al. 1981, Anderson et al. 1984, Miller et al. 

1999, Rickerl et al. 1994). Such contradictory findings were even found within one study 

done by Wetzel and van der Valk (1996). They studied the colonization levels of AM in 

prairie pothole wetland vegetation in Iowa and North Dakota. They found that the

differences in the two locations caused differences in colonization levels that could not

specifically be attributed to soil moisture or P levels alone. It appeared that there was no 

relationship at all between AM colonization levels and available P along a hydrological 

gradient in North Dakota wetlands while there was some sort of a relationship in Iowa 

wetlands. They speculated that other environmental factors not measured could be more 

important in controlling the colonization levels of plants in prairie potholes. The general 

belief right now is that P is most important in regulating the association in soils that are 

drier and P limited (<10mg/kg available P) (Rickerl et al.1994, Wetzel and van der Valk 

1996, Anderson et al. 1994) while soil moisture is more important in wetter soils (Miller 

2000). As expected, colonization levels are lower in soils with higher soil moisture; 

however, it is still not known if this relationship is due directly to the effects of soil 

moisture or instead to some other environmental factor (still yet to be determined) that
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may vary with soil moisture (Miller 2000, Anderson et al. 1986, Khan 1993, Brown and 

Bledsoe 1996).

A lot of effort is spent trying to determine what would be a good measurement of 

mycorrhizal benefit in a wetland, especially since colonization levels are so highly 

dependent on plant phenology and water levels of the wetland. Benefits are traditionally 

recognized as an improved access, on the part of the mycorrhizal plant, to limiting soil 

resources (Johnson et al. 1997). There are two problems with this - many wetlands do 

not necessarily have limited soil resources and the fungi have to find a way to survive in 

the flooded soils. Benefits commonly tested for in wetland studies include increased 

biomass production of mycorrhizal plants (Miller et al. 1987) and increased P in 

mycorrhizal plants (White and Charvat 1999, Rickerl et al. 1994). These measurements 

of benefits have shown some positive results. For example, Wigand and Stevenson 

(1997) did show AM fungi as enhancing uptake of phosphate in a submersed plant, 

Vallisneria americana. As a matter of feet, the P uptake was 85% more for mycorrhizal 

plants than it was for non-mycorrhizal plants. Furthermore, Miller et al. (1987) 

demonstrated a positive mycorrhizal response based on increased biomass production in 

mycorrhizal plants. Those who do not find these benefits assume the association is non

functional or even parasitic, while, in fact, the association could be benefiting the plant in 

other possibly immeasurable ways. For instance, Newsham et al. (1995) did not find 

increased P uptake or increased biomass production in the mycorrhizal plants, but was 

able to show that the plants had increased resistance to root pathogens giving them an 

advantage over non-mycorrhizal plants. It is this sort of benefit that needs to be 

examined in wetland ecosystems where the role of mycorrhizal fungi may be quite
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different than their role in terrestrial ecosystems.

With all the varying abiotic and biotic factors found and yet to be determined as

affecting mycorrhizae in wetlands, studying mycorrhizae in wetlands can be challenging 

although necessary. Wetland mycorrhizal relationships have been largely ignored until 

recently because many scientists assumed that these aerobic fungi could not survive in 

saturated and inundated soils. Much to their surprise, colonization by arbuscular 

mycorrhizae has been found in all types of wetlands including freshwater marshes (Miller 

and Bever 1999), salt marshes (Cooke et al. 1993), coastal swamps (Cantelmo and 

Ehrenfeld 1999), prairie potholes (Rickerl et al. 1994, Wetzel and van der Valk 1996), 

and fens (Turner and Friese 1998, Thormann et al. 1999). What still needs to be 

determined is which of the three wetland components (hydrology, soils, vegetation) may 

have the greatest influence on the occurrence of mycorrhizae in a wetland and may 

explain why AM fungal colonization levels differ between contrasting wetlands. 

Assessing and comparing different types of wetlands may lead to answering why and by 

what means does the mycorrhizal association persist in wetlands (Miller 2000). For 

example, it has been speculated by Thormann et al. (1999) that fen dominant vegetation 

will be mycotrophic due to the prevailing low nutrient availability, and marsh vegetation 

will be non-mycotrophic due to the fluctuating water table and higher availability of 

nutrients. Examining such speculations could reveal important information about the 

roles and distribution of AM fungi in wetlands.

Wetland Restoration

Healthy and diverse wetlands, that may partially depend on the mycorrhizal
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associations in the soil, are quickly disappearing throughout the U.S.. Restoration of 

these wetlands is a major area of research and application at this time (i.e., Mitsch and 

Gosselink 1993, Galatowitsch and van der Valk 1998). Understanding the relationships 

between mycorrhizal fungal colonization and the gradients/environmental factors in 

wetlands will only help the success of restoration projects, especially if mycorrhizae are 

indeed found to be important to plant establishment and survival in wetlands. Assessing 

and comparing the importance of mycorrhizae in different types of wetlands should help 

develop restoration techniques that will greatly improve the preservation and restoration 

of biologically viable and sustainable wetland ecosystems.

Over 90% of wetlands in Ohio have been lost through habitat destruction; thus, it 

is of prime importance that the remaining wetlands are well described and understood. 

The need for developing techniques for restoring wetland ecosystems to their original 

structural and functional states has become vital, especially with current mitigation 

policies and the increasing development of natural areas (Brown and Bedford 1997). The 

techniques currently used for restoration projects are questionable and the evaluation of 

the “finished” project leaves little to be desired. Because of this, there is a high demand 

for better guidelines for the actual restoration practices and for management practices 

after restoration has begun (Mitsch and Gosselink 1993, Zedler 1996). Furthermore, 

there is a demand for thorough investigations of reference wetland sites in order to 

understand the variables driving healthy biotic communities to ‘completely’ restore a 

functional wetland (Smith et al. 1995).

An important consideration in understanding reference wetlands for restoration 

projects includes understanding the scale at which ecosystem processes are happening.
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For instance, on the scale of an individual plant, topographical changes are enough to 

create microsites with differing nutrient levels, physical structures, and hydrology. 

Therefore, it might be necessary to create microtopography within a restored wetland to 

improve plant species diversity and survival (Bledsoe and Shear 2000). Microsites also 

influence the microbial community of the soil system in a wetland. Processes such as 

nutrient cycling and decomposition occur at the scale of the microbial community and 

can be important in determining the plant community and the functional roles of a

wetland.

The functional roles of a wetland are, at times, completely dependent on soil 

microbial communities and soil characteristics; therefore, one key technique for restoring 

the functional components of a wetland may be the application of donor soils. Donor 

soils allow the recruitment of diverse and viable native plant communities by taking soils 

from undisturbed wetlands before they are lost to development and applying these soils to 

degraded sites. Donor soils would allow this recruitment of plants by adding a viable 

seed bank and would enhance the functional components of a wetland by adding an 

active microbial community (Burke 1997, Clewell and Lea 1990). Numerous studies 

have shown the benefits of using donor soils for restoration of wetlands (Leek 1989, Ray 

1998, Stauffer and Brooks 1997). In a study done by the U.S. Fish and Wildlife Service 

on wetland restoration sites in New York, donor soil application significantly increased 

wetland plant species number and cover as well as limited the encroachment of a wetland 

invasive species (Brown and Bedford 1997). Plant species richness and cover was also 

increased by use of donor soils in a created wetland in Pennsylvania (Stauffer and Brooks 

1997). Although many benefits of donor soil have been shown for wetland plant
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communities, little is known about how donor soil might affect microbial community 

functional roles. It is speculated that donor soil enhances bacterial and AM fungi 

communities which have important implications for soil processes and for plant 

recruitment success (Wolters 1999, Rowley in prep., Smith and Read 1997).

Other soil amendments, besides donor soil, may be useful in wetland restoration. 

Organic amendments including leaf litter, sludge, mulch, and peat moss have shown to 

help increase plant species richness, diversity, and plant cover in disturbed wetland 

habitats (Stauffer and Brooks 1997, Zink and Allen 1998). If mycorrhizal fungi are 

indeed found to be important in wetlands, then application of mycorrhizae to degraded 

wetlands could also significantly benefit wetland restoration sites. Mycorrhizal 

community response to disturbance, such as flooding, differs by habitat depending on the 

soil characteristics, host plant species, and fungal species (Allen 1991, Miller 2000); 

therefore, habitat specific guidelines for selection of mycorrhizal species and where to 

apply the mycorrhizal inoculum would need to be set.

Since the ultimate goal of restoring wetlands is to establish a functional 

community with high biodiversity (Galatowitsch and van der Valk 1998), restoration 

scientists need to reach beyond the typical mindset of just re-establishing the plant 

community. A functional wetland is not just an ecosystem with high plant diversity, it is 

also has stability and resilience in times of disturbance (Keddy 2000). Furthermore, a 

functional wetland is not necessarily a fertile (productive) wetland. Oftentimes an 

infertile wetland can have higher species diversity and many more rare species than a 

fertile wetland (Moore et al. 1989, Bedford et al. 1999). An infertile wetland can also 

support a more functional microbial community, especially in regards to mycorrhizal
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fungi which are beneficial to plants in infertile habitats (Smith and Read 1997). It is even 

possible that the higher plant diversity of infertile wetlands could be directly linked to the 

more functional mycorrhizal community.

Some of the overall functional roles of a wetland include cycling of nutrients, 

controlling floods, improving water quality, providing animal habitats, etc. (Mitsch and 

Gosselink 1993, Keddy 2000). Many of these roles are dependent not only on the plant 

community but also on the soil community. Poor soil characteristics and an unhealthy 

microbial community in a habitat can easily lead to a poor plant community and loss in 

ecosystem function (Allen 1991, Brundrett 1991). Therefore, understanding the soil 

community dynamics of a wetland and applying this knowledge to restoration practices 

should help scientists more successfully reach restoration goals. The knowledge obtained 

from soil studies in reference sites, such as the following study, will help set restoration 

guidelines that are more appropriate for establishing a functional wetland ecosystem.
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Chapter 3

Arbuscular Mycorrhizal Fungal Dynamics in Wetland Habitats: An Assessment of

Seasonal and Soil Gradient Effects

INTRODUCTION

Wetland ecosystems are unique habitats that support highly diverse communities 

of plants and offer numerous functional roles for the environment. Wetlands act as 

sources, sinks, and transformers of nutrients, and therefore play a large role in ecosystem 

nutrient cycling. Other functions of wetlands include providing water purification, 

groundwater recharge, valuable wildlife habitat, and floodwater control (Mitsch and 

Gosselink 1993). Although wetlands are considered as highly valuable to humans, 

anthropogenic disturbance has greatly impacted and degraded these ecosystems. Over 

50% of the United States’ wetlands and 90% of Ohio wetlands have been destroyed and 

lost (Tiner 1998, Mitsch and Gosselink 1993). Continual development spurs continual 

wetland mitigation; thus, it is of utmost importance that the remaining wetlands are well 

described and understood to help with preservation and restoration efforts.

More often than not, the status of a wetland is determined by the health and 

biological diversity of the plant community present and considers the physical and 

chemical factors that affect this community. Unfortunately, little attention is given to the 

other organisms and their functional roles in the wetlands - especially the 

microorganisms and their important roles in soil processes and nutrient cycling (Cooke 

and Lefor, 1998; Schneble, 1997). More information is needed on how the soil microbial 

community is affected by disturbance and how the microbial community can be useful in
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reestablishing wetland sites. The health and stability of any plant-soil ecosystem, 

including wetlands, largely depends on a wide diversity and functionality of soil 

microbes including arbuscular mycorrhizal (AM) fungi (Bethlenfalvay and Lindermann, 

1992).

AM fungi act as alleviators of nutrient, toxic metal, drought, and seedling 

establishment stress and enhance plant fitness (Allen 1991, Allen 1989, Smith and Read 

1997). Hence, AM fungi can have important roles in plant community dynamics such as 

plant abundance, composition, and diversity in different habitats. These roles have been 

exemplified in many upland ecosystems, especially grasslands and agricultural areas 

(Bethlenfalvay and Linderman 1992, Hartnett and Wilson 1999, Allen 1992, Pfleger and 

Linderman 1994). It is well known that AM colonization of plants in these ecosystems is 

often limited by available soil phosphate levels, soil moisture levels, and available fungal 

inoculum. Furthermore, AM fungal presence can be controlled by the plant species 

present (Smith and Read 1997, Anderson et al. 1984). What is less well known about 

AM fungi is the factors affecting their presence in wetlands and what their ecological 

roles may be in wetland ecosystems.

AM fungi have been found in many wetland habitats including salt marshes 

(Cooke et al. 1993), Carolina Bay wetlands (Miller 2000), coastal swamps (Cantelmo and 

Ehrenfeld 1999), and fens (Thormann et al. 1999, Wetzel and van der Valk 1996). Until 

recently, the roles and distribution of wetland mycorrhizal associations were largely 

ignored since it was assumed that AM fungi could not survive in anoxic conditions and 

many wetland plant species were found to be non-mycorrhizal (Mosse et al. 1981, 

Anderson et al. 1984, Mejstrik 1984, Khan 1974). In recent wetlands studies, AM fungi
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have been found mainly in soils that are not flooded or have several aerobic microsites 

(Brown and Bledsoe 1996, Wetzel and van der Valk 1996, Miller 2000, Cantelmo and 

Ehrenfeld 1999). Interestingly, they have been found in the wettest soils and in 

hydrophytic vegetation to some extent. Ragupathy et al. (1990) indicated that up to 47% 

of 70 tropical hydrophytes surveyed were indeed colonized by AM fungi. Furthermore, 

Brown and Bledsoe (1996) found AM fungal colonization levels >20% in regions where 

soil moisture levels exceeded 120%, and Cooke et al. (1993) found colonized roots at soil 

depths of 42cm where there was no detectable oxygen. Survival of AM fungi in these 

types of conditions may require the fungi to concentrate colonization in areas of the root 

systems that are well oxygenated (aerenchymatous tissue), to distribute themselves along 

a moisture gradient, or to thrive in areas that will have a seasonal drawdown.

Sites within a wetland that are more aerobic, or may become aerobic at one time 

or another, can act as sources of mycorrhizal inoculum for wetland plants. Once AM 

fungi are able to germinate and colonize a plant, they are able to survive flooded 

conditions in a wetland (Ellis 1998). The extent of this survival seems to depend on the 

intensity, frequency, and/or duration of flooding or on the type of fungal or plant species 

present (Brown and Bledsoe 1996, Wetzel and van der Valk 1996, Keeley 1980, Rickerl 

et al. 1994, Cooke and Lefor 1998). For example, Miller and Bever (1999) found that 

certain AM fungal species in the Carolina Bay wetlands may be more tolerant to wet 

conditions than other species. Their study indicated that the AM fungi in wetlands may 

have adaptations that are successful in flooded soils.

Many contradictory reports have been made about the mycorrhizal status of 

wetland plant species. It is often assumed and has been noted that plant members of
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Cyperaceae and Juncaceae are largely non-mycorrhizal (Powell 1975, Anderson et al. 

1984, Thormann et al. 1999) while other reports indicate significant levels of AM 

colonization in plants such as Typha and Carex species (Wetzel and van der Valk 1996, 

Cooke and Lefor 1998, Stenlund and Charvat 1994). It is not well understood if the 

variation in colonization levels for specific plant species is related to root characteristics 

or to environmental factors at the scale of an individual plant (Miller et al. 1999). 

Furthermore, the mutualistic nature of the mycorrhizal association is questioned in some 

of these plant individuals because of the lack of arbuscules, points of nutrient exchange 

between the fungus and the plant. So far, few studies have surveyed the extent of 

mycorrhizal colonization in wetland plants and the extent of arbuscular presence in these 

plants (Turner and Friese 1999, Cooke and Lefor 1998, Turner et al. 2000).

In wetlands, the dynamics of AM fungi in time and in relation to nutrient levels 

are largely unknown. Currently, it is believed that the fungi are mostly influenced by 

water levels; thus, it is expected that the seasonality of the fungi will correlate with 

flooding cycles (Wetzel and van der Valk 1996, Brown and Bledsoe 1996). In upland 

ecosystems, nutrient availability and plant need for nutrients at different times of their life 

cycle largely regulate the AM fungal dynamics (Demars and Boemer 1995, Anderson et 

al. 1994, Dhillion and Anderson 1993). However, in wetlands, the relationship between 

AM colonization and available phosphate does not always exist and is not very clear 

(Rickerl et al. 1994, Miller et al. 1999). On the one hand, in wetlands that are largely P 

limited, such as fens, mycorrhizal dynamics might be linked to P levels (Wetzel and van 

der Valk 1996), while on the other hand, nutrient rich wetlands may have some other 

edaphic factor largely controlling colonization. Because wetland dynamics are affecting
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the distribution of AM fungi, it is likely that the roles of the association are also being 

affected. These roles could be more or less significant in different wetlands since 

mycorrhizal response to disturbance events, such as flooding, has been found to differ 

according to different soil and plant characteristics of a habitat (Allen 1991, Cornwell et 

al. in review). Assessing mycorrhizal dynamics in different types of wetland habitats 

may answer questions regarding their survival techniques, roles, and distribution in 

wetlands. Two contrasting types of wetland habitats that would encompass these 

questions are fens and marshes, which will be examined in this study. Fen and marsh 

habitats differ by their seasonal patterns, their phosphorous levels, their soil organic

content and their moisture levels. Because all of these factors have been found to

influence mycorrhizae in wetlands to some extent, the results of a mycorrhizal study in

these two wetlands could reveal useful information about the roles and distribution of

AM fungi in wetlands.

The overall objective of this research was to assess the AM gradient and seasonal 

dynamics in two wetland habitats in order to more folly understand the significance and 

distribution of AM in these wetlands. The seasonal dynamics were assessed by surveying 

mycorrhizal colonization levels throughout the entire growing season, while the gradient 

dynamics were assessed by sampling along a moisture gradient in each wetland site. The 

primary questions to be addressed in this study are as follows: (1) are AM fongal 

colonization levels restricted to drier regions of a water gradient? (2) what are the 

seasonal dynamics of AM colonization in fen and marsh habitats? (3) what are the 

effects of available P and soil moisture on AM colonization levels? (4) what is the 

extent of AM colonization in dominant wetland plants of marsh and fen habitats? (5)
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what are the differences in the mycorrhizal dynamics between fen and marsh habitats? 

Information from this research will provide further understanding of the importance of 

these associations in wetlands and will be useful in establishing appropriate restoration 

and preservation techniques for marsh and fen wetland habitats.

MATERIALS AND METHODS

Site Descriptions

The sites in this study represent a range of wetland types from saturated fens to 

inundated marshes. The four sites are Spring Valley Marsh (SV), Gingell Parcel Marsh 

(GP), Travertine Fen (TF), and Siebenthaler Fen (SF) (Figs 1-5). Spring Valley Marsh is 

located in Warren County, Ohio and is a marsh. The other three sites are located in 

Greene County, Ohio (Fig. 1) and consist of a mound fen (SF), a hillside fen (TF), and a 

wetland with a fen to marsh gradient (GP). The hydrology of all four wetlands is 

controlled by groundwater, although not from the same aquifer. The climate for this area 

of Ohio consists of humid and hot summers and cold winters. The greatest amount of 

precipitation occurs from March to May and a mild seasonal drought from July to 

September is typical.

Spring Valley Marsh is owned and maintained by the Ohio Division of Wildlife. 

This marsh is approximately 150 acres and is located adjacent to the Little Miami River 

(Fig. 1). Prior to the 1940’s, the property was farmed extensively. In the early 1940’s, 

the land was converted to a marsh by a muskrat pelt trader. A levy was constructed to the 

west of the property which let groundwater flood the land. By the 1960’s, the Ohio
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Division of Wildlife of the Ohio Department of Natural Resources had purchased the 

land, redesigned the original levy to allow natural vegetation to colonize the area, and

built levies for access roads.

Seeps and springs from an aquifer (separate from the main Greene County 

aquifer) at SV keeps the majority of the marsh flooded throughout the year. The areas of 

the marsh closer to the dikes and to the levy are not inundated - at best, the soils are only 

saturated in these areas. Since the marsh consists of Linwood Muck soils (high in clay 

and organic matter) as designated by the Soil Survey of Warren County, OH (1973), the 

water level remains consistent throughout the year. Currently the Ohio Division of 

Wildlife does have a water control structure in place; however, the main regulator of

water levels has been beavers.

Spring Valley Marsh is the largest, relatively undisturbed marsh in the area and 

has a diverse plant community of wetland plant species such as Typha latifolia, 

Sparganium eurycarpu, and Polygonum amphibium. The research transect at this marsh 

spanned a 93m gradient with 50m of this gradient flooded (by at least 10 cm) throughout 

the growing season. The area designated as the dry portion of the gradient for this study 

was along a dike to the north of the wetland.

Gingell Parcel is a groundwater fed wetland with a fen to marsh gradient. The 

wetland is 56 acres and is currently owned by the Beaver Creek Wetlands Association. 

Historically, the wetland area was the bed of the Beaver Creek prior to the channelization 

of the creek in 1917. Since the 1940’s, when farmers stopped maintaining the strict 

channelization of the Beaver Creek, GP has been inundated with groundwater and 

occasional floodwater from the creek. The levy built to channelize the Beaver Creek (to
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the west) and New Germany-Trebein Road (to the south) act as barriers to water flow in 

the area. A large fellow field lies to the East of the wetland and creates a smooth 

topographic gradient into the inundated area of the marsh.

Gingell Parcel consists of both Sloan soils and peatty-muck soils. The inundated 

area of the marsh is host to Sloan soils (Soil Survey of Greene County, OH, 1978). The 

silt, characteristic of Sloan soils, is dumped into this area by flooding and remains in the 

marsh because of the structures impeding water flow. The areas up gradient from the 

flooded part of the marsh have peatty-muck soils that are very typical of soils around 

groundwater seeps (Amon, personal communication).

The gradient transect used for this study is 31 meters long and consists of an 

upland plant community, a fen plant community, and a marsh plant community. The 

vegetation in Gingell Parcel along the gradient is patchy due to the groundwater seeps 

and the inundated areas. Where the groundwater seeps into the wetland between 5 and 20 

meters, characteristic fen plant species can be found. The areas immediately around the 

flooded soils, for the last 10 meters of the transect, are dominated by hydrophytic marsh 

plant species. This area remained flooded for the entire growing season, although the 

extent of the flooding varied monthly.

Siebenthaler Fen, a 100 acre fen complex, is owned by the Ohio Department of 

Natural Resources, Division of Wildlife and is along the Beaver Creek corridor just south 

of Gingell Parcel. This wetland is a mound fen and is composed of several large mounds 

formed by the groundwater seeps. This site was disturbed in the first half of the 20th 

century by channelization of the Beaver Creek and placement of drainage tiles and a 

drainage ditch. At that time, the fen was used as cattle pasture and left fallow for at least
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50 years. Since the Division of Wildlife purchased the wetland in the mid 1990’s, the 

elevation of the water level has increased and has permitted wetland plant species growth. 

SF’s plant community is now extremely diverse and patchy throughout the fen habitat.

The soils in this area are Linwood Muck. The surface layer (from the surface to 

two feet down) is a muck layer and is underlain by six feet of brown and sedge peat. The 

Soil Survey of Greene County, OH (1978) classifies the soil as Sloan in this area; 

however, the excessive groundwater in the area flushes the silt (which makes up Sloan 

soil) back into the Beaver Creek. The elimination of the silt results in soil characterized 

as Linwood Muck. Attempts to drain the fen decades ago exposed the once dominant 

peat soil to oxygen resulting in the muck layer that remains to this day.

There are no areas of flooding in the Siebenthaler Fen except in rare cases where 

the Beaver Creek floods over its channels or if the drainage ditch floods. Attempts to 

remove drain tile in one area of the fen, although unsuccessful, have created a small 

depression where water may occasionally collect. Because of the numerous mounds, the 

water gradients at Siebenthaler Fen are patchy. The 117 meter long gradient transect 

used for this study extends from the drainage ditch levy into the main part of the fen.

Travertine Fen is close to Spring Valley Marsh and is in Greene County, Ohio 

(Fig 1). It is currently owned by Greene County Park District and has been designated as 

an Ohio Department of Natural Resources’ State Nature Preserve. This wetland is a 

hillside fen with several running groundwater springs throughout the 21 acres of the 

preserve. Prior to 1992, when purchased by Greene County Park District, the area was 

left fallow by private owners. Upslope from the fen (to the east) is a small forest and
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beyond that are agricultural fields. To the west of the fen (at the base of the hill) is a levy 

originally built for a railroad.

The gradient transect for this site is 42 meters long. At the end of the transect 

(bottom of the hill), the railroad levy causes excess groundwater to pool. This flooded 

area is largely dominated by Typha latifolia and remained flooded by at least 10cm for 

the entire growing season. The other parts of the transect consist of groundwater seeps 

that maintain soil saturation throughout the year, a small creek bed of running 

groundwater, and an upland habitat.

Travertine Fen has very diverse and unique plant communities reflecting the 

microtopography made by the groundwater seeps and the hummocks found throughout 

the fen. The soils are also unique and consist of marly deposits that extend from the 

surface to ten to thirty feet deep and peatty deposits that extend two to six feet below the 

surface. Other areas of the fen are dominated by limestone cliffs (Jim Schneider, 

personal communication).

Field Design

Beginning in March 2000 transects were set up for each of the four wetlands. 

They were aligned according to water gradients so that each transect had an upland 

habitat end and an end with an obligate wetland plant community (based on Ohio’s 

wetland indicator categories). The length of the four transects varied because of the 

different sizes of the wetlands. Eight sampling points were selected along each transect 

to keep sampling number consistent. Sampling of these points began in March and 

continued once a month through September by using meter squared quadrats.
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Sampling in each quadrat consisted of obtaining two sets of four soil cores, 

identifying plants within and around the quadrat, estimating total percent coverage of live 

plants, obtaining one plant with roots for mycorrhizal analysis (the dominant species in 

the area), and, where possible, a water sample. The soil cores were placed in pre-marked 

Ziploc™ bags for analysis in the lab. Plants that could not be identified in the field were 

brought to the lab to be pressed and identified.

Soil Analysis

Two sets of soil cores were taken from four random places within each quadrat. 

Each core was 2.5cm in diameter and 15 to 20 cm deep. One set of soil cores was used to 

analyze general mycorrhizal colonization levels for each point along the transect (see 

below) and to analyze soil characteristics. Within 24 hours of collection, these soil 

samples were analyzed for percent moisture and organic content by using the procedures 

described by Brower and Zar (1984). These procedures included placing the soils in a 

drying oven for at least 24 hours at 100° C to determine the percent moisture and ashing 

the soils in a muffle furnace to determine organic content.

The other set of soil cores was air dried and sent to a soils lab (Balance Labs, 

Marion, OH) for analysis of several abiotic factors including Bray and Olsen phosphorus, 

pH, estimated mineralizeable nitrogen, potassium, calcium, magnesium, and cation 

exchange capacity.
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Arbuscular Mycorrhizal (AM) Colonization Analysis

Mycorrhizal fungal colonization levels of roots were analyzed for each sampling 

site. For the soil cores, plant roots were randomly removed from the soil, rinsed off, and 

placed in a tissue cassette. For the specific plant specimens taken from each site, roots 

were randomly removed by scissors and also placed in tissue cassettes. All roots were 

then stained for the presence of AM structures using trypan blue (Phillips and Hayman 

1970) and assayed for colonization using the gridline intersection method (Giovanetti and 

Mosse 1980; Brundrett et al. 1994).

Water Ana/ysZs

One water table well was installed at each sampling point to measure the height of 

the water table. The water table wells were made out of PVC pipe with fine slits running 

perpendicular to the length of the water table well. Before they were placed in the 

ground, sand was added to the bottom of the hole. Sand was also added around the water 

table wells to keep soil from clogging the slits. PVC pipe caps were placed on top of the 

pipes to prevent standing water and debris from entering the pipes.

AM Fungal Spore Analysis

In late October and early November, soil cores were collected from all four 

wetlands for AM fungal spore analysis. The gradient in each site was arbitrarily split into 

three sections based on soil saturation - dry, intermediate, and wet. Four soil cores were 

taken at each of three random sampling spots within the designated section.
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In the lab the soil was homogenized and then put through a spore extraction by 

the methods of Ianson and Allen (1986). Spores were stored in formaldehyde acetic acid 

until analyzed. For enumeration, spores were suctioned onto a gridded filter paper for 

counting using a dissection microscope.

Statistical Analysis

All statistical analyses were performed using SPSS Base 10.0 (SPSS 10.0; 

SPSS, Inc, 1999). Site, month, and gradient effects of AM colonization levels were 

analyzed using one-way and two-way analyses of variance (ANOVAs). To verify that 

the equal variance assumption was met, Levene’s equal variance test was performed at 

5% level of significance, and residual plots were examined to verify that the normality 

assumption was met. Percent mycorrhizal colonization data did not meet the ANOVA 

assumptions; therefore, this data was arcsine square root transformed.

For each site, AM colonization data was analyzed by two-way ANOVAs to 

evaluate the effects of gradient, month, and the interaction between gradient and month, 

if any. Sites were taken separately due to the results of PCA analysis and a one-way 

ANOVA indicating the large abiotic differences between the wetlands. To analyze the 

effect of gradient on AM colonization levels, the water levels of each wetland were 

individually split into three groupings - wet (the highest 33% water levels), intermediate 

(the middle 33% water levels), and dry (the lowest 33% water levels). After running 

ANOVAs, pairwise differences among samples were determined by using Bonferroni’s 

test. In addition to the above analyses on AM colonization data, a two tailed t-test was
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run to compare inundated sites to non-inundated sites throughout the entire sampling 

period (all months and sites acted as replicates).

Due to unbalanced data (highly variable sample sizes), percent AM colonization 

of specific plant species was not analyzed using an ANOVA. Instead, this data is 

presented graphically. Placing these plant species into wetland indicator status categories 

for Ohio balanced the data so that comparing the percent AM colonization among 

indicator categories was statistically possible. The effect of presence of Typha latifolia 

(cattails) was evaluated by comparing plots where Typha latifolia was selected for AM 

colonization analysis to plots where another species was selected. This data was 

analyzed using a Kruskal Wallis Rank Test where the factor was presence of Typha 

latifolia and the dependent variable was percent AM colonization of plant species 

selected. A Kruskal Wallis Rank Test (used for nonparametric data) was also performed 

to evaluate a site effect on %AM colonization of Typha latifolia.

The soil variables measured (phosphorus, % moisture, organic matter, etc.) and 

individual AM fungal structures (arbuscules, vesicles, spores, and hyphae) were not 

normally distributed and the variances were not homogeneous across the treatments; 

therefore, the variables were converted into ranks and statistical analyses were performed 

via Kruskal Wallis tests and Spearman’s Rank Correlations. Kruskal Wallis test was 

used to determine the significance of site and gradient on the soil variables. Because 

significant site effects were present, analyses of correlations between the soil variables 

and percent AM colonization were performed using Spearman’s Rank Correlations. 

Individual AMF structures and relationships with water level, moisture, and available
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phosphorus were analyzed using Spearman’s Rank Correlations by site. Spore numbers 

were analyzed using Kruskal Wallis test for gradient effects.

RESULTS

Arbuscular Mycorrhizal Analysis (Soil samples)

Arbuscular mycorrhizal (AM) fungi were found at all sites and in all months. 

Colonization was indicated by the presence of aseptate hyphae, arbuscules, vesicles, 

and/or endospores. Total AM colonization levels varied from 0% in scattered locations 

to 76% in Travertine Fen (TF) in April. Siebenthaler Fen’s (SF) highest colonization 

level was 51% in April, Gingell Parcel’s (GP) highest was 33% in April, and Spring 

Valley’s (SV) highest was 50% in March.

Arbuscules were found in all parts of the water gradient in all wetlands (Fig 6). 

Colonization levels indicated by the presence of arbuscules ranged from 0% in scattered 

locations to 10% in both SV and TF. Vesicles and endospores were also present at all 

sites with colonization levels ranging from 0% to 39% for vesicles and 0% to 10% for 

endospores (Fig 6). Endospores, vesicles, and hyphae, which were by far the most 

dominant mycorrhizal structures, were present throughout the entire study while 

arbuscules were only present through June. All of these structures, just like total 

colonization, were affected by months with the highest occurrence in March and April 

and lowest occurrence in August and September.

Total AM fungal colonization was the only colonization data statistically 

analyzed. Before determining effects of month and gradient on total colonization, the
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colonization data were analyzed by site. It was found that the four wetland sites varied 

significantly (F=4.961, 3 df, p=0.002) by the levels of total AM fungal colonization 

found in roots from the soil cores. According to Bonferroni pairwise comparisons, GP 

had significantly (p<0.05; p = 11.45%) lower colonization levels than either SF (p =

18.42%) or TF (p = 19.96%). SV (p = 12.54%) also had lower colonization levels than 

the two fens, however these levels were not significantly lower (Fig 7).

The total AM spore population in the soil ranged from 0 spores/g of soil in the GP 

wet site to 2 spores/g of soil in the SV wet site (Fig 8). Three distinct species were 

distinguished in the study sites and were tentatively labeled as Glomus species 1, 2, and 

3. Species 1 was found to be most dominant in SF, GP, and TF while species 1 and 2 

were both dominant at SV. SF’s and TF’s wettest areas were solely colonized by species 

1 while both species 1 and 2 were found in the intermediate and dry parts of the water 

gradient. A few spores of species 3 were found in both of these wetlands in the non- 

flooded soils. SV’s wet end was dominated by species 1 and species 2. A few spores of 

species 3 was found in the wetter areas of SV, however, this species was more abundant 

in the drier soils where species 1 and 2 were also abundant. GP did not have any spores 

present at the wet end of the gradient and had only species 1 present at the intermediate 

and dry parts.

Because of site differences in spore abundances, SV’s spore data was evaluated 

separately from the other three sites. TF, GP, and SF all had a significant gradient effect 

on spore number (y2 = 13.470, df = 2, P = 0.001), with the wet and middle parts of the 

gradient having the lowest numbers of spores (Fig 8). There was no significant gradient
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effect for SV, but it is important to note that spore numbers were higher at the wet end of 

the gradient.

Soil, Plant, and Water Characteristics of the Wetlands

Soil characteristics by site and by gradient are given in Table 1. All variables 

were significantly influenced by site (p<0.001). Only phosphorus, pH, percent soil 

moisture, and magnesium were significantly affected by gradient (p<0.001). Phosphorus 

and percent soil moisture values by month are shown in Figure 9. The trends are split 

into sites due to both variables having significant site effects. Month does have a 

significant (%2 = 13.377, df = 6, P = 0.037) effect on phosphorus with May having the 

highest values and July having the lowest values. The effect of month on moisture is 

largely dependent on site and shows no overall trends among the sites.

Plant characteristics (species diversity and percent cover) by site and by gradient 

are also presented in Table 1. By site and by gradient, only species diversity was 

significant (%2 = 56.362, df = 3, P = 0.0001 and %2 = 26.429, df = 2, P = 0.001 

respectively). The largest values for species diversity, by site, were at SF and, by 

gradient, were at the dry end.

Water level measurements by water table wells were made and then divided up 

into thirds for each site. This resulted in “dry”, “intermediate”, and “wet” designations of 

the gradient. SF always had the lowest water levels for all months and SV had the 

highest water levels for all months but May (Fig 10). SV, GP, and TF all had relatively 

consistent water levels throughout the sampling season while SF showed the greatest 

drop in water levels towards the end of the sampling season.

71



Effects of Soil P and Moisture on AM Colonization (Soil Samples)

Grouping all four sites together, neither available phosphorus levels nor percent 

soil moisture had a significant correlation with total %AM colonization (rho = 0.001, p = 

0.988, n = 224 and rho = -0.044, p = 0.510, n = 224 respectively). Evaluating sites 

separately, there were no significant correlations between available soil phosphorus 

extracted by Bray’s method and AM colonization levels (Table 2). However, available 

soil phosphorus that was extracted by Olsen’s method (a more rigorous extraction 

commonly used for soils with basic soils and high Ca, as characteristic of GP and TF) 

was significantly (p<0.05) positively correlated with AM colonization levels in both GP 

and TF. With soil moisture, AM colonization levels significantly (p<0.05) rose at SF; 

however, at TF, AM colonization levels were significantly (p<0.05) higher with lower 

soil moisture. Other sites, although not significant, showed AM colonization negatively 

correlated with percent soil moisture.

Soil phosphorus levels and colonization levels were further assessed at TF and GP 

where there were significant correlations. Available phosphorus showed a significant 

(p<0.10) positive correlation with AM colonization levels at the wet end of GP and at 

both the dry and intermediate sections of the gradient in TF. Furthermore, available 

phosphorus and AM colonization levels in TF for the months of March through May 

were significantly positively correlated (rho = 0.769, p = 0.026, n = 8; rho = 0.830, p = 

0.011, n = 8; rho = 0.651, p = 0.081, n = 8 respectively).

Separate AM fungal structures were analyzed via Spearman Rank’s Correlations 

by site. In no cases were any of the structures correlated with available phosphorus at the

72



four wetland sites. It was found that arbuscules, vesicles, and hyphae were positively 

correlated with water levels and moisture for SF, however, these same structures were 

negatively correlated with water levels and moisture for TF (p<0.05). AT GP, hyphae 

was the only AM structure found to have a significant correlation with water levels and 

soil moisture (p<0.05), and the correlation was negative. Hyphae were also the only AM 

structure with a significant correlation at SV and this, too, was a negative correlation with 

water levels (p<0.05).

Effects of Gradient and Month on %AM Colonization (Soil Samples)

All sites had month as a significant effect on %AM colonization with April

having the highest values (Table 3, Fig 11). The general trend was a significant decrease 

in total AM fungal colonization levels throughout the sampling season. September 

showed the lowest colonization levels for SV and SF, while August showed the lowest

colonization levels for TF and GP.

Both TF and SV had gradient position (based on water levels) as a significant 

effect on %AM colonization (Table 3). In both sites, the drier part of the gradient had the 

highest colonization levels while the wet part had the lowest colonization levels. At TF 

(Fig 12) the intermediate and wet parts of the gradient did not differ significantly in their 

effects on %AM colonization (mean difference = -0.0585, SE = 0.033, p = 0.086) while 

the dry end did differ significantly (p<0.05). For SV, multiple pairwise comparison tests 

do not show significance between any pairs for gradient. This was most likely due to 

large overlaps in the spread of data for each one of the gradient locations. Furthermore, 

although the dry part of the gradient had the highest means for %AM colonization, it
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happened to have the lowest median. GP showed similar trends to TF and SV (higher 

colonization in the dry part of the gradient); however, this trend was not significant at 

GP. Gradient also did not have an effect on SF. Surprisingly, the wettest part of the 

gradient in SF had the highest mean %AM colonization.

There were no interactions between month and gradient for any of the sites. In 

evaluating GP for month and gradient effects, it was discovered the data did not pass 

Levene’s Test of Equality of Error Variances. The parameter estimates were stable for 

this site; thus, it was predicted that the unequal variances were due to numerous 0% 

colonization levels in the later part of the sampling season.

Effect of Inundation on %AM Colonization (Soil Samples)

Each monthly transect point for all four wetlands was defined as being inundated 

or not. To be classified as inundated, there had to be some level of standing water at and 

around that sampling point. In every month there were points that were inundated; 

however, inundation of the soils did not occur in every site (SF soils were never 

inundated). Running t-tests on this data indicated that %AM colonization is significantly 

lower in the inundated parts of the wetlands (t = 2.863, df = 222, p = 0.05, means = 

0.3889 and 0.3045).

Arbuscular Mycorrhizal Analysis (Plant Samples)

Eighteen different species of plants within the four wetland sites were analyzed 

for the presence of mycorrhizae. Each site had between 5 to 8 species selected for 

analysis depending on the size of the plant communities that the transect crossed. All
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eighteen species showed presence of arbuscular mycorrhizae to some extent during the 

sampling season. Table 4 lists the species selected for analysis and their mycorrhizal 

status. Since the presence of arbuscules typically indicates a truly functional mycorrhizal 

mutualism, plants that were colonized by arbuscules are also indicated in Table 6.

As in the analysis of soil samples, total %AM colonization of specific plant 

species selected did drop off as the sampling season continued. This data is not 

statistically presented due to unbalanced data and low sample numbers. Statistical 

analysis of species effect was also not possible. Figure 13 portrays an error bar graph 

with bars indicating 95% confidence intervals for average %AM colonization of plant 

species. This figure illustrates that Typha latifolia had solidly higher %AM colonization 

levels than Carex stricta, Eleocharus erthrypoda, Alliaria officinalis, Caltha palustris 

and Acorus calamus. When analyzing the specific plant colonization levels of Typha 

latifolia versus all other plants sampled (using a Kruskal Wallis test), %AM colonization 

is significantly higher for Typha latifolia (%2 = 9.026, df = 1, p = 0.003). Further Kruskal 

Wallis tests indicate that %AM colonization of Typha latifolia is relatively the same 

among all sites in this study (%2 = 2.052, df = 3, p = 0.562). Typha latifolia also had the 

highest %vesicle colonization (39%). Vesicles were present at all sites and in all months, 

but the presence of them, as well as endo spores, was largely dependent on plant species.

When plants were clumped into their wetland indicator status categories using the 

National Wetland Plant List (Resource Management Group, Inc. 1992), data became 

balanced so that an ANOVA was possible to evaluate effect of wetland indicator status 

on plant specific total %AM colonization. The results indicate that there is no significant 

effect (p = 0.307) of indicator status on % colonization; however, facultative species had
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the highest %AM colonization while upland species had the lowest %AM colonization 

(means were 16% and 10% respectively and highest values at any one time were 36% and 

22% respectively). Obligate wetland species had the second lowest mean %AM 

colonization (28%) and facultative upland had the second highest mean (34%).

Because roots were collected from both a general soil core and from a specific 

host plant at each sampling point, comparisons could be made between the colonization 

levels of the general and specific plant species roots located in any one sampling point. It 

was interesting to find that in some cases %AM colonization of soil samples was zero 

while %AM colonization of specific plant samples was nonzero. For instance, in 

August both Carex comosa and Typha latifolia had 14% AM colonization at GP, while 

the general roots from their locations had no colonization. At SV in March, Sparganium 

eurycarpu had 88% AM colonization while the other roots in the same area only showed 

25% AM colonization. On the other hand, Carex hystericina at SF in March had 0% AM

colonization while the roots from the soil core in that location showed 40% AM

colonization.

DISCUSSION

The presence of AM fungi are known to influence plant competition, diversity, 

and abundance in terrestrial environments (Allen 1991, Smith and Read 1997), yet little 

is known about the AM fungal roles and distributions in wetlands. Our study examined 

spatial and temporal variation within different wetland habitats to provide a better 

assessment of environmental influences upon AM colonization in wetlands. In this study
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we found unexpected trends and patterns of mycorrhizal dynamics in wetlands. 

Arbuscular mycorrhizal (AM) fungi were found at all four wetlands, within both fen and 

marsh habitats, and at all gradient locations within each wetland. Furthermore, 

arbuscules were found in all gradient locations indicating functionality of the mycorrhizal 

association (Smith and Read 1997). Although mycorrhizae were ubiquitous, several 

trends in AM colonization were apparent at these sites that both supported (Wetzel and 

van der Valk 1996, Miller et al. 1999, Miller 2000, Turner et al. 2000) and contradicted 

recent mycorrhizal wetland literature (Rickerl et al. 1994, Miller et aL 1999, Thormann et 

al. 1999).

Seasonal and Water Gradient Effects

The presence and degree of AM colonization in this study is strongly associated 

with the time of year. This temporal variation is the overriding dynamic for the role of 

AM fungi in the fen and marsh habitats. Seasonality of mycorrhizal associations is 

commonly found in terrestrial environments and is related to available phosphorus, 

temperature, plant phenology, and soil moisture (Demars and Boemer 1995, Anderson et 

al. 1994, Rabatin 1979). In wetlands, however, seasonality of AM colonization levels are 

usually assumed to occur only in wetlands that experience drawdown, which provide an 

opportunity for oxygenated soils (Brown and Bledsoe 1996, Miller and Bever 1999). 

Results of this study indicate that the AM fungi were controlled by temporal dynamics 

which were not related to drawdowns, soil moisture levels, or available P levels in any of 

the wetlands. Therefore, it is speculated that the seasonality of the fungi in these systems 

is largely tied to plant phenology indicating that the fungi are most important (and maybe
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only important) at times of maximum new root growth in early spring. The presence of 

arbuscules (the mycorrhizal structure indicating functionality) only in the spring further 

supports this conclusion. It is important to note that all gradients in all wetlands showed 

similar seasonal trends of mycorrhizal colonization, and this trend was also apparent for 

specific plant species assessed. Similar findings for this AM fungal temporal trend in all 

parts of a water gradient have been found in other wetlands (Miller 2000, Turner and 

Friese 1998). These studies also indicated that AM fungal temporal dynamics are 

controlled by plant phenology rather than water levels or soil available P.

Flooding conditions have been found in many cases to negatively influence the 

level of AM colonization in wetlands (Cantelmo and Ehrenfeld 1999, Miller and Bever 

1999, Jurgensen et al. 1997, Stevens and Peterson 1996, Cooke and Lefor 1990). This 

has been related to decreased oxygen concentration (Saif 1981, Keeley 1980), toxic by

products of anaerobic metabolism (Mosse et al. 1981), low redox potential (Khan 1993), 

nonmycorrhizal plant species (Anderson et al. 1984, Miller et al. 1999, Khan 1974), 

higher calcium levels, (Anderson et al. 1984), higher soil and water phosphorus levels 

(Wetzel and van der Valk 1996, Thormann et al. 1999), higher moisture content (Rickerl 

et al. 1994, Anderson et al. 1984), and higher pH (Wetzel and van der Valk 1996). Our 

results indicate that gradient also has a significant negative effect on AM colonization for 

at least two of the wetlands and that inundation in all sites has a significant negative 

effect on colonization. The wetter end of the gradient for all of our sites had higher pH, 

Ca, and soil moisture values which could be interacting with low oxygen conditions to 

further limit the AM fungi. However, it is not clear if AM colonization in this study or in 

other studies are indeed responding to one of the individual environmental factors fisted
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above or to a combination of some or all of them in the flooded soils. Nonetheless, AM 

fungi (including arbuscular structures) are found in flooded and saturated conditions, as 

evidenced by our results. All sites in this study, except Siebenthaler Fen (SF), show 

decreased colonization levels with higher soil water levels. The findings that 

colonization is higher at the wetter gradient end in SF is significant because, unlike the 

other sites, SF never had inundated soils at the wet end of the gradient. Instead, the soils 

at this part of the gradient were saturated, not flooded, suggesting that AM colonization is 

more largely controlled by flooding than by soil saturation. Literature has indicated that 

AM fungi in wetlands are present in wet soils by way of aerated roots or aerated soil 

microhabitats, the second of which is more likely in saturated soils than in flooded soils 

(Brown and Bledsoe 1996, Wetzel and van der Valk 1996, Turner et al. 2000).

Soil Moisture and Phosphorus Effects

All wetland sites combined, there were no associations between soil moisture or 

phosphorus and AM colonization levels. When sites are taken separately, small 

associations are revealed which include higher soil moisture levels with higher 

colonization levels at SF, higher soil moisture levels with lower colonization at TF, and 

higher colonization with higher phosphorus values in P deficient wetlands (TF and GP). 

Variation among the sites for the effects of soil moisture on colonization are most likely 

due to SF’s soils never being subjected to flooding. Furthermore, the soils at SF dried up 

significantly more than the other three sites (as indicated by soil water levels). The 

significance of the AM fungi responding positively to higher soil moisture levels at SF 

needs further study. The results for soil moisture negatively affecting colonization at TF
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support recent literature for wetland ecosystems (Lodge 1989, Wetzel and van der Valk 

1996, Jurgensen et al. 1997, Miller et al. 1999). The other two sites, SV (a marsh) and 

GP (a fen to marsh gradient wetland), showed no correlation between AM colonization 

levels and soil moisture. Recent literature has shown that mycorrhizal dynamics in 

wetlands can be largely controlled by plant species present, flooding, fungal species 

present, and/or some other unknown environmental factor (Miller and Bever 1999, 

Stevens and Peterson 1996, van Duin et al. 1989, Clayton and Bagyaraj 1984). It is quite 

possible that one or all of these factors drive the mycorrhizal dynamics of SV and GP 

more-so than soil moisture or available phosphorus.

Because AM fungi increase fitness and growth of plants through enhanced uptake 

of nutrients (Lewis and Koide 1990, Smith and Read 1997), AM colonization levels are 

largely associated with available phosphorus (P) levels in the soil. It has been found in 

terrestrial ecosystems that increasing levels of available P will significantly reduce 

colonization because the plant will no longer need the fungus for nutrient uptake 

(Hayman and Mosse 1971, Koide 1993). Furthermore, it has been found that at very low 

levels of P (~<2pmm) both the AM fungus and the plant are P limited; thus, initially, 

higher levels of P will increase colonization by the fungus (Bolan et al. 1984, Koide and 

Li 1990). In wetlands, the associations found between P and colonization levels have 

been rather contradictory. Many studies have demonstrated the correlation, especially in 

the lab (White and Charvat 1999, Wetzel and van der Valk 1996, Tang et al. in review), 

while others lack evidence to support the correlation (Miller 2000, Miller et al. 1999). In 

some studies, the low levels of colonization in flooded soils are assumed to be related to 

the higher P availability in these anoxic/reduced soils, therefore diminishing the need for
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AM fungi (Turner et al. 2000, Rickerl et al. 1994). This study does not support this 

assumption since P was actually less available at the wettest locations of all wetlands 

assessed. Interestingly, the AM fungi were not found to be correlated with soil available 

P except in very discrete instances. Only certain locations in Travertine Fen and Gingell 

Parcel (both P limited systems) had AM fungal colonization levels correlated with P. In 

TF, colonization levels were found to be higher with higher P for March through May in 

the dry and intermediate parts of the gradient. This is most likely due to the extremely 

low available P conditions at this site, which were probably magnified in March through 

May when the fungal association is most important for P uptake for the P limited plants. 

In GP, the wet end of the gradient showed a positive correlation between P and 

colonization. Because the wetter ends of all sites in this study had lower available P than 

elsewhere in the wetlands, the positive correlation at GP is probably also due to very low 

P availability.

It is possible that the scale at which AM fungi and plants are responding to P is so 

small in wetlands as to be generally overlooked in typical soil tests. For instance, 

Wigand and Stevenson (1997) have suggested that the mycorrhizal fimgi are possibly 

responding to P sequestering within the oxygenated rhizosphere of wetland plants and 

could be helping the plant uptake this P. Seeing as many wetlands are dominated by 

plants that have been found to oxygenate their rhizosphere in flooded conditions 

(Armstrong 1978, Steinberg and Coonrod 1994), the link between AM fungi and the 

rhizosphere could be very important in controlling the mycorrhizal and plant community 

dynamics of wetlands. Furthermore, the possibility of an oxygenated rhizosphere helping 

AM fungi to survive in anoxic conditions has been suggested and needs further
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experimental study. If it is only the rhizosphere dynamics that control AM fungi in 

wetlands, then minute and precise measurement devices need to be designed and 

assumptions about colonization levels and P levels need to be re-evaluated. The presence 

of arbuscules with the lack of correlation between colonization levels and P in our study 

indicates that the AM fungi in marsh and fen habitats must be involved in phosphorus 

enhancement at a microscopic scale such as that suggested by Wigand and Stevenson 

(1997).

Site Mycorrhizal Comparison

Interestingly, even though the four sites in this study show significant abiotic 

differences, mycorrhizae were ubiquitous. It was found that AM colonization levels were 

higher in the two strictly fen habitats (although not by much) which meets assumptions in 

recent literature that mycorrhizae will be more limited by marsh-like conditions (Turner 

et al. 2000, Thormann et al. 1999). This study indicates that, even though the fen habitats 

had higher colonization, both fen and marsh habitats are amiable to AM fungi and the 

fungi could have important implications for plant community dynamics in both types of 

wetlands. It is possible that the marsh habitats assessed could have higher levels of 

colonization than found in this study in years where the wetlands experience drawdowns 

due to drought. When this study was done, the marsh habitats did not show signs of 

drawdown, which has been noted in previous years. Miller (2000) found that AM 

colonization rose in plots that underwent seasonal drying and Brown and Bledsoe (1996) 

found that mycorrhizae were abundant in the channel site of a saltmarsh where there was 

frequent tidal inundation and retreat, leaving the soils periodically oxygenated. This
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drawdown is assumed to be important in providing temporal availability of oxygen to the 

AM fungi and in allowing the association to become more functional (Cooke et al. 1993, 

Anderson et al. 1986, Miller 2000). Even without this drawdown, however, marsh 

habitats did support functional mycorrhizal associations (as indicative by the presence of 

arbuscules) which is in opposition to the findings of Thormann et al (1999). In their 

study, along a peatland gradient in Canada, they found that marsh vegetation was largely 

non-mycorrhizal and speculated this was due to the higher surface-water nutrient 

concentrations and fluctuating water levels of the marsh habitat.

Plant Community Dynamics and Species Effect

All plant species assessed in this study did show colonization levels of at least

10% at one time or another. The specific dynamics of the AM association in these plants 

add to the growing body of contradictory literature describing the mycorrhizal status of 

wetland plants. For instance, in this study, Carex species were found to be either lightly 

or moderately colonized depending on the wetland and depending on the location within 

a wetland. These results do support recent wetland studies involving the positive 

mycorrhizal status of Carex species (Miller et al. 1999, Turner et al. 2000, Wetzel and 

van der Valk 1996), although it also contradicts other reports of Carex species being 

nonmycorrhizal (Thormann et al. 1999, Khan 1974, Powell 1975, Anderson et al. 1984). 

Miller et al. (1999) surveyed 23 species of Carex and found 16 of these species to be 

mycorrhizal. Furthermore, they suggested that Carex species in their wetlands were 

either non-mycorrhizal, obligately mycorrhizal, or facultatively mycorrhizal depending 

on edaphic conditions. Our findings support that the mycorrhizal status of Carex may
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largely be influenced by edaphic conditions; however, the data does not support the 

findings of Miller et al. (1999) who classify Carex stricta as a non-mycorrhizal species.

Typha latifolia was found to have the highest colonization levels of all plants in 

all wetlands. Once again this adds to a growing body of contradictory literature. 

Thormann et al. (1999), Anderson et al. (1984), and Rickerl et al. (1994) all found Typha 

species to be nonmycorrhizal while others have found it to be mycorrhizal, even in 

flooded conditions (Turner et al. 2000, Tang et al. in review, Stenlund and Charvat 1994). 

These contradictory reports could largely be due to the wetland soil factors influencing 

mycorrhizal associations more-so than the actual plant species being nonmycorrhizal. 

Two of the reports finding Typha species to be nonmycorrhizal (Thorman et al. 1999, 

Rickerl et al. 1994) took samples of the plant individuals only once (in July). Seeing as 

results from this study indicate significant seasonal effects on AM fungi with 

colonization levels highest in March and April and continuously declining after that, it is 

very possible that the Typha plants found in those other studies are mycorrhizal at times 

during the growing season when the plants were not sampled. Furthermore, some plants 

growing in locations with no flooding or with occasional drawdowns have been shown to 

be mycorrhizal in these locations at times when drawdown occurs and nonmycorrhizal in 

saturated or flooded soil conditions (Rickerl et al. 1994, Anderson et al. 1984, Lodge 

1989). This signifies the need to sample seasonally throughout the wetland habitat to 

fairly assess the mycorrhizal condition of specific wetland plant species.

Many studies have speculated that AM fungi are surviving in flooded soils via 

tapping into the oxygen in the aerencyhma of plant tissue (Miller 2000, Keeley 1980), 

and Brown and Bledsoe (1996) have even found morphological evidence for this. The
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observation that AM fungi are colonizing species such as Typha and other monocots in 

the flooded areas of the study sites indicates that the AM fungi may indeed be using these 

plants to survive anoxic conditions. Typha and other monocots are known to develop 

extensive aerenchyma (Steinberg and Coonrod 1994, Mitsch and Gosselink 1993, 

Crawford 1989) in which the AM fungi could survive. All but one of our sampling 

points had Typha latifolia heavily colonized by AM fungi. Potentially, Typha latifolia is 

acting as a propagule agent in which the fungi can survive during periods when the

association is non-functional.

Many of the plants assessed in this study were moderately or heavily colonized by 

AM fungi. It is significant that some of these plants also showed the presence of 

arbuscules in the first three months of sampling. Arbuscules are known to be the site of 

phosphorus exchange from the fungus to the plant and indicate that the fungi are acting as 

mutualists for the plants (Smith and Read 1997). All but one of the species at TF were 

found to have arbuscules, indicating plant benefit in this very P deficient wetland. In this 

location, because the fungi are enhancing plant nutrition via the arbuscules, AM fungi 

have significant implications for plant competition, succession and diversity in fens (van 

der Heijden et al. 1998, Newman and Reddell 1988). The plants in the marsh habitats did 

not have as many arbuscules as those in fen habitats which could indicate that the AM 

fungi may support the mutualism via other morphological features or in environmental 

conditions not found during this study.
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Wetland AM Fungal Spore Dynamics

Many recent studies have found spore numbers to decrease with soil 

moisture/wetness (Miller 2000, Miller and Bever 1999, Anderson et al. 1984, Brown and 

Bledsoe 1996, Khan 1974). Our data for TF, GP, and SF support these findings. SV is 

an exception in that higher spore numbers were found in the wettest location. This result 

is similar to the results of Rickerl et al. (1994) who found spore numbers to be higher in 

wetter soils in South Dakota peatlands. It is speculated by that study that, in flooded 

soils, spore formation was either stimulated or germination was inhibited by the anoxic 

conditions of the soil resulting in low spore numbers. The wet soils at SV in this study 

did experience flooding for the entire sampling period, thus the abundance of spores here 

could also be due to stimulation of spore formation or inhibition of germination. It has 

been found by Le Tacon et al. (1983) that, without adequate oxygen levels (=below 0.4% 

oxygen tension), spores of Glomus mosseae (Nicol, and Gerd.) Gerdemann and Trappe 

fail to germinate. Why this may have an influence for AM fungi in SV and not in the 

other sites where flooding also occurred is unknown at this time. It is possible that the 

differences in the type of fungi found at the wet end of the gradients have a significant 

factor on these results and indicates that different AM fungal species show a certain 

amount of ecological plasticity in their response to environmental conditions. 

Furthermore, as suggested by Miller and Bever (1999), AM fungi are not similar in their 

tolerance to flooded conditions, potentially explaining our finding that certain fungal 

species were more relegated to the dry soil while others were distributed throughout the 

dry-wet gradient.

The formation of AM associations, even in wetlands, is dependent upon the
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availability of inoculum (Smith and Read 1997). Miller (2000) has shown that flooded 

soils have the same inoculum potential as dry soils if placed in the appropriate conditions 

(drier conditions). If spores indeed are restricted by flooded soils and could not serve as 

a primary inoculum source, there is potential for aerated roots of wetland plants, such as 

Typha latifolia, serving as inoculum sources in these flooded soils. In this study, the high 

levels of colonization in the springtime indicate that there is a significant source of 

inoculum in the soils of both fen and marsh habitats. This source could be spores in the 

driest soils, but, with spore numbers so low in the flooded soils, they are unlikely to be 

the source of inoculum in flooded soils. The majority of the flooded soils did have Typha 

latifolia plants, some of which had the highest levels of AM fungal colonization and, 

therefore, could be the key to the success of AM fungi colonizing in flooded soils.

In summary, our data indicates that wetland plants are mycorrhizal under a wide 

range of edaphic and moisture conditions. Furthermore, the data presented establishes 

that the colonization levels of AM fungi in wetlands are closely tied to specific plant 

species and plant phenology in which case each distinct wetland with a distinct plant 

community will have distinct mycorrhizal dynamics. The AM association is probably 

also regulated in wetlands by many interrelated factors associated with water levels. 

Although there were few correlations found between fungal colonization and P levels, 

there were indications of a mutualistic, functional relationship suggested by the presence 

of arbuscules. Since arbuscules were found at all gradient locations, we suggest that AM 

fungi are functional in all parts of fen and marsh wetland habitats at certain times. More 

likely than not, the functional relationship will be found at times when root growth is 

maximum, as in this study, and/or when wetland conditions are more conducive to the
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AM fungi.

Because our data indicates a strong seasonal dynamic controlling the association 

in all gradient locations and in all plant species assessed, we suggest that future studies 

sample wetlands over a span of time to more fully understand the dynamics of 

mycorrhizae in wetlands. Since our results indicated locations where the soil samples 

revealed no AM colonization while specific plants indicated some colonization (and vice 

versa), we also recommend that both the soils and the plants are evaluated for the 

presence of mycorrhizae. Although the exact role of AM fimgi in wetlands is still not 

fully understood, the results from this study imply that they are a significant component 

of the plant community. Because the AM fungi were found to be functional in these 

wetlands, it is expected that they are influencing plant diversity and competition by 

enhancing nutrient uptake, seedling establishment, and/or resistance to root pathogens 

(Newsham et al. 1995, Lewis and Koide 1990, Gange et al. 1993). Because of these 

implications, AM fimgi should be considered in plans to restore wetlands to a functional 

status and should be a significant component of studies assessing reference wetland 

dynamics.
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Fig 1: Map of the location of the four wetland sites. Site abbreviations are surrounded by 
circles.
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Figure 2: Picture of Spring Valley Marsh Site in June, 2000.

Figure 3: Photograph of Gingell Parcel Site in June, 2000
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Figure 4: Photograph of Travertine Fen Site in June, 2000.

Figure 5: Photograph of Siebenthaler Fen Site in August, 2000.
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Fig 6: Mean percent colonization for individual AM fungal structures by site and 
by gradient location. Colonization levels are an average for all months. However, 
%AM colonization from March through June only is used for arbuscular data due 
to the infrequency of arbuscules after June.
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Fig 7: Boxplot of the total AM colonization levels for the 
four wetland sites. Horizontal black line in the box marks 
the median of the colonization levels. The hinges of the box 
indicate the 25th and 75th percentiles. Whiskers indicate the 
largest/smallest observed value that is not an outlier for each 
case. Letters that are similar indicate significance between 
the two sites (p<0.05). Median values are for colonization 
levels for the entire sampling season.
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Fig 8: Mean spore numbers per gram of soil found at each part of 
the gradient in each wetland.
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Fig 9: Mean soil available phosphorus and soil moisture levels for each 
month by each site. Sampling points along the transect were averaged. 
SF = circle, TF = square, GP = upside down triangle, SV = star.
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Figure 10: Water levels for each site in May through September. 
100cm = soil saturation to the surface and all other water values 
(<100cm) indicate saturation below the soil surface.
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Fig 11: Mean monthly readings of total %AM colonization 
for each wetland site. Dissimilar letters indicate statistical 
significance (p<0.05) between months within each site.
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Fig 12: Mean gradient values of total %AM colonization for all sites. 
Dissimilar letters indicates statistical significance (p<0.05) between 
gradient locations.
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Fig 13: Error bar graph of %AM colonization of specific plant species 
selected for mycorrhizal analysis. Bars indicated 95% confidence interval. 
Boxes indicate mean %AM colonization for the data on each particular plant 
species.
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Table 1: Plant and soil characteristics for the four sites Siebenthaler Fen (SF), Travertine 
Fen (TF), Gingell Parcel (GP), and Spring Valley Marsh (SV) and the three gradient 
positions. The values are means + SE. Sample size for the sites is 56. Sample sizes for 
the gradient positions are 52 (dry), 46 (intermediate), and 62 (wet). The values for species
diversity are die averages found at each sampling location in each wetland.

Variable
Site Gradient

SF TF GP SV Dry Intermed Wet
Soil
phosphorus 4.00 0.56 3.12 9.04 4.49 5.30 2.77
(l^g g'1) ±0.231 ±0.047 ±0.221 ±0.673 ±0.500 ±0.801 ±0.413

soil moisture 236.42 172.37 215.24 186.72 149.18 207.23 261.44
(%) ±9.756 ±10.794 ±13.057 ±18.245 +12.454 ±11.895 ±13.841

organic 41.97 17.27 27.20 23.13 27.42 28.57 26.49
matter (%) ±1.196 ±1.047 ±1.978 ±1.603 +2.211 ±2.100 ±1.170

calcium 9912.80 9812.35 9357.73 8375.45 9186.65 9336.07 9534.97
(lb/acre) ±35.81 ±75.04 ±155.73 ±217.33 +174.76 ±151.20 ±114.61

magnesium 1592.30 777.48 1388.00 1260.85 1308.13 1282.04 1189.48
(lb/acre) ±5.77 ±40.97 ±35.13 ±36.01 ±56.30 ±51.52 ±41.94

pH 6.67 7.98 7.32 6.74 7.15 6.972 7.352
±0.043 ±0.022 ±0.052 ±0.113 ±0.086 ±0.115 ±0.076

potassium 130.45 51.73 109.60 116.98 118.67 98.37 91.19
(lb/acre) ±8.94 ±3.82 ±4.80 ±8.26 ±8.69 ±7.38 ±5.13

Plant
species 11.95 7.73 7.38 7.30 10.10 8.63 7.29
diversity ±0.43 ±0.33 ±0.44 ±0.44 ±0.37 ±0.57 ±0.33

% cover 77.13 75.50 73.88 77.25 78.75 74.78 74.44
±3.52 ±4.22 ±3.61 ±3.46 ±2.87 ±3.89 ±2.94
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Table 2: Spearman’s Rank Correlation summary showing
relationships between %AM colonization and Bray available soil 
phosphorus, Olsen available soil phosphorus, or % soil moisture. 
Correlation coefficients are done by site, (n = 56) 

Site
Soil
Variable

% AM
colonization
Spearman’s
rho N

SF BrayP 0.194 56
% moisture 0.335** 56

TF BrayP 0.201 56
%moisture -0.354*** 56
Olsen P 0.351*** 56

GP BrayP 0.158 56
%moisture -0.157 56
Olsen P 0.407** 56

SV BrayP 0.068 56
% moisture -0.028 56

***P<0.01, **P<0.05
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Table 3: Univariate analysis of variance of the effects of month and gradient on
%AM colonization. %AM colonization data was arcsine square root transformed for
this analysis, df - degrees of freedom.______________________________________

Effect df Mean Square F P
SF

Month 4
Gradient 2
Month*Gradient 5
Error 28

TF
Month 4
Gradient 2

Month* Gradient 8
Error 25

GP
Month 4
Gradient 2
Month*Gradient 8
Error 25

SV
Month 4
Gradient 2
Month*Gradient 6
Error 27

0.0535 5.631 0.002

0.0172 1.806 0.183
0.0060 0.628 0.680

0.0095

0.2500 45.445 <0.001
0.0838 15.258 <0.001
0.0058 1.048 0.429
0.0055

0.1070 6.537 0.001
0.0370 2.256 0.126
0.0129 0.787 0.619
0.0164

0.1260 39.714 <0.001
0.0160 3.646 0.040
0.0058 1.830 0.131
0.0032
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Table 4: AM status of the specific plant species selected for each sampling point in each 
wetland. All AM status levels are based on the highest colonization level found in that 
species at any one time during the study. Lightly = 5-25%; Moderately = 26-55%; 
Heavily = >56%. Wetland indicator status is based on the U.S. Fish and Wildlife 
Guidelines for Ohio. Sampling point 1 is the driest end of site and point 8 is the wettest 
end of site. Arbuscule presence is based on highest percentage found during the 
sampling season. No arbuscules were found after May.____________

Site Plant Species Indicator AM Status Arbuscule
Status Presence

SF
1 Alliaria officinalis UPL lightly
2 Solidago canadensis FACU lightly
3 Caltha palustris OBL lightly
4 Typha latifolia OBL heavily 4%
5 Carex hystericina OBL lightly
6 Phalaris arundinacea FACW lightly
7 Poa pratensis FACW moderately
8 Carex stricta FACW moderately

TF
1 Sorgastrum nutans UPL moderately
2 Schizachyrium scoparium FACU moderately 1%
3 Potentilla fructicosa FAC heavily 4%
4 Potentilla fructicosa FAC moderately 2%
5 Carex sterilis OBL moderately 1%
6 Carex sterilis OBL lightly
7 Typha latifolia OBL moderately 1%
8 Typha latifolia OBL heavily 11%

GP
1 Grass spp. UPL moderately
2 Carex stricta FACW lightly
3 Carex stricta FACW lightly
4 Potentilla fructicosa FAC moderately
5 Acorus calamus OBL lightly
6 Acorus calamus OBL lightly
7 Carex comosa OBL lightly
8 Typha latifolia OBL heavily
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Site Plant Species Indicator
Status

AM Status Arbuscule
Presence

SV
1 Grass spp. UPL heavily
2 Carex hystericina OBL moderately
3 Impatiens capensis FACW lightly 1%
4 Typha latifolia OBL heavily
5 Sparganium eurycarpu OBL lightly
6 Carex comosa OBL moderately 6%
7 Eleocharis erythropoda OBL lightly
8 Sparganium eurycarpu OBL moderately 4%
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Chapter 4

Synthesis and Future Directions

Wetlands ecosystems are unique habitats that support highly diverse communities 

of plants and offer numerous functional roles for the environment and for humans 

(Mitsch and Gosselink 1993). Even though wetlands are highly valued for their 

functions, many undisturbed wetlands are lost to development. These wetlands are 

mitigated so that every acre of original wetland must be replaced with 1.5 acres of 

restored wetland. Of course, it is not yet known if this replacement value is sufficient for 

true replacement of the functional ecosystem. Furthermore, these restoration projects, 

unfortunately, are not always successful and the restored wetland can end up as a non

functional, low diversity ecosystem.

Many techniques are being developed to help improve the success of restoration 

projects and a large number of these techniques are developed through studying 

ecosystem dynamics in reference wetlands which are healthy and resilient ecosystems. 

One area of techniques currently being researched includes re-establishing soil microbial 

communities in the wetlands (Wolters 1999, Schneble 1997). The soil microbial 

communities of wetlands have a significant role with nutrient cycling in wetlands and 

potentially play a large role in plant community dynamics. One potentially important 

group of soil microbes are the arbuscular mycorrhizal (AM) fungi. For many years it was 

assumed that AM fungi were not capable of living in wetland ecosystems (Harley 1969, 

Khan 1974); however, now it is well known that they are colonizing wetland plants and 

could have a significant role in wetland ecosystem functions (Ragupathy et al. 1990, 

Wetzel and van der Valk 1996). Hence, this study set out to decipher which temporal and
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gradient factors of wetlands regulate AM fungi in hopes to better understand their role in 

wetland ecosystems.

Generally, it is assumed that flooded soils limit the formation of AM associations 

in wetlands due to the low availability of oxygen; thus, it was hypothesized that habitats 

with flooded soils would have very low levels of colonization. Furthermore, it was 

hypothesized that the colonization levels of AM fungi in wetlands would be regulated by 

soil moisture, available phosphorus (P), and plant phenology as it is in uplands. Our data 

indicates that wetland plants are mycorrhizal under a wide range of edaphic and moisture 

conditions and may be only slightly limited by flooded soils. Interestingly, the AM fungi 

were not found to be correlated with soil moisture or available P except in very discrete 

instances. For available P, locations in Travertine Fen (a very P limited system) had AM 

fungal colonization levels correlated with P. In this wetland, the correlation was positive 

indicating that, besides just the wetland plants, the AM fungi are also limited by 

phosphorus levels at TF. Longer term research at this site and thorough evaluation of the 

phosphorus cycle within the soils and within the plants would provide important 

information on the AM association and its importance to P deficient fens such as TF. 

These types of fens tend to have high plant diversity which AM fungi could be promoting 

by diversifying the plant strategies for nutrient uptake. Investigations are needed in these 

systems that actually measure the possibility of AM fungi influencing plant diversity 

through enhanced nutrient uptake.

At Siebenthaler Fen (SF), soil moisture was a significant control of AM fungi 

with colonization increasing with moisture levels. This was unexpected since higher 

levels of moisture usually are found with lower colonization levels in wetlands. It is
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assumed that this result was due to SF never having flooded soils and possibly being 

limited by soil moisture. Optimum soil moisture levels for AM associations have been 

found to be directly correlated with optimum moisture levels for plants in a given 

ecosystem (Lodge 1989, Stevens and Peterson 1996). It would be interesting to 

investigate if this holds true for the plants and AM fungi at SF. Another possibility is that 

AM fongi may have a role in drought resistance for wetland plants should the plants 

experience very dry soils (relatively speaking).

The significant effect of month (indicating seasonal variation) in this study was 

largely unexpected. It was hypothesized that the AM fungi would only show temporal 

dynamics if they were in a habitat experiencing seasonal drawdown. Seasonality of 

mycorrhizal associations is commonly found in terrestrial environments and is related to 

soil P, temperature, plant phenology, and soil moisture (Demars and Boemer 1995). In 

wetlands, however, seasonality of AM colonization levels are usually assumed to occur 

only in wetlands that experience drawdown, which would provide an opportunity for 

oxygenated soils (Brown and Bledsoe 1996, Miller and Bever 1999). Results of this 

study indicated that the AM fungi were largely controlled by temporal dynamics which 

were not related to drawdowns, soil moisture levels, or available P levels in any of the 

wetlands. It is speculated that the temporal variation of the fungi in these systems is 

largely tied to plant phenology which indicates that the fungi are most important (and 

maybe only important) at times of maximum new root and plant growth in the spring. 

The presence of arbuscules only in the spring further supports this conclusion. Longer 

term research, including following colonization levels year round, would help to verify if
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AM fungi are most controlled by plant phenology in fen and marsh habitats as opposed to 

being controlled by abiotic factors.

Finding a large effect of month on mycorrhizae in wetlands suggests the need for 

research that does not include one time sampling. The current literature is dominated by 

studies using one time sampling (Wetzel and van der Valk 1996, Tinner et al. 2000, 

Rickerl et al. 1994, Miller and Bever 1999, Cooke and Lefor 1990, Stevens and Peterson 

1996, Thormann et al. 1999). The results of this study encourage more thorough 

evaluation of AM fungi in wetlands over many months, in many locations, and in many 

wetland plant species. For example, 100% of the plant species sampled in this study 

showed colonization by AM fungi, and 38% of these species had arbuscules in their 

cortical cells. Many of these plants assessed have been found by others to be either 

nonmycorrhizal or mycorrhizal depending on the study. Thoroughly examining the 

plants, including at different times of the year, might help to clarify this conflicting 

literature. It is suggested by Anderson et al. (1994) that single plant species may show 

strong dependence on AM fungi in one situation but not in another which, as indicated by 

this study, is quite likely in wetland ecosystems. The time differences in colonization and 

the plant species differences in mycorrhizal status could have important implications for 

maintaining diversity in wetland habitats.

As stated previously, our results indicated a slight effect of gradient on the 

colonization levels of AM fungi. However significant this effect is, it is still important to 

note that the AM fungi are somehow surviving and colonizing wetland plants in flooded 

soils. Even more important is the presence of arbuscules in the flooded soils indicating 

functionality of the association. The questions yet to be answered regarding this finding

114



revolve around the survival of AM fungi in anaerobic environments. Many have 

speculated that the AM fungi are able to obtain all of their oxygen from the 

aerenchymatous tissue or the rhizospheres of wetland plants. Brown and Bledsoe (1996) 

have even found morphological evidence for the AM fungi colonizing within the 

aerenchyma. Further research is needed to reveal if AM fungi are indeed using plant 

oxygen to survive in these habitats. The finding that Typha latifolia (having high 

amounts of developed aerenchyma) had the highest colonization levels of all plants at the 

four sites could be linked to the AM fungi using Typha latifolia as a survival mechanism 

in times of flooding. It is possible that the AM fungi are using this plant species’ roots as 

a propagule source for new colonization events in the springtime. The potential for this 

should be examined, especially since the typical propagule source, spores, are infrequent 

in wetland soils (Miller 2000, Brown and Bledsoe 1996) and are typically not viable in 

the spring (Friese, personal communication).

Many studies, unlike this one, do not find the presence of arbuscules at all and 

doubt the functionality of the AM association (Cooke et al. 1993; Cantelmo and 

Ehrenfeld 1999; Thormann et al. 1999). The absence of arbuscules could be tied to many 

biotic and abiotic factors. In this study, the absence of arbuscules seems to be seasonally 

controlled indicating the lack of plant need for the association after maximum root and 

plant growth. Even without the arbuscules, however, the AM fungi are still colonizing 

wetland plants. This leads to several questions including 1) are the fungi functional 

without the arbuscules? 2) do the AM fungi possibly have another functional 

morphology under anoxic conditions? 3) are there factors outside of plant phenology that 

limit the functioning of AM associations in host plants? 4) is the periodic nonfunctional
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association benign or parasitic? 5) what are the cost and benefits to both the plant and 

fungus for the association in anoxic soils? Answering these sort of questions should 

clarify the roles and benefits of AM fimgi in wetlands. The presence of AM fimgi in

wetland soils, whether functional or not, indicates that there is, at some time, an 

advantage of having the association. The plant may be maintaining the AM fungal 

association simply to ensure benefit should conditions change (such as the soil drying 

up). It would be interesting to find out if arbuscules do increase in abundance when soils 

significantly dry up and if nutrient uptake is enhanced at these times.

Even with the many unanswered questions, this research still provides major 

evidence to the significance of mycorrhizae in wetlands and a better understanding of 

their seasonal dynamics. The results indicate that the specific type of wetland habitat or 

plant species does not necessarily exclude AM fimgi from a wetland system. AM fimgi 

may turn out to be more important in P limited systems (such as fens); however, this does 

not mean that significant AM fungal roles will not be found in nutrient rich habitats (such 

as marshes). Benefits of the association to the plant may include roles well beyond the 

typical enhancement of nutrient uptake, including, but not limited to, enhancing seedling 

establishment and flooding survival (Keeley 1980). Therefore, more wetland habitats 

should be examined in a way to elucidate other benefits of the AM association to the 

plant community, especially since this will have important implications for 

reestablishment and persistence of wetland plants in restored ecosystems.

The results of this study clearly indicate the importance of soil gradient and 

seasonal dynamics of AM fimgi in wetland ecosystems. The differences found in spatial 

and temporal distributions of mycorrhizae in different wetland habitats have important
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implications for growth room studies and wetland restoration. Knowing the dynamics of 

mycorrhizae in reference (undisturbed) wetlands will be helpful in developing successful 

restoration techniques for degraded and disturbed systems. These restoration techniques 

will, hopefully, focus specifically on the important role of soil microbial communities in 

the establishment of fully functional wetland ecosystems.
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Appendix A

Evaluation of Edaphic Factors Distinguishing Marsh Habitats from Fen Habitats

MATERIAL AND METHODS

Field Design

Beginning in March 1990 transects were set up for each of the four wetlands. 

They were aligned according to water gradients so that each transect had an upland 

habitat end and an end with an obligate wetland plant community (based on Ohio’s 

wetland indicator categories). The length of the four transects varied because of the 

different sizes of the wetlands. Eight sampling points were selected along each transect 

to keep sampling number consistent. Sampling of these points began in March and 

continued once a month through September by using meter squared quadrats.

Soil Analysis

Two sets of soil cores were taken from four random places within each quadrat. 

Each core was 2.5cm in diameter and 15 to 20 cm deep. One set of soil cores was used to 

analyze general mycorrhizal colonization levels for each point along the transect (see 

Chapter 3) and to analyze soil characteristics. Within 24 hours of collection, this first set 

of soil samples was analyzed for percent moisture and organic content by using the 

procedures described by Brower and Zar (1984). These procedures included placing the 

soils in a drying oven for at least 24 hours at 100° C to determine the percent moisture 

and ashing the soils in a muffle furnace to determine organic content.
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The other set of soil cores was air dried and sent to a soils lab (Balance Labs, 

Marion, OH) for analysis of several abiotic factors including Bray and Olsen phosphorus, 

pH, estimated mineralizeable nitrogen, potassium, calcium, magnesium, and cation 

exchange capacity.

Water Analysis

Where available, surface water was sampled for phosphate levels using a YSI 9000 

Photometer (Yellow Springs Instrumentation, Inc). These phosphate levels were not 

statistically analyzed because of low sample size, but are presented for characterization of 

the water at the four wetland sites (Table 1).

Statistical Analysis

The soil variables measured (phosphorus, % moisture, organic matter, etc.) were 

not normally distributed and the variances were not homogeneous across the treatments; 

therefore, the variables were converted into ranks and statistical analyses were performed 

via Kruskal Wallis tests to test the significance of site and gradient effects.

Principal components analysis (PCA) summarizes patterns of correlations among 

observed variables and reduce a large number of variables to a smaller number of factors 

(components). PCA identifies the most important gradients along which the samples 

vary with respect to the original variables (Grimm and Yamold 1995). For this study, 

PCA with varimax rotation was used to summarize the relationships between edaphic 

factors in the four different sites and for each month sampling occurred. Varimax 

rotation, an orthogonal rotation, of the eigenvectors was used to achieve simple structure
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of the analysis and to improve the interpretability of the solution (Tabachnick and Fidell, 

1989). Sample size was 56 for each month for all variables included in this analysis. All 

analyses were performed using SPSS Base 10.0 (SPSS 10.0; SPSS, Inc, 1999).

RESULTS

StoZ and Water Characteristics

Soil characteristics by site and by gradient are given in Table 2. All variables 

were significantly influenced by site (P<0.001). SF had the highest calcium, potassium, 

magnesium, % soil moisture and % organic matter levels. Phosphorus levels varied 

significantly (%2 = 129.447, df = 3, P = 0.0001) by site with SV having the highest levels 

and TF having the lowest levels (Fig 1). pH levels varied around neutral with SV soils 

having slightly acidic soils and TF having slightly basic soils. The two variables acting 

most similarly among the sites were soil moisture and organic matter. Highest values for

these variables were found at SF and lowest values were found at TF.

Phosphorus (P) significantly (%2 = 11.562, df = 2, P = 0.003) differed by gradient 

position with the intermediate section of the gradient having the highest levels of P and 

the wet section having the lowest levels. Percent organic matter showed a similar trend 

to phosphorus along the gradient although it was not significant. pH significantly 

differed along the gradient (%2 = 6.369, df = 2, P = 0.041) with higher pH levels in the 

wet section of the gradient. Percent soil moisture (significant at /2 = 30.210, df = 2, 

P<0.001) and calcium levels (not significant) rose as the gradient changed from dry to 

wet. On the other hand, magnesium showed an opposite trend with significantly higher 

(%2 = 7.112, df = 2, P = 0.029) values at the dry end of the gradient.
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Phosphorus and percent soil moisture values by month are shown in Figure 1. 

The trends are split into sites due to both variables having significant site effects. Month 

does have a significant (y2 = 13.377, df = 6, P = 0.037) effect on phosphorus with May 

having the highest values and July having the lowest values. The effect of month on 

moisture is largely dependent on site and shows no overall trends among the sites.

Water phosphate levels are given in Table 1 for each month within each site. Due 

to varying water levels, not all points were sampled and some points were not sampled 

every month. SF water phosphate levels were similar within the intermediate and wet 

portions of the gradient that were sampled. The values slightly rose in June and July but 

fell back down by September. The water phosphate levels at TF acted slightly different 

between the two gradient locations sampled. The intermediate gradient phosphate levels 

rose steadily until August and then dropped off; however, the wet gradient phosphate 

levels rose quickly from April to May and then fluctuated throughout the season. GP had 

similarities between the two parts of the gradient sampled. The levels show an increasing 

trend from non-detectable levels of phosphate in April to levels around 0.70mg/l by 

September. Water phosphate levels at SV fluctuated and differed greatly according to the 

sampling point along the transect. Points 5 and 6 show a tremendous leap in phosphate 

levels between March and June and a drastic drop off after July.

Principal Components Analysis (PCA)

PCA was used to examine the relationship between patterns of soil characteristics 

and the different wetlands and also between patterns of soil characteristics and vegetation 

used for this study. PCA of the soil characteristics resulted in two components with
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eigenvalues of 1 which together accounted for 72.059% of the variance of the original set 

of 8 variables. The first component had high loadings for magnesium, pH, phosphorus, 

and potassium and accounted for 38.5% of the variance (Table 3). Wetland sample points 

with high positive component 1 scores were enriched with a higher cation exchange 

capacity and higher Mg, P, and K contents while having lower pH values which loaded 

strongest on component 1 (Figure 2). Cation exchange capacity loaded weakly on 

component 1 and, therefore, was not used in interpreting the component. Along 

component 1 the marsh areas, including SV and areas of GP, had values grouped around 

zero. On the other hand, the two true fen areas, TF and SF plot out on opposite sides of 

the component 1 gradient with TF plotting at negative values of the component and SF 

plotting at positive values of the component.

The second component had high loadings for calcium, % organic content, and % 

moisture and accounted for 33.558% of the variance (Table 3). All three of these 

variables showed enrichment in the same direction (positive direction) along the gradient 

defined by component 2. Calcium had the highest loading values and, therefore, was the 

most important variable in defining component 2. Along component 2, the two fens and 

fen-like area of GP fall out relatively close together while SV and the marsh-like sites of 

GP fell out anywhere between the fen habitats and the opposite end of the component 

(Figure 2). Wetland sites with high positive component 2 scores tended to have high 

organic matter, soil moisture, and/or Ca content. SF sampling points showed high 

positive values for both principal components indicating that this site was enriched by all 

soil variables tested except for pH.
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Figure 3 portrays the same principal components analysis but separates the points 

according to vegetation that was sampled within each wetland. Only plants that occurred 

in more than one location and/or wetland are shown. Component 1 portrays a clustering 

of Carex sterilis and Potentilla fructicosa at the negative end. At the positive end of this 

gradient is Carex hystericina while Typha latifolia can be found all along component 1. 

Component 2 produces a clustering of grass species at the negative end and sweet flag 

closer to the positive end. Most species portrayed in this plot have a rather wide spread 

distribution along one of the two components.

DISCUSSION

Comparative Dynamics of Wetland Habitats

The four sites in this study did show great variance in environmental factors and 

the combination of both components I and II of the principal components analysis (PC A) 

clearly divided the sites into separate entities. Component I was largely related to pH 

demonstrating that higher levels of available P, CEC, Mg, and K were found with lower 

levels of pH, as expected (Brady and Weil 2000, Richardson and Vespraskas 2001). This 

component significantly separated the two dominant fen habitats (SF and TF) which 

probably were most separated by their large differences in P and pH values. Brady and 

Weil (1990) found that when pH decreases, there is a decline in the percentage of P 

linked to Ca and, therefore, greater P availability. This is probably a very significant 

occurrence in these fen habitats that are highly saturated with calcium carbonates deposits 

from the groundwater (Turner et al. 2000, Jim Schneider, personal communication). SV 

was even further separated from TF than was SF largely due to SV having much higher
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levels of available P (>9ppm) than TF (<lppm).

Component II was important in separating locations within sites with higher 

organic matter buildup and/or calcium carbonate deposits. SF did have the overall 

highest organic matter content for the 4 sites (placing it on the positive end of component 

II); however, parts of all wetlands had high organic matter content as indicated by the 

PCA plot (Fig 2). Some areas of the two wetlands with marsh habitat (SV and GP) 

demonstrate very low values on component II indicating very low calcium deposits or 

very low organic matter buildup caused by periodic drawdowns (Richardson and 

Vepraskas 2001). Although TF had very high base saturation values for Ca (ranging 

from 83% to 97%), which should place it high on component II, its organic matter 

content, and thus soil moisture content, was the lowest of all 4 sites. This centered TF’s 

soil characteristics around zero for component II. TF did have a large buildup of peat 

(i.e. organic matter), however the surface of this fen has a lot of calcium carbonate 

deposits that obscure the accumulation of organic matter, thus the mineral deposits 

having a greater effect than peat on the nutrient and mineral dynamics of this wetland.

All sites in this study were groundwater driven; therefore, it is not surprising that 

the sites have high levels of calcium or that the sites have decreased levels of available P 

in the flooded soils. Even though it is usually found that P is more available in flooded 

soils (Mitsch and Gosselink 1993, Richardson and Vepraskas 2001), the higher calcium 

concentration of the water could be tying up significant amounts of the available P in the 

soils of this study (Lindsay 1979, Brady and Weil 2000). It is also not surprising that TF 

has such low levels of P (<lppm) because the peat at this wetland is extremely calcerous. 

The high P values in SV are expected as it is a true marsh habitat with soils that are
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inundated. Its soils are largely mineral based and will be influenced by seasonal 

fluctuations in water levels allowing P to become more soluble (Turner et al. 2000, 

Mitsch and Gosselink 1993).

Plant Community Dynamics

Principal components analysis (PCA) of edaphic factors demonstrated the 

influences of environmental factors on plant species distributions within the wetlands 

studied. PCA (Fig 3) of the dominant plant species in the four sites of this study reveals 

many important patterns. In particular, Typha latifolia was found all along both 

components clearly revealing that these plants are generalists in wetland ecosystems. 

Their distribution in the PCA plot indicates their tolerance of a wide range of 

environmental conditions, hence their ability to establish and invade in many wetland 

types. Within the genus Carex, plants were also distributed along both PCA components. 

However, the four species assessed individually show a very narrow range of tolerance 

along component I which defines soils by pH, P, CEC, Mg, and K. Carex stricta and 

Carex comosa are centered around zero on component I indicating a lack of tolerance to 

extreme conditions, while Carex sterilis data points load where soil is low in P, CEC, 

MG, and K but has higher pH values. Carex hystericina lies at the opposite extreme 

tolerating higher available phosphorus and possibly less basic soils. All four Carex 

species show a wide range of tolerance along component II which defines soils enriched 

with organic matter content, calcium, and moisture. Other interesting relationships 

include Acorus calamus which lies around zero on both components indicating low 

tolerance to extremes, and grass species loading very low on component II indicating
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tolerance to low organic matter concentrations (thus also low soil moisture levels) and/or

low calcium concentrations.
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Fig 1: Mean soil available phosphorus and soil moisture levels for each 
month by each site. Sampling points along the transect were averaged. 
SF = circle, TF = square, GP = upside down triangle, SV = star.
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Table 1: Water phosphate levels as determined by a YSI photometer for each month 
within each wetland. Locations where samples were taken are indicated by gradient 
location (dry, intermediate, or wet) and by sampling point location (1 = driest location, 
8 = wettest location). Values are given as mg/1 PO4. Due to varying water levels, not

LOCATION

March

Water Phosphate Value by Month

SeptemberSite Gradient
Position April May June July August

SF
Intermediate 0.12 0.07 0.36 0.48 0.46 0.28 0.12
(4)
Wet 0.16 0.14 0.14 0.34 0.54 0.14 0.20
(7/8)

TF
Intermediate 0.16 0.36 0.4 0.56 0.72 0.46
(4)
Wet 0 0.44 0.48 0.28 0.40 0.42
(6)

GP
Intermediate 0 0.42 0.42 0.48 0.40 0.75
(5)
Wet 0.08 0 0.40 0.30 0.44 0.44 0.61
(8)

SV
Wet 1.03 3.75 4 0.75 0.48
(5/6)
Wet 0.94 0.38
(7)
Wet 0.81 0.32 0.40 0.67 0.91 0.94 0.61
(8)

132



Table 2: Plant and soil characteristics for the four sites Siebenthaler Fen (SF), Travertine
Fen (TF), Gingell Parcel (GP), and Spring Valley Marsh (SV) and the three gradient 
positions. The values are means + SE. Sample size for the sites is 56. Sample sizes for 
the gradient positions are 52 (dry), 46 (intermediate), and 62 (wet). The values for species
diversity are the averages found at each sampling location in each wetland.

Variable
Site Gradient

SF TF GP SV Dry Intermed Wet
Soil
phosphorus 
(ng g'1)

4.00
±0.231

0.56
+0.047

3.12
±0.221

9.04
±0.673

4.49
±0.500

5.30
±0.801

2.77
±0.413

soil moisture 
(%)

236.42
±9.756

172.37
+10.794

215.24
±13.057

186.72
±18.245

149.18
±12.454

207.23
±11.895

261.44
±13.841

organic 
matter (%)

41.97
±1.196

17.27
±1.047

27.20
±1.978

23.13
±1.603

27.42
±2.211

28.57
±2.100

26.49
±1.170

calcium
(lb/acre)

9912.80
+35.81

9812.35
±75.04

9357.73
±155.73

8375.45
±217.33

9186.65
±174.76

9336.07
±151.20

9534.97
±114.61

magnesium
(lb/acre)

1592.30
+5.77

777.48
±40.97

1388.00
±35.13

1260.85
±36.01

1308.13
±56.30

1282.04
±51.52

1189.48
±41.94

pH 6.67
+0.043

7.98
±0.022

7.32
±0.052

6.74
±0.113

7.15
±0.086

6.972
±0.115

7.352
±0.076

potassium
(lb/acre)

130.45
+8.94

51.73
±3.82

109.60
±4.80

116.98
±8.26

118.67
±8.69

98.37
±7.38

91.19
±5.13
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Table 3. Results of principal components analysis for 
all soil variables (n = 224).

Variable Component
I Component II

P 0.727 -0.522

% Organic 0.401 0.784

% Moisture -0.0307 0.774

K 0.736 -0.162

Ca -0.134 0.829

Mg 0.780 0.403

pH -0.891 -0.0972

CEC 0.654 0.561

Eigenvalue 3.080 2.685

% Eigenvalue 38.500 33.558
Sum%
Eigenvalue 38.500 72.059
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Appendix B

Wetland Sites’ Plant Species Lists

Wetland species indicator status according to the U. S. Fish and wildlife guidelines.

SIEBENTHALER FEN PLANT LIST

Scientific Name Status Common Name
Actinomeris altemifolia FAC Wingstem
Agrimonia parviflora FAC Small Flowered Agrimony
Agrostis alba FACW Redtop
Alliaria officinalis FACU- Garlic Mustard
Apios americana FACW Groundnut
Apocynum cannabinum FACU Indian Hemp
Asclepias incamata OBL Swamp Milkweed
Aster novae-angliae FACW New England Aster
Aster puniceus OBL Purple-stemmed Aster
Aster sp.
Bidens connata OBL Swamp Beggar Ticks
Bidens coronata OBL Tickseed Sunflower
Boehmeria cylindrica FACW+ False Nettle
Caltha palustris OBL Swamp Marigold
Calystegia sepium FAC- Hedge Bindweed
Carex bromoides FACW Brome-like Sedge
Carex comosa OBL Bearded Sedge
Carex hystericina OBL Porcupine Sedge
Carex lupiliformis FACW+ False-hop Sedge
Carex lupulina OBL Hop Sedge
Carex stipata OBL Stalk Grain Sedge
Carex stricta OBL Uptight Sedge
Carex tribuloides FACW+ Blunt Broom Sedge
Cephalanthus occidental OBL Common Buttonbush
Chelone glabra OBL White Turtlehead
Cirsium arvense FACU Canada Thistle
Cirsium muticum OBL Swamp Thistle
Clematis virginiana FAC Virgin’s Bower
Comus amomum FACW Silky Dogwood
Cornus stolonifera FACW+ Red-osier Dogwood
Cuscuta gronovii Nl Common Dodder
Cyperus strigosus FACW Straw-color Flat Sedge
Eleocharis erythropoda OBL Bald Spikerush
Elymus villosus FACU- Hairy Wild Rye
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Elymus virginicus var. virginicus FACW- Virginia Wild Rye
Eryngium yuccifolium FAC Rattlesnake Master
Eupatoriadelphus macula FACW Joe-pye Weed
Eupatorium perfoliatum FACW+ Common Boneset
Euthamia graminifolia FAC Bushy Goldenrod
Galium palustre OBL Marsh Bedstraw
Geum laciniatum FAC+ Rough Avens
Geum rivale OBL Water Avens
Glyceria striata
Grass sp.

OBL Fowl Manna Grass

Hierochloe odorata FACW Vanilla Grass
Humulus lupulus Nl Common Hop
Impatiens capensis FACW Jewelweed
Ipomoea purpurea UPL Morning Glory
Iris shrevei OBL Southern Blueflag
Juncus dudleyi Nl Dudley's Rush
Juncus tenuis FAC- Slender Rush
Justica americana OBL Common Water Willow
Lathyrus palustris FACW+ Marsh Vetchling
Leersia oryzoides OBL Rice Cutgrass
Lobelia siphilitica FACW+ Great Lobelia
Mimulus alatus OBL Winged Monkeyflower
Monarda fistulosa UPL Wild Bergamot
Muhlenberia schreberi FAC Nimblewill
Panicum dichotomiflorum FACW- Panic Grass
Pedicularis lanceolata FACW Swamp Lousewort
Phalaris arundinacea FACW Reed Canary Grass
Phytolacca americana FACU+ Common Pokeweed
Pilea pumila FACW Clearweed
Poa palustris FACW Fowl Bluegrass
Poa pratensis FACU Kentucky Bluegrass
Polygonum hydropiper OBL Common Smartweed
Polygonum punctatum OBL Smartweed
Polygonum sagittatum OBL Tear Thumb Arrowleaf
Polygonum scandens FAC Climbing False Buckwheat
Rosa palustris OBL Swamp Rose
Rosa setigera FACU Prairie Rose
Rudbeckia triloba FACU Thin Leaved Coneflower
Rumex crispus FACU Curly Dock
Rumex orbiculatus OBL Great Water Dock
Rumex verticillatus OBL Swamp Dock
Scirpus acutus OBL Hard-stem Bulrush
Scirpus atrovirens OBL Green Bulrush
Solanum dulcamara FAC- Bittersweet Nightshade
Solidago canadensis
Solidago sp.

FACU Canada Goldenrod 
Goldenrod
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Thalictrum polygamum 
Toxicodendron radicans 
Triodia flava 
Typha latifolia 
Urtica dioica 
Valerianella umbilicata 
Verbana hastata 
Vernonia gigantea 
Viburnum lentago

FACW Tall Meadow Rue
FAC Poison Ivy
Nl Purpletop
OBL Cattail
FACU Stinging Nettle
FAC Corn Salad
FACW+ Blue Vervain
FAC Tall Ironweed
FAC Nannyberry
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GINGELL PARCEL PLANT LIST

Scientific Name Status Common Name
Acorus calamus OBL Sweetflag
Actinomeris alternifolia FAC Wingstem
Ambrosia artemisiifo FACU Annual Ragweed
Angelica atropurpurea OBL Great Angelica
Aster puniceus OBL Purple-stemmed Aster
Bidens connota OBL Swamp Beggar Ticks
Bidens coronata OBL Tickseed Sunflower
Caltha palustris OBL Marsh Marigold
Calystegia sepium FAC- Hedge Bindweed
Carex comosa OBL Bearded Sedge
Carex stipata OBL Stalk Grain Sedge
Carex stricta FACW Uptight Sedge
Chelone glabra OBL White Turtlehead
Cirsium arvense FACU Canada Thistle
Coreopsis verticillata Nl Whorled Coreopsis
Deschampsia cespitosa FACW Tufted Hairgrass
Eleocharis erythropoda OBL Bald Spikerush
Eupatorium perfoliatum FACW+ Common Boneset
Equisetum arvense FAC Field Horsetail
Galium palustre OBL Marsh Bedstraw
Galium sp. Bedstraw
Grass spp.
Impatiens capensis FACW Jewelweed
Leersia oryzoides OBL Rice Cut Grass
Nasturtium officinale OBL True Water-cress
Pedicularis lanceolata FACW Swamp Lousewort
Pilea pumila FACW Clearweed
Polygonum amphibium OBL Water Smartweed
Polygonum punctatum OBL Smartweed
Potentilla fructicosa FAC Shrubby Cinquefoil
Rosa palustris OBL Swamp Rose
Sagittaria latifolia OBL Common Arrowhead
Salix nigra FACW+ Black Willow
Salix sp. Willow sp.
Sambucus canadensis FACW- American Elder
Scirpus atrovirens OBL Green Bulrush
Solanum dulcamara FAC- Bittersweet Nightshade
Solidago sp. Goldenrod
Sparganium eurycarpu OBL Burreed
Symplocarpus foetidus OBL Skunk Cabbage
Typha latifolia OBL Cattail
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Valerianella umbilicata 
Vernonia gigantea

FAC
FAC

Corn Salad 
Tall Ironweed
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TRAVERTINE FEN PLANT LIST

Scientific Name Status Common Name
Acorus calamus OBL Sweetflag
Allium canadense FACU Meadow Onion
Allium tricoccum FACU+ Wild Leek
Andropogon gerardi FAC Big Bluestem
Andropogon virginicus FACU Broomsedge
Asclepias incamata OBL Swamp Milkweed
Asclepias verticillata Nl Whorled Milkweed
Aster novae-angliae FACW- New England Aster
Bidens coronata OBL Tickseed Sunflower
Carex amphibola FAC Narrow Leaf Sedge
Carex frankii OBL Frank's Sedge
Carex hystericina OBL Porcupine Sedge
Carex lupuliformis FACW+ False-hop Sedge
Carex squarrosa FACW Squarrose Sedge
Carex sterilis OBL Dioecious Sedge
Carex stipata OBL Stalk Grain Sedge
Carex stricta OBL Uptight Sedge
Carex suberecta OBL Prairie Straw Sedge
Cercis canadensis FACU- Redbud
Cirsium altissimum Nl Tall Thistle
Cirsium arvense Nl Canada Thistle
Cirsium muticum OBL Swamp Thistle
Coreopsis verticillata Nl Whorled Coreopsis
Comus Sp. Dogwood Sp.
Deschampsia cespitosa FACW Tufted Hairgrass
Eleocharis erythropoda OBL Bald Spikerush
Eleocharis palustre OBL Creeping Spikerush
Equisetum arvense FAC Field Horsetail
Equisetum laevigatum FACW Smooth Scouring Rush
Eupatorium altissimum Nl Tall Boneset
Eupatorium maculatum FACW Joe-pye Weed
Eupatorium perfoliatum FACW+ Common Boneset
Festuca obtusa FACU Nodding Fescue
Fraxinus sp. Ash
Gentiana clausa FACW Closed Gentian
Gentiana linearis OBL Narrow-leaved Gentain
Glyceria striata OBL Fowl Manna Grass
Grass sp.
Helianthus tuberosus FAC Jerasulem Artichoke
Impatiens capensis FACW Jewelweed
Juncus brachycephalus OBL Small Head Rush
Juncus diffusissimus FACW Slim-pod Rush
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Juncus dudleyi 
Juncus torreyi 
Leersia oryzoides 
Lobelia kalmii 
Lobelia spicata 
Lysimachia lanceolata 
Panicum lanuginosum 
Parthenocissus quinquef 
Pilea pumila 
Platanus occidentalis 
Potentilla fructicosa 
Pycnanthemum pilosum 
Pycnanthemum tenuifolium

Pycnanthemum virginium 
Rhus sp.
Rhynchospora capillacea 
Rosa setigera 
Rubus allegheniensis 
Rubus occidentalis 
Rudbeckia fulgida 
Rudbeckia hirta 
Rumex sp.
Salix sp.
Schizachyrium scoparium 
Scirpus acutus 
Scirpus americanus 
Scirpus atrovirens 
Scirpus pungens 
Silphium trifoliatum 
Solidago riddellii 
Solidago graminifolia 
Solidago ohioensis 
Solidago patula 
Solidago sp.
Sorgastrum nutans 
Sorghum halapense 
Thalictrum pubescens 
Toxicodendron radicans 
Typha latifolia 
Verbesina alternifolia 
Vernonia gigantea 
Veronica scutellata

Nl
FACW
OBL
OBL
FAC-
FAC
Nl
FACU
FACW
FACW-
FAC
Nl
FACW

FAC

OBL
FACU
FACU-
Nl
FAC
FACU-

FACU-
OBL
OBL
OBL
FACW+
Nl
OBL
Nl
OBL
OBL

UPL
FACU
FACW+
FAC
OBL
FAC
FAC
OBL

Dudley's Rush 
Torrey's Rush 
Rice Cut Grass 
Kalms Lobelia 
Pale-spike Lobelia 
Lance Leaved Loosestrife 
Panic Grass 
Virginia Creeper 
Clearweed 
American Sycamore 
Shrubby Cinquefoil 
Hairy Mountain Mint 
Narrow Leaved Mountain 
Mint
Virginia Mountain Mint 
Sumac Sp.
Needle Beakrush 
Prairie Rose 
Common Blackberry 
Black Raspberry 
Orange Coneflower 
Black-eyed Susan 
Dock Sp.
Willow Sp.
Little Bluestem 
Hard-stem Bulrush 
Olney's Bulrush 
Green Bulrush 
Three Square Bulrush 
Whorled Rosinweed 
Riddell's Goldenrod 
Lance Leaved Goldenrod 
Ohio Goldenrod 
Rough-leaf Goldenrod 
Goldenrod Sp.
Indian Grass 
Johnson Grass 
Tall Meadow Rue 
Poison Ivy 
Broad-leaf Cattail 
Wingstem 
Tall Ironweed 
Marsh Speedwell
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SPRING VALLEY MARSH PLANT LIST

Scientific Name Status Common Name
Achillea millefolium FACU Common Yarrow
Agrimonia parviflora FAC Small Flowered Agrimony
Allium sp. Wild Onion
Asclepias incarnata OBL Swamp Milkweed
Aster sp. Aster
Avert a fatua Nl Wild Oats
Bidens frondosa FACW Beggar Ticks
Bidens sp.
Boehmeria cylindrica FACW+ False Nettle
Bromus sp. Grass
Carex comosa OBL Bearded Sedge
Carex granularis FACW+ Meadow Sedge
Carex hystericina OBL Porcupine Sedge
Carex lupulina OBL Hop Sedge
Carex stipata OBL Stalk Grain Sedge
Carex vulpinoidea OBL Fox Sedge
Calystegia sepium FAC- Hedge Bindweed
Chelone glabra OBL White Turtlehead
Commelina commmunis FAC- Dayflower
Cornus stolonifera FACW+ Red-osier Dogwood
Cyperus strigosus FACW Straw-color Flat Sedge
Daucus carota FACU Queen Anne's Lace
Deschampsia cespitosa FACW Tufted Hairgrass
Eleocharis erythropoda OBL Bald Spikerush
Equisetum arvense FAC Field Horsetail
Erechtites hieraciifolia FACU Pilewort
Eupatoriadelphus macula FACW Joe-pye Weed
Eupatorium perfoliatum FACW+ Common Boneset
Festuca pratensis FACU- Meadow fescue
Galium palustre OBL Marsh Bedstraw
Grass sp.
Hydroctyle ranuncul OBL Floating Pennywort
Impatiens capensis FACW Jewelweed
Juncus effusus FACW+ Soft Rush
Kuhnia eupatorioides Nl False Boneset
Leersia oryzoides OBL Rice Cutgrass
Lycopus uniflorus OBL Northern Bugleweed
Mimulus ringens OBL Alleghany Monkeyflower
Pastinaca sativa Nl Wild Parsnip
Phalaris arundinacea FACW Reed Canary Grass
Pilea pumila FACW Clearweed
Plantago lanceolata UPL English Plaintain
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Polygonum hydropiper OBL Common Smartweed
Polygonum punctatum OBL Smartweed
Polygonum sagittatum OBL Tear Thumb Arrowleaf
Rumex orbiculatus OBL Great Water Dock
Sagittaria latifolia OBL Common Arrowhead
Salix nigra FACW+ Black Willow
Scirpus acutus OBL Hard-stem Bulrush
Scirpus atrovirens OBL Green Bulrush
Scirpus cyperinus OBL Woolgrass
Scirpus validus OBL Soft-Stem Bulrush
Scutellaria epilobiifolia FACW Marsh Skullcap
Setaria glauca FAC Yellow Bristle Grass
Silphium terebinthinace FACU Prairie Dock
Sium suave OBL Water Parsnip
Solidago sp. Goldenrod
Sparganium eurycarpu OBL Burreed
Trisetum pennsylvanicum OBL Swamp Oat
Typha latifolia OBL Cattail
Urtica dioica FACU Stinging Nettle
Urtica procera Nl Tall Nettle
Verbana urticifolia FACU White Vervain
Vernonia gigantea FAC Tall Ironweed
Viola cucullata FACW+ Marsh Blue Violet
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Miller, Ryan; Bohrer, Kelly, and Friese, Carl. A study on soil and water quality in 
Southwestern Ohio fen and marsh habitats.
Presented at: Stander Symposium, University of Dayton, 2001.

Bohrer, Kelly. A comparative study of the seasonal plant and mycorrhizal community 
dynamics of fens and marshes in Greene County, Ohio.
Presented at: Ohio Biological Survey Annual Meeting, Columbus, OH. 2000.

Bohrer, Kelly and Carl F. Friese. Development of Conservation Corner: A model for 
ecological education and restoration at Cox Arboretum and Gardens, Dayton,
OH.
Presented at: International Conference for Society of Ecological Restoration, 
San Francisco, CA. 1999.

Adler (Bohrer), Kelly. Development of a plan for environmental management and 
education at Cox Arboretum (Conservation Comer).
Presented at: Stander Symposium, University of Dayton, 1996.
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