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ABSTRACT

STUDY OF THE RELATIVE RESIDUAL SURFACE STRESSES ON
6H SILICON CARBIDE CERAMIC DUE TO MACHINING USING LASER 
RAMAN MICROPROBE SPECTROSCOPY

BINFORD, Joseph L. DI
University of Dayton, 1996
Advisor: Dr. Perry P. Yaney

Microcracks and other defects in ceramic materials are often caused by the 

presence of residual surface stress. These imperfections affect the strength of the ceramic

material and eventually cause mechanical failure. Information about the residual surface

stress can determine the best machining process for obtaining optimal characteristics in 

finished ceramic materials. In this work, sixteen 6H polytype silicon carbide (SiC) 

specimens comprising nine processing techniques were studied. The main goal of the 

studies were measurements of the Raman shifts and linewidths of the 767 cm'1 (EJ, the 

788 cm1 (A1T/E2), and the 797 cm'1 (E1T) Raman lines on the planar optic branch for 

6H SiC. Emphasis was placed on measurements of the 788 cm'1 (TO) Raman line since it 

has a relatively large signal strength and is highly stable. These Raman shift and linewidth 

measurements represented the relative residual surface stress in the ceramic material. A 

laser Raman microprobe was used to conduct these investigations and includes the use of 

a two-dimensional liquid-nitrogen-cooled CCD array detector mounted on a modified
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Czemy-Tumer double spectrometer and a diode-laser-pumped, doubled cw Nd: YAG laser 

at 532 nm. The studies showed that creep feed grinding produces less residual surface 

stress when compared with conventional grinding. However, the use of heat treatment or 

oxidation on baseline (conventional) grind specimens reduced the residual surface stress 

below that of the creep feed grind specimens. These studies also revealed that decreased 

residual surface stress is associated with higher flexural strength. Other studies were 

conducted to investigate polarization, fluorescence, the presence of other SiC polytypes, 

and grinding damage profiles obtained by varying the incident laser wavelength. A 

galvanometer scanner was incorporated into the Raman microprobe system and operated

successfully during preliminary studies to demonstrate its capabilities for further 

spectroscopic image processing applications.
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CHAPTER I

INTRODUCTION

The Raman effect was discovered by C. V. Raman in 1921.1 Raman spectroscopic 

techniques play an important role in understanding the microstructure of many materials. 

Due to its typically weak signal, the potential of Raman spectroscopy wasn't fully realized 

until the 1960's with the advent of the laser, a source of light strong enough to induce 

easily-measurable levels of Raman signal using electronic detection. For example, the 

Raman signal strength is about 10'11 of the incident light power for 6H SiC specimens 

based on the experimental setup used in this research. (See Appendix A.)

Raman spectroscopy is a powerful research tool for studying the atomic lattices 

and molecular structures of materials. By measuring the Raman signal, the vibrational 

modes and hence the intrinsic properties of the material may be determined. In 

combination with other well known research methods, such as IR absorption spectroscopy 

and x-ray diffraction techniques, Raman spectroscopy can aid in the measurement of bond 

length, bond angle, and bond strength.

The vibrational modes of solids may also be analyzed using Raman spectroscopy

based on principles from solid state physics and crystallography. In addition, the creation 

of new modes, the splitting of modes, and the broadening and/or shifting of modes can

give an indication of the residual stresses (bulk or surface) in the material due to
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machining treatments during processing. These changes in the modes arise from 

compression or tension of the crystallite structure due to changes in the crystal symmetry, 

the local size of the lattice, or both.

Emphasis in both industry and government is more than ever being placed on ways 

to evaluate the quality and integrity of materials. A Raman microprobe facility greatly aids 

in the nondestructive testing of materials by measuring the vibrational modes and 

correlating changes in the spectra with changes in material strength (flexural or tensile) 

and the residual surface strain produced during processing. The primary focus of this 

thesis is to show the influence of various grinding methods on the residual surface stresses 

and the flexural strength of 6H SiC using Raman microprobe spectroscopy. It has been 

shown that material strength is greatly influenced by surface processing.2 In addition, a 

galvanometer scanner which was installed in the Raman microprobe system at the end of 

this work will be described and the preliminary experimental results obtained with it will 

be presented.

Chapter II gives a short background and a review of the theory of Raman 

scattering. A discussion on the crystal lattice structures of cubic and hexagonal SiC and 

how residual surface stresses introduced through grinding are determined from the Raman 

spectrum is also given. Chapter m describes the Raman microprobe system and the 

acquisition and calibration of Raman spectral data using both PMT and CCD array 

detection systems. Chapter IV consists of three sections. The first section describes 

typical Raman spectra obtained from both single crystal and polycrystalline 6H SiC 

specimens using both detection systems. The second section covers a polarization
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dependence study of the 790 cm'1 region Raman modes for 4H and 6H SiC single crystal 

specimens. Finally, the third section describes the grinding studies performed on 6H SiC 

specimens, including a discussion on ceramic material processing methods, the techniques 

used to measure the relative residual surface stresses produced by each of these processing 

methods, and the correlation of these measurements with flexural strength. Chapter V 

details the experimental results of studies performed primarily on 6H SiC specimens. 

These studies included the following: fluorescence studies of certain ceramic specimens; 

appearance of different vibrational modes due to the existence of other crystalline 

polytypes (4H); and studies of grinding damage profiles using different incident 

wavelengths. Chapter VI describes a prototype galvanometer scanner for the Raman 

microprobe system with consideration for computer-controlled operation. Chapter VII 

provides a discussion of this work with conclusions and recommendations for future

research.

Calculations of the absolute power of Raman light scattered by 6H SiC for this 

research are given in Appendix A. Detailed listings of computer macros used to analyze 

the Raman data are included in Appendix B with internal documentation. Appendix C 

describes the wavelength dispersion linearity of spectrometers and Appendix D provides 

additional information on Raman tensor analysis. A discussion on weighted statistical 

averaging is given in Appendix E.



CHAPTER H

THEORY

The Raman Effect

The Raman effect is different from the well known Rayleigh scattering effect in 

which the scattered light is of the same frequency as that of the incident light. The Raman 

effect, by contrast, is an "inelastic" process wherein an incident photon is annihilated with 

the simultaneous creation of a new photon of lower or higher energy than the incident 

photon. In the lower energy case, the remaining energy excites the molecule or crystalline 

lattice to a higher vibrational and/or rotational state. This process is called Stokes 

scattering and is typically strongest due to the higher population of the initial state. When 

the initial state is above the ground state, the outgoing photon can have an energy higher 

than the incident photon. This process is called anti-Stokes scattering in which a molecule 

or lattice is left in a lower energy state. These processes are illustrated in Figure 1. The 

energy difference in the initial and final states represents the vibrational energy of the

lattice and is reflected in a corresponding shift in the frequency of the scattered light from 

the incident frequency. According to scattering theory, which will be discussed later on 

and shown experimentally, the spectral shapes of these Raman modes are described by 

Lorentzian profiles given by

4



A
(1)g(v) =

2 J < 5v/2 * 'v 5v

in which v0 is the center frequency, A is the mode amplitude, and 5v is the spectral full 

width at half maximum (FWHM) of the vibrational Raman line.

Virtual
Stales

Mr
vs vn

Mr Mr

...-------------- .

v« v«

Mr Mr

1

VAS

Mr
v=2

Vibrational
Stales -J , »=l

v=fl
Stokes Rayleigh Anti-Stokes
Hainan Raman

Figure 1. (a) Inelastic Raman scattering (Stokes) showing energy gain by the medium.
(b) Elastic Rayleigh scattering, (c) Inelastic Raman scattering showing 
energy loss by the medium (anti-Stokes).

The Lorentzian profile is characteristic of resonance in the vibrational mode of the lattice. 

Its lineshape is symmetric and occurs for a lattice structure of crystallites larger than

-100 nm

The lineshape of the vibrational modes can vary in many ways depending upon the 

way in which the crystallite lattice is altered. Under compressive or tensile stress, there is 

a symmetry breaking causing a reduction in the symmetry of the crystallite lattice such that 

splitting of the modes and the appearance of new modes can occur.3 The characteristics of 

individual modes can vary as well. The modes can shift in position away from the incident 

frequency due to applied or internal stress. The compressive stresses due to grinding can



6

broaden the linewidth of these modes due to lowered crystal symmetry caused by these 

stresses and due to a large variance in the distribution of the stresses in the local vicinity.

The Raman effect can be described by considering polarizability theory. The

incident electromagnetic field affects the charge distribution of a molecule or lattice 

periodically and induces an alternating dipole moment which radiates light, hence the

Raman scattering effect. This dipole moment is given by
—> <-> —*
P = a •£ (2)

in which a is the polarizability matrix. The applied electromagnetic field is given by

E = Eq cos (271 vt) (3)

The polarizability can be described by

a = a0 +2 a„ cos(27tv„0 (4)

and consists of static and dynamic polarizabilities, a0 and a„ , respectively, in which vn is 

the rotational or vibrational frequency of the structure. Inserting Equations (3) and (4) 

into Equation (1), we obtain

p = Eq • ao cos(2kvt) + ^E0 -2 a„ {cos2k(v - v„)t + cos2k(v + v„)t} (5)

where the first, second, and third terms correspond to the Rayleigh, Stokes Raman, and 

anti-Stokes Raman effects, respectively. Due to the tensor nature of the polarizability, one

can write the dipole moment as

Px = ^-XxEx ~^O.xyEy +CtxzEz
Pj> = dyxEx + CtyyEy + CiyzEz (6)
Pz ~ ^ZxEx 4* QzyEy 4" CLzzEz

The total power radiated from an oscillating dipole moment is shown4 from classical

physics to be

p = 16k4V4
(4tceo ) 3c3

|TT|2 (7)



7

where N is the number of atoms, p is the time-averaged dipole moment, v is the frequency 

ofthe radiated light, e0 is the electric permittivity in free space, and c is the speed of light. 

Equation (7) clearly indicates the presence of Raman peaks in the scattered light at the 

frequencies shown in Equation (5).3 Using quantum mechanics, one can determine the 

Raman selection rules governing the allowable energy state transitions of a scattering

medium and thus determine the allowable modes.

The Raman lines on the Stokes Raman side are more intense than their "twins" on

the anti-Stokes Raman side as illustrated in Figure 2. This can be explained from the fact 

that the populations of the energy levels depend on the absolute temperature according to 

the Boltzmann distribution. The intensity ratio of the Stokes Raman lines to their 

corresponding anti-Stokes Raman lines is directly proportional to the ratio of the

population of states in terms of the Boltzmann distribution given by1

Stokes line intensity <v0-AvA4 Av^
Anti-Stokes line intensity ^Vo + Av/ ex^ v k T /

Figure 2. Comparison of the relative intensities of the Stokes and anti-Stokes Raman 
scattering lines.
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where v0 is the incident light frequency, J vis the frequency shift, h is Planck's constant, k 

is Boltzmann's constant, and T is the absolute temperature.

The Raman shift in the Stokes Raman regime can be found using

Av=(l08cm-'-A) Q- - £) (9)

where A, and htq the incident and scattered light wavelengths, respectively, in A and Av 

is the Raman shift expressed in cm'1. Multiplying by c gives the actual frequency shift in

Hertz.

Raman Scattering in Crystals

The modes of a lattice can either be optical, acoustical, or silent (inactive). 

Acoustical modes are propagating modes in which atoms vibrate with adjacent atoms as in 

a linear elastic band. Optical modes are those modes in which neighboring atoms vibrate 

or rotate against each other. Optical modes can be either Raman active, infrared (IR) 

active, or both depending on the symmetry of the lattice. If inversion symmetry exists, 

then the Raman and IR modes are mutually exclusive, whereas in the absence of inversion

symmetry, there is no restriction on the Raman and IR active modes. The relative

strengths, however, can be quite different in the two spectra. Raman modes involve the 

change in polarizability which is essentially a change in the charge distribution during the

vibration of a particular mode. Infrared modes are due to a change in the dipole moment 

with vibration. In other words, the centers of positive and negative charge displace 

relative to each other to form an oscillating dipole during the vibration.
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For a crystalline structure with a total of N atoms containing n atoms in m 

molecules per unit cell, there will be 3N normal modes of vibration contained in 3n 

branches on the dispersion curve: 3n-3 branches are optical modes and three are acoustic 

modes. All optical modes are either external or internal. External (lattice) vibrations for 

a crystalline structure are either translational or quasi-rotational modes of molecular 

groups within the lattice, whereas internal vibrations are vibrations of the atoms within a 

molecular group. Of the 3n-3 optical modes, 3n-6m are internal modes and 6m-3 are 

external modes. Of the 6m-3 external (optical) modes, 3m are rotational modes and 3m-3 

are translational.6 A diagram of the distribution of these modes is shown in Figure 3.

► (3«—6m) internal modes

(6m—3) external modes

yn rotational 
optical

. 3(m—1) translational
optical 

+
3 acoustic

Figure 3. Dispersion relation diagram for a molecular crystal containing n atoms in m 
molecules per unit cell [Reference 6],
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Group theory can be used to analyze and categorize the vibrations of polyatomic

molecules within a crystalline structure to simplify the complexity of this lattice dynamic.

This is done by relating the selection rules for Raman scattering to the symmetry of the

lattice structures and not to the forces that bind the atomic lattice together. In

equilibrium, often the nuclei of these polyatomic molecules have symmetry elements such

as reflection planes, rotation axes, centers of inversion, etc. Each symmetry element can 

be associated with a symmetry operation. These operators taken as a set define what is 

known as a mathematical point group. Each molecule or unique lattice site may be

assigned a point group so that the normal modes of the molecule or the entire unit cell,

respectively, may be analyzed using group theory. Determining the number and symmetry

properties of the normal vibrations in a lattice structure involves finding its point group,

obtaining the symmetry operations and irreducible representations, and finally associating

the normal vibrations with each irreducible representation. Table 1 shows a list of point

groups compiled by Sherwood.6 The general notations for vibrations are A (symmetric),

B (antisymmetric), E (doubly degenerate), and F (triply degenerate).1

The polarizability of a molecule from Equation (2) can be expanded by considering 

the displacement vector kq„(t) as it vibrates at frequency a, using

dqk(t)
The first order term is responsible for Rayleigh scattering, whereas the second order term

causes birefringence and the Pockel's effect in addition to the Raman effect. Assuming 

only the Ath component is non-zero, the polarizability can be described by

a,//) = a,j+ (V *a,y)7ACOs((OiZ +13) (11)
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where the component of the change in polarizability with respect to the change in

displacement of the nuclei is given by

kO-ij ~
day
dqk (12)

Table 1. Mode symmetry groupings and symmetry elements.’

Classification on 
basis of optical 

refraction Systems

Class

Symmetry elements
Interna
tional

Schon-
fiies

/Triclinic i Cx £
1 i Ci £:

/Biaxial , Monoclinic m C,
2 c3 fc2
2/m C2, E C3 i cr,

'Orthorhombic 2mm Ci, ECi^a;
222 D2 E Cj C3 C2
mmm D3, ECidC'iia.^a:

Anisotropic /Tetragonal 4 C, E 2Ct C3
4 Si E 2St C3
4/m Ci, E 2C, C2 i 2S, &,
4mm Ci, E zCi C3 2<t£ 2<rd
42m Did E C2 C2 C^ 2crd 2Si
422 Di E 2C, Ci 2C'i 2C;

( 4lmmm Dih E 2C, Ci 2C'i 2Cj i 2St
<T, 2< 2<7ft

\ Uniaxial Rhombohedral 3 c3 E2C3
(Trigonal) 3 Si E 2C, 1 2Si

3m C3, E 2C3 30-,
32 D3 E 2C3 3C2

'•Hexagonal
3m Da D 2C3 3C32<S6 2<rd
5 C3, E 2C3 cr, 2S3
6 Ci E 2C, 2C3 i
6/m C3h E 2Ct 2C3 C3 i 2S3 2tSg

5m2 D3,
a"*
E 2C3 3C2 <r, 2S3 3<rv

6mm C3v E 2C, 2C3 C3 3<r, 3<rd
622 Dt E 2( 2C3 i 3C3 3C3
6/mmm Dilt E 2Cg 2 3 3 3C3 3*C3 i

2S3 2S9 or, 3<Td3<rv
Isotropic Cubic 23 T D4C3 4C33C2

n3 T, D 4C3 4 31 s * 8 3®a
43^ Td E 8CS 3C3 6<rd 6St
432 O E 8C3 3Ci 6C£ 6Ct
77x3m 0, E 8C3 3C2 6Ca 6Cg i

8S. 3<rh 6<rd 6St

Reference 6.
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This expression is one element of the 3x3 matrix representing the change in polarizability. 

It can be used to find the number and polarization properties of the modes that can appear. 

Collectively, the elements defined by Equation (12) can be expressed in a reduced form as

a Raman matrix whose elements are proportional to the change-in-polarizability matrix.

The Raman irradiance, excluding temperature-dependent factors, is given by6

/(r,)<x (v0±v,)4£ (13)

7-> ->
where R is the Raman tensor. The vectors e, and es are the incident and scattered 

polarizations, respectively. The term is the yth irreducible representation of the point

group.

Raman Wavevector Propagation in Crystals

The frequency shift in the Raman effect is depicted through conservation of 

momentum in Figure 4 showing a single photon incident on a crystal. Note that the 

incident and scattered photon propagation directions are arbitrarily oriented. In practice, 

the angle between these two directions is typically 90° or 180°. The 180° configuration is 

referred to as the 180° backscattering geometry and was used for this research. In 

addition, the incident and scattered polarizations may be selected to determine the Raman

active modes which appear, according to Equation (13). In Figure 4, the incident photon
—> —>

of wavevector kj is annihilated and a scattered photon of wavevector ks and a phonon of 

wavevector q are created. Thus, momentum conservation requires

= ks + q (14)
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Thus, for the 180° backscattering geometry, the wavevectors ki, ks, and q are collinear. 

The direction of the phonon determines the modes of oscillation observed. The maximum

Figure 4. Wavevector conservation in Raman scattering.

This value defines the Brillouin zone boundaries of the dispersion relation for a diatomic 

lattice structure such as SiC, as shown in Figure 5. There are two branches for this

ki and aredispersion relation: an optical branch and an acoustic branch. Since 

small in comparison to |#| (2t and are much larger than a), then, from

Equation (14), | q | is very near zero, near the center of the Brillouin zone.

Many crystals are anisotropic, meaning that their optical properties aren't

equivalent in all directions. Uniaxial crystals have one optic axis (c-axis) to which all 

symmetry properties are assigned. The crystalline axis (c-axis) is usually assigned the 

z axis as its symmetry axis. Lattice vibrations parallel to the phonon propagation direction
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are longitudinal (L) modes, while those perpendicular to this direction are known as 

transverse (T) modes. In some cubic crystals, the T and L modes are degenerate.

Figure 5. Dispersion relation of an infinite one-dimensional diatomic lattice structure in 
the first Brillouin zone. The frequencies at the zone boundaries are shown for 
mt > m2 in which and m2 are the atomic masses and g is the second 
derivative of the interatomic potential function [Reference 6],

The electromagnetic radiation interacting with a crystalline medium is composed of 

oscillating fields, both magnetic and electric, which, in isotropic media, are perpendicular 

to each other and to the direction of propagation. The electric field is used to define the 

polarization of the radiation. The field can be decomposed into vertical and horizontal 

components of polarization. The ratio and phases of these components determine the type 

and degree of polarization of the radiation. The polarization of the exciting light 

determines the nature of the excited Raman modes in the crystal. Thus, analysis of 

individual modes can be performed simply by selecting the polarization of the incident and 

scattered light.6
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This polarization dependence of vibrational modes is discussed by Sherwood" for

cubic and uniaxial crystals. Long range electrostatic forces give rise to 

longitudinal-transverse splitting in polar cubic crystals. Polar crystal structures have

electric dipole moments associated with their vibrational modes. In uniaxial crystals, short 

range atomic forces must also be considered since they produce anisotropy in the force 

constants. Variations in the relative magnitudes of these two forces can cause changes in 

the nature of the vibrational modes. The vibrational frequencies parallel and perpendicular 

to the c-axis are denoted by vh and v±, respectively.

Figure 6 shows phonons in the x-y plane excited by radiation propagating in the

plane.

"I I
Vf Vi

Figure 6. (a) The polarization of phonons propagating in the x-y plane of a uniaxial (or 
cubic) crystal for incident light in the x-y plane assuming that 
longitudinal-transverse splitting is much greater than short range crystal 
anisotropy (for a uniaxial crystal), (b) Resolution into longitudinal and 
transverse phonons that involve displacements in the x direction 
[Reference 6],
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If the short range forces are much greater than the longitudinal-transverse splitting,

then these forces act to confine propagation along one of the crystal axes. This effect

causes the wave to have a mixed transverse and longitudinal mode. Taking 0 as the angle 

q makes with respect to the c-axis, the mixed phonon frequencies in the x-z plane, which 

contains the c-axis, are given by

vf| = (viir)2sin20 + (viii)2cos20 (15)

where vi i t and V||£ are the frequency components of vibrations parallel to the c-axis which 

are decomposed along directions perpendicular and parallel to the phonon propagation

direction, respectively. The mixed phonon frequencies in the x-y plane are given by

v± = (v±r)2cos20+ (vjx)2sin20 (16)

where v±r and v±l are the frequency components of vibrations perpendicular to the c-axis 

which are decomposed along the directions perpendicular and parallel to the phonon 

propagation direction, respectively. If, for example, v±/ and vht are Raman active based 

on group theory selection rules, then the mixed modes represented by Equations (15) and 

(16) will appear in the Raman spectrum

If the short range forces are much smaller than the long range electrostatic forces,

then phonons in the x-y plane will resolve into longitudinal and transverse modes as shown

in Figure 6, but phonons propagating in the x-z plane will be mixed. These phonon modes 

will be mixtures of v± and vi| components for both the transverse and longitudinal cases, 

as demonstrated in Figure 7. The transverse frequency is given by

v2 =(viir)2sin2e + (v±r)2cos20 (17)

and the longitudinal frequency is given by

v2 = (vi|£)2cos20 + (vii)2sin20 (18)

From Equations 15-18, it is possible to find the orientation of the crystal axis from Raman 

spectral data.
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Figure 7. (a) The polarization of transverse phonons propagating in the x-z plane of a 
uniaxial crystal for incident light polarized parallel and perpendicular to the 
c-axis assuming that short range crystal anisotropy is much greater than 
longitudinal-transverse splitting, (b) The frequency of the mixed modes of 
Vj.r character [Reference 6],

Cubic and Hexagonal Silicon Carbide

Silicon carbide has a number of different polytype structures which differ in the 

stacking arrangements of hexagonal planes along the c-axis called close packing.7 Silicon 

carbide occurs in nature as cubic, hexagonal, or rhombohedral structures. This thesis is 

concerned primarily with hexagonal polytypes, but the cubic structure was also 

considered. In the Ramsdell structural notation of crystals, here represented by nA, the 

letter A represents the type of crystalline structure. Cubic, hexagonal, and rhombohedral
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structures are denoted by C, H, and R, respectively. The n indicates the number of

stacked double layers per unit cell. The cubic form of SiC is also referred to as 3-SiC

whereas the hexagonal forms of SiC are referred to collectively as a-SiC. The cubic

lattice of this diatomic molecular structure forms a face-centered-cubic (fee) structure of

cations and another one of anions in which the two fee structures are displaced by 

one-fourth of the unit cell body diagonal, as shown in Figure 8.8

Figure 8. A face-centered-cubic lattice represented by ZnS [Reference 8],

This arrangement is also known as a ZnS arrangement or a zinc blende structure. This 

cubic structure has Td2 point group symmetry, the 2 referring to the particular space 

group. The unit cell coordinates (a, b, c) of the atomic nuclei in fractions of the lattice

parameters are described by

R: 0 0 0; 0 j j; j 0 j; j | 0
y. 1 i i. 2 2 2- 2 i 2- 2 2 i ^•444544454445444

(19)

where R is the cation and X is the anion.
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The hexagonal lattice, represented by Figure 9, demonstrates the 

hexagonal-close-packed (hep) structure.

Figure 9. The hexagonal-close-packed (hep) structure with primitive unit cell 
[Reference 7],

Notice that the cell consists of three smaller primitive unit cells. A diatomic molecular 

structure like SiC is represented in Figure 10.

z

Figure 10. A hexagonal structure represented by ZnO [Reference 8],
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This figure depicts ZnO and is often referred to as a Wurtzite structure.9 The hexagonal 

unit cell has C6v4 point group symmetry, where the 6 means it has 6-fold rotational 

symmetry about the c-axis and the v means that its vertical reflection planes contain the 

c-axis. The superscript 4 indicates the space group with which it is associated. If the 

diatomic structure is close-packed and the anions and cations are of equal radius, then the 

packing efficiency, assuming that the atoms are hard spheres, is equivalent to that of 

diamond, 34% by volume. A drawing of a hexagonal-close-packed (hep) arrangement of 

spheres in a layer is shown in Figure 11.

Figure 11. A layer of spheres in the plane of a close-packed hexagonal lattice. One set 
of wells is marked by dots and the other set is marked by crosses. The base 
of the hexagonal primitive unit cell is also shown [Reference 7],

If, during stacking, the third layer spheres lie above spheres of the first layer, a local hep 

structure is formed, whereas if the third layer spheres lie above the empty "wells" in the

first layer, a fee structure is formed. For the fee structure, the layer of Figure 11 cuts

obliquely across the unit cell cube so that three local spheres lie at a cube comer and two

neighboring face centers, respectively, as shown in Figure 12.
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Figure 13 demonstrates the stacking arrangements for several SiC polytypes. In 

diatomic SiC, the C atom hexagonal structure is displaced from the Si atom hexagonal 

structure along the direction perpendicular to the stacking planes. This vertical axis is the

c-axis ofthe crystal.

Figure 12. A close packed plane in the fee structure. Only those atoms in the plane are 
shown. A two-dimensional hexagonal cell is also depicted [Reference 7],

(For 6H SiC, this displacement is 1/8 ofthe vertical cell dimension.) Together the Si and 

C atoms form a vertical series of double layers (in 6H SiC, there are six double layers per 

unit cell height).

Figure 13. Stacking pattern for several SiC polytypes: (a) base of hexagonal pseudocell 
with a dashed primitive cell inset (b) stacking triangle formed by center 
sphere A and well positions B and C of the primitive cell (c) some polytype 
stacking patterns representing planar displacement of each double layer 
relative to the first double layer as the layers are stacked vertically.
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Each Si atom is surrounded by four C atoms in a tetrahedral formation (and vice 

versa). The cubic (p) form of SiC has 3 molecules and 3 double layers in its hexagonal 

pseudocell with a cell width of 3.073 A and a cell height of 7.57 A. (In Cartesian 

coordinates, the fee cell has a cell dimension of 4.348 A and contains four molecules.) In 

contrast, 6H SiC has 6 molecules and 6 double layers per hexagonal pseudocell with cell 

width and height dimensions of 3.073 A and 15.08 A, respectively.8 The p (or 3C) SiC 

unit cell coordinates (a, b, c) in fractions of the hexagonal primitive cell dimensions are 

given by

Si:0 00;i33>33,
r- n 0 I- 11 2_. 2 I n_ 

4’ 3 3 12’ 3 3 12
(20)

The 6H SiC unit cell coordinates (a, b, c) in fractions of the hexagonal primitive cell 

dimensions are given by8

(21)c- o n -T i - J-- 2 i II. o n -• - - — • i - —

Illustrations of these two configurations are shown in Figure 14. The covalent radii of Si 

and C are 1.17 A and 0.77 A, respectively.10 The lengths of the Si-Si and the C-C 

molecular bonds are both 3.09 A and the length of the Si-C molecular bonds is 1.89 A.8

Feldman et al., in a 1968 paper,9 presented a detailed study of Raman scattering in 

6H SiC in which they confirmed much of their Raman mode predictions experimentally. 

Polytype 6H has 12 atoms per unit cell (6 molecules) with 33 long wavelength optical 

modes (37V-3). Of these modes, 18 are quasi-rotational and 15 are translational. The 

normal modes for the structure are 6(A1+B1+E1+E2) of which three are acoustical.
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Figure 14. Diagrams of (a) 3C and (b) 6H SiC polytype primitive cell structures. The 
large atoms are Si and the small atoms are C. The units are in A.

As mentioned previously, the dominance of a long range field or short range 

crystal anisotropy determines the grouping of optical modes in polar uniaxial crystals.

Strong modes appear when the long range electrostatic force is much greater than crystal 

anisotropic forces. Weak modes appear when the opposite is true. Strong modes are 

often two orders of magnitude more intense than weak modes in Raman spectra. The 

strong modes are of a mixed symmetry type like (Aj+E,) in 6H SiC where there is a large 

frequency separation in the transverse and longitudinal modes due to the long range field. 

The weak modes, on the other hand, are either axial (parallel) or planar (perpendicular)
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with respect to the c-axis and have a large frequency separation due to crystal anisotropy, 

yet contain mixed longitudinal-transverse components.9

Due to the linear stacking of the hexagonal planes in 6H SiC (C6v4), the large zone 

of the dispersion curve extends only along the axial direction of the unit cell (parallel to

the c-axis). The large zone contains all of the long wavelength modes along this direction

and ends at where a is the lattice vector. Since is the reciprocal lattice vector, the 

pseudomomentum vectors q=0, —, —, and — are the same as q=0 in the Brillouin 

zone. The momentum scale can then be reduced to a range x from 0 to 1 having values in

which Raman measurements can be made at x=0, 0.33, 0.67, and 1. Table 2 shows the

distribution and symmetry type of the phonon modes of 6H SiC.

able 2. Distribution and symmetry type of 6H SiC phonon modes?
Branch x=0.00 x=0.33 x=0.67 x=1.00

Axial Optic At — 2Aj —

Planar Optic E, 2 E2 2E, E2
a Reference 9.

The strong modes occupy x=0. The other modes in which x^O are weak. The A, 

modes exist at x=0 or x=0.67 on the axial optic branch. The Et modes also exist at x=0 or 

x=0.67, but fall on the planar optic branch. The E2 modes belong to the planar optic 

branch at x=0.33 or x=l. The B, modes (antisymmetric and represented by dashes) are

not observed in either Raman or infrared measurements.9



CHAPTER HI

EXPERIMENTAL SETUP AND TECHNIQUES

Experimental Setup

The laser Raman microprobe used for this research was designed and built by P. P. 

Yaney and former graduate students at the University of Dayton. Currently, two lasers

can be used as sources in the setup shown in Figure 15.

Figure 15. Laser Raman microprobe experimental 
CL=cylindrical lens, and BS=beam splitter).

setup (M=mirror, L=lens,

25
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Primarily, a continuous wave (cw) diode-pumped solid-state (DPSS) frequency-doubled 

neodymium:yttrium aluminum garnet (Nd:YAG) single-mode laser operating at 532 nm 

was used for incident light on a specimen due mainly to its narrow bandwidth (<2 MHz). 

This laser had a power of about 50 mW (measured at 49.4 mW upon reflection from two 

high-reflectance mirrors). It replaced a pulsed Nd:YAG used in past years. The other 

laser used was a cw Ar ion laser which can generate up to 2 W of radiant power. It has 

discrete wavelength selection capability in the range of 458 nm to 514.5 nm, with the 

strongest lines at 488 nm and 514.5 nm. These inhomogeneously broadened lines have 

widths of about 6 GHz for multi-longitudinal-mode operation. Wavelength selection is

achieved by using a prism within the laser cavity for chromatic dispersion of the light. A 

wavelength may then be selected by tilting the cavity mirror accordingly. An etalon may 

also be used to narrow the line's spectral width to about 3 MHz for

single-longitudinal-mode operation.

Upon reflection from mirrors Ml and M2, the beam from the Nd:YAG passes

through the irises II and 12 used for alignment. After passing the beam through a spatial

filter assembly, a 15 mm cylindrical lens CL1 is located slightly more than 15 mm from the

spatial filter so that when the final microscope objective is focused at infinity and the 

corresponding image appears at the specimen surface, the laser beam is slightly defocused 

along the orientation of the 15 mm cylindrical lens. A second cylindrical lens having a 

40 mm focal length, CL2, is located exactly 40 mm from the spatial filter and positioned

transverse to the orientation of CL1 so that the final microscope objective sharply focuses

the beam at the specimen surface along the orientation of CL2. This cylindrical lens
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combination and final microscope objective, in effect, produce a narrow elliptical line of 

laser light on the specimen surface.

The purpose of a line of laser light rather than a circular spot is twofold. First, it 

integrates out the variations in spectral features along the length of the line. Thus, by 

making multiple measurements at non-overlapping locations on the specimen surface, the 

resulting mean values of the spectral parameters (e.g., Raman shift and linewidth) are 

characteristic of a microscopically-significant area of the specimen surface. Second, the 

use of a line greatly reduces the laser irradiance at the specimen surface. The typical laser 

power at the surface using a 35 pm x 2 pm elliptical line of laser fight is about 7.1 mW, 

giving an irradiance of about 13 kW/cm2. For a 2 pm diameter spot produced using the 

fiber optic system, the power at the surface is typically 2.4 mW, giving an irradiance of 

about 76 kW/cm2, a six-fold increase. The use of fine illumination removes the problem of 

laser heating of the specimen surface which can result in melting the surface or thermally 

perturbing the Raman spectrum.

By inserting mirror Mil between mirrors Ml and M2, the Ar ion laser may be 

used instead. By adding mirrors M12 and M13 to the system, an alternate path for the

beam is used to substitute an optical fiber for the cylindrical optics in order to focus a laser

"dot" onto the specimen. This path consists of launching the fight into a single-mode,

polarization-preserving fiber using a 20x objective and collimating the exiting fight from

the fiber using another 20x objective. The path reenters the system using mirror M13. 

After reflection from mirror M5, the fight is reflected downward from beam splitter BS1 

(70/30 transmission/reflection) in a 180° backscattering geometry. The incident laser fine
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(or spot) is focused onto the specimen by a microscope objective which is typically a 60x 

extra-long-working-distance (ELWD) objective having a 0.7 numerical aperture. The 

scattered and reflected light is collected by the microscope objective and transmitted 

through the beam splitter to the spectrometer. Lenses LI and L2 (200 mm focal lengths) 

provide a secondary focus of the reflected laser light which can be used to excite an 

internal Raman source for wavelength calibration. In this work, a microscope slide was 

used to introduce the emission spectrum from a gaseous discharge lamp into the 

spectrograph for calibration. Lens L4 (64 mm focal length) images the lamp tube onto the 

slide with a magnification of about four (the object-to-image distance is about 40 cm). A 

neutral density filter of 1.4 O.D. (T=3.9%) was used to attenuate the lamp emission 

intensity. Viewing binoculars are provided to examine the focus of the laser line (or spot) 

on the specimen surface. A white light source, SI, with a diffuser is used to illuminate the

surrounding specimen surface in order to determine the quality of focus on the specimen

surface and to observe the local structure and the surface flaws which could affect the

quality of the measurements. A Coming C. S. No. 3-66 sharp-cut colored glass filter is 

used to properly attenuate the scattered radiation on the specimen surface for safe 

viewing. A Physical Optics Corp. RHE 532. ID holographic edge filter is used to reject 

light at 532 nm at normal incidence. An additional benefit is that this filter may reject light

of other wavelengths by rotating the filter (for instance, when using the Ar ion laser).

Lens L3 is a 50 mm camera lens used to focus the light onto the entrance slit of the 

Spex 1401 double spectrometer, which has a focal length of 0.85 m and uses two 

1200 lines/mm reflection gratings blazed at 500 nm. If single-channel PMT detection is
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desired, mirror M14 is placed between lenses L2 and L3 to send and focus the light via 

mirror M15 and lens L5 onto the entrance slit of a Spex 1877 0.6 m Triple Spectrometer 

to which the PMT is attached. The grating scan is motor driven and computer-controlled 

via a SPEX CD2A Compudrive unit. The PMT detection system is used mainly for taking 

spectral survey scans of specimens.

The data from both the CCD and PMT detection systems were analyzed using Igor 

Pro 2.0 software package on an accelerated Macintosh Usi computer. This package is 

very versatile and allows the creation of functions and macros for experimental procedures 

in analyzing and graphing data. Function and macro procedures were designed to 

calibrate the data and perform statistical curve fits for determining characteristic 

parameters of Raman lines such as Raman shift, linewidth, and relative strength. These 

procedures are listed in Appendix B.

Approaches Used in Acquiring and Calibrating Spectral Data

PMT Detection System

When trying to determine the Raman modes of interest for a particular solid 

material, it is useful to initially scan a broad range of the spectrum (e.g., 100 cm'1 to 

1000 cm'1). Referring to Figure 15, mirrors M9 and M10 and lens L5 collect the scattered 

light onto the entrance slit of the Spex 1877 0.6 m Triple Spectrometer for dispersion and 

detection of the Raman signal. The thermoelectrically cooled (-30° C) Hamamatsu 

R943-02 PMT converts photons to an amplified signal which was fed into a photon 

counter and finally sent to a computer using data acquisition hardware and software. This
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PMT has a GaAs photocathode with a dark count of about 10 cps (at -20° C).11 The 

spectral range of the photocathode is 160 to 930 run with optimum sensitivity over the 

range of 300 to 800nmn The CD2A Compudrive Unit controls the scan of the 

12001ines/mm grating and was usually scanned in increments of 0.1 A (0.35 cm'1 at 

532 nm). The initial slit leads to a subtractive double spectrometer which functions as a 

pre-filter and which is used to reject fight such as the incident laser wavelength outside of 

its passband. The entrance slit width and height were typically 0.5 mm and 2 mm, 

respectively. The middle slit of the pre-filter was typically opened all the way to 8 mm to 

give a 45 nm passband. Finally, the entrance and exit slits of the "third" dispersing

spectrometer were usually set to the same width, typically between 100 and 200 pm. The 

PMT was operated at 1600 V. The collected data were calibrated using known spectral 

emission lines from gaseous discharge lamps such as mercury and calibrated laser lines. 

This was done prior to the experiments by making a calibration curve to correct the 

Compudrive unit wavelength reading to actual wavelength.

The Spex 1877 Triplemate Spectrometer used for survey scans of specimens was

calibrated using the 488 nm and 514.5 nm Ar ion laser lines and the 546.1 nm Hg atomic

line. The calibration was also used to determine the Nd:YAG 532 nm wavelength. Four

short 0.4 nm scans of each line were made in increments of 0.01 nm with a one second

exposure time and 5 pm spectrometer entrance/exit slit widths, with the exception of the

Hg line in which 15 pm entrance/exit slit widths were used. All three laser lines were

properly attenuated to avoid saturating the PMT detector. The fight from the three laser 

lines was focused onto tetragonal ZrO2 powder with the 60x ELWD microscope objective
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since this powder is a good scatterer and produces minimal Raman signal. The results of 

this study are shown in Figure 16. Note the determined wavelength of the Nd:YAG laser. 

Later spectral data obtained using the PMT detection system were adjusted according to

Figure 16. Calibration curve of the Spex 1877 Triplemate Spectrometer. The (x, y) 
paired coordinates designate the Spex 1877 wavelength reading (Spex) and 
the actual wavelength (True), respectively. The Nd:YAG laser wavelength 
was computed based on the linear regression of the data from the two Ar ion 
lines and the Hg line. The linear regression equation is also shown.

CCD Array Detection System

The CCD array detection system was used to examine Raman spectra in detail. As 

shown in Figure 15, scattered light was imaged onto the entrance slit of the Spex 1401 

double spectrometer using a 50 mm camera lens. The entrance slit is typically set to

50 pm for optimum spectral resolution. The reciprocal linear dispersion has been
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measured to be 0.493 nm/mm.12 Since each pixel in the CCD Array is 23 pm in 

dimension, the wavelength dispersion can be expressed as 0.13 A per detector element or 

0.398 cm1 per detector element at 533.6 nm. A discussion on the linearity of wavelength 

dispersion in spectrometers is given in Appendix C. Based on extensive work by S. Ernst 

and P. Yaney,13 the resolution was within that of one pixel, 0.13 A or 0.398 cm'1 at 

533.6 nm assuming the illumination was "source-limited." However, this result in no way 

restricts the precision of Raman line measurements since the irradiance of their Lorentzian 

profiles is smooth and their linewidths are an order of magnitude larger than the 

resolution. The CCD array by Princeton Instruments consists of 576 pixel columns and

384 pixel rows. The useable region of the CCD array for measurements was limited to 

250 pixel columns and 210 pixel rows centrally located on the larger array. Horizontally,

this useable region was defined by a maximum center slit width of 3 mm within the double

spectrometer. Vertically, this region was defined by the length ofthe fight on the entrance 

slit set by the line of laser fight and the magnification. The vertical columns of pixels

record spatial information about the scattered fight. In other words, the vertical profile of 

the scattered fight corresponds with the positions of the exciting fight on the specimen 

perpendicular to the direction in which fight is dispersed into a spectrum. This description 

is easy to see when the line of laser fight from the cylindrical optics is considered. The

length of this line, typically 35 pm using the 60x ELWD microscope objective, provided 

spatial information vertically on the array for positions on the specimen covered by the 

fine's length. The width of the fine was about 2 pm and fight in this direction was 

dispersed by the spectrometer to provide spectral information horizontally at each "point"
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corresponding to a pixel row covered by the line. In this way, a vertical array of spectra

was obtained.

The CCD resolution at the specimen surface can be determined by considering the 

magnification factors in the intermediate optical system Lenses LI and L2 have 200 mm 

focal lengths and the camera lens has a 50 mm focal length. Blackshire12 determined that 

the demagnification factor from the focus between lenses LI and L2 to the CCD array is 

4.85. Since the 60x ELWD microscope objective has a 3.49 mm focal length, the 

magnification from the specimen surface to this focus is 57.3. So the total magnification

was 11.8, giving a 23 pm pixel at the CCD array an image size of 1.95 pm at the specimen

surface. Thus, each vertical pixel on the CCD array corresponded to 2 pm on the 

specimen surface.

The polarization of fight exiting the Nd:YAG laser was vertical such that the 

polarization was parallel to the length of the laser line illumination. The incident and

collected fight polarizations could be controlled with the use of linear polarizers. To 

maximize the incident fight signal in polarization studies, a half-wave plate (HWP) was 

used to align the incident polarization angle to the transmission axis of the incident fight 

polarizer. The response of a grating spectrometer is typically maximum when the 

polarization of the incident fight is perpendicular to the grating grooves (i.e., the slit 

length), all other factors being equal. In backscattering from powders and microscopically 

rough polycrystalline surfaces, the scattered fight is often completely depolarized. Thus, 

the Raman scattering from these types of specimens is usually independent of the

polarization of the fight incident on the specimen.
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The use of the liquid-nitrogen-cooled CCD array provides many benefits over the 

PMT detection system. With the use of the double spectrometer, high resolution was 

achieved for detailed study of Raman spectra over a range of about 70 cm'1 at a Raman 

shift of 790 cm'1 using 532 nm fight. The grating was not scanned as with the PMT 

detection system. Instead, the grating remained stationary during data collection since the 

array detector is multi-channel, both spatially and spectrally. In addition, the

signal-to-noise ratio (SNR) was very good due to the -100° C temperature ofthe detector. 

Integrating the signal over longer exposure times increases the SNR since noise increases 

by the square root of its amplitude, whereas signal increases simply by its amplitude. The 

SNR was also increased by binning the signals of each pixel vertically into a "super" pixel 

whose width was one pixel but whose height depended on the binning factor. Typically, 

the fight that fell within the central 40 rows ofthe array, namely rows 172 through 212, 

were binned using a binning factor of 40 (This corresponds to a maximum line length of

80 pm). Only one spectrum was obtained using this technique, yet this spectrum

represented the composite spectrum due to the entire length of the laser line.

A narrow range spectrum of the specimen was obtained by first determining the 

setting of the spectrometer grating which corresponds to the center of the desired 

spectrum. This setting corresponded to the approximate center pixel (Pixel 200 

horizontally). The spectrum could be calibrated by using a known reference such as an 

atomic line. Two reference lines are needed to determine the wavelength dispersion (A 

per pixel element) in a given spectral region. Knowing the wavelength dispersion of this 

region prior to taking the experimental spectrum required just one reference line for
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spectral position calibration. Once the wavelength scale was found, the spectrum was 

easily scaled to wavenumbers. Since the spectral range was about 70 cm'1, the wavelength 

dispersion was assumed to be constant over this region, although it does decrease slightly 

with increasing wavelength. The spectrum of an atomic line was fitted with a triangle 

function to obtain a subpixel determination of the line's pixel position for accurate 

spectrum calibration. Once the spectrum was accurately calibrated in wavenumbers, the 

Raman lines in the spectrum were fitted to Lorentzian profiles using the curve fitting 

routines fisted in Appendix B. These procedures were used to determine the Raman shift, 

linewidth, and line strength of each Raman line with fitting uncertainties. A linearly-sloped 

(tilted) background was also taken into consideration during the fitting routines.

The wavelength values of these atomic spectral lines were precise to less than 

0.001 A and were taken from the American Institute of Physics Handbook.14 A least 

squares triangle fit of the atomic spectral fine from the CCD data was used as an 

interpolation technique to precisely determine the center wavelength position of the 

atomic line. Due to the few data points (three or four pixels) defining the position of the

atomic line, this method was considered the best since it assumes a simple symmetric 

profile. This triangle function is given by

triangle(p) = A +B (22)

where B is the background in counts, A is the amplitude in counts, p is the pixel scale of

the CCD array, p0 is the center position of the atomic fine in pixels, and Ap is the FWHM

of the triangle function in pixels. The unit triangle function A(x) is defined as

A(x)= MSI
0 otherwise

(23)
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Typically, only the maximum three or four pixels were used in the triangle fit due to 

aberrations at the "wings" of the triangle near the base, so that a fit of the nearby 

background is unnecessary. However, if only three pixels were used for the triangle fit, no 

fitting errors in the three parameters could be obtained since three pixels absolutely define 

a symmetric triangle. A scheme was devised to determine the uncertainty of the atomic 

line center position (the spectral peak offset uncertainty) as shown in Figure 17.

Figure 17. Determination of the spectral peak offset J and its uncertainty for an atomic 
spectral line using the absolute count difference d between the two outer 
pixels, the absolute count difference h between the central pixel count and 
the median count of the two outer pixels, and the pixel spacing W between 
the two outer pixels.

The offset A was determined through the use of similar triangles and is defined by

A_ d/2 (W + 
d/2+h<2 " 2 /

(24)

where d is the absolute count difference between the outer two pixels, W is the pixel

spacing between the outer two pixels, and h is the absolute count difference between the 

central pixel count and the median count of the two outer pixels. For three pixels, the 

pixel spacing W of the triangle illumination could be as large as three pixels or as small as



37

one pixel and still cause three pixel positions to "light up." This statement means that the 

pixel spacing IF is 2±1 pixels wide. The offset J with its uncertainty is then

A = 27^)(2±1)pixels (25)

The behavior of the spectral peak offset as a function of the ratio is shown in Figure 18.

(d/2yh

Figure 18. Behavior of the spectral peak offset J of an atomic line from the center pixel 
as a function of the pixel locations relative to the triangle fit.

The wavelength of the incident laser line was determined by using the known 

wavelengths of atomic spectral lines for calibration within the 70 cm'1 range of the CCD 

array detector. Ideally, two atomic spectral lines, one on either side of the laser line, were 

used with a fairly large spacing for higher precision. After performing triangle fits of the 

atomic lines and the laser line for subpixel determination of their positions on the CCD

array, linear interpolation was performed to determine the laser wavelength. Usually, the 

spectrometer was stepped, incrementing the position of each run by 1 cm'1 or 2 cm'1, for 

20 runs to obtain a statistical average ofthe laser wavelength.

Atomic spectral lines were then chosen within the 70 cm'1 region of interest for 

determining the wavelength dispersion (in units of nm per pixel element). For the majority
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of the studies of 6H SiC ceramic, this region was at the 790 cm'1 Raman shift from the 

532 nm laser line where the Raman modes of the planar optic branch occur. The spectral 

lines were typically chosen close together for a higher precision determination of the 

wavelength dispersion, since this parameter decreases slowly with increasing wavelength 

(see Appendix C). After performing triangle fits of the atomic lines in this region, the 

pixel spacing and the known wavelength spacing were used to determine the wavelength 

dispersion at the median of the two atomic line wavelengths. The spectrometer was 

usually stepped, again incrementing the position of each run by 1 cm"1 or 2 cm'1, for 

20 runs to obtain a statistical average of the wavelength dispersion for this region.

From the discussion on wavelength dispersion linearity of spectrometers in

Appendix C, the pixel scale of a typical run may be rescaled to wavelength using the

known wavelength dispersion and a known reference spectral line according to

A,, = A,r + • (pi - pr) (26)

where 2(. is the wavelength in nm at pixel pp is the reference line wavelength in nm, pr is 

the position of the reference line in pixels, and D. is the wavelength dispersion in nm/pixel. 

Knowing the incident laser wavelength, the Raman shift in cm'1 can be found according to

Av, = (107 cm'1 • nm) M- - -Q (27)

where Av, is the wavenumber position at pixel pp Alas is the laser wavelength in nm, and 2. 

is the wavelength at pixel pt in nm. A schematic drawing of the laser line, a Raman line 

(such as the 788 cm'1 TO line), and a reference line such as neon is shown in Figure 19. A 

summary of the results for several laser wavelengths and the wavelength dispersion of

some regions of interest are given in Table 3.
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Laser Line Raman__ 1
DPSS Nd:YAG Line *

532.10364
±0.00033 nm

Reference Line
Neon ---------------- ►

556.276620 nm
/

\

X, Av —►
\

Figure 19. Schematic illustration in the Stokes regime of the laser line (532 nm 
Nd:YAG), Raman line, and atomic reference line (neon) indicated by the 
arrows. The arrow from the wavelength (wavenumber shift) label indicates 
the direction of increasing wavelength (wavenumber shift).

Table 3. Determination of laser wavelengths and wavelength dispersion of some
spectral regions of interest.

Nd:YAG Dx at
52.5 cm'1

Reference
Lines

D. at
806.1 cm'1

Reference
Lines

Calibration
Line

532.10364±
0.00033

nm

0.01134179±
0.00000088

nm/pixel

Ne
533.07775 nm 
534.10938 nm

0.0113039±
0.0000045

nm/pixel

Xe
555.2385 nm 
556.6615 nm

Ne
556.27662 nm

Ar ion Dxat
36.3 cm'1

Reference
Lines

D- at
796.9 cm'1

Reference
Lines

Calibration
Line

487.98502±
0.00026

nm

0.0114543±
0.0000029

nm/pixel

Ne
488.49170 nm 
489.21007 nm

0.0113612±
0.0000019

nm/pixel

Ne
507.42007 nm 
508.03852 nm

Ne
508.03852 nm



CHAPTER IV

RAMAN STUDIES OF SILICON CARBIDE SINGLE CRYSTAL 
AND MACHINED POLYCRYSTALLINE SPECIMENS

Typical Stokes Raman Spectra of 6H SiC Specimens

A survey spectrum of both single crystal and polycrystalline ceramic was 

performed to determine the Raman active modes from 100 cm'1 to 1000 cm'1 using the 

532 nm Nd:YAG laser. These spectra are shown in Figure 20.

r i | i r i"i { i i i i ; i i i i | i i i i i i i i n i i i i f i"rr~T| i i i i|ii 
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Figure 20. Survey spectra of 6H SiC (a) single crystal and (b) polycrystalline ceramic.
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The visible modes are labeled along with their Raman shift. Both scans were from 

100 cm'1 to 1000 cm'1 in increments of 0.05 nm (1.7 cm'1). The entrance and exit slits of 

the Triplemate spectrometer were set to 200 p,m with the limiting aperture in the pre-filter 

set to 8 mm and the entrance slit to the pre-filter having dimensions of 0.8 mm x 2 mm 

The 200 pm entrance/exit slits give a resolution of 0.28 nm (9.3 cm'1). The grating ruling 

is 1200 lines/mm The 60x ELWD microscope objective was used for illuminating each 

specimen surface with a line of 532 nm fight. The c-axis of the single crystal specimen 

was about 3° off the backscattering axis of the Raman microprobe, hence the phonon 

propagation direction was nearly parallel to the crystalline axis. Since no polarizers were 

used for selecting the polarization of the scattered fight, scattered fight polarized both 

parallel and perpendicular to the incident polarization could be detected. The exposure 

time per step was five seconds for the single crystal specimen and ten seconds for the 

polycrystalfine ceramic specimen. Distinct Raman lines at 145/149 cm'1, 767 cm'1, 

788 cm'1 and 964 cm'1 were observed for the single crystal specimen, corresponding to the 

E2/E2, A1t/E2, E2, and A1L modes, respectively. These identifications are based on the 

work of Feldman et al.9 The E2 modes at 145 cm'1 and 149 cm'1 are planar acoustic 

modes, the E2 modes at 767 cm'1 and 788 cm'1 are planar optic modes, and the A1L mode 

at 964 cm'1 is a longitudinal optic (LO) mode. In the case of perfect alignment along the 

c-axis, mode selection rules indicate that Aj modes should appear for parallel 

configurations, yet because of the mixed mode frequency results of Equation (17), the A1T 

mode, a transverse optic (TO) mode, should not appear in the perfect case. The A1T mode 

does appear in the data due to the 3° tilt in the c-axis. Therefore, the A1T/E2 designation
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was used to indicate that both modes were actually present at 788 cm'1. The other 

spectrum is a survey of a polycrystalline 6H SiC specimen that was processed with creep 

feed grinding at 88.9 mm per minute. The 767 cm'1, 788 cm'1, and 964 cm'1 Raman lines 

were again observed. As in the single crystal case, the 788 cm'1 line is a superposition of 

the A1T and E2 modes; however, the 797 cm'1 Raman line, an E1T mode, is also present. 

These other modes appeared because, for a polycrystalline material, the resultant Raman 

spectrum represents the "composite" of the spectra from each unique crystallite geometry 

in the structure. The 767 cm'1, 788 cm'1, and the 797 cm'1 Raman lines (consisting of four 

modes: the E2, A1T7E2, and E1T modes, respectively) were the primary objects of study for 

this thesis. The use of the CCD array detection system allowed high precision 

measurements of these Raman lines, on the order of 0.02 cm1, to relate changes in 

linewidth or Raman shift to macroscopic characteristics of the material, particularly the 

relative levels of residual surface stress produced by grinding processes. The spectra of 

these specimens were examined in the 790 cm1 region using the CCD detection system as 

shown in Figure 21. The middle slit of the double spectrometer was set to 3 mm, the

entrance slit was set to 50 pm, and the exposure time was three minutes for both the

single crystal and the polycrystalline 6H SiC specimens mentioned above. The single 

crystal specimen gave strong E2 modes at 767 cm'1 and 788 cm'1 only since the incident 

and scattered light polarization are crossed and phonon propagation is parallel to the 

c-axis of the crystal.



43

^3
6000 3

02

4000 £
3to

2000

I

Oo

Figure 21. Typical Raman spectrum in the 790 cm'1 region of 6H SiC (a) single crystal 
and (b) polycrystalline ceramic.

There is a hint of the mode at 797 cm'1 due to the large angle of scattered light collected 

by the microscope objective. The polycrystalline specimen, however, has namely three 

distinguishable modes since the c-axis of each crystallite can be arbitrarily oriented with 

respect to the phonon propagation direction. These modes are the E2 (767 cm'1), A1TZE2 

(788 cm'1), and E1T (797 cm'1) modes. The polarization dependence of these modes will 

be discussed more thoroughly in the next section dealing with 4H and 6H SiC single 

crystal specimens.

Studies of 4H and 6H SiC Single Crystal Specimens

The polarization dependence of the modes on the planar optic branch of two small 

single crystal wafers was examined for comparison with those of polycrystalline
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specimens. In order to properly identify the modes for a particular configuration, the 

Raman tensor of each vibrational mode of the C6v4 structure must be operated on by the 

incident and scattered field polarizations to determine whether a particular mode is active. 

Raman tensor analysis is discussed in Appendix D. Table 4 lists the possible 

configurations used in this study and their resultant phonon symmetries.

Table 4. Polarization and propagation symbols used for determining phonon symmetry
in the 4H and 6H SiC single crystal study. Note that a prime symbol used with 
a propagation direction is used to denote propagation in the opposite direction

Polarization
symbol

Phonon
symmetry

Propagation
symbol

Phonon propagation 
angle 0

-(XX)- Ai, E2 z (- -) z' 0°

-(yy)- Aj , E2
- (X y) - or - (y x) - e2

-(yy)- Ai,E2 x(--)x* 90°
-(zz)- At

- (y z) - or - (z y) - E,
-(XX)- Ai, E2 y(--)y* 90°
-(zz)- A,

- (x z) - or - (z x) - E,

Note that the four-letter symbol of Damen et al.15 is used to represent the propagation 

directions and polarizations of the incident and scattered light relative to the crystal c-axis. 

The outer two letters are the incident and scattered photon propagation directions, 

respectively, and the inner two letters are the incident and scattered photon polarization 

directions, respectively. A prime symbol used with a propagation direction is used to 

denote propagation in the opposite direction. Note that backscattering along the x or the 

y directions yields the same results since the crystal is uniaxial.
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A series of spectra were obtained from the nitrogen-doped 6H SiC single crystal 

specimen to obtain a basis for comparison with the Raman spectra of the polycrystalline 

specimens used in the grinding studies described in the next section. The cylindrical optics 

of the Raman microprobe system were employed to illuminate the specimen surface with 

an elliptical laser line 35 pm in length and 2 pm in width. A weighted statistical averaging 

of the Raman shifts, linewidths, and relative strengths of the Raman lines in each spectrum 

gave a statistical measure of each quantity for comparison with other specimens (see 

Appendix E). The spectra were obtained in the z (x y) z' configuration, producing the E2 

modes at 767 cm'1 and 788 cm'1. The E,T mode also appeared weakly at 797 cm'1 due to 

the large 0.7 NA of the microscope objective. Another n-type 6H SiC single crystal 

specimen by CREE was examined and similar results were obtained.

The spectra of the single crystal specimens for the polarization study were 

obtained with the same settings with the exception of the incident and scattered light 

polarizations and the orientation of the c-axis. The exposure time was three minutes and 

the entrance slit width was 50 pm. The 60x ELWD microscope objective focused 532 nm 

light onto the specimen surface. Since the normal to the wafer plane defined the c-axis, 

the backscattering geometry of the Raman microprobe allowed phonon propagation 

parallel or perpendicular to the c-axis. Phonon propagation perpendicular to the c-axis 

was achieved by focusing the elliptical User line onto the edge of the wafer so that the 

wafer normal was perpendicular to the propagation direction. For phonon propagation 

parallel to the wafer c-axis, the wafer surface was illuminated with a laser "spot" rather 

than an elliptical laser line in order to obtain a well-defined polarization of the incident



46

light. The first specimen studied was an ATMI 6H SiC single crystal specimen with a 

nitrogen dopant level of 3 x 1016 cm'3. Figures 22(a) and 22(b) demonstrate spectra of the 

790 cm'1 region in parallel and crossed (incident/scattered) polarizations, respectively, for 

phonon propagation parallel to the c-axis. Note that both the A, and E2 modes are 

allowed for uncrossed polarizations, but only the E2 modes are allowed for crossed 

polarizations. Other modes may appear, however, due to the large 0.7 NA of the 

microscope objective, which allows other excitation field components to produce 

"unallowed" phonon modes. The change in strength of each mode with 

polarization/orientation, however, can usually indicate if its existence is "allowable" in the 

strictest sense. For example, a relatively weak mode would tend to indicate that its 

appearance is due to the large NA of the collection optics, but this is not always true. 

Feldman et al.9 has observed an angular dependence ofthe frequency of the strong modes 

on the phonon propagation direction due to crystal anisotropy. The theory behind this 

observation was discussed briefly in Chapter II in which these modes contain mixtures of 

components parallel (axial) and perpendicular (planar) to the c-axis for both the transverse 

and longitudinal frequencies. The transverse and longitudinal mode frequency variations 

of 6H SiC, from Equations 17 and 18, are described, respectively, by

v2(0) = (788)2sin20 + (797)2cos20 

v2(0) = (964)2cos20 + (97O)2sin20

(28)

(29)

where 3 is the phonon propagation angle with respect to the crystal c-axis. Thus, the A1T 

(788 cm'1) line of Figure 22(a) is not allowed since the phonon propagation angle is 

parallel to the c-axis.
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Figure 22. The Raman spectra of the 790 cm'1 region of 6H SiC single crystal using a
backscattering geometry in six different polarization configurations for 
incident/scattered light: (a) parallel and (b) crossed with propagation along 
c-axis; (c) parallel to each other and orthogonal to c-axis, (d) crossed 
(perpendicular/parallel), (e) crossed (parallel/perpendicular), and (f) parallel 
to each other and parallel to c-axis with propagation orthogonal to c-axis.
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The bumps in Figures 22(a) and 22(b) at 797 cm'1 represent E1T modes "leaked" through 

the microscope objective's large NA. Figures 22(c)-(f) represent the four 

parallel/perpendicular polarization configurations for phonon propagation orthogonal to 

the c-axis. Figure 22(c) demonstrates the superposition of the A1T and E2 modes at 

788 cm"1 in addition to the E2 mode at 767 cm"1, both incident and scattered polarizations 

being orthogonal to the c-axis. When both polarizations are parallel to the c-axis as 

shown in Figure 22(f), only the A1T mode is allowed at 788 cm"1. Finally, in Figures 22(d) 

and 22(e), the crossed polarization configuration allows only the E1T mode at 797 cm1. 

However, the very strong A1T mode "leaks" through the imperfect polarizations. Notice 

the dramatic decrease in Raman signal strength in Figure 22(d) relative to Figure 22(e) 

due to the fact that the spectrometer is least responsive to light polarized parallel to the 

grating grooves.

A similar study was conducted using an ATMI 4H SiC single crystal specimen 

(n-type). This polytype has the same point group symmetry as 6H SiC.8 Figures 23(a) 

and 23(b) represent parallel and crossed polarization configurations of the Raman 

spectrum with the phonon propagation direction parallel to the c-axis. Again, the E2 mode 

at 777 cm"1 is allowed but the Alt mode at 783 cm"1 isn't present in Figure 23(a) due to the 

0° phonon propagation angle. Bumps at 797 cm"1 hint at the E1T mode being suppressed in 

this configuration. The Raman spectra of Figures 23(c)-(f) were taken in the four 

parallel/perpendicular polarization configurations with a phonon propagation angle of 90°.
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Figure 23. The Raman spectra of the 790 cm'1 region of 4H SiC single crystal using a 
backscattering geometry in six different polarization configurations for 
incident/scattered light: (a) parallel and (b) crossed with propagation along 
c-axis; (c) parallel to each other and orthogonal to c-axis, (d) crossed 
(perpendicular/parallel), (e) crossed (parallel/perpendicular), and (f) parallel 
to each other and parallel to c-axis with propagation orthogonal to c-axis.

760 770 780 790 800 810
Raman Shift (cm' )
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Figure 23(c) allows both the E2 and A1T modes at 777 cm1 and 783 cm'1, respectively, for 

both polarizations orthogonal to the c-axis. Figure 23(f) allows only the A1T mode at 

783 cm'1 for both polarizations parallel to the c-axis. Finally, Figures 23(d) and 23(e) 

allow only the E1T mode at 797 cm'1, with the E2 and A1T modes suppressed at 777 cm'1 

and 783 cm'1, respectively, for crossed polarization configurations. Again, notice the 

reduction in signal strength of Figure 23(d) relative to Figure 23(e) due to the 

spectrometer's reduced response to light polarized parallel to the grating grooves. From 

the studies of the 6H SiC single crystal, it is easily seen that, for a polycrystalline ceramic, 

the resultant Raman spectrum is a superposition of all possible orientations and 

polarizations. By considering Figures 22(a)-(f), "composite" Raman lines occur at 

767 cm'1 (E2), 788 cm'1 (A1T/E2), and 797 cm'1 (E1T). The frequencies (in cm'1) of the 

strong modes observed by Feldman et al.9 are given in Table 5 while their weak modes are 

given in Table 6.

Table 5. Frequency dependence (in cm'1) of the strong phonon modes in 6H SiC on the 
phonon propagation angle 0. One mode is longitudinal (L) and two modes
are transverse (T, and T2). E1T is doubly degenerate at 19=0°.‘

0=90° 0=45° 0=0°
L E1L 970 (Aj+Ej)l 967 E1L 964

Tt E1T 797 E1T 797 E1T 797
t2 A1T 788 (A,+Ej)t792 E1T 797

* Reference 9.

The results of these single crystal studies will later be used to show that the 

4H SiC polytype exists in some instances along the surfaces of the polycrystalline 

hexagonal SiC specimens studied.
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Table 6. Frequencies (in cm'1) of weak phonon modes in 6H SiC, assigned to x=q/qmax
in the large zone. Bt modes are forbidden (F.) and two components of optic 
doublets were not observed (N.O.).*

Branch x=0.33 x=0.67 x=1.00
Axial Optic B,F.

B,F.
A, 889
Aj NO.

B,F.

Planar Optic E2 788 
e2n.o.

E, 777
E, 769

E2 766

Axial Acoustic B.F.
BtF.

A, 508
A, 504

B,F.

Planar Acoustic E2 149
E2 145

E, 241
E, 236

E2 262

1 Reference 9.

Grinding Studies of 6H SiC

The presence of residual surface stresses on 6H SiC specimens subjected to 

different grinding processes was studied based on measurements of changes in Raman shift 

and linewidth of the 767 cm'1, 788 cm'1, and 797 cm'1 Raman lines. These studies focused 

particularly on the measurements of the 788 cm'1 Raman line due to its large line strength 

and its stability. The 767 cm'1 Raman line is a weak mode and therefore measurements of 

this line would not reflect systematic errors associated with its weaker intensity and the 

background profile. The 797 cm'1 Raman line can represent one or two modes, both E1T 

TO modes (see Table 5). The first TO mode is stationary, whereas the second TO mode 

varies with the phonon propagation angle. This "doubling" of two strong modes could 

also produce systematic errors in the measurements of this line. Therefore, the 788 cm'1 

Raman line was selected for optimum measurement of changes in position and linewidth. 

As mentioned in Chapter n, these changes can be related to the deformation of the lattice
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structure due to the compressive forces involved during ceramic material processing. 

Anastassakis3 evaluates the effect uniaxial stresses have in shifting and splitting vibrational 

modes as a result of lattice deformation. Assuming the deformation is elastic, the stress a

and strain e are proportional and related by Young's modulus E (a=Es). A change in the

Raman shift can be related to a corresponding change in the stress or strain according to

= = (30,

where dzlvis the change in Raman shift, v0 is the frequency, 8Vis the change in volume, V 

is the volume, and k is the phonon deformation potential. By making these assumptions,

the relative residual surface stresses may be estimated simply from precise measurements 

of these changes in Raman shift and linewidth.

These grinding studies were conducted on specimens processed according to nine 

different methods. An "as-sintered" specimen was used as a reference for the 

measurement of relative residual stresses incurred from processing. The remaining 

specimens began the processing procedure with baseline (conventional) grinding as 

specified by ASTMC 1161-90 standards.16 Grinding processes (in no particular order) 

include: baseline grinding along the parallel and at a 15° bias, creep feed grinding, 

ultrasonic grinding, polishing, heat treatment, and oxidation. The relative residual surface 

stress was measured for specimens which underwent each of these finish processing 

methods to ascertain the residual surface stress generated. The effect of machining 

treatment on flexural strength was also measured. A description of each process is 

described in the following section.
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Processing Methods

The baseline (conventional) and creep feed grinding processes are illustrated in 

Figure 24.

wheel / 
speed

material v / / 
removal / /

______ diamond grain size D
and concentration C

wheel \ number of passes
rate\_-J 1 grind energy

'— — \ <■ forces /
feed rate vft—►

workpiece
infeed a;I

f

(a) baseline grinding: large feed rate and small infeed
(b) creep feed grinding: small feed rate and large infeed

Figure 24. The (a) baseline (conventional) and (b) creep feed grinding processes. Other 
grinding parameters are depicted in addition to the feed rate and infeed.

Each process involves the use of a grinding wheel on a workpiece until the desired grind 

depth is achieved. Typically, the cutting surface of the grinding wheel consists of diamond 

grains of characteristic grit size which are resin, metal, or vitrified bonded to the grind 

surface ofthe wheel.17 (Grit size is a measure of abrasive grain diameter and refers to the 

maximum number of mesh holes per inch in which a wire mesh will pass certain size 

granular particles.) The grind infeed a. refers to the depth of the grind wheel per pass 

along the workpiece. The feed rate vfi refers to the speed at which the workpiece is fed 

through the grinding wheel. Finally, the cutting speed vs refers to the wheel speed at the 

contact between the grinding wheel and the workpiece. The main distinction between

conventional grinding and creep feed grinding lies in the choice of infeed and feed rate
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values. Conventional grinding is characterized by small infeeds and high feed rates, 

whereas creep feed grinding involves low feed rates with larger infeeds. Of course, 

conventional grinding requires more passes than creep feed grinding to remove the same 

amount of material. The specific material removal rate is defined as the product of the 

infeed and feed rate, giving the workpiece volume removed per wheel width per unit time,2 

as evident from Figure 24. The material removal rates of both methods may be matched 

for optimum efficiency by defining the creep feed grinding infeed or feed rate. One 

noticeable difference between the two methods is the contact length lc between the wheel

and the workpiece. This contact length is given by

lc = r cos-1 (l - y) « for a, « r (31)

where r is the radius of the grinding wheel and ai is the infeed. The larger contact length 

(or area) due to the increased infeed results in more diamond grain cutting edges with 

smaller chip thicknesses being produced. Creep feed grinding requires higher rigidity due 

to the high normal forces, yet because of the increased number of cutting edges, the 

normal force per cutting edge is lower than that of conventional grinding.2 The grinding 

wheel direction typically travels opposite to the workpiece feed direction at the point of

contact (up cut or tensile grinding as opposed to down cut or compressive grinding) to

avoid compressive grinding and any further material deformation, although chip sizes are 

usually larger under tensile grinding.18 The material removal efficiency is described by the 

grinding ratio. This ratio is the workpiece volume removed per volume of diamond layer. 

Since the removal efficiency per cutting edge is smaller for a larger infeed, the wear on 

each cutting edge is lower, leading to a higher grinding ratio (or overall higher removal
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efficiency). In addition, the smaller chip thicknesses due to creep feed grinding result in 

increased material strength.2 A smaller depth of cut hc is produced by a smaller feed rate 

vfi and a higher cutting speed v. On the other hand, an increase in the infeed results in a 

larger hc, producing larger chip thicknesses. However, assuming that hc is directly 

proportional to the material removal rate and the contact length lc, then from 

Equation (31), hc is more dependent on the feed rate vfi than on the infeed ap giving 

smaller chip thicknesses for creep feed grinding than for conventional grinding at the same 

material removal rate.2 The grain size and concentration of diamond on the grind wheel 

are also important considerations. A smaller diamond grain size D and a higher diamond 

concentration C leads to a lower depth of cut hc when all other grind parameters are kept 

fixed. The effect different process parameters have on the depth of cut for a single cutting

Figure 25. Effect different grinding process parameters have on the depth of cut for a 
single cutting edge. The sign indicates the effect when all other parameters 
remain constant [Reference 2],
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The signs in Figure 25 indicate whether a particular parameter has a positive or negative 

effect on the depth of cut when all other parameters are held constant. Since the depth of 

cut is directly related to chip thickness, a lower depth of cut leads to higher surface, 

quality, smaller cracks in the material surface, and higher material strength.2

The ultrasonic grinding procedure is illustrated in Figure 26.

sluny 
grit size

------- tool face area---------- ►

Figure 26. The ultrasonic grinding process (stationary).

A cutting tool in the shape of the cut to be made in the workpiece is ultrasonically vibrated 

up and down as a slurry of abrasive particles (usually boron carbide, silicon carbide, or 

alumina) is pumped between the tool and the workpiece. The tool is typically made of 

soft material like brass or bronze and operates at kHz frequencies very close to the surface 

of the workpiece. Hard tools are not used because they can fracture the abrasive particles. 

These particles actually perform the work of eroding the material since no pressure is 

applied directly from the tool to the workpiece. The average grinding pressure involved is 

typically less than 0.1 MPa.17
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Highly polished grinding is achieved by repeating the baseline procedure using 

repeatedly smaller diamond grit sizes. The surface damage that was produced from a 

previous grinding process can be corrected by removing the damaged material, exposing 

more of the undamaged interior using finer grit size diamonds with a smaller depth of cut. 

However, the use of a finer grit size also introduces a certain amount of surface damage to 

the workpiece. A still finer grit size may then be used to remove the damaged material 

caused by the coarser grit procedure. In this pattern, surfaces may be more finely polished 

due to a decreasing depth of cut and a decreasing chip thickness, removing most of the 

damaged material introduced by the coarse grinding stages and thereby reducing the

residual surface stress in the material

Heat treatment is performed after the grinding of a ceramic specimen to enhance 

material strength. Oxidation involves heating a specimen to a specified high temperature 

in an air atmosphere over an extended period of time, usually on the order of weeks. Heat 

treatment is done over a short time frame such as a day. Oxidation, as the name implies, 

causes the buildup of an oxide layer over time. Heat treatment promotes the formation of 

a thin oxide layer to relieve the residual surface stress and heal flaws caused by machining. 

The oxidation of a specimen in service can initially have the same effect as a heat 

treatment. However, over time the oxide layer grows and defects can be generated in the

surface.

The types of 6HSiC specimens studied can be divided into five groups: 

as-sintered (no processing), baseline (conventional), ultrasonic, highly polished, and creep 

feed. A brief description of each type of processing is described below. The baseline



58

group consists of four types of processed specimens: baseline grind parallel to the 

specimen bar's long dimension; baseline grind performed at a 15° bias from the bar's long 

dimension; parallel baseline grind followed by heat treatment for 24 hours at 1250 °C, and 

parallel baseline grind followed by oxidation for 500 hours at 1250 °C. The creep feed 

group consists of specimens machined at a feed rate of either 25.4 mm per minute or 

88.9 mm per minute.

The baseline grind procedure consisted of a rough grind of course grit size 

(180 mesh) followed by a baseline finish of fine grit size (320 mesh). This procedure was 

performed on 6H SiC bars with the final dimensions of 45 mm x 4 mm x 3 mm The

grinding was done on both of the 45 mm x 4 mm planes. An overstock allowance of 

material was made for both surfaces such that the processed bar conforms to dimensional 

and processing standards outlined in ASTM C 1161-90.16 A high feed rate and standard 

cutting speed were maintained for both grinding steps, although the stock removal was 

higher for the rough grind than for the finish grind according to ASTM standards. The 

stock removal is the product of the infeed and the number of passes made by the bar 

through the grind zone. These grinding passes were bi-directional with transverse 

positional indexing ofthe ceramic bar after every return pass. In other words, no grinding 

(or material removal) occurs during the return pass. The machining was performed in an 

up cut (or tensile) grinding configuration.

The creep feed grind procedure had a rough grind identical to that of the baseline 

grind procedure, yet differed in the finish grind. During the finishing step, the feed rate
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was much slower and the infeed was much larger than those used in the finishing step of 

the baseline grinding procedure. All other machining parameters remained the same.

The ultrasonic grind procedure began with the same steps used in the baseline 

grind with the exception of the finishing step material removal. To conform with ASTM 

standards for dimensions of the modulus of rupture (MOR) bars, less material was 

removed during the baseline finishing step to allow overstock for the ultrasonic finish 

grind. The ultrasonic finish grind used the same grit size abrasive (320 mesh) in the slurry 

as that used in the baseline finish grind wheel. The ultrasonic finish grind was performed 

on a single side only.

The damage caused by grinding processes due to a single abrasive particle is 

illustrated in Figure 27.19

Figure 27. Diagram of cracks and material deformation that occur during grinding with 
a single abrasive particle [Reference 19],

Note that beneath the groove produced by the abrasive particle a deformed region of 

material extends radially below the surface and is referred to as the plastic zone. Three 

types of cracks extending from the plastic zone also appear: lateral cracks run parallel to 

the surface on both sides of the groove; median cracks open perpendicular to the surface
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beneath the plastic zone; and radial cracks open perpendicular to both the groove and the 

surface, extending away from the plastic zone. The extent of damage caused by grinding 

in the form of material deformation and cracks determines the degradation in material 

strength.16

Hollstein and Pfeiffer18 have shown experimentally that the reduced residual 

surface stresses associated with a smaller plastic deformation in creep feed grinding results 

in a higher characteristic strength of the material than that machined with conventional 

grinding techniques. The flexural strength of an MOR specimen is found using a 

four-point '/4-point bend fixture configuration as shown in Figure 28.

1 p I
>4

7 T
P/2 P/2

Figure 28. Four-point ‘/4-point bend fixture configuration for MOR bars.

The term "four-point" means that the fixture comes into contact with the bar at four 

points. The term "‘/4-point" means that the horizontal distance between the loading point 

and support point on one side of the fixture is one-fourth of the total span of the two

support points. The flexural strength of the MOR specimen is given by

A/c _ V2 ajU = 3_pg

I (b£\ bd2 
12

(32)
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where M is the moment, c is the distance from the neutral axis to the tensile surface, and I 

is the moment of inertia. The b and d parameters are the specimen width and thickness,

respectively. The P parameter represents the loading force on the test specimen. For a 

rectangular test specimen, /= ^ and c = |. The parameter a represents the horizontal 

distance between the loading point on one side and the support point underneath the bar 

on the same side. This value is typically lA of L, the distance between the two supporting 

points underneath the bar.19

Collecting Raman Data

By using the cylindrical optics of the Raman microprobe to focus an elliptical

532 nm line having dimensions of 35 pm by 2 pm onto a specimen surface, Raman spectra 

were obtained for different positions of the specimen with the CCD array detection 

system. With the use of micropositioner translation stages, the specimen could be stepped 

in both directions transverse to the objective optic axis. For the grinding studies of 

6H SiC, the specimens were stepped in a plane transverse to the optic axis of the objective 

and in a direction perpendicular to the laser line's long dimension. The specimens were

translated in increments of 25.4 pm (0.001") for a total of 21 runs covering a length of 

0.51mm (0.020"). (By automating the stepping process into smaller steps using an 

actuator-driven micropositioner, Raman spectra of a grid of positions can be obtained for 

use in image processing applications.) To obtain a "composite" spectrum of all the 

positions along the laser line length and to improve the signal-to-noise ratio (SNR), the 

photoelectrons of the central forty pixel rows of the CCD array were binned together
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vertically. This technique provided an average Raman spectrum of that region on the 

specimen surface. By making 21 runs near the center of the specimen surface in a 

stepwise fashion, as shown in Figure 29, statistical averages of the Raman shifts 

linewidths, and relative strengths of the Raman lines were obtained. A discussion on 

weighted statistical averaging is given in Appendix E. These data were derived from least 

squares fitting of each spectrum which yielded the mean and respective uncertainty of each 

parameter for each Raman line of a given specimen.

Figure 29. Stepwise statistical sampling of Raman spectra from a specimen in grinding 
studies.

A three minute exposure and a 50 pm spectrometer entrance slit width were used for each 

run. The 60x ELWD microscope objective with a 0.7 NA and a 3.49 mm focal length was 

used for focusing the elliptical laser line onto the specimen surface. The 767 cm'1 (E2), 

788 cm'1 (A1T/E2), and 797 cm'1 (E1T) modes of 6H SiC were present for all 21 runs of 

each specimen studied. However, the appearance of the 777 cm'1 (E2) and 783 cm'1 (A1T) 

modes occurred on occasion due to the presence of 4H SiC polytype. The Raman data of 

these two lines were averaged according to the number of occurrences in the 21 runs.



63

Results

The analysis results of the Raman spectra from the processed 6H SiC specimens 

described in the previous section, the Raman shifts and linewidths of the 767 cm'1 (E2), 

788 cm'1 (A1T/E2), and 797 cm'1 (E1T) Raman modes are compiled in Tables 7 and 8, 

respectively. The flexural strengths for seven types of processed 6H SiC specimens are 

listed in Table 9. The Raman shifts and linewidths are also graphed in Figures 30 and 31, 

respectively.

Table 7. Raman shift measurements of the three main Raman lines in the 790 cm'1
region for nine types of processed 6H SiC specimens. The average precision 
in the Raman shift of the 788 cm'1 line, based on fitting uncertainties, was 
±0.004 cm'1.
Specimen 767 cm'1 Raman 

Shift (cm1)
788 cm'1 Raman 

Shift (cm1)
797 cm'1 Raman 

Shift (cm1)

As-Sintered 767.14±0.04 788.08±0.02 797.46±0.01
Heat Treated (Baseline/Parallel) 767.25±0.04 788.11±0.03 797.42±0.03

25.4 mm/min Creep Feed 767.16±0.04 788.14±0.03 797.39±0.02
Oxidized (Baseline/Parallel) 767.08±0.02 788.15±0.03 797.42±0.02

88.9 mm/min Creep Feed 767.18±0.03 788.15±0.03 797.40±0.02
Highly Polished 767.16±0.01 788.17±0.02 797.49±0.01
Baseline/Parallel 767.47±0.04 788.33±0.04 797.66±0.04
Baseline/15° Bias 767.39±0.04 788.33±0.03 797.64±0.03

Ultrasonic 767.65±0.04 788.48±0.03 797.69±0.03

Two to three specimens were evaluated from each of the machining treatments. 

There were eighteen specimens examined representing eight processes with the addition of 

an as-sintered specimen for reference. There was very little variation in the Raman data

for specimens of the same process so that the Raman data for a process was averaged 

rather than for individual specimens.
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T’ble 8. Raman linewidth measurements of the three main Raman lines in the 790 cm'1
region for nine types of processed 6H SiC specimens. The average precision 
in the Raman linewidth of the 788 cm'1 line, based on fitting uncertainties, was 
±0.008 cm'1.
Specimen 767 cm'1 Raman 

Linewidth (cm1)
788 cm'1 Raman 
Linewidth (cm'1)

797 cm'1 Raman 
Linewidth (cm1)

As-Sintered 4.15±0.07 4.34±0.03 3.52±0.04
Highly Polished 3.93±0.04 4.40±0.03 3.68±0.02

Heat Treated (Baseline/Parallel) 4.4±0.1 4.54±0.07 3.7±0.1
25.4 mm/min Creep Feed 4.49±0.07 4.64±0.04 3.95±0.04
88.9 mm/min Creep Feed 4.51±0.08 4.66±0.05 3.94±0.05

Oxidized (Baseline/Parallel) 4.4±0.1 4.74±0.05 4.08±0.05
Ultrasonic 4.9±0.1 4.95±0.06 4.5±0.1

Baseline/Parallel 5.5±0.1 5.27±0.08 4.7±0.1
Baseline/150 Bias 5.34±0.09 5.29±0.05 4.55±0.07

Table 9. Flexural strengths for seven types of processed 6H SiC specimens?
Specimen Flexural Strength (MPa)

Heat Treated (Baseline/Parallel) 418±6

Oxidized (Baseline/Parallel) 410±10
Baseline/150 Bias 387±5
Baseline/Parallel 380±10

1.0"/min Creep Feed (Parallel) 370±10

3.5"/min Creep Feed (Parallel) 370±10
Ultrasonic Grind 361±4

a Reference 20.

Distinct differences in the Raman data were observed for different processes, as when

comparing the larger Raman shifts and linewidths from baseline grind specimens with the 

smaller Raman shifts and linewidths from as-sintered and highly polished specimens. 

These differences are attributed to differences in residual surface stress caused by surface

processing of the specimens.
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Three Raman Line Positions (cm"')

□

As-Sintered
Heat Treated
Creep Feed Grind at 25.4 mm/min 
Oxidized
Creep Feed Grind at 88.9 mm/min 
Highly Polished 
Baseline/Parallel Grind 
Baseiine/Grinding Bias of 15* 
Ultrasonic Grind

Figure 30. Raman shift measurements of the three mam Raman lines in the 790 cm'1 
region for nine types of processed 6H SiC specimens.

Three Raman Line Positions (cm"') 
As-Sintered

H Highly Polished
BB Heat Treated
E==3 Creep Feed Grind at 25.4 mm/min 
I 1 Creep Feed Grind at 88.9 mm/min

Oxidized
KSSS Ultrasonic Grind
BS Baseline/Parallel Grind 
I—4 Baseiine/Grinding Bias of 15*

Figure 31. Raman linewidth measurements of the three mam Raman lines in the 790 cm1 
region for nine types of processed 6H SiC ceramic specimens.
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The more damage introduced by a grinding process, the more material 

deformation, resulting in higher compressive strains on the individual crystallites in the 

polyciystalline material. Raman lines tend to shift linearly away from the laser line toward 

higher frequencies with increasing compressive strain on the crystallite structure. In 

addition, the linewidths of these lines tend to broaden for several reasons. First, the 

Raman lines tend to broaden as they shift to higher frequencies since the increasing 

compressive strain reduces the symmetry in the crystallite structure, causing a broadening 

in the frequency band of each Raman mode. Second, the crystallites taken as a whole 

have a distribution of compressive strains which act to broaden the lines in the composite 

Raman spectrum A third factor discussed in the laser penetration depth studies is that the 

composite Raman spectrum is integrated over the depth in which the laser light penetrates. 

The resultant spectrum is highly dependent on the damage profile of the material and 

varies with incident wavelength since longer wavelength light penetrates more deeply. If 

the relationship between wavelength and penetration depth is known, then the use of 

several incident wavelengths allows the determination of the actual Raman linewidths and 

the corresponding relative residual stresses as a function of depth beneath the surface.

Figures 30 and 31 show that creep feed grinding produces lower residual stresses 

than baseline grinding. Earlier, it was mentioned that each cutting edge in creep feed 

grinding produces a smaller force on the workpiece material, causing smaller chip 

thicknesses and a lower depth of cut by each cutting edge. This process minimizes the 

loss in strength caused by larger amounts of damage which lead to higher residual surface 

stresses. The baseline specimens which were heat treated or oxidized exhibit still lower
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amounts of residual surface stress, probably since the heat treatment anneals cracks and 

flaws in the surface, thus relieving residual surface stresses. The thicker oxide layer of the 

oxidized specimen appears to reintroduce added surface stresses due to the difference in 

the coefficient of expansion between the oxide layer and the specimen surface. Also, with 

time and temperature cycling, oxidized specimens tend to exhibit pitting and 

devitrification, a process in which crystallite precipitates occur in the glassy oxide layer. 

Both processes contribute to the added residual surface stresses. However, the ultrasonic 

grind specimen appears to have highest amounts of residual stress, apparent from the large 

Raman shift, yet the linewidth is smaller than that of the baseline grind specimens, 

indicating that the variation in the residual surface stress was fairly small.

hi order to more clearly understand the effect machining has on the residual 

surface stresses of 6H SiC, an analysis of just the 788 cm'1 (A1T/E2) mode was conducted 

because of its large line strength and stability, making experimental measurements less 

subject to systematic errors than those of the 767 cm'1 or 797 cm'1 Raman lines. The 

Raman shift and linewidth data of the 788 cm1 line for eight processes are graphed in 

Figure 32 and Figure 33, respectively, relative to data from the as-sintered specimen. The 

trends in the Raman shifts and linewidths are the same here as they were in Figures 30 and 

31 with regard to the residual surface stress produced by each type of process. As 

mentioned earlier, the material strength is inversely related to the residual stress present in

the surface. The Raman shifts and linewidths of the 788 cm1 Raman line for seven

processes are graphed as a function of flexural strength in Figure 34 and Figure 35, 

respectively.



68

Heat Treated for 24 hrs at 1 250° C
(BL/Parallel Grind)

------ 'Creep Feed Grind at 25.4 mm/min

Oxidized for 500 hrs at 1250° C 
4** ’ (BL/Parallel Grind)

-------Creep Feed Grind at 88.9 mm/min

H
Fitting

0.0 0.1 0.2 0.3 0.4
Difference in Raman Shift Relative 

to an As-Sintered Specimen (cm )

Figure 32. The 788 cm'1 Raman line positions of eight processed 6H SiC specimens 
relative to an as-sintered specimen.

Highly Polished

Heat Treated for 24 hrs at 
1250° C (BL/Parallel Grind)

Creep Feed Grind at 
25.4 mm/min

Creep Feed Grind at 
88.9 mm/min

Oxidized for 500; hrs at 
11250° C (BL/Parallel Grind)

Figure 33.

0.0 0.2 0.4 0.6 0.8 1.0
Difference in Raman Linewidth Relative to

an As-Sintered Specimen (cm )

The 788 cm'1 Raman linewidths of eight processed 6H SiC specimens relative 
to an as-sintered specimen.
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Figure 34. Correlation of the 788 cm'1 Raman shift with the flexural strength of seven 
types of 6H SiC specimens.
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Figure 35. Correlation of the 788 cm'1 Raman linewidths with the flexural strength of 
seven types of 6H SiC specimens.
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The flexural strength data of the as-sintered and highly polished specimens were 

unavailable at the time of this study.

The flexural strength of a material is the maximum tensile stress at the surface a 

modulus of rupture (MOR) bar can withstand at failure in the four-point-‘/4-point bend 

fixture.19 Since the relative residual surface stresses due to machining can indicate the 

degradation in material strength, flexural strength data may be used for correlation. In 

addition to the uncertainties for each point in Figures 34 and 35, a correlation line is 

drawn for four baseline process specimens. The Raman shift/flexural strength correlation 

of Figure 34 is -6±1 cm’/GPa and the Raman linewidth/flexural strength correlation of 

Figure 35 is -20±4 cm’/GPa. These four processes are baseline grind parallel to the 

specimen long axis, baseline grind at a 15° bias to the specimen long axis, parallel baseline 

grind with oxidation, and parallel baseline grind with heat treatment. The flexural strength 

increases (and the relative residual surface stress decreases) with this ordering of 

processes. The ultrasonic grind and the two creep feed grind processes in general do not 

fall on this correlation (although the Raman shift of the ultrasonic grind does line up with 

the baseline correlation). The linewidth from the ultrasonic grind process may not fall on 

the correlation due to a reduced variation of the residual surface stress caused by 

uniformity in the up and down pounding of abrasive particles during ultrasonic grinding.

The creep feed grind processes may form different correlations due to the difference in 

damage zones produced by creep feed and conventional grinding processes. The research 

of Hollstein and Pfeifer18 support this assertion by graphing the damage distributions of
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AfO, caused by different machining processes as shown in Figure 36. Note that the 

damage caused by conventional grinding is much deeper than that of creep feed grinding.

Depth in pm

Figure 36. Damage distribution in the sub-surface area of ALO. [Reference 15],

Further support of this explanation is provided in Chapter V covering a comparison of the 

conventional and creep feed grind results using the Ar ion 488 nm wavelength for a 

smaller penetration depth, revealing the larger amounts of damage from each method 

closer to the surface. Overall, from Figures 34 and 35, creep feed grinding produces less

residual surface stress than conventional grinding. However, when the baseline specimens 

were heat treated or oxidized, the amount of residual surface stress was greatly reduced, 

resulting in an increased flexural strength. Both processes reduce the residual surface

stress due to the annealing of cracks and flaws. However, the oxidation process appears
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to reverse the trend slightly by reintroducing added residual surface stresses caused by the 

difference in the coefficient of expansion between the oxide layer and the specimen surface 

and by other effects such as pitting and devitrification. Based on these studies, if creep 

feed grind specimens were to undergo the same heat treatment or oxidation processes, a 

similar reduction in residual surface stress along with an increase in flexural strength

would be observed.



CHAPTER V

OTHER STUDIES OF 6H SILICON CARBIDE

Comparison of Hexolov SA SiC Vintage 1995 With Hexolov SA SiC Vintage 1988

Several Raman spectra were taken of Hexoloy SA SiC Vintage 1988, the 

manufactured specimens researched by Jennings.21 This study was conducted namely to 

confirm the similarity of the Raman spectra with that shown in his experimental data and 

also to demonstrate that both manufactured specimens were hexagonal SiC due to the 

resemblance in Raman spectra. This study adequately demonstrated that both 

manufactured specimens were hexagonal SiC.

General Survey of the 790 cm1 Raman Spectral Region of
6H SiC Using Different Experimental Configurations

A study of the three main Raman modes in the 790 cm'1 region of 6H SiC was

performed for a variety of experimental conditions in order to note any differences in the

Raman spectra. Later research revealed that the Raman shifts and linewidths of the

788 cm'1 (A1T/E2) line were slightly smaller for creep feed machined specimens than for

those machined using baseline grinding. Differences in the Raman spectra at different

positions on the same specimen can be attributed to statistical variations in the orientations

and positions ofthe grains, surface defects, and surface profile variations. The differences 

73
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in the Raman spectra due to the polarization configuration of the incident and scattered 

light (parallel or crossed) were negligible due to the random orientation of the c-axis of 

each crystallite in the polycrystalline material and to the multiple paths taken by the 

incident and scattered light resulting from the grain boundaries. This study revealed the 

statistical nature of the Raman data for different positions on the specimen surface and the 

absence of orientational or polarization dependence. However, the study also confirmed

differences in the Raman data which can be attributed to differences in the residual surface

stresses due to different machining methods.

Study of the 790 cm1 Raman Spectral Region From the
Unprocessed Ends of Some 6H SiC Specimens

Studies of the ends of several specimens were conducted to obtain Raman spectra

of unprocessed ceramic material to be used as a "reference" for changes in the Raman shift

and linewidth of Raman lines evident in the spectrum of processed ceramic material. This 

effort was an attempt to arrive at a measure of the relative residual surface stress due to 

machining. The ends of the specimens were broken but not machined. This study was 

conducted before an as-sintered (unprocessed) specimen was obtained. The procedure in 

this study involved taking a series of runs which "mapped" the central region of the 

specimen end. Raman shift and linewidth data could then be averaged to obtain 

"composite" Raman data to be used as a reference. Unfortunately, due to the rough 

surface profile, fluorescence regions (which greatly increase the background and reduce 

the SNR), random grain orientations, and random surface stresses, the collected Raman
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data did not yield very favorable results when compared with spectra obtained from the 

as-sintered specimen. Seventeen runs in a "star" grid pattern were made on the ends of 

both the baseline and 88.9 mm per minute creep feed grind specimens, as shown in 

Figure 37.
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Figure 37. "Star" grid pattern of runs performed on the ends of two 6H SiC specimens.
The narrow horizontal rectangles depict the position and orientation of the 
line of laser light illumination and its polarization.

The grid was 1 mm on a side with horizontal and vertical spacings of 0.25 mm The runs

were performed using 532 nm laser light. The incident light was focused using a 60x 

ELWD microscope objective. The runs had an exposure time of three minutes and the

spectrometer entrance slit was set to 50 gm

Although not very favorable when compared with the results from the as-sintered 

specimen, the Raman shift and linewidth data of the 788 cm1 line were plotted as a 

function of position on the unprocessed ends of two specimens as shown in Figure 38 and 

Figure 39, respectively.
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Figure 38. The 788 cm'1 Raman shift mapping over the unprocessed ends of (a) the first 
and (b) the second of two 6H SiC specimens. The horizontal lines depict 
both the line of laser illumination and the Raman shift values while the dark 
vertical lines define the uncertainty in each of these values.
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Figure 39. The 788 cm'1 Raman linewidth mapping over the unprocessed ends of (a) the 
first and (b) the second of two 6H SiC specimens. The horizontal lines 
depict both the line of laser illumination and the linewidth values while the 
dark vertical lines define the uncertainty in each of these values.
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The statistical average of the Raman shift and linewidth measurements was 

788.17±0.03 cm'1 and 5.2±0.1 cm'1, respectively. For comparison, the Raman shift and 

linewidth measurements for an as-sintered 6H SiC specimen was 788.08±0.02 cm'1 and 

4.34±0.03 cm'1, respectively. The average Raman shift of this study was not much larger 

than that ofthe as-sintered specimen. However, the linewidth was much broader than that 

of the as-sintered specimen, indicating that the as-sintered specimen serves as a much 

better reference for comparison to machined specimens.

Study of the Presence of 4H SiC Polvtype in a 6H SiC Specimen

The appearance of the 777 cm1 (E2) mode characteristic of 4H SiC polytype 

prompted a study ofthe extent of its presence along the surface of a 88.9 mm per minute

creep feed grind specimen. The cross-like pattern of these runs is shown in Figure 40.
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Figure 40. "Cross" grid pattern of runs performed on a 6H SiC ceramic specimen to 
examine the presence of 4H SiC polytype. The "dots" denote the positions 
of the runs and the narrow horizontal elliptical line denotes the orientation 
and polarization of the line of laser light illumination at each "dot."
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Raman spectra of the positions transverse to the bar long dimension are shown vertically 

and those taken of positions parallel to the bar long dimension are shown horizontally. 

The spacing of these positions transverse to the long dimension was approximately 6.4 pm 

and the spacing parallel to the long dimension was approximately 5 pm. The extreme 

points of the cross pattern represent the positions at which the 777 cm'1 line no longer 

appeared. This study was used to estimate the size of the local region containing 

4H polytype near the specimen surface. An elliptical line of 532 nm laser light was 

focused at each position of the surface using the 60x ELWD microscope objective. A

three minute exposure was made at each point using a 50 pm spectrometer entrance slit 

width. Based on research conducted by Nakashima et al.,20 the appearance of the 777 cm'1 

(E2) mode indicates the presence of 4H SiC polytype, as mentioned in the single crystal 

studies of Chapter IV. The 783 cm'1 (A1T) mode was probably not observed since it is 

typically much weaker based on these single crystal studies. The Raman shift, linewidth 

and relative intensity of the 777 cm'1 (E2) mode is graphed as a function of position in 

Figures 41(a), 41(b), and 41(c), respectively. Note how the intensity of the Raman line 

peaks near the center of the cross pattern, indicating the central location of the

4H polytype presence. The extent of this region is approximately 40 pm in each direction.

This study revealed that the occurrence of 4H polytype in this specimen was fairly 

localized. The Raman shift and linewidth data stayed fairly the same throughout the 

region. Further studies could reveal more about the density of the 4H polytype at these

sites and the density of these sites over the entire surface of specimens.



79-rnz..

Figure 41. The 777 cm'1 (a) Raman shift, (b) linewidth, and (c) relative intensity 
mappings of a 4H SiC polytype region of a 6H SiC specimen. The horizontal 
lines depict the line of laser illumination at the specimen surface and the 
"dots" with dark vertical lines through their centers define the values with 
respective uncertainties.
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Laser Penetration Depth Studies on 6H SiC

A study of the Raman modes in the 790 cm'1 region was conducted on the 

unprocessed side of a 6H SiC specimen using six wavelengths of the Ar ion laser. 

Statistically significant data were not obtained since a single run was obtained at each 

wavelength. However, the study was still useful in that atomic lines of several discharge 

lamps were identified as reference lines in three critical spectral regions of 6H SiC for each 

wavelength: at the laser line (0 cm'1); at the transverse optic region (760 cm‘-800 cm'1); 

and at the longitudinal optic region (970 cm'1). The rationale for this study comes from 

the knowledge that the damage profile (the plastic zone) is a decreasing function with 

depth beneath the surface. This effect results from the fact that the grinding process 

introduces greater damage in a material closer to the surface.23

Laser fight penetrates the surface of the material based on the extinction coefficient

of the material. The intensity falloff can be described by

Z(z) = Zoexp [-a(X. d)z] = Zoexp [-z/t] (33)

where Io is the intensity at the surface, z is the depth beneath the surface, 2 is the

wavelength, d is the grain size of the material, a is the extinction coefficient due to

absorption and scattering, and r is the penetration depth of the laser fight. As can be seen

in Equation (33), the penetration depth r is typically defined as the inverse of the

extinction coefficient a. Since fight penetrates more deeply into materials at longer

wavelengths, the extinction coefficient a decreases with increasing wavelength. Also,

since materials of larger grain size have an overall lower density, fight can penetrate these 

materials more deeply than for materials having a smaller grain size. Therefore, the
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extinction coefficient a decreases with increasing material grain size d. The strain 

distribution is a decreasing function which sometimes is described by a simple exponential 

decay given by

S(z) = Soexp(-pz) (34)

where So is the strain at the surface and p is the strain falloff. Based on a discussion by 

Pfeiffer,23 the total strain distribution S7(r) representing the integrated strain distribution 

seen by X-ray diffraction techniques and weighted by the absorption exponential function

for X-ray penetration is given by

f; S(z)/(z)<fe _ f” S(z)exp(-z/r)cfc
TX f" I(z)dz exp (~z/x)dz

Using the simple exponential decay for the strain distribution given in Equation (34), we

obtain an integrated strain distribution given by

So (36)Sr(x) =
pr +1

so that Sj(0)=Sg, the strain at the surface. Equation (34) can be rewritten in terms of the 

penetration depth r.

S(t) = Soexp(-pT) (37)

Solving for the product prin Equation (36) and substituting this expression into Equation

(37), we obtain the actual strain distribution in terms of the integrated (measured) strain

distribution:

S(t) = So exp 1- So 
SrCO.

1- Sr(0)
St(t).

(38)= Sr(0)exp

Thus, by measuring the relative residual stresses in materials as a function of wavelength

and by knowing the relationship between the wavelength and its penetration depth into the
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material, an accurate description of the integrated strain distribution may be obtained. The 

actual strain distribution of the material may then be computed.

The information gained from this penetration depth study is included in Table 10. 

Essentially, the atomic line wavelengths useful as references in the 0 cm'1, 

760 cm '-SOO cm'1, and 970 cm'1 regions from each laser line are listed for future use. If 

the laser wavelength and wavelength dispersion of each region are accurately determined, 

then twenty or more spectra for each wavelength may be obtained to determine the 

statistical measures of the relative residual stresses as a function of penetration depth. The 

reference atomic lines were selected assuming a maximum spectral range on the CCD 

array of 70 cm'1.

Raman spectra from 21 runs using the 488 nm line of the Ar ion laser on both 

baseline grind and 88.9 mm per minute creep feed grind 6H SiC specimens were examined 

for comparison with those obtained using 532 nm laser light from the Nd:YAG laser. 

Neon atomic spectral lines were used to determine the Ar ion 488 nm wavelength and the 

wavelength dispersion at the 790 cm'1 region for 6HSiC. The 488.49170 nm and 

489.21007 nm neon lines were used to determine the laser wavelength. The

507.42007 nm and 508.03852 nm neon lines were used to determine the wavelength 

dispersion in the 790 cm'1 region. The spectrometer entrance slit width was 50 pm and 

the exposure was three minutes for each run. The incident light was focused using the 60x 

ELWD microscope objective and the stepping interval along the specimen surface was

25.4 pm (0.001"). The results from this study, along with data obtained using the 532 nm

Nd:YAG laser, are summarized in Table 11.
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Table 10. Reference atomic lines used in several spectral regions of 6H SiC for the laser 

penetration depth study. 
X (nm) v (cm1) reference lines3 

at 0 cm'1
reference lines3 

at 780 cm"1
reference lines3 

at 970 cm'1
457.936 

(Ar ion laser)
21,837.11 Ne 457.50620 

Ne 458.2035
Ne 458.24521

Ne 474.95754 
Ne 475.27320

Ne 478.89270
Ne 479.0217

476.488 
(Ar ion laser)

20,986.89 Ne 474.95754 
Ne 475.27320

Ne 494.49899 
Ne 495.70335
Ne 495.7123

Ne 499.4913
Ne 500.51587
Ne 501.1003

487.9865 
(Ar ion laser)

20,492.370 Ne 488.49170 
Ne 489.21007

Ne 507.42007 
Ne 508.03852

Ne 510.47011
Ne 511.36724
Ne 511.65032
Ne 512.22562

496.509 
(Ar ion laser)

20,140.62 Ne 495.70335 
Ne 495.7123
Ne 497.3538

Ar 516.22847 
or Xe 516.2711 

For Dx
Ne 515.0077

Ne 515.19610
Ne 515.44271
Ne 515.66672
Ne 515.89018

Ne 520.38962
Ne 520.88648
Ne 521.05672
Ne 521.43389
Ne 522.23517
Ne 523.40271

501.717 
(Ar ion laser)

19,931.56 Ne 500.51587 
Ne 501.1003
Ne 502.2864

Ne 503.13504 
Ne 503.5989

Ne 522.23517
Ne 523.40271

Ne 527.40393
Ne 528.00853

514.527 
(Ar ion laser)

19,435.33 Ne 514.49384 
Ne 515.0077

Ne 515.19610 
Ne 515.44271 
Ne 515.66672 
Ne 515.89018

Ar 537.34951 
For Dx

Ne 536.00121
Ne 537.23110
Ne 537.49774

Ar 541.04750
Ar 542.13492

For D.
Ne 540.05616
Ne 541.26490
Ne 541.85584

532.10364 
(Nd:YAG laser)

18,793.3275 Ne 533.07775 
Ne 534.10938

Ne 556.27662 
For Dx

Xe 555.2385
Xe 556.6615

Ar 560.67328
For D.

Ar 558.87213
Ar 559.74783

Reference 14.
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Table 11. Raman shift and linewidth measurements of the 788 cm'1 Raman line of creep 

feed and baseline grind specimens using 488 nm and 532 nm wavelengths.

Specimen
767 cm'1
Raman

Shift (cm1)

767 cm'1 
Linewidth 

(cm1)

788 cm'1
Raman

Shift (cm1)

788 cm'1 
Linewidth 

(cm1)

797 cm'1
Raman

Shift (cm1)

797 cm'1 
Linewidth 

(cm1)
88.9 mm/min 767.18 4.51 788.15 4.66 797.40 3.94
Creep Feed 
(532 nm)

±0.03 ±0.08 ±0.03 ±0.05 ±0.02 ±0.05

88.9 mm/min 767.06 3.69 788.31 4.88 797.56 3.60
Creep Feed 
(488 nm)

±0.03 ±0.08 ±0.04 ±0.06 ±0.04 ±0.05

Baseline/ 767.47 5.5 788.33 5.27 797.66 4.7
Parallel 

(532 nm)
±0.04 ±0.1 ±0.04 ±0.08 ±0.04 ±0.1

Baseline/ 767.45 4.0 788.44 5.7 797.74 4.7
Parallel 

(488 nm)
±0.07 ±0.1 ±0.04 ±0.1 ±0.05 ±0.2

These results are graphed in Figure 42, which demonstrates the Raman shift and linewidth 

of the 788 cm'1 line as a function of wavelength for both the baseline and creep feed grind 

specimens. Note how the relative residual stress decreases with increasing wavelength (or 

increasing penetration depth). This result confirms the assertion that baseline grinding 

creates a deeper damage zone than does creep feed grinding.

Fluorescence Studies of 6H SiC Specimens

Throughout the research on 6H SiC specimens, it was observed that certain

regions at the surface of the specimens (or to be more accurate, within the penetration 

depth of the illuminating fight) exhibited unusually high backgrounds (reducing the SNR of 

the Raman spectra) in the 790 cm'1 region using CCD array detection.



85

480 490 500 510 520 530 540

-U
00
00
o
3,
3J0)
30)

CD

o
3

Laser Wavelength (nm)

Figure 42. The 788 cm'1 (a) Raman shift and (b) linewidth as a function of wavelength 
for both baseline and creep feed grind 6H SiC specimens. Note that the 
dashed lines represent the values for an as-sintered specimen.

A broadband background which increased with wavelength was also observed in some 

survey spectra using the PMT detection system. These high backgrounds were attributed 

to fluorescence in the material caused by regions containing trace amounts of rare earths 

or other materials which are known to fluoresce. An excellent example of this effect is 

shown in Figure 43, where survey spectra of both fluorescence and non-fluorescence sites

of a 6H SiC specimen were made using a ten second count time, 200 (im entrance/exit 

slits on the 1877 Triplemate spectrometer, and an elliptical line of 532 nm light focused 

onto an unmachined face using the 60x ELWD microscope objective. Note the broadband 

regions which could be used to identify the fluorescing material.
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Figure 43. Survey spectra of both (a) fluorescence and (b) non-fluorescence sites on a 
6H SiC specimen.

Unfortunately, efforts to repeat these measurements were for the most part 

unsuccessful Moreover, the fluorescence features in Figure 43 could not be identified 

unambiguously. Due to the small locality of these fluorescence sites (typically 30 (_tm or 

less), positioning of the translation stages is often difficult due to operator error in 

positioning the specimen reference comer, backlash or "play" in the stages themselves, and 

other positioning factors. Often, a fluorescence site was observed by looking for regions 

in which the incident laser line induced the surrounding region to "light up." This effect 

was observed often for creep feed grind specimens and was prominently noticed by 

dousing the white light illumination so that the orange-red fluorescence could be observed 

in addition to the scattered laser light. Usually, the fluorescence occurred at smooth

"glassy" regions which were about 20 pm in size. These regions would "light up" as the 

illumination moved closer. Fluorescence at neighboring regions from the illumination
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occurred from a "channeling" effect of the light within the surface layer of 6H SiC in 

which the light penetrated. The grain boundaries could act as tiny multi-faceted mirrors, 

scattering light in all directions beneath the surface. Another source of these fluorescent 

materials may be from the grinding wheel itself. Trace amounts of fluorescent material 

may originate from abrasive particles used in the grinding wheel. Fluorescence sites were 

sometimes "hunted" by looking for regions which "light up" near the area of illumination, 

but spectra of these regions did not always reveal the presence of fluorescence. In 

addition, the "lighting up" effect observed in these regions appeared to fade with time 

during illumination, indicating that the fluorescence effect dissipates or "bleaches" with 

prolonged illumination. Other studies of the fluorescence effect were conducted using the 

PMT detection system, but no conclusive results were obtained.

More study of this effect in 6H SiC must be conducted to adequately 

characterize the fluorescence behavior. The study should concentrate on accurately 

recording the positions of fluorescence and confirmation of the locations of these 

fluorescence sites through repeated measurements. Survey scans of these regions could 

then reveal fluorescence patterns in the spectra characteristic of certain materials. While 

for many experiments fluorescence is a nuisance to be avoided, these studies could lead to 

the regular detection of trace substances present during the manufacture of SiC and help

to eliminate contaminants introduced during the manufacturing/machining process.



CHAPTER VI

PROTOTYPE GALVANOMETER SCANNER FOR 
THE RAMAN MICROPROBE SYSTEM

Operation and Considerations For Computer Control

Based on a proposal by Ernst and Yaney,13 the addition of a scanner into the 

Raman microprobe system was considered. The previous system consisted of a cylindrical 

optics configuration for focusing an elliptical line of laser light onto the specimen surface.

This line was typically 35 pm by 2 pm wide. A line of illumination was used to avoid 

excessive specimen heating, yet the small width allows high spatial resolution in one 

dimension for measuring the relative residual surface strains evident from Raman spectra. 

The scanner technique allows for the acquisition of spectra for each position along the 

length of illumination using the CCD array detector. If the corresponding spectra from 

these positions were binned together, a "composite" spectrum from the illuminated region 

would be obtained, representing the statistical average for that region and the equivalent

of the elliptical line illumination technique.

A scanner system has several advantages over the cylindrical optics system.

First, the system would linearly scan a focused laser spot 1 to 2 pm in diameter over the

specimen surface. This technique would uniformly illuminate the scanned region, whereas 

the nonuniformity in the laser line illumination method is due to its Gaussian irradiance

88
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profile. The scanner system would also reduce specimen heating since the scanning can be 

computer controlled. A galvanometer scanning system was selected because of its high 

precision and its adaptability to computer control.

In the microprobe system, laser light is focused onto the specimen with a 

microscope objective lens which also collects the Raman scattered light. The scattered 

light passes through the same objective in the opposite direction to the incoming laser 

light. The laser light is inserted into the 180° backscattering configuration by means of a 

70/30 (transmission/reflection) beam splitter oriented at 45° above the objective which 

directs the laser light into the objective and passes the "back" scattered light on to the 

spectrometer and detector. For the scanning system, a modified scanner element was 

proposed to replace the 70/30 beam splitter. This scanner element would consist of a 

glass window with a central elliptical mirror "spot" which could reflect more than 90% of 

the incident laser light onto the specimen and transmit about 98% of the scattered fight 

that lies outside of the mirror boundary. In this design, the mirror spot would be made as 

small as possible to optimize transmission of the scattered fight. The clear surfaces would 

be AR-coated to avoid Fabry-Perot interference effects. For the Raman microprobe 

system, the AR-coatings will be designed for s-fight (polarized orthogonal to the plane of 

incidence) at 45° incidence using a 523 nm wavelength (this wavelength is midway 

between the 532 nm fight of the Nd:YAG laser and the 514.5 nm fight of the Ar ion laser). 

The s-fight design polarization was selected since, in the Raman microprobe system, the 

laser beams from both the Nd: YAG and the Ar ion lasers are s-polarized at the beam 

splitter. The galvanometer scanner system is illustrated in Figure 44.
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Figure 44. Galvanometer scanner system of the laser Raman microprobe.

As shown in Figure 44, the laser spot is scanned along the specimen surface in a 

line contained in the plane of incidence defined by the laser fight on the scanner element. 

Since the scan direction projects perpendicular to the slit long dimension, a dove prism 

rotated about its axis by 45° is used to rotate the scan fine and its polarization by 90°, as 

shown in Figure 45.

Figure 45. Dove prism configuration used with the galvanometer scanner for rotating 
the scattered fight scan path to coincide with the long dimension of the 
spectrometer entrance slit.
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This places the polarization perpendicular to the slit in the normal setup which gives 

optimum response of the spectrometer. Normal setup is parallel polarization when 

studying a single crystal specimen. The incident light polarization is not as much of a 

concern when studying polycrystalline specimens since scattered light from this material is 

depolarized. The entrance and exit faces of the dove prism are broad band AR-coated for 

45° incidence for s- and p- polarizations. The base is uncoated since minimal losses will 

occur due to total internal reflection (TIR).

The galvanometer scanner can operate up to 70 Hz with a maximum scan range 

of 50°. The angular deflection is linear with input voltage, given as 5°/V. The limiting 

lhctor in the scan length is the 4.9 mm back (entrance) aperture of the 60x ELWD 

microscope objective that is currently used to focus the spot onto the specimen.

The size of the laser beam on the scanning element is determined by the optical 

fiber system used to divert the laser beam around the cylindrical optics and re-direct it 

onto the scanning element as a laser spot rather than a line. A 20x 0.4 NA objective 

launches the 0.7 mm diameter beam of 49 mW power and 532 nm wavelength into the 

polarization-preserving fiber. The fiber NA is 0.1 and defines the angular divergence of 

fight exiting the fiber. A "matched" fiber system was originally used which featured two 

F-1015 High Precision Steering Lens Fiber Couplers from Newport.24 These fiber 

couplers have a long focal length (254 mm) AR-coated negative lens that steers the beam 

for precision alignment. The 20x microscope objectives have an 8.3 mm focal length and 

are used with the beam steering lenses for launching and collecting the fight in the optical 

fiber system. The effective focal length of the coupler system using the 20x microscope
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objective is 7.4 mm.24 Table 12 outlines the spot sizes obtained at both the scanner 

element and at the specimen surface using both a 20x and a 40x objective in the output 

fiber coupler (assuming Gaussian propagation following the output fiber coupler). The 

fight is focused onto the specimen surface using a 3.49 mm 60x ELWD microscope 

objective.

Table 12. Spot diameters at the scanner element and at the specimen surface for 20x and
40x objectives in the output fiber coupler of the optical fiber system The fight 
is focused onto the specimen surface using a 3.49 mm 60x ELWD microscope 
objective.

objective
magnification

NA f coupler
e.f.l.

scanner element 
spot diameter

specimen surface 
spot diameter

20x 0.4 8.3 mm 7.4 mm 1.49 mm 1.59 pm

40x 0.65 4.3 mm 3.78 mm 0.76 mm 3.11 pm

The spot diameter at the scanner element was calculated using

= 2 fcoupier tan £ sin (AC4yjft)J (39)

where fcoupler is the effective focal length of the fiber coupler system The spot diameter at 

the specimen surface is given by

S2
4X/60.tELWD 

71 Si (40)

where f60xELWD is the focal length of the 60x ELWD microscope objective.

The total length of the path traced by the laser spot on the specimen surface is

given by

L = 2/60*ELWD tan (0max) (41)

where 0 is the maximum scanner deflection angle of the beam from the center of the

scan path (one-half of the maximum scan range). Of course, the scanner element
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physically rotates by exactly half the scanner deflection angle due to the Law of

Reflection.

A study was conducted to compare the operation of the galvanometer scanner 

system with that of the prior Raman microprobe system The configurations studied 

include laser line illumination with the beam splitter and laser spot illumination from the 

optical fiber with both the beam splitter and the scanner element. The latter two studies 

involved cases with and without the inclusion of the dove prism Finally, the scanner 

operation was studied in scanning mode with the dove prism in place. The performance of 

these configurations was based on the quality of the resultant Raman spectra. The Raman 

spectra of a 6H SiC single crystal specimen in the 790 cm'1 region for all six configurations 

are shown in Figure 46. Figure 46(a) shows the Raman spectrum obtained using the beam 

splitter and laser line focused onto the specimen with the 60x ELWD microscope 

objective. The spectrum was taken with a three minute exposure time using a 50 pm 

spectrometer entrance slit width. Next, Figure 46(b) shows the Raman spectrum using the

optical fiber system to produce a 2-3 pm spot on the specimen surface. The dove prism 

was then inserted and aligned to rotate the image of the scattered light by 90°. The

Raman spectrum using this configuration is shown in Figure 46(c). Of course, this step 

should ideally have no effect other than to rotate the polarization by 90°, since the spot is

symmetrical, but this configuration was included to determine the decrease in signal due to

losses in the dove prism. The Raman spectra using the scanner element were obtained 

both without and with inclusion of the dove prism, as shown in Figures 46(d) and 46(e), 

respectively. The exposure time for all the Raman spectra taken with the scanner element
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was increased to ten minutes to obtain better signals. The scanner element for this study 

was simply a glass window. (A determination as to the feasibility of several scanner 

element designs such as the elliptical mirror "dot," was necessary before an actual design 

could be implemented and tested.) Assuming 4% reflectance per surface and an incident 

power on the window of 13 mW (from the fiber), the incident power on the specimen was 

less than 1 mW. Thus, the 6H SiC single crystal specimen was chosen for its high Raman 

line strengths compared with polycrystalline SiC specimens so that substantial signals 

could be observed with relatively weak light incident on the specimen. Based on the data 

from Table 12, the size of the beam at the glass window is approximately 1.49 mm using 

the 20x objective in the output fiber coupler. Assuming that the scanning window is 

located 120 mm from the 60x ELWD objective's back aperture and taking into account the 

laser beam diameter, the maximum possible angular scan range is then roughly 1.6°. Since 

the focal length of the 60x ELWD objective is 3.49 mm, the maximum effective scan 

length on the scan surface is approximately 100 pm. The Raman spectra of Figures 46(d) 

and 46(e) demonstrate the "channeled spectrum" effect25 caused by Fabry-Perot 

interference between the glass window's two surfaces. The Raman lines show this effect 

but are still distinguishable. Again, the line strengths are slightly lower in Figure 46(e) due 

to losses in the dove prism. Figure 46(f) was taken while the scanner was operating at 

1 Hz frequency using a built-in ramp generator in the scanner driver amplifier. The

exposure time was fixed at ten minutes but the entrance slit was increased to 100 pm to

detect more of the signal.
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Figure 46. Comparison of Raman spectra from a 6H SiC single crystal specimen using 
different scanner configurations to determine scanner performance: (a) beam 
splitter and laser line without dove prism; (b) beam splitter and laser spot 
without dove prism; (c) beam splitter, laser spot, and dove prism; (d) scanner 
(stationary) and laser spot without dove prism; (e) scanner (stationary), laser 
spot, and dove prism; (f) scanner (scanning), laser spot, and dove prism.
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The scanning amplitude was set to 0.17 V which equates to a total scanning range of 

0.85° (The scanner window was physically rotating within a scanning range of 0.425°). 

The computed scan length was 51.8 pm and was measured using a micropositioner stage 

and a binoculars reticle to be about 50 pm. In Figure 46(f) a distinct Raman spectrum was 

obtained which did not exhibit a channeled spectrum, probably due to an averaging of the 

signal from the positions illuminated by the scan (similar to obtaining a composite 

spectrum using the laser line illumination method). Despite the low signals obtained using 

a simple glass window as the scanner element, this study effectively demonstrated that the 

galvanometer scanner implementation was a viable upgrade to the Raman microprobe

system.

Since the galvanometer scanner will eventually be computer controlled, the 

following methodology was devised to control the scanning path as a function of time 

using the computer or data acquisition board's onboard clock. To cover the entire 

scanning range, it was observed that a low frequency series function such as a ramp 

(sawtooth), triangle, or sine function was necessary to uniformly scan the range for a 

number of periods. In addition, it was observed that some sort of "stepping" function

would be necessary for correct exposure at each surface position so that enough Raman 

signal is collected without excessive specimen heating. The long period scanning 

functions would serve as envelopes for short period "stepping" functions which modulate 

the envelope functions. The combined function could form a "stairstep" function, for 

instance, going only up as a ramp function or going up and down as a triangle function.
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Assume that E(t) represents the envelope function from which a portion will 

serve to construct a repeating envelope function Er(t) with period Ate. Likewise, let M{t) 

represent the modulation function from which a portion will serve to construct a repeating

modulation function with period Atm. In addition, a logical variable STEP is

included to form steps in the total scanning function for a value of "1" and to form no 

steps for a value of "0." The repeating envelope and modulation functions are given by, 

respectively,
/-A<fre i 

Me 2.
Er{t) = [/ - A<(>e ] - AreINT

A/r(O=A^p-A<t>m]-AZmINT Z_A(t>
A/„ + 2.

(42)

(43)

where INT(x) returns the highest integer no greater than x. The parameters A(f>e and

are time "phase" factors. Assuming that the scanning function S(t) is simply the envelope

function Er(t) with steps, this function may be described by

MO = £r(A/mINT +1]) (44)

The general scanning function S(t) is then described by

5(0 = STEP • A/„INt[^^ +1] + |STEP _!(.,) +Mr(t) (45)

for a summation of the envelope and modulation functions, with or without steps. The

envelope function E(t) might be a triangle function or a ramp function given by

MO = Eamp( 2 A@ - l) (triangle) (46)

E(.t}=Eamp{<-^ (ramp) (47)

where both functions have an amplitude E^, a period Ate, and (in this case) a "phase" 

of zero. The unit triangle function A(x) is defined as l-|x| for |x| < 1. The driving voltage 

function V(t) for the scanner is given by

tan (('(/)• = (48)
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where <t> is the angular voltage deflection factor (such as 5°/V), S(t) is the deflection 

position on the specimen surface, and f is the focal length of the focusing microscope 

objective.



CHAPTER VH

DISCUSSION AND CONCLUSIONS

Studies of the Relative Residual Surface Stresses in 6H SiC

The main goal of this thesis was to study the correlation between the Raman

spectra of 6H SiC subjected to different machining procedures. The effort was aimed at 

determining how the measured spectral parameters relate to the flexural strength of the 

material and the machining processes in order to identify the machined surfaces which 

produce the least amount of damage and the highest strength characteristics. These 

relative residual surface stresses were measured using laser Raman microprobe 

spectroscopy. The use of a Nd:YAG 532 nm laser or an Ar ion laser coupled with the 

ability to focus an elliptical laser line with cylindrical optics or a laser spot via a fiber optic 

system onto the specimen surface and collect the scattered Raman signal with either the 

PMT or CCD array detection systems gave the Raman microprobe system a wide range of 

flexibility. Using weighted statistical averaging of the measured Raman shifts and 

linewidths of the Raman modes in the 790 cm1 region for the 6H SiC specimens, the 

relative residual surface stresses were ascertained for each type of machining process. 

When these data were compared with flexural strength data for baseline, creep feed, and 

ultrasonic grind specimens, a strong correlation was found for the baseline specimens. 

The Raman shift/flexural strength correlation was found to be -6±1 cm'/GPa and the
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Raman linewidth/flexural strength correlation was found to be -20±4 cm'VGPa. This 

study revealed that creep feed grinding produced less residual surface stress than baseline 

grinding. However, when baseline specimens were heat treated or oxidized, these 

processes greatly reduced the relative residual surface stresses, increasing the flexural 

strength significantly. The oxidation process did not reduce the residual surface stress to 

the degree observed with just heat treatment. The ultrasonic grind process produced the 

largest residual surface stress. It is believed that this is due to the up-and-down pounding 

of abrasive particles in the slurry against the specimen surface during grinding. The 

Raman linewidth for this process was lower than anticipated because the grinding process 

is fairly uniform across the surface, such that there is very little variation in the relative 

residual stress across the surface. Overall, creep feed grinding was appealing because it 

produced very little residual surface stress compared with conventional grinding. 

However, other final processes such as heat treatment or oxidation reduced the residual 

stresses found in baseline specimens and thus increased their material strength. The results 

of this study suggest that these processes could be performed on creep feed grind

specimens for further reductions in residual surface stress and increased material strength.

Other Studies of 6H SiC

Other studies in this thesis included: examining single crystal specimens in a 

polarization study of their Raman spectra; performing laser penetration depth studies of 

creep feed and baseline grind specimens using different wavelengths; obtaining "reference" 

Raman data from the unprocessed ends of polycrystalline specimens and comparing the
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results with those of as-sintered specimens; performing a "survey" study of polycrystalline 

specimens by varying the incident laser polarization, the type of processed specimen, and 

the probe location on the same specimen; analyzing the presence of 4H SiC polytype in 

specimens; observing the occurrence of fluorescence in specimens; and finally observing 

the preliminary operation of the galvanometer scanner upgrade to the Raman microprobe 

system The single crystal studies revealed the appearance of the 790 cm'1 region Raman 

modes characteristic of 6H SiC for different polarization configurations. These studies 

confirmed the appearance of the 767 cm'1 (E2), 788 cm'1 (A11/E2), and 797 cm'1 (ElT) 

modes for typical Raman spectra from 6H SiC specimens at normal experimental 

conditions. The laser penetration depth studies were useful in obtaining the relative 

damage profile of the creep feed and baseline specimens using the 488 nm Ar ion laser 

wavelength in addition to the 532 nm Nd:YAG wavelength. Although preliminary, this 

study demonstrated how the relative residual stress could be obtained as a function of 

wavelength, revealing how the relative damage changes with depth. This study confirmed 

the experimental data which showed that creep feed grinding produces less residual 

surface stress than baseline grinding and that, as expected, the residual stress was higher 

for both machining methods closer to the surface using the 488 nm incident laser light. 

Although varied, the Raman data from the unprocessed ends of polycrystalline specimens

demonstrated that the residual stresses were less than those of machined surfaces even

though the data was skewed slightly due to flaws and defects when compared with the 

data obtained from an as-sintered specimen. The "survey" study of polycrystalline 

specimens using different experimental conditions such as polarization, specimen type, and
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different illumination locations on the same specimen simply confirmed the observations of 

later research but served as a guide for further investigation. Although it was not realized 

at the time of the study, the occasional appearance of the 777 cm1 and the 783 cm'1 

Raman lines signified the presence of 4H SiC polytype. These Raman lines are designated 

as the E2 and A1T modes, respectively. This study became much more significant once the 

identification of these Raman lines became clear and indicates a direction for further study 

of polytypes in SiC. The studies of fluorescence in SiC is another direction for further 

research. Several sites were investigated by performing long range spectral surveys, but 

no definitive conclusions could be made about the origin of this effect other than, as 

suggested by the data, the presence of a rare earth or transition element (these elements 

have long been known to exhibit fluorescence behavior).

Recommendations For the Prototype Galvanometer Scanner

The incorporation and preliminary operation of a galvanometer scanner within the 

Raman microprobe system was one of the final studies performed during this research. 

With the use of a simple glass window as a scanner element, Raman spectra were 

successfully observed from a 6H SiC single crystal specimen, although a channeled 

spectrum was noticed in the background due to Fabry-Perot interference between the two

glass window surfaces. This effect could be eliminated if the surfaces are AR-coated. For 

scanning operation, a dove prism was necessary to rotate the scattered fight such that the 

image of the linear scan path is aligned with the length of the entrance slit to the double

spectrometer. The channeled spectrum was not observed in scan mode due to statistical
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averaging of the collected signal from the entire region along the scan path. This study 

revealed that Raman spectra would be successfully obtained using the scanner system if 

appropriate considerations are made for the design of the scanner element, namely to 

maximize the power reaching the specimen surface without undue specimen heating and to 

maximize the collected Raman signal. Further study of the scanner system will be 

necessary to frilly realize its potential within the Raman microprobe system At peak 

performance, the scanner system will provide uniform illumination of the specimen surface 

in one dimension and eliminate the problem inherent in the Gaussian illumination profile 

along the length of the elliptical line produced by the cylindrical optics system In 

addition, the illumination coverage will be increased and the position of the scanning spot 

along one direction will be frilly computer controlled. The addition of an actuator-driven 

micrometer stage that is computer-controlled and operates transverse to the scan path 

would allow two-dimensional spectral mappings of regions on a specimen surface, thus 

widening the possibilities for image processing applications. The use of a pulsed laser or a 

beam chopper could further aid the scanner operation by controlling specimen heating,

reducing unwanted fluorescence effects, and accurately maintaining illumination at specific 

localized regions along the scan path. Overall, the galvanometer scanner system will 

vastly improve characterization of materials by merging Raman spectroscopy with image 

processing capabilities.
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APPENDIX A

Calculations of the Absolute Power of Raman Scattering for 
6H SiC Used in the Raman Microprobe Setup

From classical light scattering theory, the ratio of scattered power Ps to incident 

power Pt can be expressed as

(49)

where N is the number density of scattering sites (expressed in cm'3), crn is the differential 

cross section of the scattering medium (expressed in cm2/sr for aim3 scattering volume), 

Q is the sohd angle describing the cone of scattered light (expressed in sr), and L is the 

length of the scattering volume (expressed in cm) which, for a 180° backscattering 

geometry, runs parallel to the incident light propagation direction. The differential cross 

section an has been integrated over the entire spectrum so that only the sohd angle is 

needed to determine the cross section. Some sources quote the differential cross section 

as the differential cross section per unit volume of the scattering site (expressed in units of 

cm'1 sr'1). This quantity is simply the product of the differential cross section and the 

number density of the scattering sites. For InSb, a material similar in cross section to that 

of SiC, this quantity has a value of roughly 10'7 cm'1 sr1.26 The sohd angle for a

collecting microscope objective of known numerical aperture (NA) is given by

= 27t(l - Vl-(NA)2) (50)
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Since the 3.49 mm 60x ELWD microscope objective has a 0.7 NA, the solid angle Q is 

about 1.80 sr. Since the penetration depth using 532 nm light was approximately 1 pm, 

the length L of the scattering volume is assumed to be 1 pm Inserting these quantities 

into Equation (49) gives a value of about 2 x 10'11. Thus, based on these calculations, 

scattered power of the Raman signal is roughly eleven orders of magnitude smaller than 

the incident power.

Another way to "check" this calculation is to use experimental values gathered 

from the actual system The incident power at the specimen surface using an elliptical line 

of 532 nm laser illumination is approximately 7.1 mW. The measured signal strength of 

the 788 cm'1 Raman line using the PMT detection system was typically 600 counts for a 

ten second exposure. Losses in the system must be estimated in order to adequately 

determine the total power of the Raman signal scattered directly from the surface. A 

"loss" inventory is shown in Table 13. (Refer to the experimental setup in Figure 15.)

Table 13. System "loss" inventory for determining the absolute power of Raman
scattering for the 788 cm'1 line ol 6H SiC.
System Element(s) Transmittance

% solid angle of scattered light collected 0.14

microscope objective 0.8
1 beam splitter 0.7

13 mirrors (0.92)13

3 lenses (6 surfaces) (0.98)6

3 gratings (0.6)3

PMT efficiency 0.2

Combined System 0.0010



109

The detected photon rate was 60 photons/s for the 788 cm'1 Raman line. Dividing this 

rate by the system transmittance gives a scattering photon rate of about 59,000 photons/s. 

Since the corresponding wavelength of the 788 cm'1 Raman signal is 555.39 nm, the 

energy per photon E can be found using

£=y (51)

where h is Planck's constant and c is the speed of light. At this wavelength, the energy per 

photon is approximately 2.24 eV. Multiplying this energy by the scattering photon rate 

gives a scattered power of 2.1 x 10'14 W. An estimate of the scattered power to incident 

power ratio is then about 3 x 10'12. The result compares favorably with the "derived" 

result of 2 x 10'u, being different by less than one order of magnitude.



APPENDIX B

Igor Pro 2.0 Software Macros Written to Analyze Raman Spectral Data

Macro/Function Hierarchy:

I. Functions

A. U (step)

B. RMP (ramp) - U

C. RECT (rect) - U

D. TRI (unit triangle) - RMP - U

E. TRIN (general triangle) - TRI - RMP - U

F. TRIANGLE (alternate general triangle)

G. LR (unit Lorentzian)

H. LRN (general Lorentzian)

I. LORENTZIAN (one line with background) - LRN - LR

J. DBLPEAKS (two lines with background) - LRN - LR

K. ONETILT (one line with tilted background) - LRN - LR

L. DBLTILT (two lines with tilted background) - LRN - LR

M. TRIPLETILT (three lines with tilted background) - LRN - LR

N. QUADRATILT (four lines with tilted background) - LRN - LR

O. QUINTATILT (five lines with tilted background) - LRN - LR

no
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n. Raman Fitting, Statistics, and Graphing Procedures

A. Menu

B. Raman Fitting Procedures

1. Initial - Reference - GetWave

2. Reference - GetWave

3. Raman

a. TRIANGLE

b. ButtonProc

4. Raman2 - (ONETILT or DBLTILT or TRIPLETILT or
QUADRATILT or QUINTATILT)

C. Raman Statistics - Stat

1. Statname

2. GetRam - GetWave

D. Raman Graphing Procedures

1. RamGraph

a. GetRam - GetWave

b. Prmpt

2. RamGrapha

a. Prmpt

b. GraphWin

3. RamGraph2
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HI. Atomic Line Fitting and Statistics Procedures

A. Menu

B. Atomic Line Fitting Procedures

1. InitAtom - AtomGraph - GetWave

2. AtomGraph - GetWave

3. RepeatAtom - TRIANGLE

C. Atomic Line Statistics - AtomStat

1. Atomstatname

2. GetRam - GetWave

Macro/Function Listings:

|Raman Fit Functions

FUNCTION U(X)
| STEP FUNCTION

VARIABLE X

RETURN((SIGN(X)+1)/2)
END

FUNCTION RMP(X)
| RAMP FUNCTION 

VARIABLE X

RETURN(X*U(X) )
END

FUNCTION RECT(X)
| RECTANGLE FUNCTION 

VARIABLE X

RETURN(U(X+l/2)*U(-X+l/2))
END
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FUNCTION TRI(X)
| TRIANGLE FUNCTION 

VARIABLE X

RETURN(RMP(X+l)-2*RMP(X)+RMP(X-1) )
END

FUNCTION TRIN(A,B,C,X)
| GENERAL TRIANGLE FUNCTION

VARIABLE A,B,C,X |AMPLITUDE,WIDTH,CENTER POSITION,POSITION

RETURN(A*TRI( (X-C)/B) )
END

| TRIANGLE FIT FOR ATOMIC SPECTRA 
EQUATION: TRIANGLE = h - m*|X-Xo|

| WAVE W CONTAINS THE COEFFICIENTS TO TRIANGLE. A DESCRIPTION OF THE 
I COEFFICIENTS IS AS FOLLOWS . . . 
j W[0] = h, W[l] = m, W[2] = Xo

FUNCTION TRIANGLE (W,X)
WAVE W; VARIABLE X

RETURN(W[0]-W[l]*ABS(X-W[2]))
END

FUNCTION LR(X)
| LORENTZIAN FUNCTION

VARIABLE X

RETURN(1/(1+Xx2))
END

FUNCTION LRN(A,B,C,X)
| GENERAL LORENTZIAN FUNCTION

VARIABLE A,B,C,X | AMPLITUDE,WIDTH,CENTER POSITION,POSITION

RETURN(A*LR((X-C)*2/B))
END

| 1 PEAK LORENTZIAN DISTRIBUTION
| LORENTZIAN: LR=1/(1+X*2)
j GENERAL LORENTZIAN: LRN=A*LR((X-V)*2/DV)
! EQUATION: LI = LRN(Al,DV1,VI,X)

LORENTZIAN = LI + C
| WAVE W CONTAINS THE COEFFICIENTS TO LORENTZIAN. A DESCRIPTION OF THE 
I COEFFICIENTS IS AS FOLLOWS . . .
| W[0] = Al, W[l] = DV1, W[2] = VI, W[3] = C
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FUNCTION LORENTZIAN(W,X)

WAVE W; VARIABLE X

RETURN(LRN(W[0],W[1],W[2],X)+W[3])
END

| 2 PEAK LORENTZIAN DISTRIBUTION
I LORENTZIAN: LR=1/(1+X"2)
| GENERAL LORENTZIAN: LRN=A*LR((X-V)*2/DV)
| EQUATION: LI = LRN(Al,DV1,VI,X)

L2 = LRN(A2,DV2,V2,X)
DBLPEAKS = LI + L2 + C

j WAVE W CONTAINS THE COEFFICIENTS TO DBLPEAKS. A DESCRIPTION OF THE 
| COEFFICIENTS IS AS FOLLOWS . . .
| W[0] = Al, W[l] = DV1, W[2] = VI, W[3] = A2, W[4] = DV2, W[5] = V2,
| W[6] = C

FUNCTION DBLPEAKS(W,X)
WAVE W; VARIABLE X

RETURN (LRN (W [0] ,W[1] ,W[2] ,X) +LRN(W[3] ,W[4] ,W[5] ,X) +W[6] )
END

| 1 PEAK LORENTZIAN DISTRIBUTION WITH TILTED BACKGROUND
j LORENTZIAN: LR=l/(l+XA2)
| GENERAL LORENTZIAN: LRN=A*LR((X-V)*2/DV)
| EQUATION: 1TILT =LRN(Al,DV1,VI,X) + M*(X-V1) + B
j WAVE W CONTAINS THE COEFFICIENTS TO 1TILT. A DESCRIPTION OF THE 
| COEFFICIENTS IS A FOLLOWS . . .
| W[0] = Al, W[l] = DV1, W[2] = VI, W[3] = M, W[4] = B

FUNCTION ONETILT(W,X)
WAVE W; VARIABLE X

RETURN (LRN (W [0] ,W[1] ,W[2] ,X) +W[3] * (X-W[2] ) +W[4] )
END

| 2 PEAK LORENTZIAN DISTRIBUTION WITH TILTED BACKGROUND
j LORENTZIAN: LR=l/(l+XA2)
j GENERAL LORENTZIAN: LRN=A*LR((X-V)*2/DV)
j EQUATION: LI = LRN(Al,DV1,VI,X)

L2 = LRN(A2,DV2,V2,X)
DBLTILT = LI + L2 + M*(X-V1) + B

| WAVE W CONTAINS THE COEFFICIENTS TO DBLPEAKS. A DESCRIPTION OF THE 
j COEFFICIENTS IS AS FOLLOWS . . .
j W[0] = Al, W[l] = DV1, W[2] = VI, W[3] = A2, W[4] = DV2, W[5] = V2,
j W[6] = M, W[7] = B



115
FUNCTION DBLTILT(W,X)

WAVE W; VARIABLE X

RETURN(LRN(W[0], W [ 1] , W [2] , X)+LRN(W[3], W [4] , W [5] , X) +
W [6] * (X-W[2] ) +W[7] )

END

| 3 PEAK LORENTZIAN DISTRIBUTION WITH TILTED BACKGROUND
j LORENTZIAN: LR=l/(l+Xx2)
GENERAL LORENTZIAN: LRN=A*LR((X-V)*2/DV)

j EQUATION: LI = LRN(Al,DV1,VI,X)
L2 = LRN(A2,DV2,V2,X)
L3 = LRN(A3,DV3,V3,X)
TRIPLETILT = LI + L2 + L3 + M*(X-V1) + B

| WAVE W CONTAINS THE COEFFICIENTS TO DBLPEAKS. A DESCRIPTION OF THE 
I COEFFICIENTS IS AS FOLLOWS . . .
j W[0] = Al, W[l] = DV1, W[2] = VI, W[3] = A2, W[4] = DV2, W[5] = V2 
| W[6] = A3, W[7] = DV3, W[8] = V3, W[9] = M, W[10] = B

FUNCTION TRIPLETILT(W,X)
WAVE W; VARIABLE X

RETURN (LRN (W [0] ,W[1] ,W[2] ,X) +LRN(W[3] ,W[4] , W [5] ,X) +
LRN(W[6] , W [7] , W [8] ,X) +W[9] * (X-W[2] ) +W[10] )

END

| 4 PEAK LORENTZIAN DISTRIBUTION WITH TILTED BACKGROUND
| LORENTZIAN: LR=l/(l+Xx2)
| GENERAL LORENTZIAN: LRN=A*LR((X-V)*2/DV)
EQUATION: LI = LRN(Al,DV1,VI,X)

L2 = LRN (A2 , DV2 , V2 , X)
L3 = LRN(A3,DV3,V3,X)
L4 = LRN (A4 , DV4 , V4 , X)
QUADRATILT = LI + L2 + L3 + L4 + M*(X-V1) + B 

WAVE W CONTAINS THE COEFFICIENTS TO DBLPEAKS. A DESCRIPTION OF THE
| COEFFICIENTS IS AS FOLLOWS . . .
| W[0] = Al, W[l] = DV1, W[2] = VI, W[3] = A2, W[4] = DV2, W[5] = V2 
I W[6] = A3, W[7] = DV3, W[8] = V3, W[9]=A4, W[10]=DV4, W[ll] = V4 
| W[12] = M, W[13] = B

FUNCTION QUADRATILT(W,X)
WAVE W; VARIABLE X

RETURN(LRN(W[0],W[1],W(2],X)+LRN(W[3],W[4],W[5],X)+
LRN(W[6] ,W[7] , W [8] ,X) +LRN(W[9] ,W[10] ,W[11] ,X) +
W[12] * (X-W[2] ) +W[13] )

END
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5 PEAK LORENTZIAN DISTRIBUTION WITH TILTED BACKGROUND 

| LORENTZIAN: LR=1/(1+XA2)
| GENERAL LORENTZIAN: LRN=A*LR((X-V)*2/DV)
EQUATION: LI = LRN(Al,DV1,VI,X)

L2 = LRN (A2 , DV2 , V2 , X)
L3 = LRN(A3,DV3,V3,X)
L4 = LRN(A4,DV4,V4,X)
L5 = LRN(A5,DV5,V5,X)
QUINTATILT = LI + L2 + L3 + L4 + L5 + M*(X-Vl) + B 

j WAVE W CONTAINS THE COEFFICIENTS TO DBLPEAKS. A DESCRIPTION OF THE 
j COEFFICIENTS IS AS FOLLOWS . . .
j W[0] = Al, W[l] = DV1, W[2] = VI, W[3] = A2, W[4] = DV2, W[5] = V2 
| W[6] = A3, W[7] = DV3, W[8] = V3, W[9]=A4, W[10]=DV4, W[ll] = V4 
j W[12] = A5, W[13] = DV5, W[14] = V5, W[15] = M, W[16] = B

FUNCTION QUINTATILT(W,X)
WAVE W; VARIABLE X

RETURN (LRN (W[0] , W [1] , W [2 ] , X) +LRN(W[3] ,W[4],W[5],X) +
LRN(W[6] ,W[7] ,W[8] ,X) +LRN(W[9] , W [ 10] , W [ 11] , X) +
LRN(W[12],W[13],W[14],X)+W[15]*(X-W[2])+W[16])

END

|Raman Menu

Menu "Macros"
"Initial/0"
"Reference/1"
"Raman/2"
"Raman2/3"
"Stat/4"
"RamGraph/5"
"RamGrapha/6"
"RamGraph2/7"

End

|Raman Fit Procedures

Function Initial()
|THIS FUNCTION IS USED AT THE START OF AN EXPERIMENT TO BEGIN CURVE 
|FITTING OF A SERIES OF RUNS. IT PROVIDES INITIAL PARAMETERS SUCH AS 
jINCIDENT WAVELENGTH AND WAVELENGTH DISPERSION TO BE USED THROUGHOUT THE 
jCURVE FITTING PROCEDURE. THE DEFAULT PARAMETERS MAY BE CHANGED SIMPLY 
jBY EDITING THE PROCEDURE. (ONE MAY WISH TO PLACE A COPY OF THESE 
i FUNCTIONS AND MACROS INTO THE PROCEDURE FILE OF THE EXPERIMENT SO AS 
|NOT TO ALTER THE ORIGINAL PROCEDURE FILES.) IT AUTOMATICALLY CALLS THE 
j"REFERENCE" FUNCTION AT THE END OF THE FIRST RUN. THEREFORE, THE CURVE 
|FITTING FUNCTION SEQUENCE THAT THE USER MUST FOLLOW IS:
jRUN 1: INITIAL, RAMAN, RAMAN2
|RUN 2: REFERENCE, RAMAN, RAMAN2
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RUN 3: REFERENCE, RAMAN, RAMAN2
AND SO ON UNTIL CURVE FITTING OF THE SERIES OF RUNS IS COMPLETE, 

datafile suffix, prefix, path, and extension 
string/g suf1="A",prefl="T010195",

pat1="Data:Joe Binford:DATAstor3:",extl="prn" 
sample triangle fit parameters of atomic spectral line in pixel 
scale (pixel=23 micron) (amplitude from 0,slope,position) 
string/g peakl="coeff={839,325.5,350.5}"
sample Raman parameters for 1-5 peaks in wavenumber scale 
including background slope and amplitude. Each peak has parameters 
of amplitude (from background), spectral FWHM width, and spectral 
position. The peakla and peak2 include 788 and then 767 lines 
since these are the most common for 6H SiC single crystal (phonon 
propagation parallel to c-axis).
string/g peakla="coeff={244.4,4.6,788,0.13,191}”
string/g peak2="coeff={51.2,5.2,767,244.4,4.6,788,0.13,191}"
The peaks 3-5 were primarily used for 6H SiC ceramic specimens 
since 3-5 peaks were almost always observed. The most common were 
the 767,788, and 797, then the 777 line, and finally the 783 line 
was the most infrequent.
string/g peak3="coeff={51.2,5.2,767,244.4,4.6,788,74.9,6.4,797, 

0.13,191}"
string/g peak4="coeff={51.2,5.2,767,244.4,4.6,788,74.9,6.4,797, 

12.6,3.4,777,0.13,191}"
string/g peak5 = "coeff={51.2,5.2,767,244.4,4.6,788,74.9,6.4,797, 

12.6,3.4,777,60,5.1,783,0.13,191}"
known parameters: these parameters, whose values and uncertainties 
were stored in the waves c and ce respectively, were the 532 nm 
DPSS Nd:YAG laser wavelength in angstroms, the Ne reference line 
wavelength in angstroms used for calibration in the 780 1/cm 
region, the position in which the wavenumber difference between 
the two lines will be stored (see below), the wavelength 
dispersion (angstroms/pixel), and the wavenumber dispersion 
(1/cm/pixel) (this last parameter is not used in computations). 
make/d/o/n=5 c={5321.0379,5562.76620,0,.113079,.365857} 
make/d/o/n=5 ce={0.0026,0.00005,0,0.000022,0.000070}
The following two lines are for use when using the Ar ion 488 nm 
laser line
make/d/o/n=5 c={4879.85016,5080.38520,0,.1136121,.365857} 
make/d/o/n=5 ce={0.00514,0.00005,0,0.0000332,0.000070} 
computation of wavenumber difference in laser line and neon atomic 
reference line and error
c[2]=le8*(1/c[0] -1/c [1] )
ce[2]=le8*sqrt((ce [0]/c[0]*2)A2+(ce[1]/c[1]x2)x2) 
start the Reference function for loading and fitting the neon 
atomic reference line for calibration. Once the cycle for fitting 
the first data file (a) is complete, the execution of this 
"Initial()" function is no longer necessary since the constant 
parameters are stored in memory. The cycles for following 
datafiles can begin with the "Reference()" function.
Execute "Reference()"
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function Reference 0

THIS FUNCTION LOADS A DATA RUN AND PREPARES THE GRAPH FOR FITTING 
AN ATOMIC REFERENCE LINE (FIT IS PERFORMED ON PIXEL SCALE) 
define strings for storing the wave names of the count data y, the 
best fit data b of the Raman lines, the triangle fit t of the 
atomic line, and the graph name gra of the resulting graph 
s'tring/g y, b, t, gra, pat 1, pref 1, suf 1, extl, peakl
tell Igor that wavO is a wave (wavO is the horizontal pixel scale 
used for all runs) 
wave wavO=wavO
obtain prefix, suffix, path, and extension of wave 
execute "GetWave()"
load Raman run (update the current path of the datafile) 
newpath/q/o np, patl
load the wave with current prefix, suffix, and extension with 
wavename wavl
loadwave/g/d/q/n=wav/p=np pref1+suf1+"."+extl
reassigns wavename wavl with wavename "y"+suffix ($ sign indicates 
wave with name of the following string) 
y="y"+Suf1
rename wavl,$y

| display reference graph
b="b"+sufl;t="t"+suf1 
make/d/n=578 $b,$t 
building window...
execute "display /w=(5,42,400,250) $y,$b,$t vs wavO"
gra="g"+pref1+suf1
make graph window with name of gra
dowindow/c $gra
make data have circle markers and fits be lines 
execute "ModifyGraph mode($y)=3" 
execute "ModifyGraph marker($y)=8"
execute "ModifyGraph rgb($b)-(0,65000,0),rgb($t)=(0,0,65000)" 
SetAxis/a
set cursors at approximate location of atomic reference line
Cursor A $y 348;Cursor B $y 351
show cursor information (coordinates)
Showlnfo
reset fitting parameters used for both atomic and Raman lines for 
atomic line fit
make/d/o/n=3 coeff=0,W_sigma=0
prints the STATEMENT to assign the current parameters of the coeff 
wave to itself. The purpose of this is to allow the user to 
change the current parameters at the command line to update 
necessary changes in "guesses" for fitting parameters. The user 
clicks on the printed STATEMENT in the history while holding down 
the command key to bring the STATEMENT to the command line. Then 
the user edits the parameters as necessary and presses RETURN to 
accept the new "guesses" for the fitting parameters of the atomic 
line fit.
print peakl

end
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Macro GetWave(suf,pref,pat,ext)

string suf=suf1,pref=pref1,pat=patl, ext=extl 
prompt suf, ’’Enter suffix letter of wave" 
prompt pref, "Enter prefix of wave to load" 
prompt pat, "Enter path of wave to load" 
prompt ext, "Enter extension of wave to load"
THIS MACRO OBTAINS A WAVE. THE USER DEFINES THE SUFFIX, PREFIX, 
PATH AND EXTENSION.
Obtain suffix, prefix, path and extension of wave. Current 
information which doesn’t need to be changed will remain the 
default and doesn't need to be re-entered (such as prefix,path, 
or extension). Assign global string values to local macro string 
values of datafile designation. Update global string values using 
new local macro string values.
sufl=suf 
prefl=pref 
patl=pat 
extl=ext

endmacro

funct ion Raman()
| THIS FUNCTION FITS THE ATOMIC REFERENCE LINE ACCORDING TO THE

FITTING PARAMETERS GIVEN, SCALES THE HORIZONTAL AXIS TO 
WAVENUMBERS, AND PREPARES THE GRAPH FOR FITTING THE RAMAN LINES 
Add ram wave to store final fitting parameters of wave, 
ram wave consists of 40 elements for storing data from up to five 
Raman lines.
(3 values/Raman line)*5 (max Raman lines) + background slope + 

background amplitude + 3 values for atomic line fit =
20 elements--the final 20 elements are the uncertainties in each 
of these parameters. Note that unused elements are designated 
with a 0.
wavnum wave is the horizontal wavenumber scaling computed from the 
atomic line fit. Since the fit can vary from run to run, there 
are the same number of wavnum waves as there are fits and are 
designated with the appropriate datafile suffix.
string/g y,b,t,gra,ram,wavnum,peak1,pref1,suf1
V_npnts and V_chisq store the total number of points and the chi 
square distribution for the atomic line fit. 
variable/d/g V_npnts,V_chisq
wave c=c,ce=ce,wav0=wav0,coeff=coeff,W_sigma=W_sigma 
Perform triangle fit to reference
execute"FuncFit/q TRIANGLE coeff $y(xcsr(A),xcsr(B)) /X=wav0 

/D=$t"
Check and see if the number of points in the triangle fit is 3.
If so, then another method for estimating the center position (in 
pixels) of the atomic line must be used so that
ERROR=+/-OFFSET*(width uncertainty in pixels/width in pixels). 
Since the width in pixels is estimated at 2+/-1 pixels, the error 
is given by ERROR=+/-OFFSET/2
if (V_npnts == 3)

W sigma [0]=0;W sigma [l]=0
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W_sigma[2]=abs(coeff[2]-round(coeff[2]))/2

endif
print out the results of the triangle fit to the atomic line 
print "File "+pref1+suf1+".prn TRIANGLE fit:ywave=y"+suf1+", 

xwave=wavO, fitwave=t"+suf1+", V_chisq=",V_chisq
printf "coeff={%9.4f,%9.4f,%9.4f}
W_sigma={%9.4f, %9.4f, %9.4f}",coeff[0] ,coeff [1] ,coeff [2] ,

W_sigma[0],W_sigma[l],W_sigma[2];print""
Determine the wavenumber position uncertainty from the atomic 
position uncertainty in pixels.
printf "wavenumber position uncertainty=%9.4f",le8/2/c[3]/

W_sigma[2]*(sqrt(1+(2*c [3]*W_sigma[2]/c[l])x2)-l);print""
Redefine peakl string to contain current fitting parameters for 
atomic line
peakl = "coeff={"+num2str(coeff[0])+","+num2str(coeff [1])+"," + 

num2str(coeff[2] )+"}"
Make ram string name for this run (prefl[l,6] designates run date, 
i.e., 021295).
ram="ram"+pref1 [1,6]+suf1;wavnum="wavnum"+suf1
Define wavenumber scale and make fit and error coefficient array 
(indices 17-19 & 37-39 are reference fit and error) 
make/d/n=578 $wavnum=le8*(1/c[0]-1/(c[1]-c[3]*(coeff[2]-wavO))) 
make/d/n=40 $ram
wave rm = $ram
store reference PIXEL position and uncertainty in coefficient 
array
rm[19]=coeff[2];rm[39]=W_sigma[2] 
rm[17]=coeff[0];rm[37]=W_sigma[0] 
rm[18]=coeff[1];rm[38]=W_sigma[1]
Delete Reference Graph
dowindow/k $gra
make dummy wave for y data in order to delete "bad points"
duplicate/d/o $y duml
display Raman Graph
PauseUpdate | building window...
execute "Display /W=(5,42,400,250) duml,$b,$t vs $wavnum" 
dowindow/c $gra
execute"ModifyGraph mode(duml)=3" 
execute"ModifyGraph marker(duml)=8"
execute"ModifyGraph rgb($b)=(0,65000,0),rgb($t)=(0,0,65000)" 
SetAxis/a
Cursor A duml 164;Cursor B duml 334 
Showlnfo
Show button on graph that when pressed deletes bad point that 
Cursor A is presently on.
Button buttonO proc=ButtonProc,title="Zap" 
print out STATEMENT for revising coeff wave for Raman fit 
parameters (simply by backspacing and typing 4 or 5 before hitting 
return one can obtain the current parameters in string peak4 or 
string peak5 for 4 or 5 Raman lines).
print "print peak3"

End
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Function ButtonProc(ctrlName) : ButtonControl 

String ctrlName

| Create button for use with the Raman graph to eliminate "bad
| points" from being used in the fitting routines.

Wave w= $CsrWave(A) 
w[pcsr(A)]= NaN

End

function Raman2()
| THIS FUNCTION FITS THE RAMAN LINES ACCORDING TO THE FITTING

PARAMETERS GIVEN, AUTOSCALES THE GRAPH, AND SAVES THE GRAPH AS A 
GRAPH MACRO IN THE PROCEDURE SO THAT IT MAY BE REBUILT WHEN 
DESIRED.

variable i | local count variable
variable V_chisq
variable/g nm | global variable for number of Raman peaks in

| run
peakla, peak2, peak3, peak4, and peaks store default Raman fitting 
parameters for one, two, three, four, and five Raman lines in a 
run.
string/g y,b,t,gra,ram,rme,wavnum,ft,st,peakla,peak2,peak3,peak4, 

peak5,pref1,suf1
local dummy string for storing revised default Raman fitting 
parameters after fitting this run 
string peak
wave coeff=coeff,W_sigma=W_sigma,c=c
waves for finding uncertainty in Raman line position due to 
uncertainty in reference neon line
make/d/o/n=5 llr=0,dl=0,pr=0,spr=0,sdl2=0,slr2=0,sdvr=0 
llr=equivalent Raman wavelength
dl=wavelength difference between Raman line and reference line 
pr=reference line pixel position; spr=reference line pixel

uncertainty (sigma) 
sdl2=wavelength difference variance 
slr2=total wavelength variance in Raman line 
sdvr=total wavenumber uncertainty in Raman line position

Determine if run contains one, two, three, four, or five Raman 
peaks.
nm=(numpnts(coeff)-2)/3 
if ((nm==l)%|(nm==2))

if (nm==l)
ft="ONETILT"

else
ft="DBLTILT"

endif

if ((nm==3)%|(nm==4)) 
if (nm==3)

ft="TRIPLETILT"

else
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else

ft="QUADRATILT"
endif

else
ft="QUINTATILT"

endif
endif
Perform Lorentzian fit to Raman peaks
(If necessary, one may abort the fit during the fitting routine 
without aborting the RAMAN2 function so as to adjust the fitting 
parameter "guesses” by typing while holding down the command
key. Also, one can prematurely end the fitting routine at 
the current iteration by clicking on the QUIT button. The 
function will then proceed to the end using the fitting parameters 
obtained at the end of that iteration. By default, Igor tries up 
to 40 iterations, but will quit if 9 iterations in sequence do not 
produce a decrease in chi-square.)
execute"FuncFit/q $ft coeff duml(xcsr(A),xcsr(B)) /X=$wavnum 

/D=$b"
wave rm=$ram
Assign fitting coefficients and uncertainties to coefficient array 
(34 elements are allocated for up to five Raman lines, background 
slope, and background amplitude)
rm[0,nm*3-l]=coeff[x]
rm[20,nm*3+19]=W_sigma[x-2 0]
include reference line position uncertainty in Raman line position 
uncertainty.

find Raman wavelengths
Hr [0 , nm-1] =1/ (1/c [0] - coeff [3*x+2] /le8) 

find wavelength difference
dl[0,nm-1]=c[1]-llr[x]

find Raman pixel position
pr [0,nm-l] =rm[19] -dl [x] /c [3]

find the uncertainty in the Raman pixel position (due to 
fitting)

spr[0,nm-l]=le8/2/c[3]*(1/(le8/llr[x]-W_sigma[3*x+2])- 
1/(le8/llr[x]+W_sigma[3*x+2])) 
find variance in the wavelength difference

sdl2[0,nm-l]=(dl[x])A2/(rm[19]-pr[x])A2*(rm[39]A2+spr[x]x2) 
find total wavelength variance in Raman line

slr2[0,nm-l]=sdl2[x]
find total wavenumber uncertainty in Raman line position 

sdvr[0,nm-l]=le8*sqrt(slr2[x])/llr[x]x2

Place total wavenumber uncertainty of Raman line position into
coefficient array
rm[22,nm*3+19;3]=sdvr[(x-22)/3]

Place background amplitude and slope into coefficient array 
rm[15,16]=coeff[x-(5-nm)*3] 
rm[35,36]=W_sigma[x-(5-nm)*3-20] 
print out results of fit
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print ft+" fit:ywave=y"+suf1+", xwave=wavnum"+suf1+", 

fitwave=b"+suf1+", V_chisq=",V_chisq
peak="coeff={”
i = 0
do

st = " [”+num2str (i*3) + ’’] ={%8.4f, %6.4f, %8.4f}" 
printf ("coeff"+st+" W_sigma"+st),rm[i*3],rm[i*3+l],

rm[i*3+2],rm[i*3+20],rm[i*3+21],rm[i*3+22];print”" 
printf ("wavenumber position fit error=%8.4f"),

W_sigma[i*3+2];print""
peak=peak+num2str (rm[i*3] ) +", "+num2str (rm [i*3 + l] ) +’’, " + 

num2str(rm[i*3+2])+","
i + = l

while(i < nm)
st = "[”+num2str(i*3)+"]={%6.4f,%8.4f}"
printf ("coeff"+st+" W_sigma"+st+"/r"),rm[15],rm[16],rm[35] ,rm[36] 
peak=peak+num2str(rm[15])+","+num2str(rm[16])+"}" 
if ((nm==l)%|(nm==2))

if (nm==l)
peakla=peak

else
peak2=peak

endif
else

if ((nm==3)%|(nm==4)) 
if (nm==3)

peak3=peak
else

peak4=peak
endif

else
peak5=peak

endif
endif

kill window and make graph with "true" data
dowindow/k $gra
execute "display /w=(5,42,400,250) $y,$b,$t vs $wavnum"
dowindow/c $gra
execute "ModifyGraph mode($y)=3"
execute "ModifyGraph marker($y)=8"
execute "ModifyGraph rgb($b)=(0,65000,0),rgb($t)=(0,0,65000)"

make graph macro and kill window
dowindow/n $gra; dowindow/k $gra

End
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|Raman wave statistics

function StatO
variable/g ct=0
variable i,j |i=wave index,j=wave number 
variable/d suml,sum2,sumx,sumxb,sumstd,count
string/g y,z,ref1,ls=” ",proml=”Enter name of statistics wave" 
execute "statname()"
GetRam()
make/d/o/n=40 $refl=0, stdstat=0, weightstat=O 
wave reff=$refl

| THE PURPOSE OF THE STAT FUNCTION IS TO CALCULATE THE MEAN AND
UNCERTAINTY IN THE MEAN USING WEIGHTED STATISTICAL AVERAGING. THE 
FUNCTION USES THE RELATIVE UNCERTAINTIES (FITTING UNCERTAINTIES)
TO WEIGHT THE CALCULATION OF THE ESTIMATED VARIANCE. THE
CALCULATION OF THE MEAN SIMPLY USES THE RELATIVE UNCERTAINTIES,
BUT THE UNCERTAINTY IN THE MEAN REQUIRES KNOWLEDGE OF THE 
ESTIMATED VARIANCE (WHICH IS DIVIDED BY N TO FIND THE VARIANCE IN 
THE MEAN). THE WAVES TO BE AVERAGED MUST BE 40 ELEMENTS LONG, THE 
FIRST 20 BEING THE DATA POINTS AND THE LAST 20 BEING THE 
CORRESPONDING UNCERTAINTIES IN THESE DATA POINTS. OFTEN, SOME 
DATA POINTS MAY HAVE UNCERTAINTIES OF ZERO. THE AVERAGING 
PROCEDURE IGNORES THESE POINTS AND KEEPS TRACK ONLY OF THOSE 
POINTS WHOSE UNCERTAINTIES ARE NONZERO. THUS, EVEN THOUGH 15 
MEASUREMENTS MAY HAVE BEEN MADE FOR EACH QUANTITY OF INTEREST, THE 
AVERAGE OF QUANTITY A MAY ONLY REPRESENT 12 MEASUREMENTS WHILE THE 
AVERAGE OF QUANTITY B MAY ONLY REPRESENT 14 MEASUREMENTS. FOR 
RAMAN DATA, THIS COULD BE THE CASE IF A RAMAN LINE DOESN'T APPEAR 
FOR SOME OF THE MEASUREMENTS. THE FUNCTION ALSO CREATES TWO DUMMY 
WAVES, STDSTAT AND WEIGHTSTAT, FOR COMPARING EQUAL WEIGHTING WITH 
THE WEIGHTING BASED ON THE RELATIVE UNCERTAINTIES OF THE DATA 
POINTS. OF COURSE, WEIGHTSTAT IS A DUPLICATE OF THE WAVE NAMED BY 
THE USER FOR STORAGE OF THE STATISTICAL DATA.

Refer to Philip R. Bevington, DATA REDUCTION AND ERROR ANALYSIS 
FOR THE PHYSICAL SCIENCES (McGraw Hill Book Co., New York, 1969), 
pp. 66-80.

Calculate Raman statistics of waves 
i = 0 
do

j=0
suml=0;sum2=0;sumx=0;count=0 
do

z=GetStrFromList(Is,j,";") 
wave zq=$z 
if (zq[i+20] != 0)

find sum of data for calculating the mean 
sumx=sumx+zq[i]

find sum of the data points divided by their relative variances 
for finding weighted mean

suml=suml+zq[i]/zq[i+20]^2
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find sum of the inverse of the relative variances for finding the 
weighted mean and the average variance

sum2=sum2+l/zq[i+20]A2
count the number of data points with nonzero uncertainties 

count+=1
endif 
j+ = l

while(j < ct) 
j=0
sumstd=0;sumxb=0 
do

z=GetStrFromList(Is,j,”;") 
wave zq=$z 
if (zq[i+20] != 0)

sum of the square of the errors for finding the standard
uncertainty in the mean

sumstd=sumstd+(zq[i]-sumx/count)x2
sum of the square of the errors weighted by the relative
uncertainties for finding the average variance (divide sumxb by 
N-l, then normalize by dividing this quantity by sum2/N to get 
average variance--divide average variance by N to get variance in 
the mean)

sumxb=sumxb+(zq [i]-sumx/count)x2/zq[i+20]x2
endif 
j+ = l

while(j < ct)

if (count > 1)
find the equal-weighted mean and the uncertainty in the mean 

stdstat[i]=sumx/count;
stdstat[i+20]=sqrt(sumstd/(count-1)/count) 

find the weighted mean and its respective uncertainty
weightstat[i]=suml/sum2;

weightstat[i+20]=sqrt(sumxb/sum2/(count-1))
endif
reff [i]=weightstat[i] ;reff[i+20]=weightstat[i+20] 
i+=l

whiled < 20)
kill all loaded waves except statistics wave
j=0
do

z=GetStrFromList(Is,j,";") 
wave zq=$z 
killwaves zq 
j+ = l

while(j < ct)
ls=”";ct = 0

End
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macro statname(ref)

| obtain name of statistics (reference) wave
string ref=”ref010195",prom=proml 
prompt ref, prom
refl=ref;proml=prom 

endmacro

function GetRam()
string/g suf1 = "A",prefl="RAM010195",

pat1="Data:Joe Binford:DATAstor3:fun Folder:",ext1="BWAV", y, 
z, Is

variable/g ct=0,refer 
start loop 
do
Obtain suffix, prefix, path and extension of wave 

execute "GetWave()"
Check and make sure that the suffix doesn't equal "" or 
"reference". If the suffix equals "" then for the statistics or 
graphing macros, this means that you are finished loading the 
waves. If the suffix equals "reference" then for the graphing 
macros, this means that not only are you finished loading the 
waves, but that the very last wave is to be used as a reference in 
computing ^change in Raman width, shift, etc.

if ((CmpStr(suf1,"") != 0) %&(CmpStr(suf1,"reference")!=0)) 
load Raman run 
newpath/q/o np patl
LoadWave/q/h/o/p=np pref1+suf1+"."+extl 

The following routine is used basically to keep track of the wave 
names in string Is.

if (CmpStr(Is,"") != 0)
if (CmpStr(Is," ") == 0)

ls = ""
endif
ls=ls+pref1+suf1+";"

endif 
ct + = l

endif
while ((CmpStr(suf1,"") != 0)(CmpStr(suf1,"reference")!=0)) 
if (CmpStr(suf1,"reference")==0)

ct=ct-l;refer=l
else

refer=0
endif

End
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|Raman Graph Procedures

Function RamGraph()
THIS FUNCTION ENABLES THE USER TO COMPILE RAMAN DATA IN A FORM 
WHICH CAN BE GRAPHED IN A "BAR CHART" FORMAT. THIS FIRST FUNCTION 
ONLY COMPILES QUANTITIES WHICH COME FROM EACH INDIVIDUAL RUN. IN 
OTHER WORDS, NO COMPARISONS ARE MADE WITH DATA FROM OTHER RUNS 
SUCH AS A "REFERENCE". BESIDES INTENSITY, WIDTH, AND RAMAN SHIFT 
(POSITION), THE TWO COMPUTED QUANTITIES ARE RELATIVE INTENSITY 
(BASED ON THE STRONGEST RAMAN LINE) AND POSITION FROM THE
REFERENCE (SUCH AS THE NEON ATOMIC LINE). PLEASE NOTE THAT THE 
THREE GRAPHING FUNCTIONS, RAMGRAPH, RAMGRAPHA, AND RAMGRAPH2, MUST 
BE RUN IN A CERTAIN SEQUENCE TO WORK PROPERLY.
If you simply want graphs of the first five quantities listed 
above, you only need to run RamGraph first and then run RamGrapha. 
Please note that when entering the Raman waves (40 element, 
*.bwav), YOU MUST enter different suffixes. When finished 
entering the waves, type "" for the suffix and press RETURN. This 
signals Igor that you are finished loading waves. RamGraph 
calculates all five quantities, so you only need to run it once 
for graphing all five quantities for a total of five graphs. 
RamGrapha may be run repeatedly for obtaining graphs of all five 
quantities for all combinations of Raman lines and sets of Raman 
data.
NOTE: For one given quantity, such as width, you must use a
different graph letter (actually it can be any suffix) for each 
new graph. However, you may use the same graph letter for 
different quantities, such as width and position. So, in other 
words, if you wanted to make two graphs of each quantity, you 
would need to run RamGraph once, then RamGrapha five times, then 
RamGraph again (giving it a graph letter "b"), and then RamGrapha 
five more times for a total of ten graphs. IF YOU WANT TO USE A 
REFERENCE to calculate other quantities such as relative intensity 
(%), change in linewidth, % change in linewidth, or change in 
position, then you must use the function RamGraph2. You must 
return to RamGrapha to graph these new quantities. So the 
sequence is RamGraph, RamGrapha, RamGraph2, RamGrapha. (You may 
not actually need graphs for the first four quantities, but 
RamGraph2 needs them to compile the second set of quantities)
Also, when loading the waves during the execution of RamGraph, you 
have two options: You may include the reference when graphing the 
other waves or not. In other words, the reference wave would show 
values of 0 for the second set of quantities if you chose to graph 
it along with the other waves. TO LEAVE OUT THE REFERENCE WAVE, 
simply load the other waves, load the reference wave, then enter 
"reference" as the suffix to conclude the loading process and to 
indicate to IGOR that the last wave was the reference wave. Thus 
the loading sequence is: wavel, wave2, wave3,..., waven, refwave, 
"reference". TO INCLUDE THE REFERENCE WAVE, include the reference 
wave in the list of waves and include it again at the end BUT WITH 
A DIFFERENT SUFFIX! To do this, you might have a reference wave 
name of ref061896. You might pick the first suffix to be "6" and
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the prefix to be "ref06189". Then, to include the reference wave 
at the end, you might load the wave with a suffix of "96” and a 
prefix of "ref0618". Of course, it might be more helpful to write 
the names down to keep track of them (with prefixes and suffixes) 
and to rename them with names which are easier to keep track of 
and remember. The loading sequence would then be: wavel, wave2, 
refwave, wave3,..., waven, refwave, "reference". It may be easier 
to see this sequence by showing suffixes and prefixes. Let's say 
you have 5 waves: ram061296a, ramave061396, ram061496b, 
ram052396f, and ramave052996 plus your reference ref061896.
You could load these waves as follows (assume the reference is the 
3rd wave):
SUFFIX FIRST, PREFIX SECOND
"061296a"+"ram", "061396"+"ramave", "061896"+"ref",
"061496b"+"ram", "052396f"+"ram", "ef061896"+"r"
After loading the waves in RamGraph, you are asked to specify the 
sequence of Raman peaks to be displayed in the graph. The 
sequence can be in any order and can be up to five peaks. For 
6H SiC, the five peaks typically observed in the 790 1/cm region 
are the 767, the 777, the 783, the 788, and the 797 Raman lines. 
The Raman fitting procedures actually compile the Raman data 
according to the following sequence of lines: 767, 788, 797, 777, 
783 or the sequence {0,3,4,1,2}. (Note that 0 is the first in the 
sequence.) This was because the 767, 788, and 797 are always 
present. The 777 line is less frequent and the 783 line is least 
frequent of all. However, the RamGraph procedure sorts each wave 
individually, sorting the Raman shift from least to greatest. 
PLEASE NOTE: currently the major flaw with this procedure is that 
the sorting routine doesn't know where to put zeros (nonexistent 
lines) so it just ignores them and sorts the other numbers 
For instance, the sequence {797 0 788 767 777} sorts as 
{767 0 777 788 797} giving an index wave of {4 1 3 0 2}. The 
missing Raman line is of course the 783 line, so it should have 
sorted as {767 777 0 788 797} giving an index wave of {4 2 3 0 1}. 
The trick here is to place the zeroes for the missing Raman lines 
where they should go when sorted so that the other lines will fall 
into place. For example, by switching the 788 and 0, the 
procedure will sort correctly: the sequence {797 788 0 767 777} 
sorts as {767 777 0 788 797} with an index wave of {43201}. 
(This step can be done by editing the wave, copying and pasting 
the set of three values for the 788 line--in this case, points 
3,4, & 5 and pasting them to the 0--points 6, 7, and 8. DON'T 
FORGET! ADD 20 and do the same for the uncertainties. Copy and 
paste points 23, 24, & 25 to points 26, 27, & 28. Then put zeroes 
in for points 3, 4, & 5 and for points 23, 24, & 25. Now to 
revise this function, I suppose one could write it to check and 
see if the values fall within a couple of wavenumbers of a 
standard or reference set of Raman shift values such as the 
integers {767 777 783 788 797}. Or better still, have it check 
the Raman shift values against the last wave loaded to see if the 
values fall within a couple of wavenumbers of each other. This 
last wave could be the reference wave containing all of the lines
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to be graphed. Of course, another alternative is to make sure the 
Raman lines are sorted before running this function (i.e., 
revising the Raman fitting procedures to place the lines 
sequentially or just ensuring that the zeroes for the missing 
Raman lines are placed correctly. These graphing functions worked 
well for me since all of the statistical data contained all five 
lines, so that each wave was sorted perfectly (there were no 
missing Raman lines in the "composite" waves). RamGraph and 
RamGraph2 give the quantity waves wavenames of the form: 
"quantityname like WID or DELPOS"+"wave#"+graph letter. If you 
load five waves for graph letter a, then there will be five waves 
such as WIDOa, WIDla, WID2a, WID3a, WID4a. The size of these 
waves depends on the number of Raman lines being displayed in the 
graph. In these case, if three Raman lines are displayed, then 
all but three elements would be zero for spacing in the bar chart. 
The possible quantity names are:
INT, WID, POS, RELINT, POSFROMREF for RamGraph and
PERRELINT, DELWID, PERWID, DELPOS for RamGraph2
UNCERTAINTIES for the values in these waves are stored in waves 
having respective quantity names with "ERR" in front, such as 
ERRINT or ERRWID. Of course, one could add other quantitynames to 
RamGraph2, such as PERPOSRELWID, for the percent change in Raman 
shift position relative to the reference linewidth, or a 
particular quantityname to RamGraph which doesn't require a 
reference such as DELPOSINTEG for the Raman shift relative to an 
integer value like 788 (i.e., 788.125 returns 0.125 and 787.78 
returns -0.22). After running RamGraph2, the execution of 
RamGrapha also compiles waves for tabular use of the quantity to 
be graphed. These waves have names of the form
"TOT"+"quantityname like WID or DELPOS"+"ramanline#"+graph letter. 
The uncertainties in the values of these waves stored in waves 
having respective names with "ERR" in front, such as ERRTOTWID or 
ERRTOTINT. These waves contain all the data for a particular 
quantity, such as the width of the 788 line. If you loaded five 
waves, then this wave contains five linewidths of the 788 line.
The way this function is written, you must run RamGraph2 and then 
RamGrapha (a second time) for each particular quantity that you 
desire to obtain the "TOT" waves for. To do this, the following 
sequence must be followed:
RamGraph, RamGrapha, RamGraph2, RamGrapha (for first quantity) 
RamGrapha, RamGraph2, RamGrapha (for second quantity)
RamGrapha, RamGraph2, RamGrapha (for third quantity)

variables
variable/g ct=0,refer=0,nume
variable i,j,k,1,temp
i=wave index,j=wave number,k/l=arbitrary indices, 

temp=temporary storage
string/g ls=" ",yl,y2a,y2b,z2,z2s,typl,sumy2a,sumy2b,run,pz 
known parameters
make/d/o/n=5 c={5321.0379,5562.7662,0,.113079,.365857}
make/d/o/n=5 ce={0.0026,0.0001,0,0.000022,0.000070}
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c [2]=le8* (1/c [0]-1/c [1])
ce[2]=le8*sqrt((ce[0]/c[0]x2)x2+ (ce[1]/c[1] x2)x2)
GetRam()
z2 = "int;wid;pos;relint;posfromref;"
z2s="0)None 1)Intensity 2)Width 3)Position 4) Rel. Strength 

5) Pos. From Ref."
make/o nd={0, 1,2,3,4 } , ne={0,1,2,3,4}
pz="Enter the letter of the graph (i.e., a)"
typl="a"
execute"prmpt()"
typ 1 =" run=\" ” +1yp 1 + " \ ” ”
execute typl
pz="Enter the sequence of peaks to be included, from left to right 

(i.e. 0,3,1)”
typl="{0,1,2,3,4}"
execute"prmpt()"
typl="make/o ne="+typl
execute typl
nume=numpnts(ne)
typl="l"
Cycle through each wave for the graph, building the graph.
j=0
do
Get wavename from list

yl=GetStrFromList(Is,j,";") 
wave yql=$yl
sort Raman lines (ignoring 0's, meaning nonexistent lines) 
(This sort routine works, but ignores 0's, meaning that if 
the 0’s aren't in the proper position--such as zeroes in 
indices 1 and 2 for the 777 and 783 lines, then the 
resultant "sorted” wave will be incorrect with respect to a 
sorted wave containing all five lines.
k=0
do

if (yql[2 + 3*nd[k] ] !=0) 
l=k+l 
do

if ((yql[2+3*nd[1]]<yql[2+3*nd[k]])
%& (yql[2+3*nd[1]]!=0))

temp=nd [1] ,-nd [1] =nd [k] ,-nd [k] =temp
endif
1+=1

while (1<5)
endif
k+=l

while (k<4)

i = 0 
do

make quantity waves to store values for graphs (dummy wavenames 
yq2a and respective error yq2b)

y2a=GetStrFromList(z2,i,";")+num2str(j)+run;
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y2b="err"+y2a

make/d/o/n=(nume*(ct+1)) $y2a=0, $y2b=0 
wave yq2a=$y2a,yq2b=$y2b 
if ((refer==l)(j==ct))

j =0;refer=2
endif

get quantity if intensity, width, or position 
if (i<3)

yq2a[j, ;ct+l]=yql[i+3*nd[ne[(p-j)/(ct+1)]]]; 
yq2b[j, ;ct+l]=yql[20+i+3*nd[ne[(p-j)/(ct+1)]]]

else
if (i==3)

get quantity if relative intensity
yq2a[j, ;ct+l]=yql[3*nd[ne[(p-j)/

(ct + 1)]]]/yql[3*nd [3]] 
yq2b[j, ;ct+1]=yq2a*sqrt((yql[20+3*

nd[ne[(p-j)/(ct+1)]]]/
yql[3*nd[ne[(p-j)/(ct+1)]]])x2+
(yql [2 0 + 3*nd[3] ] /yql [3*nd[3] ] ) x2)

else
get quantity if position from reference

yq2a[j, ;ct+l]=yql[2+3*nd[ne[(p-j)/
(ct+1)]]]-yql[19]

yq2b[j, ;ct+1]=sqrt((yql[22+3*nd[ne[(p-j)/ 
(ct+1)]]])A2+(yql[39])A2)

k=0
do

check if position=0--if so, then make these values in the quantity 
waves=0

if (yql[2+3*nd[ne[k] ] ] = = 0) 
yq2a[j+k*(ct + 1) ] =0;

yq2b[j+k*(ct + 1) ] =0
endif 
k+ = l

while(k<nume)
endif

endif
if ( (ref er==2) %■& (j = = 0) ) 

j =ct;refer=l
endif
i+=l

while (i<5)

j+=l
while (j<(ct+refer))

End
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Macro Prmpt (typ)

obtain type of graph 
string/g pz
string typ=typl 
prompt typ, pz 
typl=typ

EndMacro

Function RamGrapha()
string/g z2s,typl,pz=z2s

| Display bar graph of int,wid,pos,relint, posfromref, perrelint,
delwid, perwid, or delpos vs Raman line for each run 
execute"Prmpt()”
if (CmpStr(typl, "0”) != 0)

GraphWin()
endif

End

Function GraphWin()
See Comments for RamGraph() for additional information about 
RamGrapha (or GraphWin)
Variables
variable i, j ,powl,pow2, totla,totlb,tot2,sigfig 
variable/d m,n 
variable/g ct,rn,nume
string/g y2a,y2b,yra,yrb,yrc,yrd,sum2a,sum2b,z2,typl,lb,IbO,lbl, 

lb2,lb3,lb4,lb5,lb6,lb7,lb8,t1,taa,tbb,tcc,tdd
string/g tta,tbl,errtbl,tblist="",sumy2a,sumy2b,run,Is 
PauseUpdate | building window...
Define possible labels for y axis 
lb0=”Intensity Counts"
lbl="Raman Line Width (cm\\S-l\\M)" 
lb2="Raman Shift (cm\\S-l\\M)" 
lb3="Relative Raman Line Strength"
lb4="Raman Line Offset From Neon Reference (cm\\S-l\\M)" 
lb5="Percent Change in Relative Raman Line Strength" 
lb6="Change in Raman Line Width (cm\\S-l\\M)" 
lb7="Percent Change in Raman Line Width (%)" 
lb8="Change in Raman Shift (cm\\S-1\\M)"
lb=lbO+";"+lbl+";"+lb2+";"+lb3+";"+lb4+";"+lb5+";"+lb6+";"+lb7+

";"+lb8+";"
sumy2a="";sumy2b=""
Build up list of quantity names 
j=0
do

y2a=GetStrFromList (z2 , str2num(typl) -1, ";") +num2str (j ) +run 
sumy2a=sumy2a+y2a+"," 
sumy2b=sumy2b+"err"+y2a+"," 
j + = 1

while(j <ct)

display bar graph
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y2a=GetStrFromList(sumy2a,0,",") 
wave yq2a=$y2a
execute "Display /W=(5,43,627,464) $y2a"
j=l
do

y2a=GetStrFromList(sumy2a,j, ", ") 
wave yq2a=$y2a 
execute "AppendToGraph $y2a" 
j + = 1

while(j<ct)
ModifyGraph font="Arial"
ModifyGraph mode=5
ModifyGraph hbFill=4
ModifyGraph offset={- 0.5,0}
ModifyGraph grid(left)=2
ModifyGraph tick(left)=2, tick(bottom)=3
ModifyGraph mirror=l
ModifyGraph minor(left)=1
ModifyGraph sep(left)=2
ModifyGraph noLabel(bottom)=1
ModifyGraph lblMargin(bottom)=1
ModifyGraph axOffset(left)=-2
Label left GetStrFromList(lb,str2num(typl)-1,";")
y2a=GetStrFromList(sumy2a,round(ct/2-0.5) , ", ")
if (str2num(typl)>4)
for plotting quantities in the first set (intensity, width, 
position, relinten, posfromreference)

Label bottom "Reference Specimen Raman Lines 
(Position/Width) Observed"

i = 0 
do

Determine decimal places for tag (for listing value
and uncertainty on each bar)
j=0
tta="\\JC\\F’Arial'\\Z10"
do

yra=GetStrFromList (z2,2-j , ";") +num2str (rn) +run
yrb="err"+yra
wave yqra=$yra,yqrb=$yrb
totla=l;totlb=l;sigfig=3
if (yqra[i*(ct + 1) ] !=0)

powl=round(log(abs(yqra[i*(ct+l)]))-0.5)
else

powl=0
endif
pow2=round(log(yqrb[i*(ct + 1) ] )-0.5) 
tot2=sigfig-l-pow2 
if (tot2<l)

tot2=0;totla=totla-1;totlb=totlb-1
endif
totla=totla+tot2+l;totlb=totlb+tot2+l 
if (yqra[i*(ct+l)]<0)
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totla=totla+l

endif
if (powl>0)

totla=totla+powl
endif
if (pow2>0)

totlb=totlb+pow2
endif
taa="%"+num2str(totla)+ "."+num2str(tot2)+"f" 
sprintf tcc, taa, yqra[i*(ct+1)] 
tta=tta+tcc
if (j==0)

tta=tta+" cm\\S-l\\M\r\\F'Arial'\\Z10("
else

tta=tta+" cm\\S-l\\M)"
endif
j+=l

while(j<2)
Tag/F=0/A=MT/L=0 $y2a, round(ct/2-0.5)+i*(ct+1), tta 
i+=l

while(i<nume)
else
for plotting quantities in the second set (using reference wave) 

Label bottom "Approximate Raman Lines Observed" 
yra=GetStrFromList(z2,2,",-")+"0"+run
yrc=GetStrFromList(z2,1,";")+"0"+run 
wave yqra=$yra,yqrc=$yrc 
i = 0
do

Tag/F=0/A=MT/L=0/P=10 $y2a, round(ct/2-0.5)+i*(ct+1), 
"\\JC\\F'Arial'\\Z10"+
num2str(round(yqra[i*(ct+1)]))+" cm\\S-l\\M"

i+=l
while(i<nume)

endif
Textbox/N=textc/F=0/A=MT/E "\\JC\\F'Arial'\\Z14"+

GetStrFromList(z2,str2num(typl)-1,";")
Textbox/N=textd/F=0/A=RB/X=-0.91/Y=-34.77

"\\F'Arial'\\Z10J. Binford\r"+Secs2Date(DateTime,0)
Textbox/N=textb/F=0/A=MC/X=18.28/Y=-32.81

"\\F'Arial'\\Z10Laser wavelength is 532.10379±0.00026 nm"
AppendText "Neon reference wavelength is 556.276620±0.000010 nm\r 

Wavenumber difference is 116.6582±0.0092 cm\\S-l\\M"
Legend/J/N=texta/F=0/A=MB/X=0.80/Y=l.90/E ""
i=0
create waves of quantity with specimen for each peak ("TOT" waves) 
do

tbl="tot"+GetStrFromList(z2,str2num(typl)-1,";")+ 
num2str(i)+run;errtbl="err"+tbl

tblist=tblist+tbl+";" 
make/d/o/n=(ct) $tbl=0,$errtbl=0 
i+=l
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while(i<nume)
j=0
do

y2a=GetStrFromList(sumy2a,j,",");
y2b=GetStrFromList(sumy2b,j,",")

wave yzl=$y2a,yz2=$y2b 
ErrorBars/Y=15 $y2a Y,wave=(yz2,yz2) 
tl="\\s("+y2a+") "+GetStrFromList(Is,j,";") 
AppendText/n=texta tl
i=0
do

tbl=GetStrFromList(tblist,i,";");errtbl="err"+tbl 
wave wtbl=$tbl,etbl=$errtbl 
if (yz2[j+i*(ct+1)]1=0)

Determine decimal places for tag 
totla=l;totlb=l,-sigf ig=3 
if (yzl[j+i*(ct+1)]!=0)

powl=round(log(abs(yzl[j+i*(ct+1)]))-0.5)
else

powl=0
endif
pow2=round(log(yz2[j+i*(ct+1)])-0.5) 
tot2=sigfig-l-pow2 
if (tot2<l)

tot2=0;totla=totla-1;totlb=totlb-1
endif
totla=totla+tot2+l;totlb=totlb+tot2+l 
if (yzl[j+i*(ct+1)]<0)

totla=totla+l
endif
if (powl>0)

totla=totla+powl
endif
if (pow2>0)

totlb=totlb+pow2
endif
taa="%"+num2str(totla)+"."+num2str(tot2)+"f" 
tbb="fc"+num2str(totlb)+"."+num2str(tot2)+"f" 
sprintf tcc, taa, yzl[j+i*(ct+1)]
sprintf tdd, tbb, yz2[j+i*(ct+1)] 
Tag/F=0/A=LB/L=0/0=90/X=0/Y=0 $y2a, j+i*(ct+1),

"\\JR\\F'Arial'\\Z08"+tcc+"\r±"+tdd 
wtbl[ j ]=round(yzl[j+i*(ct+1)]*

10 A(tot2)-0.5)/1OA(tot2) 
etbl[j]=round(yz2[j+i*(ct+1)]*

10A(tot2)-0.5)/10A(tot2)
endif
i+=l

while(i<nume) 
j+=l

while(j<ct)
End
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Function RamGraph2()

See Comments for RamGraph() for additional information about
RamGraph2
variables
variable/g ct,refer, nume,rn=-l |reference number
variable i,j,k,l,temp |i=wave index,j=wave number,k/l=arbitrary

|indices,temp=temporary storage 
variable u,v |t/v=arbitrary indices
string/g Is,yla, ylb,yra,yrb,y2a,y2b,z2,z2s,typl="1",sumy2a,sumy2b 
string/g proml="Enter name of reference wave",ref1,run,pz 
z2=z2+"perrelint; delwid,-perwid; delpos ; "
z2s = "0)None 6) Wei in Rel. Strength 7)Width Del 8) Wei in Width 

9) Del in Pos."
Assign reference position 
rn=ct

make/o nd={3,1,1,2} |locations of relint, wid, wid, and pos for
|four parameters requiring reference

j=0
do

i=5
do

yla=GetStrFromList(z2,nd[i-5],";")+num2str(j)+ 
run;ylb="err"+y la

yra=GetStrFromList(z2,nd[i-5],";")+num2str(rn)+ 
run;yrb="err"+yra

y2a=GetStrFromList(z2,i,";")+num2str(j)+ 
run;y2b="err"+y2 a

make/d/o/n=(nume*(ct+1)) $y2a=0,$y2b=0 
wave yqla=$yla,yqlb=$ylb,yqra=$yra,yqrb=$yrb,

yq2a=$y2a,yq2b=$y2b

for calculating change in relative strength or ^change in width 
relative to reference.

if ((i==5) %| (i==7))
k=0 
do

u=j+k*(ct+1) 
v=k*(ct+1)
if ((yqra[v]!=0)(yqla[u]!=0))

yq2a[u]=100*(yqla[u]/yqra[v]-1) 
yq2b[u]=100*abs(yqlb[u]/yqra[v]) 
if (yq2a[u]==0)

yq2b[u]=0
endif

endif
k+=l

while(k<nume)
else

for calculating change in width or change in position relative to 
reference

k=0
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do

u=j+k*(ct+1) 
v=k*(ct+1)
if ((yqra[v]!=0)%&(yqla[u]!=0)) 

yq2a [u]=yqla[u]-yqra[v] 
yq2b[u]=yqlb[u] 
if (yq2a[u]= = 0)

yq2b[u]=0
endif

endif 
k+ = l

while(k<nume)
endif
i+=l

while (i<9)

j+=l
while (j<ct)

End

Atomic Line Fitting Menu

Menu "Macros”
"InitAtom/0" 
"AtomGraph/1"
"RepeatAtom/2" 
"AtomStat/3"

End

|Atomic Line Fitting Procedures

Function InitAtom()
string/g suf1 = "A",prefl="T010195",

patl="Data:Joe Binford:DATAstor3:", extl="prn" 
string/g peakl="coeff={839,325.5,350.5}" 
string/g peak2="coeff={839, 325.5,350.5}" 
string/g peak3="coeff={839,325.5,350.5}"

| known parameters (atomic lines for finding wavelength dispersion
| (& also laser wavelength if applicable)

variable/g/d 112= (507.42 007 + 5 08.03852)/2, 
diff12 = 508.03852-507.42007

Execute "atomgraphO "
End

function atomgraphO
| THE PURPOSE OF INITATOM, ATOMGRAPH, AND REPEATATOM IS TO FIT

TRIANGLE FUNCTION TO ATOMIC LINES SUCH AS NEON IN ORDER TO 
ACCURATELY DETERMINE THEIR POSITIONS (IN PIXELS) AND ULTIMATELY 
DETERMINE THE WAVELENGTH DISPERSION (& LASER WAVELENGTH IF 
APPLICABLE).
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Note: In the procedure window, the maximum number of elements in
the stat wave is 12, not 40. In other words, there are six 
parameters and six uncertainties instead of 20 parameters and 20 
uncertainties.
string/g y,t,gra,las,pat1,pref1,suf1,ext1,peakl
variable/g/d am=2,ami=0 |number of atomic lines to fit/iteration 

|number
if am=2 just find wavelength dispersion
if am=3 find both wavelength dispersion and wavelength of third 
line (laser line) 
wave wav0=wav0
obtain path and prefix of wave
execute "GetWave()"
load Raman run
newpath/q/o np patl
loadwave/g/d/q/n=wav/p=np pref1+suf1+"."+extl
y=”y”+SUf1
rename wavl,$y
display reference graph
t="t"+suf1
make/d/n=578 $t
building window...

execute "display /w=(5,42,400,250) $y,$t vs wavO"
gra="g"+pref1+suf1
dowindow/c $gra
execute "ModifyGraph mode($y)=3"
execute "ModifyGraph marker($y)=8"
execute "ModifyGraph rgb($t)=(0,0,65000)"
SetAxis/A
Cursor A $y 348/Cursor B $y 351
Showlnfo
make/d/o/n=3 coeff=0,W_sigma=0

las="las"+pref1 [1,6]+suf1
make/d/n=12 $las

print peakl

end

function RepeatAtomO
string/g y,t,gra,las,peakl,peak2,peak3,pref1,suf1 
string peak,pk
variable/d/g V_npnts,V_chisq,am,ami=ami+l,diff12,112 
wave wav0=wav0,coeff=coeff,W_sigma=W_sigma,ls=$las

| Perform triangle fit to reference
execute"FuncFit/q TRIANGLE coeff $y(xcsr(A),xcsr(B)) /X=wav0

/D=$t"
if (V_npnts == 3)

W_sigma[0]=0;W_sigma[1]=0;W_sigma[2]=abs(coeff[2]- 
round(coeff[2]))/2



139
endif
print "File "+pref1+suf1+".prn TRIANGLE fit:ywave=y"+suf1+", 

xwave=wavO, fitwave=t"+suf1+", V_chisq=",V_chisq
printf "coeff={%9.4f,%9.4f,%9.4f} W_sigma={%9.4f,%9.4f, %9.4f}", 

coeff[0],coeff[1],coeff[2],W_sigma[0],W_sigma[1], 
W_sigma[2];print""

peak="coeff={"+num2str(coeff[0])+","+num2str(coeff[1])+","+ 
num2str(coeff[2])+"}"

if ((ami==l)%|(ami==2)) 
if (ami==l)

peakl=peak
else

peak2=peak
endif

else
peak3=peak

endif

| store atomic PIXEL position and uncertainty in coefficient array
if (ami==3)

Is[0]=coeff[2];Is[6]=W_sigma[2]
else

Is[ami]=coeff[2];ls[ami+6]=W_sigma[2]
endif

if (((am==2)%&(ami==2))i|((am==3)%&(ami==3)))
Is [3] = (ls[1]+ls[2])/2
Is[9]=sqrt(Is[7]A2+ls[8]*2)/2
Is[4]=diff12/(Is[2]-Is [1])
Is[10]=ls[4]*2*ls[9]/(Is[2]-Is [1]) 
if(am==3)

Is[5]=112-(Is[3]-Is[0])*ls [4]
Is[11]=sqrt((Is[4]*ls[9])A2+ (Is[4]*ls[6])*2+

((Is[3]-Is[0])*ls[10])A2)
endif

| kill graph window
dowindow/k $gra

else
Setaxis/a
print"print peak2"

endif

End

|Atomic line statistics

macro atomstatname(ref)
obtain name of statistics (reference) wave 
string ref="ref010195",prom=proml 
prompt ref, prom
refl=ref;proml=prom 

endmacro
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function AtomStat()

variable/g ct=0
variable i,j |i=wave index,j=wave number 
variable/d suml,sum2,sumx,sumxb,sumstd,count
string/g y,z,ref1,ls=" ",proml="Enter name of statistics wave" 
execute "atomstatname()"
GetRam()
make/d/o/n=12 $refl=0, stdstat=0, weightstat=0 
wave reff=$refl

| THE PURPOSE OF THE STAT FUNCTION IS TO CALCULATE THE MEAN AND
UNCERTAINTY IN THE MEAN USING WEIGHTED STATISTICAL AVERAGING. THE 
FUNCTION USES THE RELATIVE UNCERTAINTIES (FITTING UNCERTAINTIES)
TO WEIGHT THE CALCULATION OF THE ESTIMATED VARIANCE. THE
CALCULATION OF THE MEAN SIMPLY USES THE RELATIVE UNCERTAINTIES,
BUT THE UNCERTAINTY IN THE MEAN REQUIRES KNOWLEDGE OF THE 
ESTIMATED VARIANCE (WHICH IS DIVIDED BY N TO FIND THE VARIANCE IN 
THE MEAN). THE WAVES TO BE AVERAGED MUST BE 12 ELEMENTS LONG, THE 
FIRST 6 BEING THE DATA POINTS AND THE LAST 6 BEING THE 
CORRESPONDING UNCERTAINTIES IN THESE DATA POINTS. OFTEN, SOME 
DATA POINTS MAY HAVE UNCERTAINTIES OF ZERO. THE AVERAGING 
PROCEDURE IGNORES THESE POINTS AND KEEPS TRACK ONLY OF THOSE 
POINTS WHOSE UNCERTAINTIES ARE NONZERO. THUS, EVEN THOUGH 15 
MEASUREMENTS MAY HAVE BEEN MADE FOR EACH QUANTITY OF INTEREST, THE 
AVERAGE OF QUANTITY A MAY ONLY REPRESENT 12 MEASUREMENTS WHILE THE 
AVERAGE OF QUANTITY B MAY ONLY REPRESENT 14 MEASUREMENTS. FOR 
RAMAN DATA, THIS COULD BE THE CASE IF A RAMAN LINE DOESN'T APPEAR 
FOR SOME OF THE MEASUREMENTS. THE FUNCTION ALSO CREATES TWO DUMMY 
WAVES, STDSTAT AND WEIGHTSTAT, FOR COMPARING EQUAL WEIGHTING WITH 
THE WEIGHTING BASED ON THE RELATIVE UNCERTAINTIES OF THE DATA 
POINTS. OF COURSE, WEIGHTSTAT IS A DUPLICATE OF THE WAVE NAMED BY 
THE USER FOR STORAGE OF THE STATISTICAL DATA.

| Refer to Philip R. Bevington, DATA REDUCTION AND ERROR ANALYSIS
FOR THE PHYSICAL SCIENCES (McGraw Hill Book Co., New York, 1969), 
pp. 66-80.

Calculate Raman statistics of waves 
i = 0 
do

j=0
suml = 0;sum2 = 0;sumx= 0;count = 0 
do

z=GetStrFromList(Is,j,";") 
wave zq=$z 
if (zq[i+6] != 0)

find sum of data for calculating the mean 
sumx=sumx+zq[i]

find sum of the data points divided by their relative variances 
for finding weighted mean

suml=suml+zq[i]/zq[i+6] x2
find sum of the inverse of the relative variances for finding the 
weighted mean and the average variance
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sum2=sum2+l/zq[i+6]A2

count the number of data points with nonzero uncertainties 
count+=l

endif 
j+ = l

while(j < ct) 
j=0
sumstd=0;sumxb=0 
do

z=GetStrFromList(Is,j,";") 
wave zq=$z 
if (zq[i+6] != 0)

sum of the square of the errors for finding the standard 
uncertainty in the mean

sumstd=sumstd+(zq[i]-sumx/count)A2 
sum of the square of the errors weighted by the relative 
uncertainties for finding the average variance (divide sumxb by 
N-l, then normalize by dividing this quantity by sum2/N to get 
average variance--divide average variance by N to get variance in 
the mean)

sumxb=sumxb+(zq[i]-sumx/count)A2/zq[i+6]A2
endif
j+=l

while(j < ct)

if (count > 1)
find the equal-weighted mean and the uncertainty in the mean 

stdstat[i]=sumx/count;
stdstat[i+6]=sqrt(sumstd/(count-1)/count) 

find the weighted mean and its respective uncertainty
weightstat[i]=suml/sum2;

weightstat[i+6]=sqrt(sumxb/sum2/(count-1))
endif
reff [i]=weightstat[i];reff[i+6]=weightstat[i+6] 
i+=l

while(i < 6)
kill all loaded waves except statistics wave
j=0
do

z=GetStrFromList(Is, j,";") 
wave zq=$z 
killwaves zq 
j+=l

while(j < ct) 
ls = ”";Ct = 0

End



APPENDIX C

Wavelength Dispersion Linearity of Spectrometers

The dispersion of a spectrometer can be derived using the grating equation, given

as

/nA = d (sin a + sin 3) (52)

where m is the order, 2 is the diffracted light wavelength, d is the grating period, a is the

angle of incidence, and /3 is the angle of diffraction. For Ebert and Czemy-Tumer mounts

(typical for most spectrometers), the grating equation can be rewritten as

/nA = 6/(2 sin 0 cos<t>) { (53)

where 0is the grating angle measured from zero order and is a specific constant angle of 

the instrument. Equation (52) is used for a fixed grating with a constant angle of

incidence a such as the case for detection using a CCD array detector and no 

spectrometer exit slit. Equation (53) is used for a grating which is scanned so that the

angles a and P are both changing such as the case for detection of the light passing

through the exit slit using a PMT. For the fixed grating case, the angle of incidence a is

fixed so that the dispersion is <//W2. Reciprocal dispersion is defined as dA/d/3. Since the 

differential displacement dl of the image at the exit slit plane is related to the differential 

diffraction angle dp by the focal length f of the focusing mirror using dl=f dp, the linear 

reciprocal dispersion DM is dMdp, usually expressed in A/mm or nm/mm This quantity is
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also referred to simply as the linear dispersion of the spectrometer. The spectrometer used 

in the studies for this thesis is a 0.85 m Czemy-Tumer double spectrometer, each half of

which uses a 1200 lines/mm grating and has a specific angle <f> of 6.25°. Since the CCD

array detector was used in a fixed grating condition, the linear dispersion is one-half of the 

linear dispersion derived for a scanning grating in a PMT detection system. In addition, 

the resultant linear dispersion at the CCD detector, which is mounted on a double 

spectrometer with additive dispersion, is one-half that of a single spectrometer. These 

factors result in a linear dispersion that is one-fourth that of a single spectrometer in which

the grating is scanned. The wavelength dispersion in this thesis is given as Dx - d/jdp in 

which dp is the differential image displacement at the CCD array in pixels. Thus, p dp-dl,

where p is the pixel length (23 pm). Therefore, using Equation (53), the wavelength

dispersion for these studies is given by

= (54) 

Note that the wavelength dispersion slowly decreases with increasing diffraction angle (or

increasing wavelength). This effect is perhaps more easily seen if cos(0) is solved for in 

Equation (53) and substituted into Equation (54) to derive D, in terms of wavelength,

given as

= ^^.^cPcos2^ - zn2X2 (55)

The change in wavelength dispersion dD./dp is given in terms of diffraction angle 6 as

dp
-B)

J!
lf 2t/C0S(|)'l

-) sinO (56)m

or in terms of A as
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2

(57)

This last equation shows that Dz decreases linearly with increasing wavelength. If the 

pixel position pr and the wavelength of a reference atomic line on an acquired spectrum 

are known and the wavelength dispersion in the region of the spectrum is known, then the 

spectral data may be calibrated to a wavelength scale using a Taylor series expansion

given by

fy'cPk
k(pr + 8p) = + 8pdk

dp 2 dp2
+ higher order terms (58)

pr

where dp is the difference in pixels between the reference wavelength and the wavelength 

in question. Using the definition of the wavelength dispersion D,, Equation (58) may be

rewritten as

k(pr + 5p) = kr + |5p Dx I + tydDy.
2 dp

+ higher order terms (59)

Using f= 85 cm, p = 23 pm/pixel, kr = 556.27662 nm, and m = 1 as typical system 

parameters for the majority of the studies concerning the 790 cm'1 region Raman modes of 

6HSiC with a neon reference line, dD./dp is found to be about -lx 1 O'7 nm/pixel2, a 

negligible rate of wavelength dispersion change over a 70 cm'1 range, meaning that the

approximation

k(pr+§P) = kr + \§pD-k\pr

is most suitable for wavelength calibration in these studies.

(60)



APPENDIX D

Raman Tensor Analysis

Raman tensors for the C^4 point group symmetry27 were used to determine the 

Raman active modes for each polarization configuration and the crystalline axis (c-axis) 

orientation relative to the phonon propagation direction. The effect of the microscope 

objective's NA is not considered since the purpose of these calculations is to roughly 

define the mode selection capability of the Raman microprobe for different experimental 

geometries. The Raman tensors for hexagonal C6v4 SiC, assuming symmetry in the 

off-diagonal elements, are shown in Table 14.

Ex
Table 14. Raman tensors used for hexagonal C6v4 SiC.* 

Ax Ex
a

a c
b c

E2
d

—c

-c

E2

-d

* Reference 27.

The Raman mode calculation equation for the relative Raman scattered signal Is is given as

Is °C
->T

(61)es ■ R- et

where R is the Raman tensor, 7, and 7S are the incident and scattered field polarization 

vectors, and T denotes a matrix transpose of a column vector to a row vector. An
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example of this calculation would be for the 180° backscattering configuration in which 

the incident and scattered wavevectors are parallel to the c-axis (in this case, the z axis) so

the polarization vectors have components in the x-y plane given by

e, = e^x + eiyy and ~es = esxx + esyy (62)

so that the scattered intensity from the A, mode of C6v4 SiC is given by 
r ~i r ~i 2

a
/s oc a

b

etx

Ciy = n-e/v -esx+a-e iy c sy I (63)

From Equation (63) it is evident that the signal for this A! mode is nonzero only if the 

incident and scattered light polarizations are parallel to each other. The notations for the 

appearance of this mode are given by z (x, x) z', z (y, y) z', or z (xy, xy) z' in which a 

prime indicates propagation in the direction opposite to the indicated axis.

All the possible results for a 180° backscattering geometry are shown below in 

Table 15. Note that x and y may be reversed throughout the entire table and give identical 

results since hexagonal SiC is uniaxial.

Table 15. Polarization and propagation symbols used for determining phonon 
symmetry for C6v4 SiC in the 180° backscattering geometry (Note that x and
y may be reversed for identical results).
Polarization Phonon Propagation Phonon Propagation

Symbol Symmetry Symbol Angle 0

-(x, x)- (parallel)

-(x , y)- or -(y, x)- (crossed)

A,, E2

e2

z(- -)zl 0°

-(y> y> (parallel)
-(z, z)- (parallel)

-(y, z)- or -(z, y)- (crossed)

A,, E2

A,

E,

x(- -)x' 90°



APPENDIX E

Weighted Statistical Averaging

The Raman data obtained from each specimen was statistically averaged over the 

total number of spectra taken for a given specimen according to the following 

conventions. Weighted statistical averaging was chosen because it more accurately 

reflects the true uncertainty of an experimental measurement. The uncertainties of data 

obtained from an individual Raman spectrum were derived from least squares fitting 

uncertainties in fitting the Raman lines and from calibration uncertainties in the position of 

the reference atomic line. The following discussion on weighted statistical averaging was 

based on a treatment by Bevington.28 The statistical mean and variance in the mean are 

given, respectively, by
\ ( A X/Z
i=i va2y

and a,? = (64)

i=i ,2? /=i Vct,

N f j > N 1

where x. and cr. are the value and uncertainty of one data point in the sample to be

averaged and N is the number of data points. Often, the relative uncertainties cr.' of the 

data xt are known, but the absolute uncertainties cr. are not. This is the case for the Raman 

data of this research in that the fitting uncertainties give a relative uncertainty for 

comparison with similar data.
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The absolute variances <j2 can be estimated from the relative variances of by

ct72 = ct-2
w-
V

± Yw' N^Wj
7=1

(65)

where

■m/ = —' ~/2 (66)

and

CT2 = S2 =

[wr(x,-x)2]
1=1 (67)N

1=1

where a2 and s2 are the estimated and weighted variances, respectively, of the sample. 

The absolute weights wf are given by

w, = —

and the average variance ct 2 is given by
N N

a~2 = £E<J;~2 = £Ewi 
1=1 1=1

From Equation (64), the variance in the mean a2 is given by
N N

(68)

(69)

ct-2 = E 2 = Z Wi
1=1 i=l

(70)

Therefore, substituting the summation ofw into Equation (69) gives
2

-1 — -2 I -2 2 0 (71)

The uncertainty in the mean can then be calculated by first finding the estimated 

variance of Equation (67) and substituting this result into Equation (71).

The statistical mean and variance of groups A and B can be obtained if the means

pA and Pb and the variances ct^2 and ct^2 are known. The overall mean and variance are 

given, respectively, by
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where 1 1 1 (72)

Equation (72) can be generalized in the following form:

Hr = CTpr ’ where (73)

Equation (72) was used to compute the mean and variance of the Raman data from a 

group of specimens processed in the same way when the means and variances from each 

specimen are known. The uncertainties in the flexural strength data from some of the 

specimens were computed using the known standard deviation asd and the number of 

measurements N to find the standard deviation in the mean o^, given by

(74)


