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An experimental study has been performed to locate flow structures in subsonic, transonic 

and supersonic flows. The approach involves a laser light sheet with a light scattering 

tracer directly injected into the flow. Images are captured by a slow-scan digital camera 

then downloaded to a file that can be enhanced and reproduced. Proof-of-concept tests 

using natural condensation as the tracer have resulted in images of two dimensional shock 

waves and related shock-boundary layer interaction about small models in a supersonic 

flow. The techniques are extended to low subsonic unsteady conditions where acoustically 

enhanced vortices are shed from a circular cylinder. Phase-locking techniques are also 

investigated by applying the light sheet to a single blade row rotating at low frequency. 

The digital camera is successful in capturing the light sheet interaction with a fan blade 

as provided through an acousto-optic modulator. The goal is to determine the most 

suitable flow visualization and image processing techniques for use in an operating 

transonic compressor rotor.
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CHAPTER

1

1.1 Motivation

The present study is driven by the needs of the turbomachinery community to 

improve the efficiency of compressor rotors. The pressure ratio and efficiency of the 

compressor greatly effect the performance of an axial flow engine as a whole. Therefore, 

it is understood that for all components downstream of the compressor, their effectiveness 

is largely influenced by the diffusion of the oncoming stream through the blade passages 

without significant losses. These losses can occur by the existence of shocks about the 

compressor blades and their interaction with boundary layers. It is necessary, for the 

advancement in turbomachine design, that the nature and extent of internal flow structures 

which contribute to inefficiencies be identified.

The identification of flow structures presents a challenge for internal flows. Not 

only is the high speed rotating machinery a safety risk, the introduction of instrumentation 

within such confined areas and clearances is difficult. The approach presented here 

consists of several phases which represent incremental advances toward application to 

rotating turbomachinery. The marriage of these processes will ultimately be used to 

visualize the flow in a transonic compressor rotor and identify the shock location and 

interaction. A digital camera system combined with novel flow illumination techniques
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has been developed to acquire images of flow around various bodies. The operation has 

successfully been applied to an intermittent blow-down facility with supersonic nozzles. 

Additionally, images have been acquired from a rotating blade row intercepting a pulsed 

laser light sheet timed at the frequency of rotation. Finally, an attempt is made to capture 

images of vortex shedding from a circular cylinder in subsonic cross flow. The vortices 

are revealed by illuminating an artificial smoke tracer.

The situations in which the techniques of this study could be used would seem 

limitless. Practically, any circumstance where the flow field is of interest and optical 

access is available would benefit from the visualization methods. Such research might 

include:

• compressor rotors

• turbines

• wind tunnel testing

• pressure paint

• classical demonstrations

• flow about elementary bodies such as flat plates, cylinders, wedges, steps.

• shock tubes

To assist in the illumination of the flow through the blade passages of the 

transonic compressor rotor, a probe is being designed whereby a laser beam will be 

directed normal to the flow behind the rotor blades then turned upstream. Near- 

supersonic flow conditions exist at the hub of the rotor and subsonic flow occurs at the 

blade tips. The techniques presented should assist in revealing the shocks occurring 

between the hub and tips and the associated boundary layer interaction.

Suggested methods for these investigation have included laser induced gas 

fluorescence, holographic interferometry, schlieren or shadowgraph, and laser illuminated 

flow field techniques.
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1.2 Existing Methods

Laser velocimetry is a common approach to map a flowfield with an illuminating 

particle. This technique as applied to a transonic fan can be found in [1] and [2]. The 

particles are used to seed a flow and then are illuminated by a laser at locations of 

interest. A device then optically measures the scattered light of the particles which pass 

through the region. Post processing of the data results in the mapping of velocity vectors. 

One deficiency of this method involves the assumption that the particles follow the air 

particles. However, when the tracer encounters a shock, it is unable to follow velocity 

discontinuity across the shock. Tests have included corrections to account for the particle 

lag. In order to map an entire flow field, a large amount of data is usually taken over a 

long time span and averaged. The long acquisition period requires a steady maintenance 

of the facility.

Classical methods for imaging shock structures include shadowgraph, schlieren and 

interferometry. These methods produce images based on density variation in the flowfield 

which refract light. As applied to rotating hardware at excessive rates, one can imagine 

the difficulty of lens and mirror alignment. These non-intrusive techniques are essentially 

impossible for acquiring images between rotor blades.

Similar to the method used in this study, is the technique referred to as laser- 

induced gas fluorescence (LIF). LIF involves the fluorescing of a seeded particle by 

striking it with a pulsed laser. Density variations in the flow are revealed by the 

refraction of the fluorescing particles. A survey of various LIF techniques is presented 

by Allen, et al. [3]. One of the earliest applications of LIF to a compressor rotor was by 

Epstein [4].

The location of shock structures impinging on models can be determined through 

wind tunnel testing. A laser-induced fluorescing particle is mixed in a motor oil matrix 

and coated on the model. Upon reaching locally sonic speeds, the shock structure origin
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is revealed by the coalescing of the seed particle at the point of shock attachment. 

However, the secondary emission of light from the tracer does not reveal the shock 

structure elsewhere, such as in a blade passage. Additionally, the test must be interrupted 

to reapply oil to the surface for further imaging.

It is desirable to use a tracer that is not short lived as is the case of LIF particles. 

One such seed particle would be water vapor-either ambient or controlled. Rather than 

providing short bursts of high energy, a laser sheet could continuously reflect off the 

vapor particle and emit an image to the camera. The light scattering particles could be 

artificially introduced as well. This was the approach taken by McGregor [5] in a study 

to determine the humidity required for optimum imaging of the flow about a delta wing.
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2
PHYSICAL CONCERNS

2.1 Condensation Effects

It was Prandtl in 1935, who presented schlieren photos of shock-like formations 

behind a nozzle throat [6]. In the same paper, Wieselsberger noted that the location of 

the shock-like structures probably depended on the air humidity [7]. Subsequent 

investigations into this issue led to the development of air drying equipment for 

supersonic facilities. It was shown by Eber and Gruenewald [8] that supply air needs to 

be dried to a humidity ratio (or, mass ratio of water vapor to dry air) of x=5xl0'4 for 

condensation shocks not to occur in a nozzle. Therefore, testing could be achieved nearly 

humidity free.

In a region of the flowfield where the temperature and pressure are low enough, 

condensation can occur due to a phase change of one or more of the fluid components. 

Such is the case where the gas in a nozzle undergoes an expansion to a sufficiently low 

temperature. This occurs at large Mach number.

From the methods outlined by Wegener and Mack [7], one can determine the 

relative humidity of a flow and realize its effect on flow quality. Relative humidity of 

moist air is defined as the ratio of the partial pressure of water vapor to saturated water 

vapor pressure with respect to the same static temperature and is given by

5
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(1)

For a relative humidity of <p>l, conditions exist for condensation to begin. If <p>l and no 

condensation is present, the flow is said to be supersaturated. Conversely, if <^<1, the 

flow is prone to evaporation. The temperature at which condensation may begin, (i.e., 

<£>=1), is referenced as the dewpoint. When the temperature drops below the dewpoint the 

air is supercooled.

From Wegener [9], the water vapor saturation pressure, psat, is a function of the 

static temperature, T.

=6-064 - (2)

The constants in the vapor pressure equation are tabulated by Wegener for various 

substances.

A relationship derived by Campbell, et al. [10], expresses the local relative 

humidity as a function of freestream relative humidity and local and freestream values of 

static pressures and temperatures. The relative humidity equation is then a function of 

local flow properties.

_ 2263 1 T/Tx-1

TLio Tx 7V7oo )

P* o
(3)

Notice that an increase in p and a decrease in T will result in an increase in the local 

relative humidity, <p; such is the case of an expanding flow in a nozzle. The case of a 

boundary layer experiencing an increase in temperature next to a body, results in a local
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decrease of relative humidity. Wegener and Mack showed that a shear flow is a way to 

revert condensate back to a vapor.

As seen in equation (3), has a linear dependence on local pressure, while having 

a log10 dependence on local temperature. This suggests that local temperature changes 

have a greater influence on local relative humidity than comparable changes in pressure. 

Therefore, a large temperature rise across a shock drives the humidity down although a 

large pressure rise is also occurring. So what is likely to occur about a transonic 

compressor rotor is an expansion of the flow over the curved blade causing a visible 

condensation region. As the flow leaves the rear of the blade, the temperature rise across 

a recompression shock may evaporate the condensation that was formed upstream. A 

example of this phenomenon presented by Campbell shows an F-14 aircraft generating 

an enormous condensation pattern during level flight in the transonic regime.

Since the saturation pressure,/?^, is a function of static temperature from (2), and 

since T is a function of local Mach number, then we reason that (p is a function of M, 

moisture content, temperature, and pressure in a nozzle supply section. Not considering 

the presence of a boundary layer, if expansion of vapor occurs in a properly designed 

nozzle, the entropy will remain constant until condensation take place. Hence, with an 

entropy rise due to condensation effects, the flow quality will be driven below that of 

design. The process of condensate formation is one in which latent heat is released to the 

flow.

The system can be expressed through a Mollier diagram (or, enthalpy versus 

entropy). The locus of points, called a Rayleigh curve, can represent subsonic to 

supersonic conditions based on the heat added to or removed from the system. Obviously, 

while traversing from subsonic to supersonic extremes, the curve must pass through the 

sonic point—this is the point of maximum entropy. The nature of a Rayleigh curve 

suggests that if initial conditions are subsonic, the addition of heat will drive the system
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towards the sonic point. Similarly, supersonic initial conditions result in the system being 

driven to sonic flow as heat is added. The Rayleigh curve in our interest represents the 

process of traveling from initial conditions of the supersonic nozzle to some point 

downstream of the nozzle throat. Each point on the curve reflects a value of heat, q, 

added or removed from the system. Recall from the energy equation that q is a function 

of change in total temperature and the specific heat at constant pressure, cp.

(4)

Therefore, as condensation releases heat to the flow, the total temperature will rise and 

the Mach number will decrease.

2.2 Tracer Properties

McGregor [9], based on his vapor-sheet study, compiled a list of desirable 

properties for an artificial seeding medium. The fluid should be:

• non-corrosive to the equipment

• commercially available

• chemically stable

• low toxicity

• nonflammable

• high molecular weight

• possess a saturated vapor density such that

° a sufficient amount can be injected before reaching 

saturation under stagnation conditions

° an excessive amount is not required to produce saturation at the working 

section static temperature.
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The latent heat, h, and molecular weight, m. are related by Trouton’s Rule, 

hm=CTb, where C is a constant (=21) and Tb is the boiling point of the fluid. As a 

consequence, a high molecular weight corresponds to a low latent heat of evaporation.

For the follow-on transonic application, it is proposed that a fluid be used with the 

properties mentioned above. An artificial smoke generator, is investigated that uses a 

proprietary fluid. The fluid has a glycol base of one or more of the following fluids: 

propylene glycol, triethylene glycol, and/or polyethylene glycol. Polyethylene glycol has 

a molecular weight in the range of 380-420 while water’s molecular weight is 18. 

McGregor used carbon tetrachloride in his vapor-screen experiments and it has a 

molecular weight of 154. The glycols above have been rated with very low toxicity. The 

vapor densities of the glycols are as high as 5.18, relative to water vapor density being 

1.0. A discussion of the fog generator is presented in Chapter 5.

For many supersonic studies, the humidity effects in a nozzle are avoided by using 

an inline dryer. For the supersonic phase of the present study, however, the existence of 

natural occurring water vapor will be exploited to visualize shocks.
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3

3.1 Introduction

As a demonstration of the proposed imaging techniques, a blowdown facility was 

used to exhaust compressed air through a nozzle. The air jet was accelerated through a 

supersonic nozzle then impinged upon a model to generate shock structures. A schematic 

of the apparatus can be seen in Figure 1. The resulting shock waves were captured with 

a high speed digital camera and subsequently stored on a computer. The images are of 

such quality that the features of the shock structure are identifiable—similarly, classical 

shock-boundary layer interactions can be captured.

3.2 Experimental Equipment and Facilities

3.2.1 Blowdown Facility

The UD supersonic blowdown facility [11] in Figure 2 provided the flow for initial 

applications of the visualization techniques. Its free jet characteristic has several inherent 

advantages over enclosed indraft or closed loop tunnels. Besides easy access to the model 

(no enclosed test section), there is no choking problem caused by an oversized model in 

the test section. Additionally, starting and running compression ratios are similar, since 

no ‘overpressure’ is required to start the flow [12]. Unfortunately, the lack of a

10
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controlled test section allows for unbearable noise levels from the jet. An Ingersoll-Rand 

15 HP (11.2 kW) three-cylinder compressor generated 51 ft3 (1.44 m3) of compressed 

ambient air to fill a double-walled Kargard Industries tank. The working pressure of the 

tank is rated at 208 lb/in2 (1.43 MPa) and the temperature rating is 450°F (910°R, 505 K). 

A maximum pressure used in the experiments described below was in the range of 180- 

200 lb/in2 (1.24-1.38 MPa). The tank is equipped with a safety valve to prevent 

overpressure. The temperature and pressure were monitored by a bourdon-tube pressure 

gauge and a J-type thermocouple attached to the tank. The only considerable source of 

heat addition to the tank was that due to the heat of compression. Before entering the 

tank, the air passed through a water cooled counter-flow heat exchanger to remove the 

heat of compression and to condense vaporized compressor oil. An in-line filter is 

available to remove this oil if present. Downstream of the heat exchanger and filter is an 

Ingersoll-Rand Hydrobloc dryer to remove moisture in the flow. Since the procedure was 

to utilize the ambient water vapor, the dryer was not activated.

All piping downstream of the pressure tank is 2 in (5.08 cm) diameter cast iron 

and has a ball valve in-line between the tank and the stagnation chamber. The flow 

proceeded downstream through a 1.2 ft3 (0.034 m3) cast iron stagnation chamber. The 

stagnation (or settling) chamber ensures high quality flow by reducing turbulence placed 

in the stream through the ball valve and piping. However, as flows in wind tunnels 

approach transonic and supersonic speeds, turbulence is less of a concern to the flow. 

Due to locally lower velocities, the stagnation chamber exhibits higher static pressures 

than at any point downstream, yet considerably lower than the storage tank [12].

3.2.2 Nozzles

While the initial study will eventually lead to transonic applications, two 

supersonic nozzles were used for the purpose of creating shocks. The nozzles were
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designed to produced 1.5 and 2.0 Mach numbers. The diverging section of the nozzles 

were designed using the method-of-characteristics for minimum length nozzles—a method 

found in many compressible flow texts. The nozzles are attached to the exit end of the 

stagnation chamber with a short cast iron pipe nipple. Quick change-out of the nozzle 

was made possible with this fixture. Inside the short cast iron pipe are 3:1 elliptically 

contoured slugs to contract the flow smoothly prior to entering the nozzle. The 

contraction allowed the flow to transition from the 2 in (5.08 cm) diameter pipe to a 

nozzle inlet area having dimensions of 2 in x 0.5 in (5.08 cm x 1.27 cm). Each nozzle 

was fabricated with a sandwich construction of three 0.5 in thick acrylic sheets. The 

center sheet is cut to provide the upper and lower contour of the nozzle while the two 

outside sheets provided the sidewalls for a 2-D effect. The converging section was 

fashioned with a circular arc profile leading to a throat section of 1 in x 0.5 in (2.54 cm 

x 1.27 cm). The exit heights of the nozzles are 1.2 in (30 mm) and 1.7 in (43 mm) for 

the Mach 1.5 and Mach 2.0 nozzles, respectively. An exit view showing the general 

shape and fabrication of a nozzle can be seen in Figure 3. The design velocity (V) for 

each nozzle, the associated Reynolds numbers (Re) for each model, and the mass flow 

rates (m) are shown in Table 1 based on theoretical calculations. The calculations assume 

calorically perfect gas (7=1.4) and an ambient temperature of 80°F (300 K or 540°R). 

The model geometries are discussed in Section 3.4.

Table 1: Nozzle/model velocities and Reynolds numbers.

M = 1.5
V = 1458 ft/s 
m = 0.44 lbm/s

M = 2.0
V = 1744 ft/s 

m = 0.75 lbm/s

Wedge Re = 1.37xl06 Re = 1.63xl06

Cylinder Re = 84,914 Re = 101,570
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Figure 3: Typical end perspective of nozzle.

A plate was then mounted to the backside of each nozzle (Figure 4). This plate 

served two purposes: (1) it was a surface to attach black felt for minimizing light 

reflection and act as a dark background for the images, and (2) it acted as a rigid support 

for mounting the models. The plate was adjustable along the flow axis to accommodate 

the displacement of the models from the exit of the nozzle. A sufficient stand-off 

distance was allowed between the plate and the flow expansion so as not to interfere with 

the region of interest. A laser light sheet, which is discussed in Section 3.2.4, was 

directed from below the model and cast a shadow in the upper region of the image. A 

small mirror was placed at the top of the mounting plate to reflect the incident laser sheet
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Elevation

Figure 4: Mounting plate and nozzle detail.
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and illuminate the initial portion of the body and its associated flow.

Realize that while these nozzles were designed for isentropic conditions, we should 

expect something less than the design Mach number. The method of characteristics is a 

technique often used in determining the internal contours of supersonic nozzles beyond 

the throat. It allows one to define the properties of the flow in the presence of, in our 

case, the nozzle boundaries. The calculations are generally based on a constant entropy 

flow, i.e., no shock waves in the design portion of the flow. The converging section of 

the C-D nozzle is subsonic and accelerates the flow to sonic speed at the throat. Although 

the viscous effects tend to thicken the boundary layer, it is generally neglected in the 

converging section without serious consequences [12]. Since the method of characteristics 

makes calculations resulting in many straight sections to form the diverging section of the 

nozzle, corrections are usually made for boundary layer effects. No adjustments for the 

boundary layer were made for the nozzles in the present study. So considering the effect 

on property ratios and the input of heat to the flow due to the condensing of water vapor, 

this results in an actual Mach number below the design Mach number. Image analysis 

in later sections indicates this is so and supports the Rayleigh curve explanation.

3.2.3 Models

A library of images was developed in the supersonic case by observing the 

interaction of two different models with the flow (Figure 5). One was a single-wedge 

with a 5.8° half-angle and a chord length of 1.9 in (48.26 mm). A very sharp leading 

edge was ground on the wedge to produce a clean oblique shock. The other model was 

a small right-circular-cylinder with a diameter of about 3.0 mm. The blunt cylinder was 

used to generate a bow shock. Both the wedge and cylinder produced shock phenomena 

that was consistent and very repeatable. To minimize reflections into the camera, the 

models, which were made of a steel alloy, were painted black.
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Figure 5: Model geometries for supersonic demonstration.

3.2.4 Illumination

The lighting was provided by a Spectra-Physics 35 mW Helium-Neon laser with 

a beam diameter of about 1.25 mm and a wavelength of X=632.8 nm, which corresponds 

to orange-red light. The beam divergence is rated at 0.66 mrad. The laser is designed 

to operate in an environment of 10-50°C (50-122°F) and 10-90% relative humidity 

(noncondensing).

Upon exiting through the laser mounting bezel, a series of front-surface mirrors 

guided the laser beam around an optics table to a point below the fluid flow. As Figure 

2 shows, a 45° front-surface mirror placed about 35 cm (14 in) below the nozzle 

centerline directed the beam vertically. Prior to passing through the supersonic flow, the 

beam was transformed into a sheet of light by passing it through a 5 mm diameter glass 

cylinder. By fanning out the beam into a sheet we were able to capture a visual slice of 

the flow about the body of interest. The alignment of the sheet was coincident with the 

vertical centerline of the nozzle exit (Figure 3). For a laser beam of about 1.25 mm
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passing through a glass cylinder of 5 mm in diameter, a full divergence angle of about 

20° was achieved.

3.2.5 Imaging System

At the heart of the setup is a stand-alone 12-bit digital camera system. All images 

were obtained by a Photometries STAR I digital camera with a 50 mm Nikon AF lens. 

The camera head encloses a scientific-grade CCD {charge-coupled device} that initially 

records an image. A CCD imager is a metal-oxide-semiconductor (MOS) optical detector 

that is composed of a large number of independent sites where photon-induced charge is 

stored. When the shutter is activated, the 576 x 384 matrix of 23-micron-square sites, or 

pixels {picture elements}, stores a photon-induced charge proportional to the illumination 

pattern. Its highly linear response provides a performance for quantitative applications 

even in very low light levels. The intensity data is converted into digital information by 

a 12-bit analog-to-digital converter with a charge transfer efficiency (CTE) from the array 

to an output amplifier of 0.999, where 1.0 is ideal.

One important feature of the CCD camera system is the liquid circulation unit. 

Its has the ability to thermoelectrically cool the camera head to a constant -45 °C with an 

ethylene glycol and water mixture. The need to cool the camera head is due to photon 

interaction with the CCD array. The cooling action is essential to greater light sensitivity 

and better performance.

The digitizing and storing of the gray-scale image is done through the camera 

controller which also handles the video display functions. Although packaged routines 

exist for transfer of the data to a file format, the one used here was developed at UD [13]. 

Data was transmitted to a PC via the camera controller’s IEEE-488 communications port 

and the PC’s GPIB {General Purpose Interface Bus} then stored it in a TIFF {Tagged 

Image File Format} file. The image in the TIFF format can be read in by many image
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processing programs, including word processors, desktop publishing packages and other 

graphics programs.

3.3 Data Acquisition and Processing

It was shown earlier in Figure 2, the general layout of the optical equipment, laser, 

and model relative to the nozzle and flow. The camera was positioned about 18 in (457 

mm) from the vertical plane of the nozzle. The camera axis was aligned normal to the 

light sheet and coincident with the leading edge of the model. If done correctly this 

would minimize light reflections from the models and nozzles, and reduce parallax or 3-d 

effects in the images. To properly scale the images, a reference grid was placed in the 

plane of the light sheet and recorded. This resulted in an image resolution of about 152 

pixels/in (6 pixels/mm) using the 50 mm lens.

While the tank was being pressurized to about 200 lb/in2 (1.38 MPa), the optics 

and camera system were readied to acquire an image. The ball-valve was manually 

opened and an image was obtained when the condensing vapor in the flow revealed a 

significant flow structure about the model. In most instances the process of opening the 

valve and imaging was done in 5 to 7 seconds. A typical run resulted in a tank total 

pressure drop to about 150 lb/in2 (1.03 MPa) and total temperature drop to 0°F (273 K 

or 460°R). A dense ‘cloud’ similar to a rolling morning fog continued to slowly spill out 

of the nozzle after the valve was closed. As the tank was being repressurized for the next 

test, the current image was analyzed on the camera video monitor for any necessary 

modifications of the setup or camera adjustments.

The UD supersonic blowdown facility was constructed without a light-tight 

enclosure. Since the facility is intended to be used for other applications, it was not 

feasible to fabricate an enclosure around the high-speed flow equipment. To control all 

light sources such that the laser beam was the primary source, all testing was conducted
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at night. However, some foreign light was still present from outside lights and the laser 

plasma tube. This did not present any problems for acquiring the images. In fact, the 

undesirable light tested the ability of the camera system to acquire usable images in less 

than ideal lighting conditions.

The digital camera has a 12-bit dynamic range equating to an intensity resolution 

of 4096 shades of gray. However, most acceptable images of the supersonic flow had a 

dynamic range of 8-bits (256 gray levels). Each image was analyzed on a VGA monitor 

having 4-bit dynamic range or 16 gray levels. For the images having a full 8-bit range, 

therefore, isolation of a particular region of the image was possible at the expense of 

blackout or saturation elsewhere. Software was written in-house to accommodate the 

enhancement of details. Once the dynamic range of the individual image was determined, 

it was converted to an 8-bit file primarily to save file storage space. It was this file that 

was eventually reproduced on a 600 dpi laser printer. As will be seen later, details such 

as oblique and bow shock waves, separation bubbles, Mach waves, and expansion regions 

were ascertainable.

3.4 Results

Through several sessions, a single-wedge and circular cylinder were placed in the 

supersonic flow generated by Mach 1.5 and 2.0 nozzles. One of the constraints of the 

method of characteristics is that the nozzle design is for inviscid (isentropic) flow. Since 

in the real world viscosity, mass diffusion, and thermal conduction exist, one should 

expect less than ideal performance due to boundary layer formation and heating due to 

the condensation process. It is estimated that a Mach number efficiency of about 90% 

was achieved relative to nozzle design Mach number.

Many images were recorded during the supersonic runs and some of the best are 

presented, covering all Mach number/model configurations. Typically, the exposure time



22

was a tenth of a second (0.1 s) which is the lowest setting the camera controller will 

allow. With the camera positioned a distance of about 18 in (457 mm) from the flow, 

the entire body and surrounding flow phenomena were recorded. The field of view in 

most cases was approximately 3.8 in x 2.5 in (96 mm x 64 mm). The lens aperture was 

generally set between f/4 and f/8.

The glass cylinder used to spread the laser beam into a sheet was not of optical 

quality material, therefore was less homogeneous than an optical lens. The only 

noticeable effect was the existence of light striations running top to bottom in most of the 

images.

The approach taken so far has been obtaining planar images by using condensing 

water vapor that simply existed naturally in the room. Since this natural condensation 

was proven adequate in scattering light, it was the only tracer used. From the discussion 

of condensation effects on nozzles in Chapter 2, it is arguable that condensation shocks 

could have been taking place during the tests runs of this study.

3.4.1 Right-Circular Cylinder

Figure 6 shows a strong bow shock fully developed ahead of a 0.12 in (3 mm) 

diameter cylinder using the Mach 1.5 nozzle. The image is printed at a slightly larger 

scale, so a scale factor of 1.8 should be used for all calculations made directly from the 

image. The cylinder, which is normal to the page, was placed 0.28 in (7 mm) from the 

exit of the nozzle. Above and below the cylinder are dark stripes. These are the shadows 

off the cylinder caused by the incident light sheet and the reflected sheet from the upper 

mirror (not shown). Evident in all the images are the light and dark areas. The lighter 

areas indicate a density concentration whereas the darker areas around flow structures 

represent a decrease in density. Faintly visible are a pair of Mach lines, or infinitely weak 

oblique shocks, merging just outside the nozzle exit and appear to be located off-axis.
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Since one would expect symmetry from an ideal nozzle, the off-axis problem could be 

attributed to inconsistencies in the nozzle fabrication and alignment. Noticeable on the 

upper and lower edges of the nozzle exit, are the formations of shear layers. The 

underexpanded flow leaving the nozzle is surrounded by still air and produces a turbulent 

mixing zone for a pressure boundary. Similarly, the constant ambient pressure provides 

a boundary condition.

A detachment distance, 8, of the bow shock relative to the leading edge of the 

cylinder can be calculated to be approximately 0.083 in (2.1 mm). At centerline of the 

body and flow interaction, the upstream flow is normal to the wave and corresponds to 

a normal shock locally. Following along the shock a point is reached where a streamline 

experiences the maximum deflection relative to centerline. This represents the dividing 

line between a strong and weak shock. Slightly beyond this point the flow becomes sonic 

behind the shock thus enveloping a subsonic region between it and centerline. The 

flowfield, shock detachment distance, and shape of the shock are driven by the upstream 

Mach number and the shape of the body. In the last three decades, time-marching 

numerical techniques have been developed to sufficiently solve the non-trivial blunt body 

problem. Although application of these techniques could have been applied here to back- 

out the true upstream Mach number, a simpler approximate approach was used. From 

oblique shock theory, an upstream Mach number can be determined from /x=sin'1(l/A/), 

where /z is the Mach wave angle relative to the flow axis. Using this estimation, the 

Mach lines at the Mach 1.5 nozzle exit reflect an average Mach number of about 1.35. 

This is a 90% efficiency for nozzle referencing design Mach number. Since the cylinder 

is very close to the Mach line intersection, and assuming that little expansion has taken 

place in this short distance, it is reasonable to say that about a 1.35 Mach number is ahead 

of the bow shock at centerline. Considering a normal shock at the bow shock centerline, 

a look-up in a normal shock table says that the flow immediately downstream of the
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normal portion of the bow shock is M~0.76. This supports the explanation of the 

subsonic envelope discussed above.

Downstream of the cylinder about 3 cm, it is apparent that a bolt is in view. This 

was placed there to fill the mounting hole vacated by the removal of the wedge model, 

and to help keep the black cloth attached to the rear mounting plate. It is believed to 

have no effect on the flow, since no flow phenomena (i.e., shocks) are generated from its 

existence and since it is behind the general plane of the flow. At first glance, the 

complex shock structure downstream of the cylinder may appear to be interference with 

the back mounting plate. However, it is pointed out by Pope and Goin [12] that this is 

simply a ‘second throat’ effect. When two oblique shocks converge, as in the case of the 

upper and lower reflected shocks, they essentially act as converging ‘boundaries’ to a 

throat area. The vertical white line that looks like a density concentration is just that—a 

normal shock migrating to a point such that the flow is choked between the two reflected 

shocks. It is also possible for the free jet static pressure to be below ambient. The 

pressure aft of the normal shock is below ambient and the normal shock remains. Notice 

that the cylinder is slightly below centerline of the nozzle. This may explain the smaller 

normal shock existing above the bolt. It is formed at the convergence of the upper 

reflected shock and the wake recompression shock behind the cylinder and represents 

another locally choked flow. Reduced mass flow in the choked flow is indicated by the 

darker regions downstream of the normal shocks. It will be seen later that a similar 

normal shock also persists about the wedge in a supersonic flow due to the same 

phenomenon.

A Mach 2.0 flow over a 0.12 in (3.0 mm) diameter cylinder is shown in Figure 

7 inside the right edge of the image and is bright white due to the reflection of laser light 

off the acrylic material of the nozzle. The cylinder was placed adjacent to the nozzle exit 

and normal to the flow. Again the flow is underexpanded as evidenced by the slightly
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diverging shear layers on both sides of the nozzle. The bow shock, wake recompression 

shock, and shear layers are visible also as brighter white. On a gray-level scale the white 

colors represent regions of higher density such as the nozzle material and condensate in 

the flow. Notice that the bow shock dissipates from its strongest point at centerline and 

tends toward weaker Mach waves as it approaches the shear layers. As done in Figure 

6, the Mach number can be reasonably determined from the weak Mach waves emanating 

from the corners of the nozzle. If the ‘earliest’ visible Mach line is used, calculations 

reveal a local Mach number of 1.9. Keep in mind that the three-dimensional flow will 

have a relaxing effect on the shock angles and perhaps contributes to the rate of curvature 

of the main bow shock as it gets farther downstream. Also evident is a slight bend in the 

bow shock as it encounters the reflected shocks from the corners of the nozzle. 

Immediately behind the cylinder is a local decrease in mass (condensate) flow as 

evidenced by the black region, i.e. lower density. Further downstream the lighter shade 

of gray reveals the entrainment of condensation.

Two important points are made clear by Anderson [14] regarding the distinction 

between strong and weak interactions with a free jet and those interacting with a solid 

boundary:

CASE (i) “Waves incident on a solid boundary reflect in like manner, 

i.e., a compression wave reflects as a compression and an 

expansion wave reflects as an expansion.”

Case (ii) “Waves incident on a free boundary reflect in opposite 

manner, i.e., a compression wave reflects as an expansion 

and an expansion wave reflects as a compression.”

Viewing Figure 7 the fact that a weak Mach wave is originating from within the solid 

nozzle, suggest that from CASE (i) it is the result of an incident Mach wave further inside
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the nozzle. Proof of Case (ii) can be seen as the strong bow shock reflects off the free 

jet boundary as an expansion wave.

The gray scale images provide clear detail of many features. But it was of interest 

to output color images to see if the detail could be enhanced. A public domain program 

called IMAGE [15] was used for this purpose. This software, which only exists in a 

Macintosh version, allows the user to perform digital image processing and analysis. 

Many familiar functions can be utilized, such as display, edit, enhance and print. 

Additionally, the user can create animations, analyze geometric and mass properties, apply 

pseudocolor, and interface with appropriate hardware. Image was used in this study for 

its pseudocolor feature. The program has the ability to import TIFF, PICT, and various 

other common file formats. Several TIFF images were imported to the program, then 

pseudocolor was applied from a choice of color palettes. Although up to 256 colors can 

be used, 32 were applied to the color images below.

Figure 8 is the same image shown in Figure 7 but with the application of 

pseudocolor. Evident in this image is one advantage of color over the gray scale. Since 

our eyes are accustomed to distinguishing depth, contrast, and brightness with color, it is 

easier to locate similar regions of light intensity (or fluid density) in the image than with 

simple gray-scale. Certainly, both color and gray-scale have their merit, but overall one 

can get a better feel of the flow/body interactions with the color image. Greater contrast 

is achieved in the case of the near-parallel Mach waves interacting with the nozzle corners 

and shear layers. Another point to consider is that Figure 7 was laser printed at a 

resolution of 600 dots per inch (dpi) on a Hewlett Packard HP 4, and Figure 8 was 

printed at 400 dpi on a Tektronix Phaser III. Obviously, other than improving image 

quality with color, the ability to analyze a hard copy will be output-device dependent.

A scale has been placed on all of the color images with the color intensity 

corresponding to the gray-scale dynamic range. The lighter colors reflect a more
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luminous region and visa versa for the darker colors. Caution should be taken when 

viewing the image. When referencing the local light intensity, one should keep in mind 

that this assumes a uniform light sheet is entering the flow of interest. This point is 

illustrated by the vertical light striations—a region of the flow where an obvious 

nonuniformity of light is occurring. Thus, where fluid density calculations or light 

intensities are to be analyzed, flow structures could be misrepresented by these 

aberrations.

3.4.2 Single-Wedge

In the last section, a cylinder in Mach 1.5 and 2.0 flows was presented. Now we 

will focus on the same flows about a single-wedge. Evident in images involving the 

wedge is an oblique shock emanating from the leading edge, but with some curvature. If 

the edge was indeed razor sharp, shock theory says one should expect a true oblique 

shock. Upon inspection of the wedge after several supersonic runs, a very slight 

roundedness was apparent on the lower surface for a distance of about 0.02 in (0.5 mm) 

from the leading edge. This proved to be a good lesson in how slight imperfections can 

cause very unexpected results in supersonic flow.

Figure 9 shows a wedge with a half-angle of 5.8° placed 0.38 in (9.7 mm) behind 

the Mach 1.5 nozzle. The large black area above is the shadow of the wedge due to the 

incident laser sheet originating from below. A portion of the flow over the upper surface 

was illuminated by placing a small mirror above to reflect the original light sheet 

downward. Upon exiting the nozzle, the flow turns outward from the longitudinal axis 

about 26° to further expand, as can be seen by the diverging shear layers. As in the case 

of the bow shock from the cylinder, weak Mach waves are visible between the wedge and 

the nozzle. Again applying shock-expansion theory, the Mach line angles of about 48° 

suggest that the true Mach number is on the order of 1.3. It would be appropriate to
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check the angles of the oblique shock that lies downstream of these expansion waves. 

Measuring a shock angle of about 37° and consulting a shock-deflection angle chart (or, 

chart), we find that the flow just in front of the wedge is about Mach 1.9. The 

higher Mach number just in front of the wedge can be accounted for by the placement of 

the wedge in a region of expansion and its associated decrease in static pressure. Hence,

a region of higher velocity will occur.

A pseudocolored version of the Mach 1.5 flow over the wedge can be seen in 

Figure 10. The Mach waves located at the center of the nozzle exit are slightly more 

noticeable. Likewise, the expansion zone of the flow downstream of the nozzle is much 

more contrasted in the color image. However, in the color conversion the upper shear 

layer was deintensified.

A very important flow feature was captured by the camera. The phenomenon is 

a strong shock-boundary layer interaction and consequential separated flow. Although the 

complex flow field of this structure has been explained only recently through the use of 

computational fluid dynamics, the general features are readily explainable. The details 

can be seen in Figures 11 and 12. An incident shock originating at the shear layer strikes 

the boundary layer. The adverse pressure gradient across the shock prohibits the boundary 

layer from continuing in the same path and subsequently the boundary layer separates 

from the wedge surface. The back pressure is sensed farther upstream through the 

subsonic region of the boundary layer. To negotiate the newly formed bump in the 

boundary layer, Mach waves coalesce to form another shock wave. At some point 

downstream the expanding flow forces the boundary layer to reattach itself and thereby 

forming another corner to turn. Hence, another oblique shock wave is formed. Due to 

the severity of separation shown in Figure 11 it is believed to have been an initially 

laminar boundary layer, which is easier to separate than a turbulent one. The net effect 

is substantial thickening of the boundary layer with it most likely turning turbulent. A
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Figure 11: Single-wedge with 5.8° half-angle in a Mach 1.5 flow. Separation is 
occurring on the rear lower surface. (Scale: 1.54x)

Figure 12: Schematic of a shock wave and boundary layer interaction causing flow 
separation.
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good overview of shock induced boundary layer separation can be found in [16]. The 

height of the separation bubble is about 0.11 in (2.7 mm). Conditions were such between 

the incident shock and the induced shock in Figure 9 that a small normal shock was 

formed. These two waves contribute according to the ‘second throat’ effect presented 

earlier.

A final note on Figure 11 is that the angle of the shock on the leading edge 

indicates a Mach number of 1.27. This is misleading because the leading edge is located 

inside a zone of underexpansion. Since the flow will continue to expand, the leading edge 

will be experiencing a higher velocity.

The concluding image in the supersonic series shows the same single-wedge 

experiencing a Mach 2.0 flow (Figure 13). The wedge was placed 0.21 in (5.4 mm) 

from the exit of the Mach 2.0 nozzle. To confirm expected features on the upper surface, 

the laser light sheet, was reflected by a mirror above and out of view of the image. The 

vertical bright line at the wedge tip is simply an overlapping of the original and reflected 

light sheet. From the appearance of the shear layer angles the nozzle is experiencing little 

under expansion. Likewise there is no existence of weak Mach waves just outside the 

nozzle exit which would indicate further expansion. Therefore, the calculation of a 1.8 

Mach number based on the upper leading edge shock angle of 41° stands within reason. 

This represents a 90% efficiency relative to the inviscid nozzle design. Similar to the 

Mach 1.5 case, a shock induced separation bubble exists at the rear of the wedge and 

contains all of the same feature as discussed above. Recalling the principles of a free jet 

versus a solid boundary, the lower ‘oblique’ shock from the leading edge is reflected as 

an expansion (barely visible) off of the shear layer just below the boundary layer 

separation. The height of the separation bubble in this image is about 0.016 in (0.4 mm). 

Based on other images of a wedge in a Mach 2.0 flow, the bubble was consistently very 

shallow. This suggests a dependence on Mach number, i.e., strength of the flow, and thus 

incident shock angle. Similarly, the location of occurrence on the wedge was repeatable.
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CHAPTER

4

4.1 Introduction

The second phase in determining suitable flow visualization techniques for the 

transonic compressor environment involved the ability to capture an image of a rotating 

blade row. The main task was to periodically deflect a laser beam such that it would 

strike the blade every cycle. This phase locking was facilitated by using an acousto-optic 

modulator and its driver to swing the beam from the main path at the frequency of the 

rotating fan. The success of this process at low speed is assumed to be comparably 

achieved at frequencies on the order of 20,000 rpm in the transonic case.

4.2 Experimental Details

4.2.1 Acousto-Optic Modulation

The device selected to deflect the laser beam was a NEOS {Newport Electro-Optics 

Systems) acousto-optic modulator (AO My In general, this component allows manipulation 

of a laser beam from an electrical input signal. Both deflection and modulation of the 

laser amplitude are possible. Upon receiving the acoustic signal, the optical medium 

generates a refractive index wave that behaves like a sinusoidal grating. The medium is 

a tellurium dioxide crystal, which is very commonly used for AOMs. A laser beam

37
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passing through the grating will defract into several orders—each order possessing a 

decrease in intensity. A linear relationship exists between the diffracted beams angular 

displacement and the signals acoustic frequency. The intensity of light deflected is a 

function of a material figure of merit, the acoustic power, geometric factors, and the 

wavelength (X) [17]. The AOM used in this study was certified to have an efficiency of 

77% at X=632.8 nm (He-Ne). For diffraction to occur, the Bragg angle between the AOM 

and the incident laser beam had to be adjusted. A rotary stage was mounted to the bottom 

of the AOM to facilitate angle adjustment.

To interface the raw signal with the AOM, a NEOS medium power radio 

frequency generator, known as the AOM driver, was used. This driver received maximum 

inputs of 15V DC and 1 Amp, respectively, while providing a maximum output power 

of 1.25 Watts. An input signal was supplied to the AOM driver through the use of pulse 

generator.

The original sinusoidal signal from a function generator (FG) was sent to a pulse 

generator (PG). The FG’s external gating signal provided the triggering waveform for 

the period circuitry within the PG. Features of period, duration, delay and transition time 

permitted customized control ranges. Generally speaking, the PG outputs a pulse upon 

the peaking of the sinusoidal signal (positive or negative only). The AOM driver receives 

the output of the PG and excites the crystal grating of the AOM. An oscilloscope was 

used to monitor the output for a proper signal.

4.2.2 Light Source and Camera System

The Helium-Neon laser discussed in Section 3.2.4 was also used in the phase 

locking demonstration for imaging purposes. A similar system will be used in the 

transonic study. Likewise, the CCD camera used in the supersonic proof-of-concept was 

employed to test the motion-capturing abilities of rotating hardware. The modulated laser 

beam was spread into a sheet using a cylindrical lens having a width of 0.748 in (19 mm)
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and a radius of 0.984 in (25 mm). The choice of lenses was simply due to the available 

working area on the optics table. It also provided a ‘cleaner’ light sheet in the sense of 

no visible striations and allowed us to view its optical characteristics relative to its 

dimensions. A series of front-surface mirrors, similar to those discussed in the previous 

chapter, guided the modulated beam around the table to the rotating fan as shown in 

Figure 14. The orientation of the light sheet direction is normal to the plane of rotation 

for this demonstration. It will be of interest in the compressor rotor study to orient the 

light sheet in such a way as to illuminate the blade-to-blade passage and/or the flow either 

side of a blade. Therefore, the light sheet will need to be directed at an appropriate angle 

to the rotation plane due to the twist of the rotor blades.

4.2.3 Rotating Blade Row

Receiving the pulsed laser sheet, was an 18 in (457.2 mm) diameter single blade 

row. It consisted of six blades mounted to a 4.5 in (114.3 mm) diameter hub. The fan 

was driven by a Dayton Electric 1 hp (745.7 W) DC motor. The motor’s variable speed 

controls allowed a fan to achieve 2154 rpm (35.9 Hz). The entire fan was commercially 

fabricated from aluminum and was painted black to provide a uniform dark surface for 

reflecting the laser sheet and minimizing stray light reflections.

4.3 Data Acquisition and Processing

For the laser beam to be diffracted, the angle had to be adjusted between the AOM 

and the beam. Since this critical angle had a tolerance of about 1 mrad (3.4 arcmin), a 

rotary stage was mounted at the base of the AOM. The stage was adjustable with coarse 

and 80-pitch fine thread screws with a resolution of 0.15 mrads (30 arcsec). With the 

laser beam launched into the center of the crystal and RF power applied, an array of light 

spots was emitted from the AOM onto any surface in the beam path. The array consisted
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of the main beam and modulated beams diverging either side of it which we shall call ± 

first order, ± second order, and so on. Usually, up to five or six visible spots were 

present at one time with the intensity of each beam decreasing counting outward from the 

center beam. Several iterations of vertical, horizontal and rotational adjustments of the 

AOM provided an optimum setting of the array. The + first order beam was isolated onto 

the mirrors since it provided the highest intensity. It was guided around the optics table 

passing through the cylindrical lens and struck a fan blade. With the fan near peak 

rotation, as restricted by the motor limits, a strobe light was aimed at the fan to determine 

its frequency of rotation then turned off. The sinusoidal signal from the FG was set to 

roughly match the fan frequency. With some tweaking of the FG, a single fan blade was 

locked into position thus eliminating the appearance of precession. Hence, the frequency 

of the AOM coincided with that of the fan.

This demonstration provided another test of the CCD camera which was used in 

the supersonic case. Without external triggering utilized, the camera exposure time was 

set to the minimum of 0.1 s. When the desired modulated conditions were obtained and 

the phase locking of the fan held, an image was acquired.

4.4 Results

Figure 15 shows the fan with an incident laser sheet striking at about 60% from 

the blade root. The fan and AOM had a matched frequency of about 36 Hz. An image 

was acquired of the stationary fan to reveal the geometry of the blade row and can be 

seen in Figure 15(a). The camera was then used to capture the rotating fan and 

modulated sheet which are shown in Figure 15(b). Both images were obtained under high 

fluorescent light levels to clearly indicate the fan orientation, yet not washing out the 

incident laser. The incident light sheet is distinctly seen as about 2 in ( 50.8 mm) long 

but could be adjusted to cover a much larger region. Since only the hub is visible, the
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(a)

(b)

Figure 15: Laser sheet modulated to frequency of fan. (a) stationary fan showing 
geometry, (b) fan at 36 Hz with visible light sheet.



43

blades have been annotated. The exposure time of the camera was set for 0.1 s, therefore 

the image acquired 3.6 pulses of the modulated sheet. The PG was adjusted for a 

duration of 0.1 ms, with pulse duration defined as the time interval between the leading 

and trailing edge of a pulse at which the instantaneous amplitude reaches 50% of the peak 

pulse amplitude. A moderate transition time between the 10% and 90% amplitude levels 

was set for 5 ps corresponding to 5% of the pulse duration.

The transonic study involves a transonic compressor rig achieving rotational speeds 

of up to 21,500 rpm [18]. Since the stand-alone camera system has a lower exposure 

limit of 0.1 s, a total of 35.8 cycles would occur at maximum speed during that exposure. 

To facilitate capturing an image with as low as one cycle per exposure, an external trigger 

mechanism can be used. The camera controller has a port allowing an external trigger 

signal to be input for a minimum of 20 ps. An integration time will be set on the video 

display—in this case, 0.1 s. Upon arming the trigger the shutter opens and continuously 

clears the CCD of charge until the external trigger signal is sent. When the trigger signal 

is received by the controller, the CCD array ceases to be cleared of charge and receives 

information for the preset external time. If one cycle of the rotor is desired, an external 

integration time of 3 ms would be required. This obviously falls within the system’s 

lower limit of 20 ps.
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5

5.1 Introduction

The final major interest of the study surrounds the application of an artificial tracer 

to the flow visualization process. In the supersonic demonstration, the condensed water 

vapor made available from ambient conditions served well as the tracer to reveal shock 

structures. However, in the closed-loop transonic facility, the working pressure of up to 

two atmospheres will require a tracer to be seeded into the flow. An artificial smoke 

generator was chosen for its ease of use and desirable characteristics of the fluid source. 

To demonstrate the illumination ability of the smoke, a small model was placed in a low- 

speed wind tunnel. The unsteady interaction of the smoke, model and laser illumination 

was captured by the CCD camera used in the previous phases of the study. The model 

being a circular cylinder normal to the flow provided trailing vortex patterns. The periodic 

formations were made clearly visible as expected.

5.2 Experimental Equipment and Facilities

5.2.1 Low Speed Wind Tunnel

One of the wind tunnels at the University of Dayton is a small scale subsonic 

tunnel used primarily for visualization studies (Figure 16). The open-loop tunnel begins
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with an inlet having an area contraction ratio of 10:1 and a series of screens to provide 

a uniform flow to the test section. The 9 in x 18 in x 36 in (22.86 cm x 45.72 cm x 

91.44 cm) test section is equipped with a full acrylic front window and manometer. 

Additionally, a % in (19.05 mm) longitudinal slot on the test section floor allows 

instrumentation to access the flow. The 60 in (1.524 m) diffuser gradually expands the 

flow from the test section exit to a 19 in (48.26 cm) diameter diffuser exit. Driving the 

flow is the motor and fan unit described in Section 4.2.3, which was removed from the 

tunnel solely for the phase locking demonstration. The maximum setting on the variable 

speed controls of the motor produces a flow velocity of about 61 ft/s (18.5 m/s).

5.2.2 Flow Tracer

The seeding of the flow was made possible by a portable fog generator with duct

work connecting it and the tunnel inlet. The generator, which is made by JEM Smoke 

Machine Co. LTD. in Lincolnshire, England, is the type commonly used for theatrical or 

concert special effects. The unit measuring roughly 9 in x 9 in x 24 in (22.9 cm x 22.9 

cm x 61 cm) is powered by a 1.34 hp (1000 W) heater. The working fluid is siphoned 

off a removable bottled reservoir and heated to form the fog. After a short warm-up 

period of about 5 to 10 minutes, the fog is emitted by a high-pressure oscillating pump 

operating at 65 lb/in2 (448 kPa). Although the exact make-up of the fluid is proprietary, 

the general constituents consist of food-grade polyglycols and distilled water. It is a very 

safe substance to work with: there are no special storage precautions, it is non-flammable, 

it presents very low toxicity to the environment, and is biodegradable. Noticeable on 

surfaces after prolonged use was a slight film, but this evaporated after a few days. Since 

the smoke is emitted from the generator at a high temperature, there is a tendency for it 

to rise. In a closed-loop environment this is not expected to be a problem due to the high 

velocity and mixing. For the supersonic case in Chapter 3, the water vapor proved 

suitable for the results obtained, although it was of interest to integrate the artificial fog
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into the flow. The simplest way, would have been to feed the fog into the pressurized 

tank. Since the pressure limitations on the fluid were not revealed by the manufacturer, 

the risk of pressurization was not taken for fear of auto-ignition. Another option would 

have been entraining the fog at the nozzle location, but was not pursued based on the 

previously acceptable results. As presented later, the simple flow about a model in a wind 

tunnel provided adequate results for observing the fogs characteristics for laser 

illumination.

5.2.3 Model

The model was a cast iron right-circular cylinder having an outside diameter of 

0.835 in (21.21 mm) and a length:diameter aspect ratio of 21.6. It was mounted to the 

back wall of the test section with a threaded pipe flange and spanned the entire lateral 

distance to make contact with the front acrylic window. Since the cylinder was cast iron, 

it was sanded to remove obvious imperfections and then painted black to minimize glare 

from the laser sheet. The model was located about 9.5 in (24 cm) from the test section 

inlet and at the vertical centerline. The blockage of the cylinder with respect to the test 

section height was 9.3% which is an acceptable value to minimize sidewall interference. 

Likewise, the cylinder spanned the entire lateral length of 18 in (45.72 cm) to provide a 

two-dimensional flow for the region of interest.

5.2.4 Acousto-Optic Modulation and Flow Excitation

The setup for the light source and the steering of the laser sheet was similar to that 

used in the supersonic demonstration with a couple of exceptions (Figure 17). The laser 

beam was guided around the optics table with mirrors then directed 90° upward to 

penetrate the glass cylinder as before. Hence, a laser sheet was produced. In the present 

unsteady application, the AOM, driver, and supporting instruments were integrated into 

the process to modulate and deflect the beam. The intent was to have the vortex shedding
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frequency of the circular cylinder phase-locked with the acoustic signal.

Artificial excitation has been used by others for the purpose of stabilizing and 

destabilizing shear flows. Roos and Kegelman [22] suggest that stimulating the flow over 

a backstep results in alteration of major flow features. They showed that modifications 

in vortex development and the control of the reattaching flow were possible. An 

oscillating trailing edge flap at the point of shear layer separation was used to excite the 

reattaching shear layer. With the use of pulsed laser sheet illumination, photographs 

revealed that the flap provided a very noticeable ‘regularizing’ influence on the 

development of vortex structures downstream. Roos and Kegelman noted that “when 

excitation is effective in organizing and regularizing development of the large-scale 

vortical structure in the reattaching shear layer, (the point of reattachment) is almost the 

same for fully laminar and fully turbulent separations”. In both cases, the reattachment 

length was typically reduced by at least one step height. However, the effect of exciting 

the flow was not as predictable in the transition range of Reynolds numbers.

An extension of the flow excitation has been treated by many with the active use 

of feedback control. A good survey of this approach was covered by Roussopoulos [23]. 

Vortex shedding from a circular cylinder was investigated by the closed-loop control 

method of sensors, in the form of hot-wires, and actuators, in the form of a speaker and 

amplifier. The shedding cell growth rates were suppressed at a single spanwise point and 

in the vicinity of the control sensor with the use of acoustic feedback. This was typically 

done at Reynolds numbers just above the onset of vortex shedding. Similarly, Monkewitz 

[24] presented analytically that feedback control could also be used in destabilizing flows. 

Hussain and Ramjee [25] investigated, among other things, the interaction of the periodic 

shedding phenomenon with an imposed periodic acoustic disturbance. They pursued the 

locked-in event, as well as the suppression of vortex shedding. They concluded that when 

the natural shedding frequency was matched with the controlled sinusoidal pulsations there 

was no effect on the natural frequency. However, as the controlled acoustic signal was
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increased above the natural frequency, the pulsations diffused the vortices while the vortex 

cell spacings were unaffected.

In the present study, a speaker was placed on the top of the inlet to excite the 

flow, as shown in Figure 16. Prior to reaching the speaker, the sinusoidal signal from the 

function generator was enhanced by an amplifier. Coupling of the shedding frequency 

with the signal to the speaker and AOM was done. Although exact matching of the 

frequencies was not found, regularization of the flow was noticeable when matching 

converged. The Reynolds number of this experiment was much higher than the majority 

of those in the papers referenced above.

5.3 Data Acquisition and Processing

The imaging procedure began by aligning the laser, AOM, mirrors, and cylindrical 

lens in such a way as to illuminate the cylinder and a region downstream where vortical 

structures were expected to occur. The AOM was painstakingly adjusted by the steps 

outlined in Section 4.3. To phase-lock the AOM with the shedding frequency, a wind 

tunnel setting was first chosen, and the corresponding flow velocity was noted. With the 

velocity, cylinder diameter, and a Strouhal number based on the Reynolds number as 

knowns the shedding frequency was the only unknown. This was used as the input to the 

function generator which was subsequently conveyed to the AOM. The camera was 

positioned on a tripod with the camera centerline normal to the test section window at a 

distance of about 24 in (61 cm). With a steady flow and the camera system readied, the 

smoke generator was remotely activated to emit a short burst of fog. As the smoke 

became visible in the flow local to the cylinder, the camera shutter was triggered for an 

exposure time of 0.1 s. Several attempts were usually required, due to extraneous smoke 

obscuring of the field of view. It became obvious, that the control of the tracer, in terms 

of providing uniformity with appropriate ducting, would be a consistent problem. The
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imaging process was done with all local facility lighting turned off, thus allowing only 

the laser to illuminate the flow.

5.4 Results

An image of the 0.835 in (21.21 mm) diameter cylinder generating vortical 

structures is shown in Figure 18. For the circular cylinder, this suggested a Reynolds 

number (Re) of 11,500. A Strouhal number was calculated from S=nD/V, where n is the 

vortex shedding frequency of the cylinder, D is the diameter and V is the freestream 

velocity. A moderate wind tunnel setting provided a flow velocity of 27.8 ft/s (8.5 m/s). 

Using *5=0.20, which is based on measurements performed by Roshko [19] and a function 

of Reynolds number, it was determined that ««80 Hz. [The Strouhal number was initially 

calculated to be about 100 but was based on an incorrect value for density in determining 

the flow velocity. A recheck of the value of S prior to the generation of this paper 

exposed the error}. A sinusoidal signal of 100 Hz (of course, based on the calculation 

error) was input to the function generator.

The tracer was fed into the tunnel inlet with flexible PVC ductwork. A flexible 

aluminum fitting on the end of the duct was shaped to form a vertical sheet of smoke. 

The smoke sheet was directed such that it sliced the cylinder midspan to coincide with 

the incoming laser sheet.

The cylinder in Figure 18 is very close to full scale in the image, but appears 

fuzzy on the perimeter due to the cylinder end being 8 in (20 cm) closer to the camera 

than the Karman vortex street [20]. In a case such as this, scaling determination should 

be made referencing, say, the cylinder shadow although difficult in this image. For a 

Reynolds number less than ~105, one would expect a laminar boundary to exist with 

separation to occur near the upper and lower surface of the cylinder. This is evident in 

the image if one extrapolates the lower portion of the smoke stream back to the obscured
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outer region of the cylinder. Downstream of the cylinder, there is evidence of four vortex 

formations. The most recent vortex is one moving counterclockwise from the top of the 

cylinder but preceded in time by a pattern of three alternating vortices. The reader is 

referred to Schlichting for a good explanation of the mechanisms behind boundary layer 

separation of a cylinder [21]. Essentially, the kinetic energy of the boundary layer is 

diminished by viscous interaction with the cylinder surface. There is a point along the 

surface such that there is no longer enough kinetic energy to overcome the pressure 

gradient and remain attached. A reversing motion of the fluid occurs between this point 

and the rear of the cylinder. The reversal of flow interacting with the oncoming flow 

results in the onset of a vortex. As the most recent vortex begins to break away from the 

cylinder, the pressure conditions are such that another is allowed to form on the opposite 

side and in the opposite direction of rotation.

Due to the small dynamic range of the digital image, enhancing the image to 

reveal better detail was difficult to achieve. It was of interest to see if more detail could 

be brought out by using the Image program introduced in Chapter 3. Again, 32 levels 

of pseudocolor were applied and the result is shown in Figure 19. The four vortex 

structures and laminar boundary layer are more distinct. The scale representing the 32 

colors is located in the lower right hand corner. Recall that caution should be taken when 

viewing the image regarding nonuniformity of the light sheet intensity.
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A study has been undertaken to examine the problem of recording the flow 

structures in transonic compressor rotor. The technique of imaging the flow structures 

with a CCD digital camera has been successfully demonstrated. The application of a 

vapour-screen, as used by McGregor, was extended here to be integrated with the digital 

camera. Images acquired in a supersonic flow clearly indicate flow structures such as 

bow and oblique shocks, expansion regions, and boundary layer-shock interactions. This 

was done simply by using the available water vapor in the surroundings. For use in the 

transonic facility, the laser sheet and CCD camera will be used to image flow structures 

in the blade passages. It is likely, that an artificially injected tracer will be necessary to 

assist in illuminating the activity. Further studies on the thermodynamic properties of the 

tracer will be required. The difficult timing methodology involved in the high-speed 

transonic facility is believed to be overcome by the remote triggering ability of the digital 

camera. A technique to insert a laser sheet with an optical probe downstream of the 

compressor rotor is being investigated and appears promising.

A summary of desirable features of the techniques presented in this paper are:

• Relatively low cost digital camera with simple setup and operation.

• Camera usable in very low light levels-from common light to laser beams.
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• Resulting images can be viewed immediately after exposure.

• Subtle flow structures are ascertainable.

• Images saved to permanent storage.

• First generation hard copy is repeatable.

• Images can be enhanced if necessary.

• Camera shutter can be matched with independently modulated light source.

• External triggering of camera allows a minimum of 20ps exposure.

• Proven applicable to subsonic, transonic and supersonic flows.

• For supersonic flows, ambient water vapor is sufficient for flow tracer.

• For other flows, an artificial tracer can provide additional seeding.



1. Wood, J. R., A. J. Strazisar, and P. S. Simonyi: (1987) Shock Structures Measured 
in a Transonic Fan Using Laser Anemometry, AGARD Transonic and Supersonic 
Phenomena in Turbomachines, AGARD-CP-401, pp. 2.1-2.14.

2. Strazisar, A. J.: (1985) Investigation of Flow Phenomena in a Transonic Fan Rotor 
Using Laser Anemometry, ASME Journal of Engineering for Gas Turbines and 
Power, Vol. 107, pp. 427-435.

3. Allen, M. G., S. J. Davis, and L. G. Piper: (1989) Wind Tunnel Diagnostics Based 
on Laser-Induced Fluorescence, ISA paper no. 89-0007.

4. Epstein, A. H.: (1977) Quantitative Density Visualization in a Transonic
Compressor Rotor, Transactions of the ASME, Journal of Engineering for Power, 
Vol. 91, pp. 460-475.

5. McGregor, I.: (1961) The Vapour-Screen Method of Flow Visualization, J. Fluid 
Mechanics, Vol. 11.

6. Atti del V Convegno Volta: (1935) Reale Accademia D’Italia, Rome, 2nd Ed., 
1940.

7. Wegener, P. P. and L. M. Mack: (1958) Condensation in Supersonic and Hypersonic 
Wind Tunnels, Advances in Applied Mechanics, Vol. V, Academic Press.

8. Eber, G. and K. H. Gruenewald: (1941/42) Schlieren-Photography of Condensation 
Disturbances in the 40x40 cm Peenemtinde Supersonic Wind Tunnels. Private 
communication between Messrs Wegener, Mack, Eber, and Gruenewald.

9. Wegener, P. P: (1969) Gasdynamics of Expansion Flows with Condensation, and 
Homogeneous Nucleation of Water Vapor, Nonequilibrium Flows, Ch. 4, Pt. 1, 
Marcel Dekker, New York.

57



58

10. Campbell, James E, Joseph R. Chambers, and Christopher L. Rumsey: (1989) 
Observation of Airplane Flowfields by Natural Condensation Effects, J. Aircraft, Vol. 
26, No. 7.

11. Brendel, Michael: (1992) Transonic Flow Visualization Using Condensed Water 
Vapor, Final Report F33615-90-C-2086.

12. Pope, Alan and Kennith L. Goin: (1965) High-Speed Wind Tunnel Testing, John 
Wiley & Sons, New York.

13. Brendel, Michael: (1992) Computer program for viewing, analyzing, and plotting 
TIFF files., University of Dayton, Ohio.

14. Anderson, John D., Jr.: (1990) Modern Compressible Flow: with Historical 
Perspective, McGraw-Hill Book Co., New York.

15. Rasband, Wayne: (ca. 1992) Image v.1.43, a digital image processing and analysis 
program, National Institute of Health.

16. Anderson, John D., Jr.: (1989) Hypersonic and High Temperature Gas Dynamics, 
McGraw-Hill Book Co., New York.

17. Young, Eddie H.: (1990) “New Materials and Designs are Improving AO Devices”, 
Laser Focus World, Penn Well Publishing Co.

18. Cheatham, J. G.: (1987) Parametric Blade Study, FR-19425

19. Roshko, A.: (1954) On the Development of Turbulent Wakes From Vortex Streets, 
NACA Report 1191.

20. von Karman, Theodore: (1911) Uber den Mechanismus des Widerstandes, den ein 
bewegter Korper in einer Flussigkeit erzeugt. Nachr. Ges. Wiss. Gottingen, Math. 
Phys. Klasse pp. 509-517 and (1912) pp. 547-556.

21. Schlichting, Hermann: (1979) Boundary-Layer Theory, McGraw-Hill Book Co., 
New York.

22. Roos, Frederick W. and Jerome T. Kegelman: (1986) Control of Coherent 
Structures in Reattaching Laminar and Turbulent Shear Layers, AIAA J., Vol. 24, 
No. 12.

23. Roussopoulos, Kimon: (1993) Feedback Control of Vortex Shedding at Low 
Reynolds Numbers, J. Fluid Meeh., Vol. 248.



59

24. Monkewitz, P. A.: (1989) Feedback Control of Global Oscillations in Fluid
Systems, AIAA Paper 89-0991.

25. Hussain, A. K, M. F. and V Ramjee: (1976) Periodic Wake Behind a Circular 
Cylinder at Low Reynolds Numbers, Aeronautical Quarterly, May



David Bell is a graduate student at the University of Dayton in the Mechanical & 

Aerospace Engineering Department and will graduate December 1993. Prior to attending 

UD, he obtained his bachelors degree in Aerospace Engineering at the Florida Institute 

of Technology in 1992. There he developed a passion for flying and went on to obtain 

flight training from the F.I.T. School of Aeronautics. As an undergraduate he developed 

a relationship with Dr. Mike Brendel at F.I.T., later meeting up with him again at UD. 

David has acquired a background in wind tunnel experience covering subsonic, transonic, 

and supersonic flows. Although his academics contained a concentration of fluid 

dynamics, David’s immediate goal is to work with wind tunnel testing or in the flight test 

engineering field, Other achievements include obtaining an A.S. degree from Tampa’s 

Hillsborough Community College in Architectural/Engineering Technology (1983) and 

presenting a paper at the 1993 AIAA Dayton-Cincinnati Section Mini-Symposium. While 

living in Tampa and Orlando for 28 years, David met his wife Karen and married in 

1989. David will be employed by the Boeing Commercial Airplane Group in Seattle, 

WA.

60


