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ABSTRACT

ATMOSPHERIC TURBULENCE CHARACTERIZATION OF A LOW 
ALTITUDE LONG HORIZONTAL PATH
Bernard, Wesley Allan
University of Dayton, 1996

Advisor: Dr. B. D. Duncan

The limitations placed on optical imaging through the earth’s atmosphere are

well understood. A large portion of the body of work on this subject deals with

vertical optical paths. The transition to the study of horizontal propagation of light

is currently being made. Various methods exist that quantify the disturbances intro­

duced on optical signals by turbulent air. Small perturbations of the wave front phase 

can be measured using a Hartmann Wave Front Sensor (H-WFS). For long regions

of turbulence, spatial and temporal variations in intensity, called scintillation, arise.

Using scintillation statistics and theoretical expressions for structure functions of H-

WFS slope values, turbulence strength was studied. These slope structure functions

are themselves functions of the phase structure function. The Kolmogorov model of

turbulence was assumed. The limitation that Kolmogorov theory applies only to ver­

tical propagation, and the possible effects of strong scintillation on measured phase

realizations were discussed. Data sets taken from two observatories in Hawaii dur­
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ing an optical communications experiment were studied for comparison with slope

structure function theory and scintillation statistics. This experiment was performed

at an altitude of 10,000 feet over a horizontal path length of 150 km. Results indi­

cate that the H-WFS measured very strong scintillation under these conditions, and

that very little faith can be placed in the phase-dependent results. Scintillation may

provide a more dependable method for optical characterization of these conditions.
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CHAPTER I

INTRODUCTION

The effects of atmospheric turbulence on the propagation of light have long been

recognized. This phenomenon imposes a limit on the resolution achievable in imaging 

through the earth’s atmosphere, a limit nearly independent of the size of the telescope 

being used. Understanding atmospheric turbulence can provide ways to not only

account for, but even correct for, optical system degradations caused by propagation

through atmospheric turbulence. Both phase and intensity can be affected by this

propagation.

1.1 Background

Ground-based imaging of space objects was the first area in which problems

were noticed that occurred as a result of atmospheric turbulence. During the time

of Isaac New’ton it was understood that the point spread function obtained in using

a telescope to examine a star was broader than the point spread attainable under

laboratory conditions. Newton correctly attributed these effects to “tremors” in the

atmosphere [1]:
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“If the theory of making Telescopes could at length be fully brought 
into Practice, yet would there be certain Bounds beyond which Telescopes 
could not perform. For the air through which we look upon the Stars, is 
in perpetual Tremor; as may be seen by the tremulous Motion of Shadows 
cast from high Towers, and by the twinkling of the fix’d stars.”

The source of this limitation is the random distribution of pockets of air in the

atmosphere with different temperatures and thus differing refractive indices. The

motion of these pockets of air is called turbulence. An optical field that encounters

the atmosphere will have its phase altered by this distribution. Light from a distant

object such as a star is well represented by a plane wave, and this plane of constant

phase will become randomly perturbed after passing through the atmosphere. Adap­

tive optics can be used to compensate for this problem by using optical elements to 

correct for the phase aberrations [2]. After propagating some distance as a corrupted 

phase front, different portions of a wave will interfere with each other. The resulting

pattern of light and dark regions is called scintillation. Because the nature of this

disturbance is intensity differences and not phase aberrations, correction of the phase

front by normal adaptive optics methods will not improve the signal.

Atmospheric turbulence has been described statistically by Kolmogorov. He

developed a power spectral density (PSD) to describe the spatial frequency statistics

of the index of refraction variations present in the atmosphere. Fried derived a

structure function based on Kolmogorov’s PSD. A structure function is a second

order statistic closely related to a correlation function, and Fried’s wave structure
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function quantified the phase variations present on a wavefront passing through the

atmosphere.

Studies are now under way to examine how atmospheric effects may impact

applications other than imaging. High energy lasers may be utilized in a variety of

ways under free-space conditions. These areas would involve propagation of laser

beams over long paths in both vertical and horizontal directions. Scintillation of

the laser beam will result in the reduction of power delivered to the desired location

and thus limit effectiveness [3]. Knowledge of the consequences involved in pass­

ing through turbulence is therefore crucial in determining the applicability of this

technology.

Free-space optical communications is another important area of study due to

the low probability of intercept, long range, and high data rates available. Horizontal

propagation at various altitudes in the atmosphere is a major factor in this work, and

the possibility that communications could be affected requires greater understanding 

of the problems scintillation and phase degradation may cause [4].

1.2 Previous Work

A large body of work exists in the field of optical atmospheric propagation.

Much of this work deals with imaging vertically through turbulence, but horizontal

paths are currently receiving more study. In 1985 experiments called HAVE LACE

were performed by the Air Force’s Wright Laboratory. Wright Lab studied scin­
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tillation effects on air-to-air optical communications [4]. These studies dealt with 

high-altitude propagation between aircraft, but did not characterize the phase per­

turbations that give rise to this scintillation.

In 1993 the Air Force’s Phillips Laboratory performed experiments called

ABLEX to characterize turbulence in the upper atmosphere. ABLEX used a tem­

perature probe mounted on an aircraft to monitor the random pockets of air and

indirectly measure turbulence strength [3]. Later experiments named ABLE ACE 

were also conducted by Phillips Laboratory during January and March of 1995. A

laser beam was propagated between two aircraft flying above and around the strato­

sphere. The result was a collection of data sets which contain camera images from

a Shack-Hartmann Wave Front Sensor (H-WFS). A Shack-Hartmann WFS can be

used to measure both wavefront phase and scintillation. The images taken exhibit

both phase variations and scintillation due to turbulent air. Data analysis has been

performed on these images [5]. Preliminary results indicate that the measured tur­

bulence follows theoretical models.

1.3 The Maui Experiment

In the summer of 1995, Wright Laboratory conducted a variety of experi­

ments in Hawaii dealing with optical communications. Laser light at a wavelength

of 810 nm was sent and received from both Mts. Haleakala on the island of Maui

and Mauna Loa on the island of Hawaii. The path between these two sites ranged in
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altitude from 9,000 to 11,000 ft and was 150 km in length, the majority of which was

over water. This altitude is much lower than that at which the bulk of the previous

work in this field has been conducted [3, 4, 5, 6]. Ground-based laser transmitters

and receivers will encounter turbulence of this type, and its characterization is very

important. Primarily, it must be determined if the theory developed for weak turbu­

lence applies to these conditions. It is believed that scintillation under low altitude

horizontal propagation is stronger than that encountered in more traditional vertical

experiments and in higher altitude horizontal experiments. Both intensity variations

and phase variations must be studied to gain a clear picture of the turbulence.

Experiments incorporating a H-WFS use an array of lenslets and a camera to

capture light that has passed through turbulence. The wave front phase cannot be

directly determined. Instead, measurements of the slope of the wave front are found

for various locations in the pupil, and the phase front is inferred from these slopes. 

Phase reconstruction has been shown to work well in laboratory conditions [7], but

is computationally intensive and has been found to be sensitive to errors in the

slope measurements. This thesis will deal with the study of phase perturbations on

the slope level. Because a H-WFS uses a CCD camera, scintillation measurements

are easy to take simultaneously with phase information. This capability makes the

Hartmann Sensor a versatile component in the adaptive optics field.
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1.4 Problem Description And Goals

The goal of this thesis is to characterize atmospheric turbulence over a

long horizontal path at a low altitude using a Hartmann Wave Front Sensor. Due

to the random nature of turbulence, statistical analysis will play a large part in this

characterization. This analysis will include the use of structure functions. The steps

used in this analysis will be:

• Determine wave front slope values from the H-WFS images.

• Estimate slope structure functions from these slope values.

• Analyze the structure functions for their fit to theory.

• Characterize intensity variations due to signal scintillation.

• Determine various statistical quantities dealing with scintillation and compare

with theory.

Results from this analysis indicate that the turbulence present under the conditions

being studied is dominated by scintillation, and pure phase processing of the light

received will be inadequate.

1.5 Summary

Chapter II provides the physical explanation and theoretical characteriza­

tion of atmospheric turbulence. The H-WFS measurement process incorporating the

statistical study of both phase and intensity fluctuations is presented in Chapter III.
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Chapter IV introduces the data sets taken for the Hawaii experiment, and presents

results for the characterization of low altitude long horizontal optical paths. Chapter

V discusses conclusions and provides suggestions for further research.
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CHAPTER II

THEORY

The two most important areas in the study of turbulence and its effects on 

light are wave front phase variations and intensity variations. The optical field u(x) 

representing light that has passed through the atmosphere must incorporate both 

phase and amplitude components. We will let ^(f) account for the phase fluctuations 

of the field, and y(f) account for the logarithm of the field amplitude fluctuations. 

The field can then be written as [8]

u(^) = Ao(£) exp[x(f) + .#(£)], (1)

where Ao(x) represents the nominal amplitude of the field. This chapter contains a 

description of atmospheric turbulence and the methods used to study the effects of

turbulence on this optical field using a Hartmann Wave Front Sensor (H-WFS).
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2.1 Atmospheric Turbulence

The Earth’s atmosphere goes through differential heating and cooling, bring

ing about large scale variations in temperature and pressure. Resultant air movement

distributes energy among these pockets and breaks them down into smaller sizes,

causing random motion of complex pockets of air with varying refractive indices.

This motion is called turbulence. Because the index of refraction of air is sensitive

to temperature, these pockets have random effects on the speed of light propagating

through them and thus change the phase of the light. This is explained very well by 

Roggemann et al [9]. The size of these pockets becomes smaller until viscous effects 

dominate, motion becomes smooth and regular, and the flow is termed laminar [2],

The theoretical foundations in atmospheric turbulence were performed by Kol­

mogorov, Tatarski, and Fried. Kolmogorov [10] developed a power spectral density 

(PSD) describing the spatial frequency statistics of the atmosphere’s index of re­

fraction variations. This theory holds for a specific range of spatial frequencies k

called the inertial subrange. These spatial frequencies correspond to the size of the 

turbulent eddies L as L = 2tt/k,. The inertial subrange extends from the largest 

eddy size Lo = 2k/k0 called the outer scale, to the smallest size l0 = 2 7r/?vm called 

the inner scale. Typical values for Lo range from 1 to 100 m, and values for lo are

on the order of a few millimeters [11]. The Kolmogorov PSD is given by

$„(«) =0.033 C’«r11/3, (2)
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where <£„(«) is the PSD and is called the structure constant of the fluctuations in 

the air’s refractive index [11], characterizes the strength of these fluctuations, and

has been determined experimentally. Many different models exist for this constant, 

based mainly on altitude above the surface of the earth [2, 12]. Typical values for C'\ 

are on the order of 10-16 m-2/3. Problems present in Kolmogorov’s PSD have been 

corrected in other models, most notably the von Karman spectrum. Tatarski later

applied Kolmogorov’s results to wave propagation and imaging through distributions 

of random indices of refraction [13]. Fried then extended these theories to the optics 

engineering community and specific atmospheric optics problems [8].

The Kolmogorov PSD forms a Fourier transform pair with the autocorrelation

of the refractive index. Thus the statistics describing turbulence may be done in

spectral or spatial representations. These statistics describe a three dimensional

random process. Two important definitions related to this process are homogeneity

and isotropy. A random process is said to be homogeneous if it is spatially stationary;

i.e., it does not depend on location. Isotropy holds if the process is also spherically

symmetric. The index of refraction fluctuations in the atmosphere are generally

assumed to be homogeneous and isotropic, and thus don’t depend on either location 

or direction. Many experiments have been done that support this assumption [5, 14], 

but it does not always hold.
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2.2 Structure Functions

One quantity widely used to study the spatial characteristics of a random

process is the structure function. This quantity appears often in the field of turbu­

lence. and understanding it is very important. A structure function can be thought

of as an expected value for the strength of variations present in a random process, or

alternately as the mean square difference between two realizations. Tatarski defined

an expression for the structure function of the index of refraction for atmospheric 

turbulence [13]. This structure function is expressed as

E>n(r\,r2) = E [(ni(fi) - n2(f2))2] , (3)

with Dn(r\,r2) as the structure function of the index of refraction n at locations 

identified by the vectors fq and f2, and ^[-J representing the expected value operator.

If the refractive index variations are homogeneous as described above, the structure

function becomes a function only of the vector difference between fq and r2. If the

variations are also isotropic, the structure function will depend only on the magnitude 

r of the separation between points fq and r2, and we write 7?(r), as the structure 

function is a function only of the separation r = |fq — r2|.

2.2.1 Phase Structure Functions. Tatarski also extended the theory of

index of refraction structure functions to a plane wave propagating through the at­

mosphere. The wavefront phase distortion caused by this propagation can be charac-
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terized by the phase structure function, 29^, (AT) = E (X + AT))2], where

AT is the spatial separation between the points of interest. Using Kolmogorov’s 

PSD, Fried derived a phase structure function for a plane wave propagating through 

turbulence as [8]

D^(AT) = 2.91 k2 z C2| AT|5/3. (4)

Here k is the wavenumber and z is the length of the path through the turbulence.

Note that any one of four things will cause an increase in the structure function and

thus reflect an increase in the strength of the turbulence effects: a shorter wavelength,

a longer optical path, stronger refractive index fluctuations, or a greater separation

between the points in the pupil being studied (resulting in the points being less 

correlated).

Fried went on to express this phase structure function in terms of the Fried

parameter ro, also commonly referred to as the atmospheric coherence diameter [8]. 

This value can be interpreted as the aperture size beyond which an increase in size

will not improve resolution. Increasing the aperture size beyond r0 in diameter will

improve light gathering capabilities but not resolution. Typical values for the Fried

parameter are around 1 — 5 cm for poor seeing conditions, and near 20 — 30 cm for 

good seeing conditions [11], The Fried parameter is given by [2]

3/5

rn = 0.185 (5)
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Using this definition to rewrite Eq. (4) yields the most common expression for the 

phase structure function [2]:

D^(A:r) = 6.88 (6)

2.2.2 Slope Structure Functions. Various methods exist for sensing and

measuring wavefront perturbations caused by the atmosphere, from differential imag­

ing [15] to interferometry [16]. Recently, a Hartmann Wave Front Sensor (H-WFS) 

has been used for this purpose [17], The Hartmann Sensor will be discussed in

more detail in Section 3.1, but a brief introduction is necessary here to develop sup­

porting theoretical work. A H-WFS measures the gradient of the wavefront phase

across small regions of the wave front. These small regions are called subapertures.

The gradient in both the x and y directions are found and called slopes, and the

entire phase front is then reconstructed from these individual slope measurements.

Recently work has been done to bypass the phase reconstruction step and perform 

statistical analysis on the slope values themselves [5]. Phase structure functions can 

be replaced by slope structure functions, keeping in mind that the slope structure 

function is theoretically related to the phase structure function [5].

Let the WFS slope measurement from the nth subaperture located by xn be 

expressed as sx or where x or y represents the direction of the tilt being measured.

For discussion purposes consider the definition of the subaperture slope measurement

13



sx given by [18]

sx(£n,£) = y W(xf - xn) ■ x) dx', (7)
pupil

where V is the gradient operator, ^(x',t) is the wave front phase aberration imposed 

by the atmosphere as a function of time, and W is the pupil function operator. This

equation exhibits how the geometric representation of the pupil function impacts

the light passing through it, and how the gradient of the phase front is quantified. 

Wallner [18] shows through integration by parts that Eq. (7) can be written as

sx (xn,t) = — y (VW(f' - fn) • t) df'. (8)
pupil

The slope structure function Dx is then defined as

= E? (s1 (xn,t) - sx (xk,ttf . (9)

where £[•] represents the expectation operator. By expanding Eqs. (8) and (9), and 

using Eq. (6) in an intermediate step, Silbaugh was able to derive an expression for

the slope structure function using a Hartmann WFS with square subapertures of 

size d [19]:

14



5/3

Dx(Arc, Ay) = 6.88 d —J jdu' tri [u1]

| [2 | Arc, u’ + At/|5/3 - | Arc — 1, u1 + At/| 

-2 [|0,u'|5/3 - |l,u'|5/3] J

5/3 — | Arc + 1, u' + At/| 5/3

(10)

where tri[?z] is a triangle function defined as

tri [?/]
1 — M M < 1

0 else
(11)

and |rc, y\ = \/x2 + y2. The terms Arc and At/ represent the spatial separation

of the subaperture slope measurements normalized by d. The dependence on the

coherence diameter r0 and the subaperture dimension d are easily studied here as

they are outside the integral. Figure 1 shows theoretical slope structure functions

found for slopes in the x direction using subaperture separations (Arc, At/) only in

the rc, 7/, and 45° directions. These curves were found using an ro value of 5.0 cm.

Similar curves exist for slopes in the y direction with the rc and y curves interchanged. 

For no shift (comparing a slope value with itself) the structure function necessarily

vanishes. For increasingly large separations the function asymptotically approaches

a fixed value until the separation is so large that the corresponding slopes are no

15



Figure 1. Theoretical slope structure function for x, y, and 45 deg shifts as a func­
tion of subaperture separation.

longer correlated. This asymptote occurs at a value of the structure function equal

to twice the mean square value of the slopes.

2.3 Scintillation

Phase fluctuations imposed by the atmosphere are only one part of the

study of turbulence. If the turbulence present is strong enough, or if the propagation

length through the turbulence is long enough, slight refraction that results from the 

phase changes on the wavefront causes the optical fields to interfere. Both phase and 

amplitude perturbations result. A camera that is imaging the telescope pupil detects

intensity changes, and these intensity fluctuations are referred to as scintillation.

Re-examining Eq. (1) and dropping the spatial dependence, as we may do if the
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turbulence is homogeneous, we find the intensity of the optical field can be expressed

7 = ^exp(2y). (12)

We write the amplitude A20 as Io. Then solving for the log amplitude perturbation

X we §et
x=linO- (i3)

When we make the assumption that % has a Gaussian distribution and I has a mean 

value (or expectation value) of Io [11], we find

£[/] = I„E [e2*] = I„. (14)

The Gaussian nature of y results in an intensity probability density function

given as

p/(C =
(Pn£-X)2

2v/27T<7v/
exp (15)

where X is the mean value of the log-amplitude distribution and <72 is the vari- 

ance [11]. This probability density function can be used to compare measured in­

tensity fluctuations to theory.

Finally, we note that for any real-valued Gaussian random variable z and any 

complex constant a, the expectation value of an exponential expression is given in [2]
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by

E[eaz] = exp|az + (16)

Applying Eq. (16) to Eq. (14) we find

f = Ioe2*+2erx = fo, (17)

or equivalently

X = (18)

We will examine our results to see if they follow this equality.

Along with the phase-induced structure function, a second important structure

function is for the log-amplitude intensity fluctuations. This function is denoted by 

Dx(Az), and defined by [2]

£\(Az) = E [(x(z) - x(* + Arr))2] . (19)

The sum of the amplitude and phase structure functions is called the wave structure 

function, Z?(Aj:) = Z9x(Arr) + Z9^(Aj;). In practice, the phase and intensity structure 

functions will have varying importance in describing the optical signal. For short

optical paths phase aspects will dominate, while longer paths will be more influenced

by intensity.
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The basis for much of the above work rests on the Rytov approximation, and

the generality of the approximation and its results are of great importance. This

approximation holds in the case of weak fluctuations of the amplitude, and implies

that x obeys log-normal statistics. The assumption of weak fluctuation is gener­

ally agreed to hold when the log-intensity variance is smaller than about 0.3. For 

Kolmogorov turbulence, this criterion becomes [11]

(j,2 , = 1.23 C2 fc7/6 211/6 < 0.3. (20)

Now using Eq. (13) and the definition of the variance we see that

in

In (y) - In = E [4/ - 4x2] = 4cr£. (21)

Thus the criterion for weak turbulence becomes

<r2 < 0.075. (22)

Examining the variance of x is an important tool for characterizing atmospheric

turbulence.
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CHAPTER III

STATISTICAL METHODS

In Chapter II we discussed the two main topics used to describe atmospheric

turbulence. Now we study the data taken in both the laboratory and in Hawaii using

a variety of statistical analysis methods. Using more than one method allows for the

comparison of results achieved through different means. Both intensity fluctuations

and phase perturbations were noticed in the data. Existing theory and the ability

of a Hartmann Wave Front Sensor (H-WFS) to measure each of these phenomena

allowed for research in both areas. This flexibility is a strong endorsement of the

Hartmann technology. When data from one method is unreliable, as we will see in

this thesis, the other method will be available.

In the next section we describe a Hartmann Sensor and the computer methods

used to utilize this sensor. The following two sections explain the statistical methods

developed to analyze Hartmann data, both for phase and intensity fluctuations.
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Perturbed Optical Wave Fronts

Figure 2. Schematic of a Hartmann Wave Front Sensor: (a) Full view of an H-WFS 
with a perturbed wavefront encountering the lenslet array; and (b) View 
of a single subaperture with wave front tilt 3, phase delay across the 
subaperture of A<F and centroided spot displacement x.

3.1 Hartmann Wave Front Sensors

One method for determining the phase of a wave front is through the use

of a Hartmann Wave Front Sensor. This method uses Wave Front Sensor camera

images (WFS images) to reconstruct a phase map of the wave front. A H-WFS

does not measure the phase directly, but instead spatially divides the aperture into

an array of subapertures and finds the average wave front phase gradient in each 

subaperture. These gradients are referred to as slopes [5].

A Hartmann sensor is shown in Fig. 2 (a) and consists of a CCD camera and

a two-dimensional lenslet array, where each element of the lenslet array constitutes

a subaperture. The array of lenses focuses incident light into an array of images

on the camera and a pattern of point-spread functions results. An example of such

an image is shown in Fig. 3. The sensor in the experiments discussed here used a

lenslet grid of 20 x 20 square subapertures measuring 203 //m on a side and a CCD 

camera having a 256 x 256 array of pixels, each 16 /am on a side. The focal length
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Figure 3. Array of Point Spread Functions imaged by a Hartmann Wave Front 
Sensor. The location and intensity of each spot provides information 
about the wavefront.

of each of these lenslets was 7.8 mm. For the given geometry, a focused spot will

cover somewhere between 10 to 20 pixels.

The location of a focused spot in a subaperture is proportional to the average

tilt 3 of the portion of the wave front incident on that subaperture. The spot location 

in each dimension is found by centroiding the pixel intensities in the subaperture [2]. 

The wave front tilt 3 in the subaperture is written as

3 = tan 1 (23)

where f is the focal length of an individual lenslet and x is the spot displacement 

from the center of the subaperture (see Fig. 2 (b)) found by centroiding. Often the 

tan_1(y) is approximated as simply y due to the small angles involved. The delay

22



present in the phase front from one side of the subaperture to the other is given by

AT:

AT = 2 7f 3 d 
X (24)

where d is the size of a subaperture and A is the wavelength of the light. The wave 

front slope, s (in rad/m), is the normalized phase delay and is calculated using

s = (25)

For this experiment the wavelength was 810 nm. Varying atmospheric perturbations

on different portions of the wave front cause these slope values to change in time. 

The slopes are assumed to be zero mean [12].

3.1.1 Camera Image Processing. The first step in processing images from

a CCD camera is removal of the camera’s effects on the image. Thermal noise in a

CCD results in extraneous charge carriers, called dark current. Spatial variations in

the response to light from one pixel to another, called flat-field response, also affects

processing. These problems are accounted for by exposing the camera separately to

a dark field and a uniform flat-field. A corrected image is then found by forming the

difference between the object and dark field images and dividing the result, pixel by 

pixel, by the flat field [20].

Various methods were used to determine the validity of camera images and

improve the reliability and accuracy of the processing in this work. First, a threshold
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was established for the intensity in a pixel. If a pixel had too little light the pixel

was made completely dark to improve the contrast of a valid spot. The image as

a whole was also required to have a certain minimum amount of light. This was

important because scintillation caused some images to be almost completely dark,

with too little light to adequately define a complete array of point spread functions.

A validity check was also performed on the shape of the peak of each focused spot.

This check worked as a type of a signal-to-noise ratio. The value of the ratio was

defined by

SNR = . (26)
+2^(10)

where 77 is the average total photon count per subaperture, N2 is the total number 

of pixels per subaperture, erf is the variance of the camera’s pixel read noise, I is 

the pixel separation, and represents the photon count for the pixel indexed in

the subaperture by i and j. The value resulting from this equation was examined

so that an identifiable peak must be present to be labeled a valid focused spot. An

SNR value that was too low implied that the light in the subaperture was too dim

and randomly distributed. In this case the subaperture was made invalid.

Finally, besides the centroiding method mentioned above, each spot was lo­

cated by a second method. By finding the pixel(s) with maximum intensity in a 

subaperture, and comparing the intensity of neighboring pixels, the location of a 

peak could be interpolated to sub-pixel accuracy. If the two methods of peak loca­

tion did not match to within one pixel the subaperture was invalidated.
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3.1.2 Computer Methods and Phase Reconstruction. Once the slope values

are obtained, they can be multiplied by a reconstruction matrix to arrive at an array 

of phase values [9, 21]. The size of this array of phase values depends on the number 

of points in the pupil, called basis functions, at which the phase is desired. For this

experiment, an array of 11 x 11 basis functions was assumed. This phase map was

then expanded into a 41 x 41 array using weighting functions to interpolate between 

neighboring phase values. This final phase map contains spatial information on the

phase of the incident wave front.

After calibration, the first step in computer processing is initial determination

of the subaperture locations in pixel space on the image. Because a H-WFS can only

determine relative phase difference and not absolute phase, we initially arbitrarily

locate these subapertures. Centroiding is then done for each subaperture of each

image, once in the x-direction and once in the y-direction. Averages are found for

each subaperture, and these average x and y locations are used to move the sub­

aperture locations such that each spot is in the center of its subaperture on average.

Performing this re-centering serves to remove overall tilt from the phase screen. This

overall tilt cannot be trusted as having come from atmospheric effects because other

factors such as misalignment of the system with the source can result in similar but

extraneous tilt. Once the subapertures are located correctly over the spots, the im­

ages are ready to be individually re-centroided using the new subaperture locations.

This step results in slope values with zero-mean.
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Collecting

Figure 4. Optical setup used to acquire communications experiment images con­
taining turbulence effects. The lens pair in front of the Hartmann Sensor 
relays light from the front pupil through the filter and to the camera.

In order to obtain as large a region of wave front data as possible, optics are

used to magnify a region of interest in front of the system down to a size accessible to

the camera. In this case a circle 2 cm in radius was taken down to 4 mm, as shown in

Fig. 4. A problem that must be taken into account is misalignment of these elements

with each other. To remove the effects of these optics on the signal, a reference image

can be taken through the system with no turbulence present. The resultant slopes are

removed from the actual experimental slopes, leaving only turbulence effects. If no

reference imaging is possible, an average slope can be found in each direction for each

subaperture. Because these slopes should be zero mean, this average contains the

aberration effects of the optics. When this average is subtracted from the individual

slopes the result is a signal containing only random turbulence effects. The final

slope values are multiplied by a reconstruction matrix, and interpolation yields a

phase screen as shown in Fig. 5. One screen exists for each image.
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Figure 5. Reconstructed wave front phase screen from a Hartmann WFS for labo­
ratory data.

3.2 Slope Statistics Analysis

Large ensembles of H-WFS images were taken to allow statistical analysis

of atmospheric turbulence effects. Section 3.1.1 discussed some of the problems

these images may have. Information from invalid subapertures were not used in any

statistical methods. Unfortunately, leaving elements out of the ensemble decreases

the confidence that may be placed in the statistical results. To quantify this, the 

Tchebycheff inequality was used, which computes a 95% confidence interval [22]

C795 = ±4.47 (27)

where <72 is the variance of the value under study and n is the number of elements

used from the ensemble. This interval will provide error bars for the data.

27



3.2.1 Slope Structure Functions. One of the most widely used and in­

formative statistical analysis values for atmospheric turbulence is that of the struc­

ture function. A structure function reflects a measurement of spatial variation by

finding the mean square difference between measurements at two locations, and is

often performed on phase values. This topic was extended to slope value structure 

functions [5] to avoid the intensive phase reconstruction step. The slope structure 

function is computationally estimated by computing the mean square difference of

the H-WFS slope measurements (from Eq. (25)) between any two subapertures in

the pupil, and is written as

| M
%k) = y? [$" tm) S ^m)] ? (28)

m=l

where Dx(xn,Xk) is the estimated slope structure function, M is the number of 

independent realizations (measurements), and sx(Tn, tm) and sx(xk, tm) are the slope

measurements at the nth and fcth subapertures centered at xn and Xk and taken at

time tm.

For subapertures widely separated in the pupil, the number of realizations

available for use in determining a structure function value is necessarily small due

to the finite size of the pupil. This limitation causes confidence in the value of the

structure function to decrease as separation increases. When comparison to theory

is being done more confidence should be placed on the portions of the structure

function dealing with smaller separation.
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3.2.2 Homogeneity-Isotropy. As discussed earlier, perturbations of the

slope due purely to atmospheric turbulence should have zero mean, and so we ex­

pect the slope averages to be zero across the aperture. Any non-zero average will

correspond to a deterministic aberration and not to the atmosphere. Removal of

the average slope should remove this deterministic aberration. The variance of these

slopes is a second order statistical quantity. It will not cancel out, and will primar­

ily be a function of turbulence strength. Examining the spatial characteristics of

this variance reveals information about the validity of the assumptions made earlier

dealing with homogeneity and isotropy. If the turbulence encountered is homoge­

neous, a representation of the slope variance should be uniform, that is smooth and

flat, and large with respect to the average slope values. Similarly, slope structure

functions for the same separation at different locations in the pupil should be nearly 

equal [5]. The estimator given in Eq. (28) makes no a priori assumptions about the 

homogeneity or isotropy of the data. In the event that the turbulence statistics are

homogeneous, the estimate for the slope structure function for a given subaperture

separation AT is given by additionally summing Eq (28) over all possible combina­

tions of subapertures such that AT = Tn — T^:

2 N M
Z?X(AT) = —— 52 12 [^04, tm) - Sx(xn - AT, tm)}\ (29)

n m=l

where N is the number of possible subaperture pairs that are separated by AT.
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Figure 6. Optical Bench setup for laboratory experiments conducted on the H-WFS 
using a turbulent-mixing-layer turbulence generator.

Tests have been conducted under laboratory conditions to examine the opera­

tion of the Hartmann Sensor. In the lab, two different types of gases were brought 

together to create a turbulent mixing layer [23]. The gases chosen were helium and 

nitrogen, selected for the density ratio between them that provides large density fluc­

tuations across the turbulent mixing layer. A collimated optical beam was passed

through this mixing layer, picking up phase aberrations due to the mixing gases, and

the resultant wavefront perturbations were sensed by a H-WFS. Figure 6 shows the

optical bench setup containing the turbulence generator and the H-WFS. A doctoral

dissertation performed by Patrick Gardner at Wright Patterson AFB discusses this

turbulence and the wavefront sensing methods used in more detail. Figures 7 and 8 

show slope averages (s*) and variances ((s*)2) for data taken under laboratory con­

ditions. As expected, the average slopes are an order of magnitude smaller than
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Figure 7. Average slope values from laboratory data (a) X-slope average, (sj) and 
(b) Y-slope average, (s^) across the subaperture.
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Figure 8. Slope variance values from laboratory data (a) X-slope variance, ((s*)2} 
and (b) Y-slope variance, ((sJJ)2) across the subaperture.
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the variance, implying homogeneity. The variances are not very uniform across the

pupil, however, leading us to believe that the data may not be homogeneous, and

certainly doesn’t appear to be isotropic. It will be seen that this pattern held for

much of the data taken in the field.

Figure 9 contains slope structure functions from the lab data. Each line rep­

resents a structure function for a different location in the pupil. These structure

functions are for slopes in the x and y directions and separations in x and y. Homo­

geneous data should result in these lines clustering together. This behavior is seen

in the lab data. Thus it cannot be positively determined with this data whether or

not the laboratory data was homogeneous.

If the turbulence has been determined homogeneous, slope structure functions

from various regions of the pupil may be averaged together. This averaging re­

sults in one structure function for each slope and separation direction, and tighter

confidence intervals due to the increase in the number of samples being used. Com­

parison between these curves helps determine if the the turbulence is isotropic or

not. Isotropic data will have structure functions that are similar in size and shape.

Figure 10 shows self-slope structure functions that have been averaged across the

aperture assuming the presence of homogeneity. The data does not exhibit isotropy,

as the four functions do not match each other.

3.2.3 Fried Parameter. The desired result from these slope structure func­

tions is the determination of the Fried Parameter r0. One method is comparison of
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Figure 9. Experimental self-slope structure function homogeneity for laboratory 
data for: (a) X-slopes, x-shifts, (b) X-slopes, y-shifts, (c) Y-slopes, x- 
shifts, and (d) Y-slopes, y-shifts.
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x 10

Figure 10. Experimental slope structure functions checking isotropy for laboratory 
data. Data for x and y slopes and shifts in the x and y directions is 
shown, as well as the average. Isotropy is not present.
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theoretical and experimental structure functions. Equation (28) is used to find ex­

perimental structure functions, and Eq. (10) to find theoretical structure functions. 

Because the dependence on r0 in Eq. (10) is outside the integral the theoretical struc­

ture function is easily controlled. A coherence diameter for the experiment is found

by varying ro in the theoretical structure function and finding the value that min­

imizes the root-mean-square difference between theory and experiment. Figure 11

shows structure functions found both experimentally and theoretically for both x

and y slopes with shifts in each direction. This data, while possibly homogeneous,

does not appear to be isotropic. Values for the coherence diameter range from 0.025

m to 0.1 m for this laboratory-generated turbulence.

Another statistical method for estimating the Fried parameter is based on the 

mean square value of the slope (s2) from a H-WFS with subapertures of size d. This 

mean square value is [17],

13.6183 / d\5/3
(30)

and solving for r0 gives

rn =
13.6183 </5/3l3/5

d2 (s2) (31)

Equation (31) provides another way to arrive at values for the coherence diameter.
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Figure 11. Self-slope structure functions for laboratory data fitted to theory: (a) 
X-slopes, x-shifts, (b) X-slopes, y-shifts, (c) Y-slopes, x-shifts, and (d) 
Y-slopes, y-shifts.
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3.3 Scintillation Statistics

The scintillation present in some WFS images causes the determination

of slope values to be suspect. In these cases the study of the intensity variations

themselves may be used to gain insight into the turbulence present. The two most

important quantities in this area are the log amplitude intensity x and its variance

Experimentally, x values are found by tracking intensity in a subaperture and

applying equation (13). The variance then comes from

i M / i M \ 2

= 52 ) - (^ 52 x ) (32)
1V1 m=l m—1 /

where M is again the total number of realizations used from the ensemble and x Gm) 

is the log amplitude intensity value at time tm.

3.3.1 Correlation. The statistical methods used for theoretical structure

functions as in Eq. (28) and the validity of averages taken over an entire ensemble of 

frames require having independent realizations from frame to frame. To study how

much one frame is temporally related to another, and thus how well our assumption 

of having independent frames holds, a correlation coefficient p was found [2]:

E [(/« - /«) (/(i + n) - I(i + n)J ],

[P(i) - I(i) 2] E\[/2(? + n) - I(i + n)‘j
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Figure 12. Correlation coefficient p found in laboratory data. Contiguous frames 
should exhibit independent realizations of the flow.

where /(?) represents the pixel intensity at time i, and /(z+n) represents the intensity 

at time i + n. This correlation is a function of frame separation n. Ideally, this

coefficient will show full correlation (a value of one) at no separation and quickly fall 

to a small value. Figure 12 shows the correlation coefficient for the laboratory data.

A threshold of 20% was arbitrarily chosen to illustrate the amount of correlation

present. The lab data did indeed quickly become uncorrelated. When studying the

experimental data, checking this correlation will determine how many independent

frames are available for statistical analysis in a given ensemble of data.

3.3.2 Intensity Distribution. The distribution of scintillation intensity val­

ues has been theoretically determined by Goodman [11] as a Gaussian distribution,
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1.6

Figure 13. Distribution of intensity probability density acquired from a H-WFS.

and was given earlier as

1 _f (lln£_x)2i 
“2v'2=^/eXPl 2(7* J'

Experimentally, this intensity distribution can be found by performing a histogram

on the intensity values. Comparison between theory and actual experimental data

will quantify the ability of the experimental setup to monitor intensity, and of theory

to correctly model the turbulence present. A typical distribution is shown in Fig. 13.

This data shows that theory and the experimental setup do match in modeling the

scintillation present in the laboratory data.
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3.3.3 Fried Parameter. To allow for comparison with theory we need to

experimentally find the variance of the log-amplitude. This is expressed in [12] as

tr; = 0.307 Clk11* z11/6 (35)

with k, and z as previously defined. Referring to the definition of the Fried

parameter as given in Eq. (5), solving for and then plugging this into Eq. (35) 

yields an expression for r0 in terms of the variance of the log-amplitude:

1 3/5

rn — 0.0184
4 7T"

^5/6 2l/6 a2 (36)

This is the third and final way that the Fried Parameter will be experimentally

determined.
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CHAPTER IV

DATA ANALYSIS AND RESULTS

Using the theoretical and statistical methods discussed in previous chapters, we

now turn our attention to characterizing wavefront data taken during the commu­

nications experiment in Hawaii. We will attempt to use both phase and intensity

tools in this study. The first section will explain the categorization of the data into

sets, the second will present results from specific statistical and theoretical meth­

ods, the third section will compare data from the two mountain sites, and the final

section will summarize the results. All experimental results were determined to an

uncertainty of 5 in the last decimal place.

4-1 Data Sets

The experiment conducted by Wright Laboratories in Hawaii during August 

and September of 1995 involved the collection of large amounts of H-WFS image 

data. This data was gathered at a low altitude and over a long horizontal optical

path through the earth’s atmosphere. Two Hartmann Wave Front Sensors were used.
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one on Mount Haleakala and one on Mauna Loa. These setups contained a H-WFS

as explained in Chapter III, with optics in front of the sensor to relay the large pupil

to the smaller camera pixel array. Figure 4 displayed this setup, which contained the

relay optics, the H-WFS, and a line filter that allowed only light at the experimental

wavelength through to the camera.

Infrared laser light was emitted from each experimental site, passed over land

and water through 150 km of turbulent atmosphere, and was received at the opposite

site. Images were taken in sets of 50 or 256 snapshots and then stored to a computer.

The camera frame rate was varied between sets to allow for different camera inte­

gration times and to capture different time-varying structures. Calibration images

as discussed in section 3.1.1 were also taken and stored as separate sets. Each set

was assigned a three digit number. Image sets from Mt. Haleakala were numbered

001-241, and from Mauna Loa numbered 500-539. Some sets were combined during

analysis to provide larger ensembles. This chapter will focus on presenting results

from 12 data sets. These sets are introduced in Table 1. Set 372 contains labora­

tory data. Data sets whose graphs do not appear in this chapter will have graphs

presented in Appendix A.

Slope Structure Functions

Slope structure functions were found for a number of data sets taken in

Hawaii. One of the first steps in studying these functions is the determination of
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Table 1. Summary of H-WFS image data sets presented.

Data Set Time Taken Frame Rate (frames/sec) # Frames
004 0600 500 256
005 0604 244 256
006 0606 125 256
007 0610 48 256
008 0628 1001 256
009 0633 500 512
015 0033 500 768
024 0046 100 256
507 0210 20 256
523 0730 500 50
524 0740 500 150
372 laboratory 1000 256

homogeneity and isotropy of the slope data. As discussed in Section 3.2.2, this can

be accomplished by examining the variance of the slopes. For data set 004 we 

see in Figs. 14 and 15 that the average slope values (sj) are fairly uniform and 

small when compared to the variances ( (sjQ ), but that the slope variances are 

not very uniform. This implies that the turbulence is not homogeneous, but is not 

sufficient proof. Figure 16 shows comparison between theoretical and experimental

slope structure functions for data set 004, which is used to determine the Fried

parameter ro. For set 004, we find r0 values from the slope structure function of

around 0.0025 ± 0.0005 m.
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Average slope values for Data Set 004 (a) X-slope averages; and (b) 
Y-slope averages across the subaperture.
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Figure 15. Slope variance values for Data Set 004 (a) X-slope variances; and (b) 
Y-slope variances across the subaperture.
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(a) (b)

Figure 16. Self-slope structure functions for experimental data set 004 fitted to 
theory: (a) X-slopes, x-shifts, (b) X-slopes, y-shifts, (c) Y-slopes, x- 
shifts, and (d) Y-slopes, y-shifts.
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Table 2. Summary of slope-method results from experimental image data sets.

Data Set r0\ slope variance (m) r0: slope structure functions (m)
004 .0039 .0025
005 .0040 .0030
006 .0046 .0030
007 .0053 .0040
008 .0049 .0035
009 .0051 .0035
015 .00276 .0020
024 .003 .0035
507 .006 .015
523 .0036 .020
524 .0051 .015
372 .0332 .030

4-3 Site Specifics

Table 2 contains ro values for each data set as determined from the variance

of the slope values and the structure functions performed on the slopes. These values

are very small for the data from Haleakala, on the order of millimeters. For the data

taken from Mauna Loa the r0 values are on the order of centimeters, still small but

more in line with traditionally accepted values. Table 3 presents r0 values based on

the scintillation measured, using the variance of the log-amplitude fluctuations 

as explained in Eq. (36).

Looking at the experimental data, we see that these results contain very small

values for the Fried parameter based upon slope structure function analysis for the

Haleaka data, and small but more traditional values for the Mauna Loa data. Ex­

amining the variance of the log-amplitude cr^ we see that the approximation of
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Table 3. Summary of intensity-method results from experimental image data sets.

Data Set ro: scintillation (m) X
004 .4835 .0912 -.1152
005 .2913 .2122 -.2738
006 .2657 .2474 -.2613
007 .3483 .1576 -.1525
008 .446 .1044 -.1164
009 .4058 .1221 -.1274
015 .4397 .1069 -.1116
024 .6866 .0509 -.059
507 .3259 .176 -.165
523 .8286 .0372 -.0448
524 .5593 .0716 -.0749
372 3.408 .00346 -.00346

weak turbulence discussed in Section 2.3 has been violated for the data taken at Mt.

Haleakala, and has not been violated for much of the data received at Mauna Loa.

Approximations made in theoretically defining the slope structure function may not

hold for the data from Haleakala. The ro values found as a result of scintillation

analysis are on the order of tens of centimeters. These values would imply that the

seeing conditions through the given turbulence are good, but again the large inten­

sity variations present mean that the power being delivered to the detector is not

steady. Data set 372 contains images from the laboratory. The ro values from this 

data are large, and the scintillation present is noticeably small implying that the 

lab turbulence used falls well within the weak turbulence regime. The two r0 values 

found from the laboratory slope values, one using the slope variance and Eq. (31) 

and one using the structure functions, match each other very well. As this was the
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only data with very small scintillation, it is probable that strong intensity variations

affect the applicability of Eq. (31) and bring about the discrepancies found between

these two methods in the other data. We also note that the equality between

and x in Eq. 18 does hold for our experimental data. These two values are within

12% of each other on average for this experiment. This leads us to believe that the

scintillation theory is doing a valid job in predicting scintillation statistics.

4-4 Summary

Twelve H-WFS data sets were analyzed in a variety of ways to character­

ize the turbulence encountered by optical signals under the given conditions. The

majority of data sets resulted in very strong turbulence causing extreme scintilla­

tion. Data from the experimental receiver site at Mauna Loa yielded r0 values from

slope structure function analysis that were an order of magnitude larger than data 

from the Haleakala site. The Mauna Loa site also had noticeably smaller crj values 

meaning the scintillation at the Mauna Loa receiver was less than the scintillation

encountered at Heleakala. These results indicate that the turbulence was stronger

near the Mauna Loa site, and thus an optical path leaving Mauna Loa would have

its field strongly perturbed early on. This would cause more interference later in

the optical path and thus more scintillation. Light leaving Haleakala seemed to en­

counter its strongest turbulence close to the receiver at Mauna Loa, and thus less

time and distance was present in which scintillation could occur. These statistics

seem to indicate that much care needs to be given in determining the placement
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of optical communications and other free-space laser sites, due in large part to the

scintillation that could result.

One likely reason for the results found is that the experimental site at Mauna

Loa was farther from the shoreline and thus light had to pass over a larger amount

of land at this end of the optical path. Land causes much stronger temperature

gradients than bodies of water, due in large part to the greater amount of absorption

of the sun’s energy by earth during daylight hours.
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CHAPTER V

CONCLUSIONS

This chapter highlights the major results and conclusions of this work. Recom­

mendations for related future work are also discussed.

5.1 Results and conclusions

A variety of methods have been presented to achieve the characterization

of atmospheric turbulence using a Hartmann Wavefront Sensor. The H-WFS is a

good tool for this characterization. The determination of the atmospheric Fried

parameter has been achieved with both phase and intensity statistics through the

use of H-WFS camera images. The amount of scintillation present in the conditions

studied means that low altitude long horizontal paths present problems in the area 

of the delivery of power from a laser. The Rytov approximation used in the theory

applying to weak turbulence breaks down under the studied conditions. An attempt 

to correct wavefront distortions through the use of adaptive optics at the receiver 

will not fix the intensity variation problems present under these conditions. Strong
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phase variations are also present. Extreme care is necessary in choosing ground-

based sites for free-space laser applications. The Hartmann WFS has shown itself to

be versatile enough to characterize turbulence under different conditions and provide

information for this decision.

5.2 Further Study

Issues that must now be investigated include studying optical paths that

contain a mix of both low and high-altitude propagation. The spatial statistics of

scintillation parameters is another issue that may aid in the understanding of effects

scintillation may cause. The placement of communications equipment with respect

to land masses appears to be a major factor, and should be taken into account when

further research sites are chosen.
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APPENDIX A

DATA SET IMAGES

The data taken in the Optical Communications experiment in Hawaii yielded

a large amount of data. A portion of this data was examined for this work. Plots

showing tests for homogeneity using slope averages and variances are shown for some

of this data, as well as plots showing the comparison with slope structure function

theory. The intensity probability distribution for a data set from Mauna Loa is also

included to show the match between theory and experiment for measured intensity

values. Only structure function plots are shown for the remaining data.
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Average slope values for Data Set 005 (a) X-slope averages; and (b) 
Y-slope averages across the subaperture.
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Figure 18. Slope variance values for Data Set 005 (a) X-slope variances; 
Y-slope variances across the subaperture.
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(c) (d)

Figure 19. Self-slope structure functions for experimental data set 005 fitted to 
theory: (a) X-slopes, x-shifts, (b) X-slopes, y-shifts, (c) Y-slopes, x- 
shifts, and (d) Y-slopes, y-shifts.
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Figure 20. Self-slope structure functions for experimental data set 008 fitted to 
theory: (a) X-slopes, x-shifts, (b) X-slopes, y-shifts, (c) Y-slopes, x- 
shifts, and (d) Y-slopes, y-shifts.
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Figure 21. Self-slope structure functions for experimental data set 009 fitted to 
theory: (a) X-slopes, x-shifts, (b) X-slopes, y-shifts, (c) Y-slopes, x- 
shifts, and (d) Y-slopes, y-shifts.
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(c)

Figure 22. Self-slope structure functions for experimental data set 024 fitted to 
theory: (a) X-slopes, x-shifts, (b) X-slopes, y-shifts, (c) Y-slopes, x- 
shifts, and (d) Y-slopes, y-shifts.
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Figure 23. Intensity Probability density for data set 507.
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Figure 24. Self-slope structure functions for experimental data set 507 fitted to 
theory: (a) X-slopes, x-shifts, (b) X-slopes, y-shifts, (c) Y-slopes, x- 
shifts, and (d) Y-slopes, y-shifts.
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Figure 25. Self-slope structure functions for experimental data set 523 fitted to 
theory: (a) X-slopes, x-shifts, (b) X-slopes, y-shifts, (c) Y-slopes, x- 
shifts, and (d) Y-slopes, y-shifts.
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Figure 26. Self-slope structure functions for experimental data set 524 fitted to 
theory: (a) X-slopes, x-shifts, (b) X-slopes, y-shifts, (c) Y-slopes, x- 
shifts, and (d) Y-slopes, y-shifts.
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APPENDIX B

COMPUTER CODE GUIDE

This appendix is intended to provide a short overview of the computer code de­

veloped to analyze H-WFS images. A brief description of each program or module is

presented. All code was written for use in the MATLAB environment. This code in­

cludes functions and scripts called from the MATLAB command line with the proper

parameters. Detailed comments discussing the exact input and output parameters

are found in comment form in the MATLAB M-files themselves. Functions inherent

to MATLAB itself are documented and may be accessed by typing help function

at the command line, where function is the name of the function in question.

B.l Slope Determination

B.1.1 ACENTRAVG.M. Uses Hartmann Wave Front Sensor images to find

average centroid locations of the focused spots in each subaperture. These centroids 

are used later to center each subaperture on the spot within it. Uses atlcc3gb.rn 

file. Saves centroid locations to a file for use in afslope.m.
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B.1.2 ATLCC3GB.M. Program used to calibrate H-WFS images and

determine spot location in each subaperture.

B.1.3 AFSLOPES.M. Uses H-WFS images and the averaged spot locations

to find slope values for each subaperture in the pupil. Uses atlcc4.m. Saves slopes

and a mask representing valid subaperutures to files on disk.

B.1.4 ATLCC4-M. Program used to calibrate H-WFS images and deter­

mine slope values for an individual image. Also determines validity of the images

being used. Uses peakfnd3 .m

B.1.5 PEAKFND3.M. Function written by Tim Pennington and edited by

Wesley Bernard to determine, to sub-pixel accuracy, the location of a peak (focused 

spot). Compared to centroid method to determine validity of a spot.

B.1.6 SANALYZE3.M. Program used to calibrate H-WFS images, deter­

mine slope values, and reconstruct a phase screen for each image. Uses r 15.mat or

a similar data file. Saves phase screens to files for future viewing.

B.1.7 R15.MAT. Matlab data file containing reconstruction matrix. Used

by sanalyze3 .m to reconstruct slope values into a phase screen. Results from a

FORTRAN file, and is based upon specific physical parameters.

B.1.8 VIEWER.M. Views an individual phase screen created by sanalyze3.m
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B.1.9 VM0VIE2.M. Views a collection of phase screens in a movie format.

B.2 Statistical Analysis Using Slope Values

B.2.1 DSGEN.M. Computes the normalized theoretical slope structure

function for x, ?/, and 45° separations. The structure functions are returned as

vectors. Uses the dsxx.m function.

B.2.2 DSXX.M. Computes a value of the theoretical slope structure func­

tion. The input parameters are the x and y subaperture separations, r0, and the

subaperture size d. Returns a single value. Uses the ds_arg function.

B.2.3 DS.ARG.M. Evaluates the normalized integrals for the theoretical

slope structure function.

B.2.4 ACEFILES.M. Reads the H-WFS slope filenames from a directory.

The full pathname must be provided. Only H-WFS slope files must be in the given

directory or the function will abort. The file names are returned in the rows of a

matrix.

B.2.5 ACEREAD.M. Reads an H-WFS slope file and returns the x slope,

y slope, amplitude, and mask matrices. The full path must be specified.

B.2.6 ACEVIEW.M. Displays a matrix using the ‘hot’ colormap. Useful

for debugging.
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B.2.7 DSX.M. Computes structure functions for the x separations. Inputs

are a mask matrix and two slope matrices. Outputs a structure function and mask

matrix.

B.2.8 DSY.M. Computes structure functions for the y separations. Inputs

are a mask matrix and two slope matrices. Outputs a structure function and mask

matrix.

B.2.9 DSN45.M. Computes structure functions for the —45° separations.

Inputs are a mask matrix and two slope matrices. Outputs a structure function and

mask matrix.

B.2.10 DSP45.M. Computes structure functions for the +45° separations.

Inputs are a mask matrix and two slope matrices. Outputs a structure function and

mask matrix.

B.2.11 DSTRUCT.M. A script which computes the structure functions

for all slope and separation combinations. Accumulates running sums of the struc­

ture function, squared structure function, and mask matrices. These sums are used

to compute the structure function, structure function variance, and sum matrices.

Inputs are a string containing the path to the directory containing the H-WFS slope

files.
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B.2.12 DSTAR.M. Removes the average slopes and computes the structure

functions for all slope and separation combinations. Accumulates running sums of

the structure function, squared structure function, and mask matrices. These sums

are used to compute the structure function, structure function variance, and sum

matrices. Inputs are a string containing the path to the directory containing the

H-WFS slope files.

B.2.13 WFSSTAT.M. Computes the slope average, variance, and sum

at each point in the aperture. Writes the results to .mat files. Inputs are a string

containing the path to the directory containing the H-WFS slope files.

B.2.14 DVIEW.M. Displays the submatrices of a structure function matrix

in increasing subaperture separation. Inputs are a structure function matrix. Useful

for debugging.

B.2.15 DPICK.M. Picks the structure function values corresponding to a

particular anchor point and returns those values in a column. Inputs are are a set of

vectors listing the x-y coordinates of the structure function and a structure function

matrix.

B.2.16 SPCAVG.M. Spatially averages the structure function and com­

putes confidence intervals. Inputs are a set of vectors listing the x-y locations to be

averaged; and the structure function, variance, and sum matrices. Outputs are two
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vectors; one containing the spatially averaged structure function, the other contain­

ing the corresponding confidence intervals.

B.2.17 C0RRI2.M. Uses intensity information to determine the corre­

lation function p at different subaperture locations. Saves data to the corr.mat

file.

B.2.18 CORRVIEW.M. Takes an input of a subaperture location, and

picks out valid p values from corr.mat to give a graph of the correlation function.

B.2.19 FITAB.M. Fits the spatially averaged experimental structure func­

tion with theory for the A slopes for separations in the B direction. Inputs are the

number identifying the data set to be studied, the minimum and maximum sepa­

ration values B may take, and the step value to use in incrementing through the

separations. This yields a value for the Fried Parameter r0 based upon slope struc­

ture functions. Uses sfgenab.m.

B.2.20 SFGENAB.M. Creates a theoretical slope structure function for

slopes in direction A for shifts in direction B. Uses an input value for ro.

B.2.21 HISTT.M. Takes log-amplitude information from the slope data

files and performs a histogram to examine the values of X-
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B.2.22 PROBI4.M. Takes field amplitude information from slope data files

and creates an experimental probability distribution for normalized intensity values.

B.2.23 PLOTONEB.M. Plots structure functions for all valid anchor

points. Uses the sfavgxsub.m and sfavgysub.m functions. Inputs are the number

identifying the data set to be studied and which of the 4 slope direction-shift direction

pairs to view.

B.2.24 SFAVGXSUB.M. Uses the dpick.ra function to pick the structure

function values for each anchor point in the aperture.

B.2.25 SFPLOTSUB.M. Plots structure functions in which all valid anchor

points that have the same number of allowable shifts in a given direction have been

averaged together. Uses the sfavgxsub.m and sfavgysub.m functions. Inputs are

the number identifying the data set to be studied and whether or not to compute

confidence intervals for each structure function data point. All four of slope direction-

shift direction pairs are plotted on the same graph.

B.2.26 PLOTONE.M. Plots the same values as sfplotsub.m, but only

plots one of the four slope direction-shift direction pairs. Which of the four to view

is an additional input.

B.2.27 SFPLOT.M. Plots structure functions in which all valid anchor

points in the pupil have been averaged together. All four slope direction-shift di­
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rection pairs are plotted on the same graph. Uses the sfavgx.m and sfavgy.m

functions. Inputs are the number identifying the data set to be studied and whether

or not to compute confidence intervals for each structure function data point.

B.2.28 SFAVGX.M. Uses the spcavg.m function to pick out and average

the structure functions for each shift size.

B.2.29 AVGNAN2.M. Takes an input array and averages into a vector

(similar to the Matlab avg function) disregarding NaN values.

B.2.30 AVGNAN.M. Takes an input array and averages into a single 

number (similar to the Matlab avg(avgO) function) disregarding NaN values.

B.2.31 AVGINF.M. Takes an input array and averages into a single num­

ber disregarding InF values.

B.2.32 MINNAN/MAXNAN.M. Takes an array and finds the mini­

mum/maximum value disregarding NaN values.
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