
HARDWARE IMPLEMENTATION OF A VARIABLE COEFFICIENT FINITE
IMPULSE RESPONSE FILTER USED IN AUDIO PROCESSING

Thesis

Submitted to

The School of Engineering

UNIVERSITY OF DAYTON

In Partial Fulfillment of the Requirements for

The Degree

Master of Science in Electrical Engineering

By

Eric John Balster

UNIVERSITY OF DAYTON

Dayton, Ohio

May 2000

HARDWARE IMPLEMENTATION OF A VARIABLE COEFFICIENT FINITE
IMPULSE RESPONSE FILTER USED IN AUDIO PROCESSING

APPROVED BY:

Dr. F. A. Scarfeigb, Professor
Electrical and Computer Engineering
University of Dayton
Committee Chairman

Dr. R. C. Hardie, Associate Professor
Electrical and Computer Engineering
University of Dayton
Committee Member

Dr. W. W. Smari, Assistant Professor
Electrical and Computer Engineering
University of Dayton
Committee Member

Dr. D. L. Moon, Associate Dean
Graduate Engineering and Research
University of Dayton

Dr. B. E. Cherrington, Ckean
School of Engineering
University of Dayton

ii

©Copyright by

Eric John Balster

All rights reserved

2000

ABSTRACT

HARDWARE IMPLEMENTATION OF A VARIABLE COEFFICIENT FINITE

IMPULSE RESPONSE FILTER USED IN AUDIO PROCESSING

Name: Balster, Eric, J.
University of Dayton, 2000

Advisor: Dr. F. A. Scarpino

The graphic equalizer has been a component of audio enhancement for many

years. A typical equalizer has several active analog filters working in parallel to break up

the input music into various frequency components. The user adjusts these signal

component amplitudes, and the adjusted signal components are summed to create the

equalized output signal. In this way, the user of the graphic equalizer may dynamically

change the quality of music listening.

However, many problems exist in the areas of analog filtering and traditional

equalizer design. Imprecise analog component values and tolerances give variance in

cutoff frequencies, which may produce an undesired audio output. Also, electrical noise

may disturb the analog signals and create unwanted tones in the adjusted output signal.

Digital filtering, however, is more precise in frequency cutoffs and electrical

noise no longer becomes a problem. Also, only one digital filter needs to be designed to

replace the functionality of the many analog filters used in traditional graphic equalizers.

If a digital filter can vary its coefficient values, then it can be reconfigured to produce any

frequency response desired. The dynamic nature of a digital filter with variable

iii

coefficients enables it to replace the many analog filters used in traditional equalizer

design.

Most digital filters designed today are software programs that cannot operate

without the use of a personal computer (PC), and many of these designs cannot operate in

real time. These software digital filters must have the audio signal sampled, digitized,

and downloaded into the computer’s disk space. The software then calculates the desired

output. Only after computation can the user listen to the filtered output.

Therefore, for a digital equalizer to become practical in the audio enhancement

industry, it must be developed in hardware for a real time application. That is, there must

exist minimal delay between the unfiltered input audio and the equalized audio output.

This body of work is the development of a real-time hardware digital audio equalizer.

The equalizer is made up of one digital filter with variable coefficient values.

The variable coefficient digital filter designed in this body of work receives its

coefficient values from the serial port of a personal computer, and the coefficient values

of the filter can be modified dynamically at any time by the user. In this way, the user

can modify the frequency response of the filter to change the sound quality of music

listening.

iv

ACKNOWLEDGMENTS

I sincerely thank my advisor Dr. Frank Scarpino for introducing me to the art of

advanced digital design and signal processing. His vast expertise and guidance enabled

me to overcome many obstacles throughout the design and implementation of this effort.

I also would like to thank him for his professional advice and guidance throughout my

graduate and undergraduate years. I would like to thank Dr. Russell Hardie and Dr.

Waleed Smari for reviewing this thesis.

I also thank both my parents for their love and support throughout my life and

education. They have truly been both role models and advice givers throughout my

important life decisions.

v

TABLE OF CONTENTS

ABSTRACT...iii

ACKNOWLEDGMENTS..v

LIST OF FIGURES... viii

LIST OF TABLES...xii

INTRODUCTION... 1

CHAPTER

1. SAMPLING OF AN ANALOG SIGNAL.. 3

Discretizing
Digital Frequency
Sampling

2. FIR FILTER DESIGN OVERVIEW.. 7

Moving Average Filters
Ideal Filter Design
Windowing Filter Design
Equalizer Design
Linear Phase

3. HARDWARE ARCHITECTURE DEVELOPMENT OF FIR
FILTER COMPONENTS.. 24

Ripple Addition
Two’s Complement Binary Representation
Automatic Sign Extension
Serialized Multiplication
Signed Multiplication

4. HARDWARE ARCHITECTURE DEVELOPMENT OF AN
HR FILTER...41

Folding

vi

Multiplication Multiplexing
Data Width Minimization
System Clock Calculation

5. SERIALIZED LOADING OF FILTER COEFFICIENTS
THROUGH THE PC SERIAL PORT.. 50

The UART Communication Port Receiver
Edge Detection for Loading Coefficients
Serial Port Communication Software Development

6. ANALOG-TO-DIGITAL, DIGITAL-TO-ANALOG INTERFACE
ISSUES AND PRINTED CIRCUIT BOARD FABRICATION...........61

Development of an A/D Controller
Complementary Two’s Complement Representation for D/A Converter
Development of a Printed Circuit Board

7. MATHEMATICAL, SIMULATED, AND EXPERIMENTAL
RESULTS OF FILITER PERFORMANCE...72

SIMULINK Model for an FIR Filter
Step Responses of Various Filters
Frequency Response of an Audio Equalizer

8. CONCLUSIONS AND FUTURE WORK... 88

APPENDICIES

Appendix A...91

Appendix B...94

Appendix C..98

Appendix D... 101

BIBLIOGRAPHY.. Ill

vii

LIST OF FIGURES

1. 1 -1: Analog and Discrete Sinusoids.. 3

2. 1-2: Sinusoid Sampled Below the Nyquist Rate... 5

3. 2-1: Five-Tap FIR Filter Architecture...7

4. 2-2: Impulse Response of a Five Tap Moving Average Filter..................... 9

5. 2-3: Frequency Response of a Five Tap Moving Average Filter.................... 10

6. 2-4: Frequency Response of an Ideal Low-Pass Filter....................................11

7. 2-5: Impulse Response of an Ideal Low-Pass Filter...................................... 12

8. 2-6: Impulse Response of a modified Low-Pass Filter.................................. 13

9. 2-7: Frequency Response of a modified Low-Pass Filter............................. 14

10. 2-8: Frequency Response of a LPF with Hamming Coefficients................. 16

11. 2-9: dB Plots of Hamming and Rectangular Window Frequency Responses

.. 17

12. 2-10: Kaiser, Hamming, and Rectangular Window Frequency Responses.. 18

13. 2-11: Equalizer Filters’ Frequency Responses.. 20

14. 2-12: Equalizer Frequency Response.. 21

15. 2-13: Impulse Responses of Equalizer Filters, and Equalizer Coefficients.. 22

16. 3-1: Logic Diagram of a 1-Bit Full Adder...25

17. 3-2: AHDL Design for implementing a 1-Bit Full Adder........................... 26

18. 3-3: Simulation Results of a 1-Bit Full Adder...26

viii

19. 3-4: Logic Diagram of a 4-bit Ripple Adder... 27

20. 3-5: Ripple Adder Results From Two’s Complement Addition.................. 28

21. 3-6: Ripple Addition of Two Positive, and Two Negative Numbers...........29

22. 3-7: Logic Diagram of the Automatic Sign Extension................................ 30

23. 3-8: AHDL design of an 8-bit Ripple Adder With Automatic Sign Extension

.. 31

24. 3-9: Altera Simulation Results of the AHDL 8-bit Ripple Adder............... 31

25.3- 10: Multiplication of Decimal and Binary Numbers................................ 33

26. 3-11: Architecture of a Serial Multiplier... 34

27. 3-12: 8-Bit Signed Multiplication of Two Large Positive Binary Numbers

..36

28. 3-13: AHDL Design of a 9-Bit Serial Multiplier...38

29. 3-14: Altera Simulation Results of a 9-Bit Serial Multiplier....................... 40

30. 4-1: Folded FIR Filter Architecture.. 42

31.4- 2: FIR Filter Architecture With Time Multiplexed Multiplication.......... 44

32. 4-3: FIR Filter Data Widths.. 45

33. 4-4: Architecture of the FIR Filter’s Final Addition Stage............................46

34. 4-5: Final Addition Stage of the FIR Filter Truncated to a 16-Bit Output... 47

35. 5-1: Serial Bit Stream for the Number 5.. 51

36. 5-2: Architecture of the UART Receiver... 52

37. 5-3: AHDL Design of the UART Receiver.. 54

38. 5-4: Altera Simulation Results of the UART Receiver............................... 55

39. 5-5: Edge Detection Logic for FIR Filter Coefficient Shifting.................... 56

ix

40. 5-6: AHDL Design for Coefficient Values and Shifting............................. 57

41. 5-7: Altera Simulation Results of the Edge Detection and Coefficient Shifting

.. 57

42. 5-8: .deb Settings for the Serial Port.. 59

43. 6-1: A/D Converter Input Controls Timing Diagram................................... 62

44. 6-2: AHDL Design of the A/D Controller.. 64

45. 6-3: Altera Simulation Results of the A/D Controller................................. 65

46. 6-4: Further Simulation Results of the A/D Controller.............................. 65

47. 6-5: Timing Results of the A/D Controller and Data Loading................... 66

48. 6-6: Input/Output of the D/A Converter.. 67

49. 6-7: Complementary Two’s Complement Representation Generation....... 68

50. 6-8: FIR Filter Printed Circuit Board Architecture...................................... 70

51.6-9: Variable Coefficient FIR Filter Processing Board............................... 71

52. 7-1: Simulink Model of a 27-Tap FIR Filter.. 73

53. 7-2: Simulink Step Response of an FIR Low-Pass filter.............................. 76

54. 7-3: Altera Simulation Results of the Serial Loading of Filter Coefficients

.. 76

55. 7-4: Altera Simulation Step Response of the Low-Pass Filter.................... 77

56. 7-5: Hardware FIR Filter Step Response with Low-Pass Filter Coefficients

.. 78

57. 7-6: Simulink Step Response of an FIR High-Pass Filter............................ 79

58. 7-7: Altera Simulation Step Response of the High-Pass Filter.................... 80

x

59. 7-8: Hardware FIR Filter Sep Response with High-Pass Filter Coefficients

.. 81

60. 7-9: Low-Pass Filtering of a Square Wave by the FIR Filter...................... 82

61.7-10: High-Pass Filtering of a Square Wave by the FIR Filter.................... 83

62. 7-11: Equalizer Frequency Response...85

63. 7-12: Altera Simulation of an FIR Filter Sweep Response With Equalizer

Coefficients...86

64. 7-13: Hardware FIR Filter Equalizer Frequency Response......................... 87

xi

LIST OF TABLES

1. 2-1: Analog Cutoff Frequencies in an Audio Equalizer............................... 19

2. 2-2: Digital Cutoff Frequencies in an Audio Equalizer................................ 20

3. 3-1: Truth Table for a 1 -Bit Full Adder... 25

4. 3-2: Binary and Two’s Complement Representation of Numbers.................28

5. 3-3: Truth Table for the Automatic Sign Extension...................................... 29

6. 3-4: Serial Multiplier Process.. 34

7. 6-1: Two’s Complement Representation vs. Complementary Two’s

Complement Representation of Numbers... 68

8. 6-2: Necessary Components for the Development of the FIR Filter........... 69

9. 7-1: Kaiser Window Low-Pass Filter Coefficients Used in Performance

Analysis.. 75

10. 7-2: Kaiser Window High-Pass Filter Coefficients Used in Performance

Analysis.. 79

11. 7-3: Audio Equalizer Coefficient Values..84

xii

INTRODUCTION

The hardware development of a 27-tap, 8-bit wide variable coefficient finite

impulse response (FIR) filter has been designed, implemented, and demonstrated. The

hardware implementation of this type of filter is used for real-time audio enhancement.

Most audio equalizers today are comprised of a parallel combination of analog filters.

The implementation of a variable coefficient FIR filter can replace the analog filters of

traditional audio equalizers. Also, the dynamic nature of variable coefficients allows the

user to change the frequency response of the filter, thus changing the quality of music

listening.

The coefficient values of the filter are loaded into the hardware through the serial

port of a personal computer. The software necessary for the coefficient loading on a

Microsoft NT, 95, or 98 operating system is designed, implemented, and demonstrated.

The coefficients are loaded serially through a COM port cable and converted to a parallel

data word by a UART (Universal Asynchronous Receiver/Transmitter) receiver.

The hardware development of the UART receiver is designed, implemented, and

demonstrated. The UART receiver sends an interrupt signal to the hardware FIR filter

after converting a serial data stream to a parallel data word. The FIR filter acknowledges

the interrupt signal and shifts the new coefficient value into the filter.

1

These coefficient values are used to filter digital input data from an audio source

such as a CD player or Radio. The audio signal is applied to the filter, and the output of

the filter is sent to an amplifier and on to a speaker. Depending on the filter coefficients,

the filter can be adjusted to one of a virtually limitless number of frequency responses.

The result is a dynamically adjustable digital audio equalizer used for audio

enhancement.

2

CHAPTER 1

SAMPLING OF AN ANALOG SIGNAL

In order for an analog signal to be processed digitally, it must first be converted

into a digital signal. This is accomplished by sampling and digitizing the analog signal.

The sampling of an analog signal is given by:

%j(n) = xc(nTv), (1.1)

where xd is the sampled discrete signal, xc is the original continuous signal, Ts is the

sampling period, and n is an integer. Figure 1-1 shows an analog and discrete sine wave.

Analog and Discrete Sinusoids

-1.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1-1 — Analog and Discrete Sinusoids

3

The analog sinusoid is continuous and therefore exists for all time. The discrete sinusoid,

however, is not continuous but only exists for integer values n. This discrete sinusoid can

then be digitized into an array of values for processing by a digital computer. Equation

1.2 shows a digitized sinusoid.

y(n)=[... -0.9868,-0.8835,-0.4199,0.2150,0.7622,0.9985,0.8277 ...]. (1.2)

For an analog signal to be processed digitally, it must first be converted into an array of

numerical values by sampling and digitizing. This process is referred to as analog-to-

digital conversion.

The Nyquist sampling theorem states that any input signal must be sampled at

least twice its maximum frequency content for no information to be lost. In other words,

if an analog signal is band limited to 5 kHz, the sampling frequency of that signal must be

at least 10 kHz. The Nyquist sampling theorem is given in Equation 1.3.

Z,-2/max, (1.3)

where fs is the sampling frequency and /max is the maximum frequency content of the

sampled signal. The Nyquist theorem states that if a signal is sampled at or above fs, it

can be reconstructed with no information lost. The maximum frequency content of the

sampled signal is generally referred to as the Nyquist frequency, and the sampling

frequency is referred to as the Nyquist rate. The Nyquist theory is covered in more detail

in (2)Oppenheim and Schafer, p. 146.

However, if a signal is sampled below the Nyquist rate, aliasing occurs. Figure 1-

2 shows an example of an aliased signal.

4

Sinusoid sampled below the Nyquist Rate

Figure 1-2 — Sinusoid Sampled Below the Nyquist Rate

From Figure 1-2, it is readily seen that sampling a signal below the Nyquist rate will

cause aliasing.

After the signal has been discretized, it can now be represented as a sequence of

numbers as shown in Figure 1-1. This sequence has frequency content much like its

analog signal counterpart. However, because it has been sampled, the original frequency

of the signal has been lost. A digital frequency eo is defined as:

Q „ f
= 2f' (I-4)

J s J s

5

where £2 is the frequency of the analog signal, and fs is the sampling rate. Because the

maximum frequency that can be sampled without aliasing is equal to one half the

sampling frequency, the maximum digital frequency allowed is calculated.

^max =
a<T»

(1.5)— TC.

Digital frequencies always range between - n and n; co = 0 is DC and co = n is the

maximum digital frequency.

Conversely, the analog frequency that corresponds to the digitally frequency must

sometimes be calculated. Taking Equation 1.4 and solving for / the equation becomes:

(1.6)

where f is the analog frequency of the signal, co is the digital frequency, and f is the

sampling frequency.

6

CHAPTER 2

FIR FILTER DESIGN OVERVIEW

An FIR (Finite Impulse Response) filter is constructed by producing a weighted

sum of input samples at the output. As a waveform is input into the system it is first

sampled and digitized, then many samples of the waveform are multiplied by their

respective coefficients and summed together to produce a desired output. Figure 2-1

shows a block diagram of a simple FIR filter.

Sample and
Digitize

Analog Output Signal

Figure 2-1 — Five Tap FIR Filter Architecture

7

The Weighted Coefficients of the filter are calculated to pass or attenuate certain

frequencies associated with the input signal. The equation that describes an FIR filter is

given by:

y(«) = ...+ C2x(n + 2) + CjX(n +1) + Cox(/f) + C_,x(zr -1) + C_2x(« - 2) + ...(2.1)

Equation 2.1 is the Linear Constant Coefficient Difference Equation (LCCDE) of an FIR

filter and fully describes the system.

Moving Average Filter:

A specific type of FIR filter is the Moving Average Filter. This filter’s

coefficients are all equal, thus averaging the input signal samples. The LCCDE of a 5-tap

Moving Average Filter is given by:

(2.2)

The behavior of this filter can be analyzed by calculating the impulse response of the

system. The impulse response of the five-tap Moving Average Filter is easily calculated

by inputting a delta function as the input waveform. The impulse response of a five-tap

moving average filter is given by:

A(n) = — [£(n + 2) + 8(n +1) + £(rc) + £(« -1) + S(n - 2)]. (2.3)

Figure 2-2 displays the impulse response of the filter.

8

Impulse Response of a 5-tap Moving Axerage Filter

Figure 2-2 — Impulse Response of a Five Tap Moving Averaage Filter

The impulse response of a linear system gives great insight into the behavior of the

system. In fact, with the impulse response of a linear system, the output of the system

due to any input is completely predictable.

In filter analysis, it is often beneficial to obtain the frequency response of the

system. The frequency response of a system is calculated by taking the Discrete-Time

Fourier Transform (DTFT) of the impulse response. The DTFT of a signal is given by:

X(a>)=Yx(n'>e~Jm' ■ <2-4)
n——oo

Because the moving average filter only has five taps, the variable n only sums from -2 to

2. Therefore, the frequency response of the moving average filter is given by:

= + . (2.5)

9

Equation 2.5 may be further simplified by utilizing Euler’s equation. The frequency

response of the 5-tap moving average filter is:

1 2 2 H(o/) = — + ycos(2ry)+ ycos(6?) (2.6)

Plotting the frequency response of the filter gives further insight to its behavior. Figure

2-3 shows the frequency response of the moving average filter.

Frequency Response of a 5-tap Moving Average Filter

-3-2-1 0 1 2 3
frequency(to)

Figure 2-3 — Frequency Response of a 5-Tap Moving Average Filter

It is easily seen that this type of filter attenuates higher frequencies while passing the

lower frequencies with approximate unity gain. Also, from Equation 2.6 it is readily seen

that the frequency response of this filter is purely real. However, many filters have

frequency responses that have both real and imaginary parts. Therefore, most frequency

responses are plotted by their magnitudes and phases. The magnitude response of the

system is of most importance, and the phase response of the system will be discussed

later.

10

Windowing Filter Design

For the majority of filter designs, a particular frequency response is desired, and

the filter’s LCCDE is then calculated. This design method is referred to as windowing.

For example, a filter is to be implemented that will pass all signal frequencies from 0 to

71— radians/sample; all other frequencies are to be attenuated. Figure 2-4 gives the ideal

frequency response of the system.

Figure 2-4 — Frequency Response of an Ideal Low-Pass Filter

Now that the frequency response has been determined, the impulse response of the low-

pass filter (LPF) can be determined, by taking the Inverse Discrete Time Fourier

Transform (IDTFT) of the frequency response. The IDTFT of a signal is given by:

4«) dco. (2.7)

The impulse response of the filter is then:

11

71

4

(2.8)

The limits of the integral are changed because the integral is non-zero from the interval

71 71---- to —. Also, in this interval, the value of H(co) is one. Equation 2.8 can be further
4 4

simplified by Euler’s equation. The frequency response of the ideal filter is given by:

A(«) =—sin(—), ntQ
7tti 4

= - , n = 0 . (2.9)
4

However, by plotting the impulse response of the ideal LPF, some difficulties are found.

Figure 2-5 shows the impulse response of the ideal LPF.

Figure 2-5 — Impulse Response of an Ideal Low-Pass Filter

12

This impulse response is problematic because it is infinitely long, thus requiring an

infinite number of filter taps. However, the value of the function does decrease as n goes

to infinity, so the impulse response of the filter may be truncated at a certain value of n.

Also, the impulse response of the system starts before time n=0. This means that the

system starts reacting to the impulse before the impulse is input into the system! This

type of system is referred to as a non-causal system.

Truncating the impulse response, and then shifting the response to the right can

combat both of these problems. The modified impulse response of the system is

displayed in Figure 2-6.

Figure 2-6 — Impulse Response of a modified Low-Pass Filter

As shown in the example of the moving average filter, the impulse response values are

equal to the tap coefficients for the filter. Therefore, if the impulse response of a system

has 21 different values (as the one in Figure 2-6), then the filter must have 21 taps. This

13

Frequency Response of modified LPF

-3-2-1 0 1 2 3
frequency(co)

is called the filter length. However, truncating and shifting the impulse response of the

system does affect the performance of the filter. For the modified filter in Figure 2-6, the

frequency response is shown in Figure 2-7.

1.2

1

0.8

1 0.6
I

0.4

0.2

0

Figure 2-7 — Frequency Response of the Modified Low-Pass Filter

It is readily seen that the frequencies in the pass-band are not all passed with unity gain,

and the frequencies in the stop-band are not completely attenuated. Therefore, an ideal

filter is not physically realizable, but the frequency response of a real system can come

arbitrarily close to an ideal response, depending on the filter length.

By determining the ideal frequency response of a system, the ideal impulse

response is found. The ideal impulse response is then truncated and shifted to become

the impulse response of the system and the coefficient values of the filter. Appendix A

contains derivations for the ideal impulse responses for low'-pass, high-pass, band-pass,

and band-stop filters.

14

Other windowing methods:

The rectangular windowing method of designing FIR filters is good for

calculating the correct frequencies in the pass and stop bands, but as seen in Figure 2-7

the result from truncating and shifting the coefficients can be undesirable. Therefore,

other methods of windowing have been developed to eliminate the unwanted pass-band

ripples, and further attenuate the stop-band. One windowing method is the Hamming

window. The Hamming window is definied as:

w(n) = 0.54 - 0.46 cos(-—^-), n = 0,1,..., N -1. (2.10)
TV — 1

The Hamming window and rectangular window coefficients are multiplied together to

calculate the new coefficients of the filter. The coefficients for a Hamming window filter

are given by:

h(ri) = w(n)d(n-M) , (2.11)

where d is an array of rectangular window coefficients, and M is half the filter length.

Applying the Hamming window coefficients to the rectangular low-pass filter given in

Figures 2-6 and 2-7, gives the frequency response a smoother characteristic. The

Hamming window is given in (3)Orfanidis, p. 549. Figure 2-8 shows the frequency

response of the FIR filter with Hamming window coefficients.

15

1.2
Hamming and Rectangular Windowing Performance

Hamming Window
Rectangular Window

0.8

3. 0.6
x

0.4

0.2

-2 -1 0 1
frequency(co)

1I u,/ \. f I r-./i ..li.

\ '
i '

Figure 2-8 — Frequency Response of a LPF with Hamming Coefficients

Figure 2-8 clearly shows that the Hamming coefficients serve as a better filter than the

rectangular coefficients. The pass-band ripple is almost completely eliminated. Also, if

the frequency responses of the two filters are plotted on a dB (decibel) axis, the stop-band

attenuation of both the filters can be analyzed. Figure 2-9 shows a dB plot of the two

frequency responses.

16

Hamming and Rectangular Windowing Performance

0 -

-20 -

-40 -

-60 -

,,

-80
1

/ 1
i 1 f

1 1 ‘

-100 _ ». 1 II
H
I'

-120
if

z'A I'
1 V

-140
J 1 $

-160

-180

-200

1

i ii i.■' 11 11'i 11 ii
H II

./.a, a; ! g;1
w w u i r

» I * ,-A

-2-1 0 1
frequency(w)

Rectangular Window
Hamming Window

h ’l ‘I ,1 I, >i > ' j
i Vi « i W

i, 1 ■. H1 i

I; l

Figure 2-9 — dB Plots of Hamming and Rectangular Window Frequency Responses

As seen in Figure 2-9, a Hamming window filter attenuates the stop-band by

approximately 40 dB more than the Rectangular Window with the same number of taps.

Because of its flat pass-band, and greater attenuation of the stop-band, the Hamming

window filter is chosen almost exclusively over the Rectangular window filter.

However, another popular windowing method further exceeds the Hamming

window filter’s performance. The Kaiser window method is applied like the Hamming

window method in that the coefficients are multiplied by the Rectangular window

coefficients. The Kaiser Window is defined as:

w(zi)
/„(«)

(2.12)

17

where I() is the modified Bessel function of the first kind and 0th order, and alpha is

approximately equal to 7. The Kaiser window design is found in (SjOrfanidis, p. 553.

When applying the Kaiser window coefficients to the rectangular window coefficients,

the frequency response is drastically improved. Figure 2-10 shows the LPF frequency

response with all three types of filter coefficients.

Kaiser Window Performance vs. Hamming and Rectangular Windowing

frequency(w)

Figure 2-10 - Kaiser, Hamming, and Rectangular Window Frequency Responses

As seen in Figure 2-10, the Kaiser window is the best method for calculation of FIR filter

coefficients. Appendix B contains Matlab software that calculates Rectangular,

Hamming, and Kaiser Window coefficients for FIR filter design.

Equalization:

An audio equalizer is easily developed from windowing filter designs. An

equalizer is comprised of a low-pass filter, high-pass filter, and several band-pass filters.

18

These types of filters are easily designed with the windowing methods described above.

The Kaiser windowing method is chosen because of its maximally flat pass-band, and

great attenuation in the stop band. A three-band equalizer is developed.

The final implementation of the hardware FIR filter is a 27-tap filter. Therefore,

when designing the filter with the Matlab software, only 27 taps are chosen. First, the

cutoff frequencies of the filters are to be chosen. Keeping in mind that the ear is

logarithmically sensitive to frequency, the frequencies given in Table 2-1 are chosen.

Table 2-1 — Analog Cutoff Frequencies in an Audio Equalizer

Filter Type Low-Frequency
Cutoff

High-Frequency
Cutoff

Low-Pass 0 Hz 2000 Hz
Band-Pass 2000 Hz 5000 Hz
High-Pass 5000 Hz 22050 Hz

The high-pass filter only passes to 22050 Hz because the filter’s sampling rate has been

chosen to be 44100 Hz, the same sampling rate as CD (Compact Disk) players. And the

largest frequency possible in digital process is up to one half the sampling rate as shown

in Equation 1.3. The analog cutoff frequencies have been chosen, but the digital

frequencies need to be calculated before any design work can begin. A digital frequency

is calculated by Equation 1.4, and the digital cutoff frequencies of this design are given in

Table 2-2.

19

Table 2-2 — Digital Cutoff Frequencies in an Audio Equalizer

Filter Type Low-Frequency
Cutoff

High-Frequency
Cutoff

Low-Pass 0 0.284952
Band-Pass 0.284952 0.712379
High-Pass 0.712379 n

Using the Matlab software given in Appendix B, the design of the audio equalizer is very

straightforward. The cutoff frequencies are given as well as the filter length, and the

filter tap coefficients are given. Figure 2-11 gives the frequency responses of the filters

used in the equalizer.

frequency(w)

Figure 2-11 — Equalizer Filters’ Frequency Responses

To produce the desired frequency response, the scaling factors are then multiplied by the

impulse responses of the respective filters. For this equalizer design, the low frequency

response will be boosted by a factor of three, and the high frequency response will be

20

boosted by a factor of two. These impulse responses can then be added together to form

the coefficient values of the filter. The coefficient values of the equalizer are given by:

£(«) = 3 * L(«) + Bp («) + 2 *//(«), (2.13)

where L(«) is the low-pass filter coefficients, Bp («) is the band-pass filter coefficients,

and H(n) is the high-pass filter coefficients. Figure 2-12 shows the frequency response

of the equalizer.

frequency(co)

Figure 2-12 — Equalizer Frequency Response

As seen from Figure 2-12, the low-frequency gain is approximately equal to three, the

mid-frequency gain is approximately equal to unity, and the high frequency gain is

approximately equal to two.

21

As said previously, the coefficient values of the filter were calculated by a

weighted sum of the three filter impulse responses. Figure 2-13 gives the impulse

responses of the three filters, and the impulse response of the equalizer.

Figure 2-13 — Impulse Responses of Equalizer Filters, and Equalizer Coefficients

time(n)

time(n)

As seen from Figure 2-13, the equalizer coefficients are generated by a weighted sum of

low-pass, band-pass, and high-pass filter coefficient values.

Equalization is a good way to develop a desired frequency response. First, the

filters’ cutoff frequencies are established. Then, the windowing filter coefficients for

each of the filters are calculated. After the filter coefficients have been determined, each

filter’s coefficients are multiplied by a gain value determined by the designer. Then all of

22

the filter coefficients are added together to form the final coefficient values of the

equalizer.

Linear Phase:

Phase distortion is often a problem with most filter designs. However, if a filter

has a linear phase response, then the output signal phase is not distorted at all. The only

filter with linear phase is an FIR filter.

However, not all FIR filters have linear phase. In order for an FIR filter to have

linear phase, its impulse response must be symmetric about some point. Figure 2-6

shows an impulse response of an FIR filter with linear phase.

Linear phase is equivalent to a pure delay of the input signal. Therefore, when

using and FIR filter with symmetric taps, the filtered output signal is only delayed by a

certain amount of time. This is especially beneficial for audio processing. The output of

the FIR filter is a pure amplitude scaling of certain frequency components. Phase

distortion is not a concern. All of the windowing designs discussed in this chapter are

linear phase designs.

23

CHAPTER 3

HARDWARE ARCHITECTURE DEVELOPMENT OF FIR FILTER COMPONENTS

The basic architecture of an FIR filter is given in figure 2-1. From figure 2-1, it is

shown that an FIR filter is comprised of an array of additions and multiplications. Both

of these processes are accomplished in hardware using AHDL (Altera Hardware

Description Language).

Ripple Addition:

The ripple adder is the simplest method of addition implemented in hardware.

However, the price to pay for the simple architecture of the ripple adder is that of latency.

Ripple adders, as given in their name, ripple the carry output from the least significant bit

to the most significant bit creating large gate delays. Most audio signals are sampled at a

rate many magnitudes slower than modern digital systems’ clock speeds. For example,

CD (Compact Disk) quality music is sampled at a rate of 44.1 kHz, the same sampling

rate of the filter in this design, and the maximum clock speeds of most FPGA (Field

Programmable Gate Array) devices are approximately 50 MHz. Therefore, long gate

delays from the ripple adders are not a foreseeable problem.

The 1 -bit full adder can be created using a truth table design. The truth table and

logic design of the 1 -bit full adder can be found in (5)Scarpino, p. 11. Three inputs are

24

used; the two variables A and B, and the carry input Cin. The outputs are the sum of the

inputs 5 and a carry output Coat. The truth table for the 1 -bit adder is given in Table 3-1.

Table 3-1 — Truth Table for a 1-Bit Full Adder

A B Cin s Coiit
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

From the truth table given in Table 3-1, it is determined that the output sum S is

determined by the exclusive or of the three input terms. That is, the output 5 is equal to 1

only when an odd number of the input terms is equal to one.

The carry out term of the 1 -bit full adder is equal to one when two or more of the

input terms are equal to 1. Therefore, the logic diagram for a one bit full adder is given

in figure 1.

Figure 3-1 — Logic Diagram of a 1-Bit Full Adder

The AHDL code for implementing the one-bit full adder is given in Figure 3-2.

25

:Input;
:Output;

1 Subdesign 'adder'
2 (
3 Cin, A, B
4 S, Co
5)
6 Variable
7 Temp :Node;
8 Begin
9 Temp = A xor B;
10 % Create Sum Term %
11 S = Cin xor Temp;
12 % Create Carry Out Term %
13 Co = (A and B) or (Cin and Temp);
14 End;

Figure 3-2 - AHDL Design for implementing a 1 -Bit full adder

Lines 1 through 5 of Figure 3-2 declare all of the I/O of the full adder. Lines 6 and 7 give

any signals that are not inputs or outputs. And lines 9 through 13 give the logic necessary

for the creation of a one-bit full adder. Note that variable Temp is a node that is neither

an input or output. It is relatively easy to see that the logic in the AHDL code given in

Figure 3-2 exactly matches the logic diagram given in Figure 3-1.

A simulation of the one-bit full adder AHDL code is run to verify the validity of the

design. Figure 3-3 gives the simulation results of the AHDL code given in Figure 3-2.

50.8ns 101.6ns 152.4ns 203.2ns 254.0ns 304.8ns 355.6n---1______ I______ I_______L— . . i . i 1 _
A 0 ------- 1------- 1---- —1 1 l - 1 1
B 0 1 L J—

Cin 1 _| 1 1 L J 1 1
-O S 0 i 1 r

Co 0

Figure 3-3 — Simulation Results of a 1 -Bit Full Adder

The simulation results show that the one-bit full adder functions exactly as the truth table

in Table 3-1 states.

26

A ripple adder can be created by linking a number of one-bit full adders together

and attaching the carry output of the lower bit adder to the carry input of the higher order

bit. The Logic Structure of a four-bit ripple adder is given in figure 3-4.

A3 A2 Al AO

S4 S3 S2 SI SO

Figure 3-4 — Logic Diagram of a 4-bit Ripple Adder

As seen in Figure 3-4, an adder of any bit width can be designed by linking together a

number of one-bit full adders. However, as also seen in Figure 3-4, the output of the

ripple adder is potentially one bit larger than the input values. This becomes a problem

when dealing with signed addition.

The two’s complement representation of negative numbers is the standard in

digital arithmetic. A negative number, in two’s complement notation, is equivalent to the

positive binary representation of the number negated and added to one. This

representation will produce the correct sum when adding both negative and positive

numbers. Table 3-2 gives the two’s complement representation of several negative

numbers.

27

Table 3-2 — Binary and Two’s Complement Representation of Numbers

Positive Number Binary
Representation

Negative Number Two’s Complement
Binary Rep.

1 00000001 -1 11111111
2 00000010 -2 11111110
3 00000011 -3 11111101
5 00000101 -5 11111011
10 00001010 -10 11110110

In Table 3-2, eight-bit binary representation is used. This data length is used for

illustration, and many different data lengths are used in the final AHDL application of the

FIR filter.

The problem with addition of negative and positive number comes with the value

of the most significant bit at the output. For example, the addition of 5 and -3 is 2.

However, figure 3-5 gives the result when the ripple adder is used:

5 0101
<S___ + 1101

-14 10010

Figure 3-5 — Ripple Adder Results From Two’s Complement Addition

As seen in Figure 3-5, the ripple adder produces a -14 as the sum. This result comes

because of the carry output of the most significant adder. Noticing when a situation like

this will occur can combat this problem. When two positive numbers are added together,

the most significant digits of the two addends by definition are zero. Therefore, when the

addition takes place, the rippling of the adder will never reach the most significant digit

of the sum. Conversely, when two negative numbers are added together, the most

28

significant digits of the addends by definition are one. The addition of these two

arguments is necessarily going to generate a carry output of one. Figure 3-6 exhibits the

addition of two positive and two negative numbers.

5 0101
+3 + 0011
8 01000

-5 1011
<3 + 1101
-8 11000

Figure 3-6 — Ripple Addition of Two Positive, and Two Negative Numbers

From Figure 3-6, it is obvious that the ripple error in addition only occurs when adding

one positive and one negative number. However, when adding one positive and one

negative number, the magnitude of the result is always less than the greater of the

addends’ magnitudes. Therefore, a sign extension is not necessary. This valuable

information is used to create an automatic sign extension to ripple adders. Table 3-3

shows a truth table for an automatic sign extension to an N-bit ripple adder.

Table 3-3 — Truth Table For the Automatic Sign Extension.

An(MSB) Bn(MSB) SN+i(ExtendedBit)
HEMmm
mHH
HHHH

As seen from Table 3-3 and Figure 3-5, the extended sign bit should equal the next most

significant bit of the output of the ripple adder when the signs of the addends differ.

Figure 3-7 shows the logic diagram of the automatic sign extension.

29

Vcc

Figure 3-7 — Logic Diagram of the Automatic Sign Extension

The AHDL implementation of the automatic sign extension is used in all of the adders

used in the design of the FIR filter. The AHDL code for the design of an 8-bit adder is

given in Figure 3-8.

1 % 8-bit Adder %
2 include "adder.inc";
3 Subdesign 'dspadd8'
4 (
5 dataa[7..0], datab[7..0]
6 result[8..0]
7)
8
9 Variable
10 Adder8[7..0]
11
12 Begin
13 % ***** series of carry assignments
14 Adder8[0].Cin=Gnd;
15 Adder8[7..1].Cin=Adder8[6..0].co;
16
17 % ***** Addend assignments ***** %
18 Adder8[7..0].A=dataa[7..0];
19 Adder8[7..0].B=datab[7..0];
20
21 % ***** Sum assignments ***** %
22 result[7..0]=Adder8[7..0].s;

:Adder;

* * * * * %

:Input;
:Output;

30

23 % ***** create Automatic Sign Extension ***** %
24 result[8] = (dataa[7] and datab[7] and Vcc) or
25 ((not dataa[7]) and (not datab[7]) and gnd) or
26 ((dataa[7] xor datab[7]) and result[7]);
27 End;

Figure 3-8 — AHDL Design of an 8-bit Ripple Adder With Automatic Sign Extension

In the design of the 8-bit adder, the design of the one-bit full adder is included in line 2 of

Figure 3-8. The 8-bit adder is comprised of eight one bit full adders linked together, as

shown in figure 3-4. Lines 4 through 7 give the I/O declarations of the design. Lines 9

and JO create eight instances of a one-bit full adder by declaring eight variables of the

name adder, and lines 13 through 22 connect the adders to the proper I/O and to each

other in accordance with Figure 3-4. Lines 23 through 26 are the creation of the

automatic sign extension. It is easily shown that the code exactly matches the logic

diagram given in Figure 3-7.

A simulation of the 8-bit adder AHDL code is run to verify the validity of the

design. Figure 3-9 gives the simulation results of the AHDL code given in Figure 3-8.

50.8ns1 101.6ns 152.4ns 203.2ns

dataa[7 •0] D 246 10 X 5 X 0 X 251 t, 246

ew- datab[7 .0] D251 5 "3 246 X 10 X 20 X . 251

result[8 •0] D 15 15 __ JC5GL_ _____ XK _____ w_______ LTOC- 15__ O 497

Figure 3-9 — Altera Simulation Results of the AHDL 8-Bit Ripple Adder

Although it seems that the 8-bit adder is not giving the correct results, the Altera simulator

does not understand two’s complement representation. The negative numbers in the

simulation look like large positive numbers, and the results do not look correct. However,

31

the results of the adder are correct two’s complement representation sums. Also, Figure 3

9 shows the ripple delays of the adder. These delays occur from the way the adders are

linked as shown in Figure 3-4.

Many times in digital design, the designer must extend the bit-length of each of

the addends before addition to ensure that an overflow error does not occur (as shown in

Figure 3-5). However, with the implementation of the automatic sign extension to each

of the ripple adders implemented in the final design, the sum is automatically sign

extended to ensure no occurrence of an overflow condition.

Serialized Multiplication:

Multiplication can be accomplished in two distinct ways: One, with a pure

combinational structure which gives the correct output with two input arguments; and

two, with a sequential operation of additions and shifting. The process used in this

design is the latter sequential structure.

The decision to instantiate a sequential, or serial multiplier comes with the

difference in logic size. A combinational multiplier takes up much more space on logic

devices than a serial multiplier. There is a price to pay however; combinational

multipliers produce the product in one clock cycle, whereas serial multipliers take many

clock cycles to produce the product.

As said previously, the sampling rate of this filter is only 44.1 kHz. The

maximum clock rates of most programmable logic devices range from 20 to 100 MHz;

or, at worst scenario, approximately 450 operations can be accomplished per sampling

32

period. From a preliminary calculation, serialized multiplication does not seem to be a

significant problem to the success of the design.

Serial Multiplication is accomplished in much the same fashion as multiplying

two numbers by hand. Figure 3-10 shows the multiplication of numbers 12 and 13, and

how their binary equivalents can be multiplied in the same fashion.

12
x 13

36
+ 12

156

01100
x 01101

01100
00000

01100
01100

+ 00000
010011100

Figure 3-10 — Multiplication of Decimal and Binary Numbers

As seen in Figure 3-10, multiplication of binary numbers is much like multiplication of

decimals. However, there is one advantage of multiplying binary numbers. The only

numbers to multiply together are 1 and 0. This makes the process of serialized

multiplication simple. Looking again at Figure 3-7, the multiplier (top number) is either

copied or not copied to the addition stage of the multiplication, corresponding to the

value of the multiplicand (bottom number). Serial multiplication exploits this ease of

multiplying binary numbers. The logic design of the serial multiplier is given in

(^Patterson and Hennessy, p. 204, and the architecture is given in Figure 3-11.

33

Figure 3-11 — Architecture of a Serial Multiplier

The architecture of the serial multiplier operates in the same way as given in Figure 3-10.

Because the Multiplicand is either copied or not copied to be summed at the output, the

Least Significant Bit (LSB) of the Multiplier is used to determine whether the

multiplicand is added or not added to the product. The multiplier is stored in the least-

significant bits of the product to save logic space. The multiplication of the numbers 12

and 13 are further illustrated in Table 3-4.

Table 3-4 — Serial Multiplier Process

Iteration Multiplicand Product Description
0 01100 00000 01101 Look at LSB, Add
1 01100 01100 01101 Shift
2 01100 00110 00110 Look at LSB, do nothing
3 01100 00110 00110 Shift
4 01100 00011 00011 Look at LSB, Add
5 01100 01111 00011 Shift
6 01100 00111 10001 Look at LSB, Add
7 01100 10011 10001 Shift
8 01100 01001 11000 Look at LSB, do nothing
9 01100 01001 11000 Shift
10 01100 00100 11100 Result

34

Table 3-4 shows the operation of a 5-bit serial multiplier. As seen in Table 3-4, 10 clock

cycles are necessary to multiply two 5-bit numbers, and the product is a 10-bit number.

This multiplication process does not function properly with negative multiplication,

however. Therefore, before the two numbers are multiplied together, negative numbers

must be changed to positive, and the product is changed back to a negative number, if

necessary.

Serial multiplication is desired in the implementation of the FIR filter because it

requires less hardware resources then a combinational multiplier. The cost of serial

multiplication, however, is time. A 5-bit serial multiplier takes 10 clock cycles to

perform the multiplication; an 8-bit multiplier takes 16 clock cycles, etc. However, if

time-efficient multiplication is not a concern, as it is with the implementation of an audio

filter, then a serial multiplier gives the correct results with the least amount of logic gates.

Signed Multiplication;

As said previously, the serial multiplier used in this design cannot multiply

negative numbers. Therefore, the multiplier and multiplicand must first be converted to

positive numbers, multiplied, and the product is converted to a negative number if

necessary. Through this process of signed multiplication, though, the bit length of the

product is no longer equal to 2x the bit length of the multiplicand and multiplier.

Because the process is the multiplication of signed numbers, the output length is reduced

by one bit. Therefore, an 8-bit signed multiplier produces a 15-bit signed product.

Figure 3-12 shows the multiplication of 127 and 127, the largest 8-bit signed value.

35

01111111
x 01111111

01111111
01111111

01111111
01111111

01111111
01111111

01111111
00000000______=
011111100000001

Figure 3-12 - 8-Bit Signed Multiplication of Two Large Positive Binary Numbers

Figure 3-8 shows the result of multiplying the largest positive 8-bit number with itself.

The product, then, is the largest positive product of 8-bit multiplication. The product is

15-bits wide, including the sign bit.

This phenomenon occurs when multiplying signed numbers because of the

application of the sign bit. Two’s complement representation of numbers adds one bit to

the length of the word to include sign information. Therefore, both the multiplier and the

multiplicand have an extra bit added to their bit length to include sign information. In the

example of Figure 3-12, both the multiplicand and the multiplier are 7-bit numbers with

a sign bit added. Therefore, the product should be a 14-bit number with a sign bit added.

The result is a 15-bit product.

The AHDL design of the serial multiplier is given in Figure 3-13. The

multiplier used in the final design of the FIR filter is a 9-bit multiplier. The reason for

using a 9-bit serial multiplier will be discussed later.

36

1
2
3
4
5
6
7
8
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

% 9- bit Multiplier %
include "dspadd9.inc";
subdesign 'mult'
(
Clock
Mplier[8..0]
Mcand[8..0]
Result[16..0]
)

variable
% 9 bit multiplier Variables %
result[16..0]
% -------------------------------- %
Mplierbus[8..0]
Resbus[17..0]
count[4..0]
multDone
multstart
Np, Nc
Pos, Neg
Load, shift
add
addMult

:input;
:input;
:input;
:output;

:dff ;

:dff ;
:dff ;
:dff ;
:dff ;
:dff ;
:dff ;
:node;
:node;
:node;%
:DSPadd9;

begin
% Create timing generator for multiplication %
count[4..0].elk = clock;
multDone.dk = clock;
multstart.dk = clock;

Count[4..0].d = (Count[4..0].q + 1) and Imultdone;
% Start multiplication at count zero %
multstart.d = multDone.q;
% Multiplication is complete at count 19 %
multDone.d = count[4] and !count[3] and I count[2]

and count[1] and count[0];

Np.dk = clock; % Multiplier register %
Nc.dk = clock; % Multiiplicand register %
% Load Multiplication flags at startup %
Np.d = (Mplier[8] and multstart) or

(Np.q and imultstart);
Nc.d = (Mcand[8] and multstart) or

(Nc.q and imultstart);

Neg = Np.q XOR Nc.q; % Negative product flag %
Pos = !Neg; % Positive product flag %

% Create input Register to hold Multiplier %
Mplierbus[8..0].elk = clock;
Mplierbus[8..0].d = (Mplier[8..0] and Load and !Np) or

% Change Negative number to positive %
((!Mplier[8..0] + 1) and load and Np) or
(Mplierbus[8..0] and iLoad);

% Create Output Register

37

multDone.dk
multstart.dk

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109

to handle addend and shifting %
result[16..0].elk = clock;
Resbus[17..0].elk = clock;

% Load, add, Shift and hold architecture
for resultant bus %
Resbus[16..9].d = (AddMult.result[7..0] and Add) or

(Resbus[17..10] and shift) or
(gnd and Load) or (Resbus[16..9] and
!add and !shift and !load);

Resbus[17].d = (addMult.result[8] and Add) or
(gnd and (shift or load))
or (Resbus[17] and
! add and ! shift and ! load) ,-

% 9 least significant bits hold Multiplicand %
Resbus[8..0].d = (Resbus[8..0] and Add) or

(Resbus[9..1] and shift) or
(Mcand[8..0] and load and !Nc) or
% Change Negative number to positive %
((!Mcand[8..0] + 1) and load and Nc) or
(Resbus[8..0] and !add and
!shift and !load);

% Connect Multiplier adder inputs %
addMult.dataa[8..0] = Mplierbus[8..0];
addMult.datab[8..0] = Resbus[17..9];

% Create Multiplier Controller %
% Load data when counter is equal to zero %
if (Count[4..0] == H"01") then

Load = Vcc;
Shift = gnd;
Add = Gnd;

elsif ((Count[0] == gnd) and (Resbus[0] == Gnd)) then
Load = gnd;
Shift = gnd;
Add = Gnd;

elsif ((Count[0] == gnd) and (Resbus[0] == Vcc)) then
Load = gnd;
Shift = gnd;
Add = Vcc;

Else
Load = Gnd;
Shift = Vcc;
Add = gnd;

end i f;

result[16..0].d = (Resbus[16..0] and multDone and Pos) or
((!Resbus[16..0] + 1) and multDone and Neg) or
(result[16..0] and imultDone);

End;

Figure 3-13 — AHDL Design of a 9-Bit Serial Multiplier

38

Lines 1 through 31 of Figure 3-13 are the I/O and variable declarations. The variable of

type dff is a D-type flip-flop, which is a one-bit register that updates on the rising edge of

the clock input. Lines 33 through 39 are the design of the multiplication counter. Lines

40 through 50 are the design of the negative multiplication flags. Because this multiplier

cannot multiply negative numbers together, the numbers must first be converted to

positive numbers, and the product is changed back to a negative numbers, if necessary.

Lines 51 through 80 are the design of the multiplier register and the resultant register.

From the block diagram shown in Figure 3-7, it is shown that the multiplicand is stored in

the least significant bits of the resultant register in the beginning of the multiplication

process. The load flag in the AHDL code determines the beginning of the multiplication

process. The shift flag in the AHDL code shifts the data in the resultant register to the

right by one bit, and the add flag adds the multiplier with the most significant bits of the

resultant bus. The result of the addition is placed back into the most significant bits of

the resultant bus. Lines 86 through 105 are the design of the multiplication controller.

The multiplication controller determines whether the multiplier should load, shift, add, or

do nothing. Lastly, 106 through 108 produce the desired output of the mutliplier.

A simulation of the 9-bit multiplier AHDL code is run to verify the validity of the

design. Figure 3-14 gives the simulation results of the AHDL code given in Figure 3-13.

39

254.0ns 508.0ns 762.0ns 1.016us 1.27us 1.524us 1.778us 2 032us 2.286i

ifflH Clock 0 jijTj"irLn_rB^r^jnjiJ^T_n_rLrirLrLrLri_rBrij‘"

Mplier[8. 0] D 12 12

Mcand[8..0| D 13 13

result[16..0] D 156 0 U 156

Q'Z plierbus[8..0] D 12 0 \ 12

Q/ Resbus[17..O] D 156 0 X13 X - X 3078 4992 7 2496 X 1248 \ 624 \ 312 X 156 1'
count[4..0] D 1 071 X 2 JC 3 y 4 Y 5 X 6 X 7 X s X 9 X 10 X11

-es& shift 0 I I I I I I I I I I I I I I i I I I

Load 1 n

add 0 _________ r

Figure 3-14 — Altera Simulation Results of a 9-Bit Serial Multiplier

As seen in Figure 3-14, the serial multiplier works exactly as specified by Table 3-4.

40

CHAPTER 4

HARDWARE ARCHITECTURE DEVELOPMENT OF AN FIR FILTER

The architecture of any design depends on the final application of that design. As

said previously, in the design of an audio FIR filter, maximum I/O speed is not an issue.

The input and output signals are clocked at a rate of 44.1 KHz for compact disk quality

sound. This sampling rate is many orders of magnitude less than the typical clock rate of

standard FPGA and EPLD devices. Therefore, the focus of this design is to minimize

gate counts by serializing most processes. The serialization of processes will increase the

number of system clock cycles per sampling period while reducing the number of logical

gates used in the design.

Folding:

The multiplication of input data with coefficient data is very expensive in terms of

gate count. The introduction of serial multiplication helps lessen the gate count, but with

one multiplier per filter tap, the gate count grows linearly for each additional tap added to

the design. One design technique to combat this problem is to use a folded filter design.

Folding is a design method that will reduce the number of multiplications by a

factor of two. Figure 1-7 shows the impulse response of a typical low-pass filter. The

impulse response is symmetric about a center point, and the impulse responses generated

by virtually all windowing methods are also symmetric. This symmetry can be exploited

41

to reduce the number of multiplications in a FIR filter. The LCCDE of a 5-tap FIR filter

is given by

y(n) = C2x(n + 2) + C}x(n +1) + Cox(zi) + C_xx(n -1) + C_2x(n - 2), (4.1)

where Cn is the impulse response of the system. Knowing that the impulse response of

the filter is symmetric about a center point, the LCCDE of the filter can be simplified to

y(zi) = C2 [x(rc + 2) + x(n - 2)] + [x(n +1) + x(n -1)] + Cox(«). (4.2)

Thus, the number of multiplications of the filter is reduced from five to three. The

hardware architecture of a folded FIR filter is given in Figure 4-1.

Sample and
Digitize

As shown in Figure 4-1, a folded filter design can reduce the number of multiplications

by a factor of two. However, the designed filter coefficients must be symmetric, and with

most windowing and other FIR filter designs symmetric filter coefficients are generated.

42

Folding also increases the bit width of the data input into the multiplier. The

input data into the filter is 8-bits wide. However, when two eight bit numbers are added

together, the result is a possible 9-bit number. Therefore, the multiplier used with a

folded filter must be a 9-bit serial multiplier.

Multiplication Multiplexing:

The number of multiplications in the filter design has been reduced to half the

number of filter taps, but another design strategy can further reduce the number of

multipliers in the design to one.

Multiplexing the multiplications performed in the filter operation can create an

FIR filter with only one multiplier. However, the clock speed of the final implementation

will increase due to the serialization of the design. Each filter tap data and coefficient

will be time multiplexed, thus increasing the number of operations performed per

sampling period. Figure 4-2 shows the general architecture of an FIR filter that utilizes

time-multiplexed multiplication.

43

Sample and
Digitize

Analog Output Signal

Figure 4-2 - FIR Filter Architecture With Time Multiplexed Multiplication

The instantiation of multiplexed multiplication minimizes the number of logic gates

needed to implement the filter design by utilizing the speed of modern programmable

logic devices.

Data Width Minimization:

The input data width of the filter is set to 8-bits for input data precision and

computational simplicity. However, with the additions and multiplications performed the

data width produced at the output is increased. Because the output data width is fixed to

16-bits, the data width must be truncated at some point in the design. However, the

truncation points in the design are instrumental in reducing the gate count of the

implemented filter.

44

From Chapter 3 it is shown that the signed addition performed in the design

automatically sign extends the sum by one bit. Also, the multiplication of two 8-bit

signed numbers produces a 15-bit signed product. Therefore, the data width increases

through the flow of the design. Figure 4-3 shows the data widths throughout the FIR

filter design architecture.

Figure 4-3 — FIR Filter Data Widths

As seen from Figure 4-3, the width of the data grows to 16-bits before the products are

added together to produce the sum. Also, knowing that the addition of two numbers

automatically increases the data width by one bit, the output of the filter will have to be

truncated to 16-bits. The amount of truncation, however, depends on the length of the

filter. The last addition stage of the filter is comprised of several layers of adders. The

number of adders in the last stage depends on the length of the filter. For example, a

folded 21-tap filter will produce 11 products that will need to be summed to produce the

45

output. The sum of the products will need to be sign extended by four bits to ensure that

an overflow error does not occur. The final sum will then be 20 bits wide, and the 20-bit

result is then truncated to 16 bits.

But the truncation of data can occur earlier in the design. The products produced

by the serial multiplier can be truncated by a certain bit width to ensure a 16-bit result

from the final addition process. The product registers in the design can then be reduced

in width thus reducing the filter gate count.

The final FIR filter design is a 27-tap filter. This means that the folded filter

design has 14 product registers to hold the products for addition. Therefore, fourteen 16-

bit integers are added together to form the filtered output, and each adder must sign

extend one bit to ensure that an overflow error does not occur. Figure 4-4 shows the final

addition stage in the FIR filter design.

46

As seen in Figure 4-4, the final addition stage adds 4 bits to the output, creating a 2O-bit

number. The four least significant bits may be truncated to form the desired 16-bit

output, or the multiplication registers may be truncated by four bits before the final

addition stage. The latter design method is chosen to minimize the gate count of the final

design. Figure 4-5 shows the final addition stage of the FIR filter with the product

registers truncated before addition.

Figure 4-5 — Final Addition Stage of the FIR Filter Truncated to a 16-bit Output

The truncation of the data early in the design is a lossy truncation. Information may be

lost in the process. However, simulation results and testing of the hardware have

determined that the losses due to this design method are negligible.

47

System Clock Calculation:

The FIR filter designed has 27-taps with a folded design. With the advent of a 9-

bit serialized multiplier, each multiplication of a coefficient value with a data value takes

18 clock cycles. However, adding in a clock cycle each for converting the input data

values to positive numbers, loading in the multiplier and the multiplicand, and registering

the product at an output, the number of clock cycles for multiplication become 21.

Because of the folded design, only 14 multiplications have to take place per

sampling period. Therefore, the number of clock cycles needed per sampling period

becomes:

- . Multiplications ClockCycles ClockCycles z„Cycles = 14------- - ------------ 21-------------------= 294------------ --------- . (4.3)
SamplingPeriod Multiplication Sampling Period

From Equation 4.3, it is given that 294 clock cycles are needed per sampling period.

However, The ripple adders used to sum up all the partial products and produce the

output of the filter can create great gate delays. A timing analysis of the ripple adders

shows that the longest ripple delay of the adders is greater than one clock cycle.

Therefore, the sum from the adders may be registered to the output before the adders

have produced the correct sum.

To combat this problem, a wait cycle is introduced into the filter design. Instead

of 14 multiplications in the design, 15 multiplications will take place. However, the

fifteenth multiplication cycle does not compute any results. This cycle is used to ensure

that the ripple adders have had enough time to produce the correct resultant sum.

Therefore, the number of clock cycles needed for the FIR filter becomes:

Cycles = 29-1 ClockCycles + 2 j ClockCycles = 3]g ClockCycles (4 4)
SamplingPeriod SamplingPeriod SamplingPeriod

48

Therefore, 315 clock cycles are needed per sampling period.

Knowing that the sampling rate of the filter is 44.1 KHz, and that 315 clock

cycles are needed per sampling period, the necessary clock speed of the filter is

calculated. The system clock speed of the FIR filter is given by:

fclock = 44100• 315 = 13.89M//z . (4.5)

The necessary system clock speed given by Equation 4.5 is reasonable for an FPGA

design. Maximum clock rates of FPGA’s range from the order of 20 MHz to 100 MHz,

and the system clock speed calculated is well under that speed.

49

CHAPTER 5

SERIALIZED LOADING OF FILTER COEFFICIENTS THROUGH
THE PC SERIAL PORT

The FIR filter coefficients are loaded into the hardware through the PC serial port.

Therefore, the serial data from the computer must first me converted into a parallel data

word by a separate piece of hardware. Once the parallel data word is obtained, the

conversion hardware sends an interrupt signal to the filter hardware. The filter hardware

detects the interrupt and shifts all coefficient values by one to allow the new coefficient

to enter the filter.

The UART Communication Port Receiver:

The separate piece of digital hardware to convert the serial data stream to a

parallel data word is the UART (Universal Asynchronous Receiver/Transmitter) receiver.

The UART will convert an 8-bit word from a serial data stream to an 8-bit parallel word.

Figure 5-1 shows the serial data stream of the two’s complement representation of the

number 5.

50

Stop Bit h------ 00000101 ------ H Start Bit
i I

Figure 5-1 — Serial Bit Stream for the Number 5

As seen in Figure 5-1, the serial bit stream out of the serial port uses a negative

representation of numbers. Each logical “1” value sits at the low voltage level, and each

logical “0” value sits at the high voltage level. The serial data is also given least

significant bit first, and the 8-bit number is preceded by a start-bit at the high voltage

level, and followed by a stop-bit at the low voltage level. The start bit and stop bit can be

utilized to create an asynchronous receiver that will register the 8-bit data word.

The architecture of the UART receiver is given in Figure 5-2.

51

8-bit Parallel Data Output

Figure 5-2 — Architecture of the UART Receiver

As the serial data stream enters the receiver, the start bit detector detects the rising edge

of the start bit. From there, the Sample generator counts up to the center and edges of

each bit in the data word. At the center of each bit, the 8-bit register samples the input

stream, and shifts all the contents to the right. Each time the 8-bit register shifts to the

right, the bit tracking and counting logic increments its counter. When the bit tracking

and counting counter counts to nine, the Receiving and Control Logic are set false, and

the system starts to listen for the next start bit.

The clock speed for this device is 3.6864 MHz, a common digital clock speed.

However, the baud rate of the input data is 28,800 bits per second. Therefore, the number

of clock cycles per bit is given by:

ClockCycles = 3686400^^—-—— = 128 CydeS . (5.1)
Sec. 28800 Bit Bit

52

input data stream is sampled every 128 clock cycles. The AHDL code to

UART receiver is given in Figure 5-3.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

Subdesign 'Rcv288'
% ***** Clock frequency is
% ***** clock period is 271
% ***** grid size is 135.63
% ***** data rate is 28,800
% ***** Datain period is 34
% ***** Each data period is
(
clock, Datain
Dataout[7..0]
StopReceiving

3.6864 MHz ***** %
ns ***** %
ns ***** %
bps ***** %
.72 us ***** %
64 clock cycles ***** %

:Input;
:Output;

:Output;

Variable
DataDelay[1..0]
Receiving
InRegister[7..0]
SampleCount[6..0]
SampleCountReset
BitCounter[3..0]
BitClock
StopReceiving
BitEdge, Posedge
DataOut[7..0]

Begin
% ***** Connect Clocks ***** %
DataDelay[1..0].elk = Clock;
SampleCount[].elk = Clock;
InRegister[].elk = BitClock;
SampleCountReset.dk = Clock;
Receiving.dk = Clock;
StopReceiving.dk = Clock;
Bitcounter[].elk = BitClock;
BitClock.dk = BitEdge;

:Dff ;
:Dff ;
:Dff ;
:Dff ;
:Dff ;
:Dff ;
:Dff ;
:Dff ;
:node;
:node;

% ***** connect Input Data Line ***** %
DataDelay[1].d = Datain;
InRegister[7].d = iDataln;
InRegister[6..0].d = InRegister[7..1].q;
Dataout[7..0] = InRegister[7..0].q;

% ***** Perform Edge Detection ***** %
DataDelay[0].d = DataDelay[1].q;
PosEdge = DataDelay[1] & !DataDelay[0];
% ***** set thg receiving signal ***** %
Receiving.d = PosEdge # Receiving.q &

!StopReceiving;

% ***** Generate BitEdge Pulses ***** %
if (Receiving) Then

SampleCount[].d = (SampleCount[].q +1) &
!SampleCountReset;

Case SampleCount[] IS
WHEN H"3E" =>

BitEdge = Vcc;
SampleCountReset.d = Vcc;

WHEN OTHERS =>

53

SampleCountReset.dk
Receiving.dk
StopReceiving.dk
BitClock.dk

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

BitEdge = Gnd;
SampleCountReset.d = Gnd;

End Case;
end i f;

% ***** centers and edges ***** %
BitClock.d = !BitClock.q;
BitClock.clrn = Receiving;

% ***** increment bit counter ***** %
BitCounter[].d = Bitcounter[] +1;
BitCounter[].clrn = Receiving;

% ***** set end of data word ***** %
if(BitCounter[] == H"9") Then

StopReceiving.d = Vcc;
else

StopReceiving.d = Gnd;
end i f;

End;

Figure 5-3 — AHDL Design for the UART Receiver

Lines 1 through 25 are the I/O and signal declarations. Lines 27 through 35 give the

clock inputs to the d-type flip-flops used in the design. Notice, the clock inputs to the

registers InRegister, BitCounter, and bitclock are not the system clock. Lines 37 through

41 give the connections to the output shift register. Since all the inRegister flip-flops are

clocked by bitclock, the shift occurs on the positive transitions of bitclock. Lines 43

through 45 create the posedge signal. The posedge signal becomes positive on the

positive transitions of the input data stream. The posedge signal triggers the Receiving

signal to become positive until the StopReceiving signal becomes true. The logic of the

signal Receiving is given in lines 47 through 49. When the Receiving signal is true, the

counter Samplecount counts every clock cycle. Notice that Samplecount resets when it

counts to 63. Samplecount is used to create bitclock, which in turn is used to shift the

InRegister shift register. Lines 64 through 71 give the logic for the clock bitclock and for

the counter bitcounter. When bitcounter counts to nine, the receiver is finished

converting the serial input into a parallel data word, and StopReceiving becomes true

54

which stops both counters Samplecount and bitcounter. The code for the StopReceiving

logic is given in lines 73 through 78. The receiver then continues to listen for the next

start bit.

Figure 5-4 gives the simulation results of the UART receiver to ensure proper

functionality.

clock 1

sa>- Datain 0

Dataout[7..0] H05

StopReceiving 0

OX DataDelay[1..0] HO

OX lnRegister[7..0] H05

SampleCount[6..0] H00

OF BitCounter[3..0] HO

Figure 5-4

k
oo X so x 40 x X 50~7 28 °A X 05

~ 3kk
00 80 AO X 5Cl !(26 14 X 0A X OS

0 / 1 X kkCkCVk 6 kk 8 r°

- Altera Simulation Results of the UART Receiver

As seen from the simulation results, the number 5 is detected from the serial data stream,

and the StopReceiving signal becomes true to reset the system back into listening mode.

The UART receiver is covered in more detail in (5)Scarpino, p. 123.

Edge Detection for Loading Coefficients:

The StopReceiving signal from the UART receiver is used in the FIR filter design

to shift in coefficient values asynchronously. The asynchronous handshaking between

the UART receiver and the FIR filter are necessary for a more robust filter design.

Because the communication between the FIR filter and the UART receiver are

asynchronous, the FIR filter can be operated at a number of different clock frequencies.

It is desirable for the UART to operate at a fixed clock rate to communicate with the PC

55

serial output at a fixed 28800-baud rate. However, the filter becomes more versatile if

the system clock can be operated at several different speeds and still communicate with

the UART which operates at a fixed clock speed. This type of handshaking can only

occur with an asynchronous communication design between the UART receiver and the

FIR filter.

The asynchronous design is accomplished by designing a positive-edge detection

system for the output signal StopReceiving of the UART. The edge detection of the

StopReceiving signal is accomplished by the use of two flip-flops coeffdelay[1] and

coeffdelay[0]. The logic for the edge detection is given in Figure 5-5.

Figure 5-5 — Edge Detection Logic for FIR Filter Coefficient Shifting

As seen from Figure 5-5, when the StopReceiving signal rises from a logic “0” to a logic

“1”, the ShiftCoefEdge signal become a logic “1” for one clock cycle. The coefficient

values are shifted when the ShiftCoefEdge signal is a logic “1” value. The AHDL code

for the coefficient values and shifting is given in Figure 5-6.

1
2
3
4
5
6
7
8
9

% Create Receiver/Registers to shift in Coefficients %
% create edge detection for coefficient shift %
coeffdelay[1..0].elk = clock;
coeffdelay[0].d = shiftcoef;
coeffdelay[1].d = !coeffdelay[0].q;
shiftcoefedge = coeffdelay[0].q and coeffdelay[1].q;

% Tap coefficients are clocked by clock %
Tapcoef[13..0] [7 .. 0] .elk = clock;

56

10
11
12
13
14
15
16
17
18

% Shift coefficients when input Shiftcoefedge
%signal is high %
Tapcoef[13..1][7..0].d = ((Tapcoef[12. .0] [7. .0] .q)

and shiftcoefedge) or
((Tapcoef[13..1][7..0].q)
and !shiftcoefedge);

Tapcoef[0] [7 .. 0] . d = (coeffin[7. .0] and shiftcoefedge) or
(Tapcoef[0][7..0] and !shiftcoefedge);

Figure 5-6 — AHDL Design for Coefficient Values and Shifting

The logic given in Figure 5-5 is designed in lines 3 through 6. Also, lines 8 through 18,

give the design that shifts the coefficient values when the signal shiftcoefedge is true.

Figure 5-7 gives the simulation results of the edge detection and coefficient shifting logic

to ensure proper functionality.

clock

ok- shiftcoef

eeA Coeffin[7. .0]

i3J coeffdelayl.Q

Off coeffdelayO.Q

aiF Tapcoefl3_[7..0]

QZ Tapcoefl J7..0]

d? Tapcoef2_[7..0]

dF Tapcoef3J7..0]

dl? Tapcoef4J7..0]

OX TapcoeS_[7..0)

dik" Tapcoe1BJ7..0]

OX Tapcoef7_[7..0]

dX Tapcoefi_[7 0]

OX Tapcoe19_[7..0]

dX Tapcoefl0J7..0]

OX Tapcoefl 1J7 .0]

dSk Tapcoefl2J7..0]

dX Tapcoefl3J7..0]

1 8us 3.6us 5.4us 7.2us

1

0
HIlIlSWOllIllIlIlllIIIBUIIOIIOIlirailOllllBlfflUB
nnrLrLrwuLn r^

ramJUUulfUU
1

mmnniuuui

n
III1IM1M
TLTL

MlMill
n

JUUUUUU

H 50 32 X 35 X 40 X 45 X 47 X 50

0 ruDT,anjLm'm_rL_r | 1 L_ 1 L_nj
1 rLruw rTL rmTTr~i I n r- n TL n

H 50 00 X 05 XOAXOF X14 X19 X1EX23 X 28 X 32 X 35 X 40 X 45 X 47 x 50

H 47 00 X05 X°AXOF Xl4 X^i^XlE X 23 X 28 X 32 X 35 X 40 X 45 x 47

H45 00 X05 XoaXofXTTXi9 X 1E X 23 X 28 X 32 JUuJC 40 X 45

H40 00 X°5 X°A)(dFXl4 X 19 X 1E X 23 X 28 X 32 X' 35 X 40

H35 oo X05 XoaX°f X 14 X 19 X 1E X 23 zzracz 32 X 35

H32 00 XOSXOAXOF X 14 X 19 X 1E X 23 X 28 X 32

H 28 oo Xos X oa X or X 14 X 19 X 1E X 23 X 28

H23 00 X 05 X 0A X OF X 14 1E X 23

H 1E 00)(05 X 0A X OF Y 14 "X 19 X 1E

H 19 00 X 05 X 0A -X°r X. 14 X 19

H 14 00 X 05 OF X 14

HOF 00 ...A...?5 ..X.... 0A X OF

H0A 00 A 05 X 0A

H05 00 X 05

Figure 5-7 — Altera Simulation Results of the Edge Detection and Coefficient Shifting

As shown in Figure 5-7, the coefficient values of the filter shift during the rising edge of

the Shiftcoef input signal. In the final implementation of the filter, the output signal of

the UART, StopReceiving, is connected to the input signal of the filter, Shiftcoef

57

Therefore, when the input data is done being converted from a serial bit stream to a

parallel data word, the FIR filter is notified that a new coefficient is ready, and its

contents are shifted into the filter. Also, notice in Figure 5-7 that the Shiftcoef signal does

not transition uniformally, yet the coefficient shifting still operates properly. This is

because of the asynchronous nature of the edge detection circuitry. Because of the edge

detection, the coefficients from the serial port may be sent at a constant baud rate, yet the

filter may operate at many different clock speeds.

Serial Port Communication Software Development:

A software program must be developed that will send the coefficient values

serially through the serial port of the PC to the UART receiver. The program is written in

the C++ language and sends fourteen 8-bit coefficient values through the serial port to the

FIR filter processing board. Fourteen coefficient values are written to the board because

the filter is 27-taps wide, and a folded filter design is implemented.

The software written for the loading of filter coefficient is written with Win32

system calls. These system calls are only guaranteed to work on Windows ’95, Windows

’98, or Windows NT machines. The software most likely will not operate with other

operating systems.

The serial port must first be set to operate in the fashion that is given earlier in

this chapter. That includes a baud rate of 28800 bits per second and a stop bit to ensure

that the UART resets after each 8-bit data word. The start bit is implicit in serial port

communications. These settings are adjusted using the .deb (data control block) structure

parameters of the serial port. Figure 5-8 gives the .deb settings of the serial port.

58

1 /* Open the comm port. Coml */
2 comHandle = CreateFile("COM1",
3 GENERIC_READ|GENERIC_WF.ITE,
4 0, 0, OPEN_EXISTING,
5 FILE_ATTRIBUTE_NORMAL, 0);
6
7 if (comHandle == INVALID_HANDLE_VALUE)
8 MessageBox(NULL,"Comm Port Not Opened", "Error",MB_OK);
9 /★ Get the current settings of the COMM port */
10 success = GetCommState(comHandle, &dcb);
11 if (!success)
12 MessageBox(NULL,"Cannot Get Coml State", "Error",MB_OK) ;
13 /* Modify the baud rate, etc. */
14 dcb.BaudRate = 28800;
15 dcb.ByteSize = 8;
16 deb.Parity = NOPARITY;
17 dcb.StopBits = ONESTOPBIT;
18 deb.fBinary = TRUE;
19 dcb.fParity = FALSE;
20 deb.fOutxCtsFlow = FALSE;
21 deb.fOutxDsrFlow = FALSE;
22
23 deb.fDtrControl = DTR_CONTROL_DISABLE;
24 deb.fDsrSensitivity = FALSE;
25 deb.fTXContinueOnXoff = TRUE;
26 dcb.fOutX = FALSE;
27 dcb.flnX = FALSE;
28 deb.ErrorChar = (char)NULL;
29
30 dcb.fNull = FALSE;
31 deb.fRtsControl = RTS_CONTROL_DISABLE;
32 deb.fAbortOnError = FALSE;
33 dcb.wReserved = 0;
34
35 /* Apply the new comm port settings */
36 success = SetCommState(comHandle, &dcb);
37 if (!success)
38 MessageBox(NULL,"Cannot Apply Coml Settings",
39 "Error",MB_OK);
40
41 /* Set the Data Terminal Ready line */
42 EscapeCommFunction(comHandle, SETDTR);

Figure 5-8 —.deb Settings for the Serial Port

Figure 5-8 is the C++ code that sets the serial port with the parameters that are necessary

to communicate effectively with the UART receiver. Lines 1 through 5 show how the

handle of the COM1 port is obtained. In Windows 95 and Windows NT, most I/O are

treated like files and are read from and written to. In this case, the file handle of the

serial port, COM1, is obtained using the CreateFile command. After the handle of the

59

serial port is obtained, the settings of the port are modified via the .deb structure. Lines

75 through 18 show that the baud rate is set to 28800 bits/second, the size of the bytes to

be sent are 8-bits wide, no parity check is needed, one stop bit at the end of the data

stream is needed, and the data to be sent is in binary format. Lines 19 through 28 are

other settings that have to do with flow control and two-way communication. As seen in

Figure 5-8, most of the other control parameters are set to false because they are not

needed in this design. A more detailed description of the data control block structure and

serial port communication can be found in (V)Brain, p. 690. Lines 35 through 39 send

the data control block parameters to the serial port. The SetCommState Win32 call is

used to write the control parameters to COMl.

After the file handle of the serial port is obtained, and the control parameters are

set, writing to the serial port becomes simple. Using the file metaphor in Windows, the

WriteFile system call is used to send the data to the serial port. However, the serial port

looks for character strings from the user. Therefore, the integer coefficient values must

first be type cast into characters before being written to the serial port.

The complete C++ program for writing coefficient values to the FIR filter via the

serial port is given in Appendix C.

60

CHAPTER 6

ANALOG-TO-DIGITAL, DIGITAL-TO-ANALOG INTERFACE ISSUES AND
PRINTED CIRCUIT BOARD FABRICATION

Audio signals must first be converted into digital signals before being filtered

digitally, as shown in Chapter 1. Also, the digital output of the FIR filter must be

converted back into an analog signal before being amplified and sent to a speaker. Most

analog-to-digital converters must be controlled to give the appropriate output at the

correct time. This chapter gives the AHDL development of an analog-to-digial controller

for the ADC1241 by National Semiconductor. The digital-to-analog converter used in

this design is the PCM54 by Burr-Brown. This chapter also gives the architectural design

of the printed circuit board used for the final implementation of the hardware FIR filter.

Development of an A/D Controller:

The ADC1241 analog-to-digital converter contains five logic control lines. These

lines determine when the the A/D converter will read the analog input, convert the analog

input to a digital two’s complement number, and produce the digital number at the

output. The five inputs into the A/D converter are clock, ChipSelect (CS), Write (WR),

Read (RD), and Calibration (Cal).

From the ADC1241 data sheet, it is determined that the A/D converter functions

optimally at a clock speed of 2 MHz. Knowing that the system clock speed of the FIR

filter is 13.89 MHz given in Equation 4.5, a counter can be generated to produce a 2 MHz

61

clock. The A/D clock speed is divided into the system clock speed to determine the

number of system clock cycles per A/D clock cycles. Approximately 7 system clock

cycles are needed per A/D clock cycles.

The controller of the A/D converter must follow some guidelines given in the

ADC 1241 data sheet. The timing diagrams for the A/D converter are given in Figure 6-1.

- _JTjnjnj^jnj^n_n_TTTTJ^LTi_rLf^rLn_

Figure 6-1 — A/D Converter Input Controls Timing Diagram

The A/D controller is developed using the timing diagram given in Figure 6-1. As seen

in Figure 6-1, all of the control lines into the A/D converter are active low signals. First,

the WR signal is set low to write the analog input signal into the converter. After the

necessary time is allotted for conversion is complete, the RD signal is set low to read the

digital output. Each time either of the RD or WR signals are toggled low, the CS signal

must also be active low.

62

Figure 6-1 shows that the acquisition of the analog signal takes 7 clock cycles,

and the conversion of the analog signal to a digital work takes 27 clock cycles.

Therefore, a complete analog to digital conversion takes 34 clock cycles.

However, recalling that 315 system clock cycles are necessary per sampling

period, and 7 system clock cycles are needed for the A/D clock, the number of A/D

converter clock cycles in a sampling period is given by:

J $ SystemClockCycles
. SamplingPeriod Al D.ClockCycles ,cycles =----- ------ —--------- ----= 45---------------- ------ . (6.1

? SystemClockCycles SamplingPeriod
A / D.ClockCycles

Therefore, the A/D controller counter counts from 0 to 44. As said previously, 34 A/D

clock cycles are necessary for an A/D conversion. Therefore, the digital output of the

A/D converter is available for several A/D clock cycles. Figure 6-2 gives the AHDL

code for the A/D converter controller.

1 % Creation of the A/D Controller %
2
3 % Controller counter is clocked by clock %
4 adcount[5..0].elk = clock;
5
6 % all control outputs are clocked by clock %
7
8 adreset.clk = clock;
9 CK.clk = clock;
10 ChipSelect.dk = clock;
11 Read.elk = clock;
12 Write.elk = clock;
13
14 % A/D counter counts every seven clock cycles %
15 % giving the A/D converter controller a "clock" %
16 % frequency of 2 MHz %
17 % 2Mhz is a design specification of the A/D converter %
17 adcount[5..0].d = (adcount[5..0] + 1 and CK and
18 ladreset and res) or (adcount[5..0] and !CK and res);
19
20 % CK becomes valid during the 0, 7, and 14 counts of
21 the multiplication counter, count %
22 CK.d = (((count[4] and (count[3] and count[2] and
23 count[1] and count[0]) or ((count[4] and
24 count[3] and count[2] and count[1]
25 and !count[0]) or ((count[4] and (count[3] and
26 (count[2] and !count[1] and
27 !count[0])) and res;

63

ChipSelect.dk

28
29 % adcount counts from 0 to 44, (clock freq/sampling
30 freq/seven clock cycles = 45) %
31 adreset.d = adcount[5] and !adcount[4] and adcount[3]
32 and adcount[2] and !adcount[1] and !adcount[0];
33
34 if (res == gnd) then
35 ChipSelect.d = Vcc ;
36 Read.d = Vcc;
37 Write.d = Vcc;
38 end i f;
39
40 if (adcount[5..0] == 0) then
41 ChipSelect.d = gnd;
42 Write.d = Vcc;
43 Read.d = Vcc;
44 elsif (adcount[5..0] == 1) then
45 ChipSelect.d = gnd;
46 Write.d = gnd;
47 Read.d = Vcc;
48 elsif (adcount[5..0] < 37) then
49 ChipSelect.d = Vcc ;
50 Write.d = Vcc;
51 Read.d = Vcc;
52 elsif (adcount[5..0] == 37) then
53 ChipSelect.d = gnd;
54 Write.d = Vcc;
55 Read.d = Vcc;
56 else
57 ChipSelect.d = gnd;
58 Write.d = Vcc;
59 Read.d = gnd;
6 0 end i f;

Figure 6-2 — AHDL Design for the A/D Controller

Lines 1 through 72 of Figure 6-2 connect the clock inputs of all flip-flops to the

system clock. Lines 14 through 18 give the logic for the A/D counter adcount.

The counter only counts on the positive levels of the A/D clock. Lines 20 through

27 given the logic for the A/D clock CK. CK is only valid when the

multiplication counter count is a multiple of seven. Knowing that the

multiplication counter counts to 21, the clock CK is exactly 7 times slower than

the system clock. Lines 29 through 32 give the reset logic for adcount the A/D

counter counts to 44. Therefore, the reset for the counter must be equal to 44.

Lines 34 through 60 give the logic for the A/D control outputs. The output signal

64

ChipSelect is low every time the A/D converter reads or writes. Also, the output

signal Read is set low after the Write signal is set low and the 34 conversion clock

cycles have taken place.

A simulation of the A/D controller is run to ensure proper functionality.

Figure 6-3 gives the simulation results of the A/D controller.

clock

res

CK

-O' ChipSelect

Write

-o Read

£iZ adcount[5..0]

Figure 6-3 — Altera Simulation Results of the A/D Controller

Figure 6-3 give one complete cycle of the A/D controller. It is shown that the simulation

results given in Figure 6-3 match the timing requirement of the A/D converter given in

Figure 6-1. A closer look at the simulation results of the A/D controller gives greater

insight into its behavior. Figure 6-4 gives a closer look at the A/D controller simulation

Figure 6-4 — Further Altera Simulation Results of the AZD Controller

65

Figure 6-4 shows that the A/D clock CK is exactly 7 times slower than the system clock.

Also, the A/D controller counter adcount does indeed reset after 45 clock cycles.

The concern for CK to reset after 7 clock cycles and for the A/D counter adcount

to reset every 45 clock cycles is to ensure that the output of the A/D converter is valid

data when the input data is ready to be read into the FIR filter. Because CK and adcount

reset when they do, the A/D converter outputs valid data every 315 system clock cycles.

The timing results of the A/D converter and the data loading is given if Figure 6-5.

Figure 6-5 — Timing Results of the A/D Controller and Data Loading

As seen in Figure 6-5, the input data from the A/D converter is loaded into the FIR filter

when both the Read and ChipSelect signals are low.

Complementary Two’s Complement Representation for the D/A Converter:

The Digital-to-Analog converter used in the design of the FIR filter is the PCM54

developed by Burr-Brown Inc. The input/output codes for this D/A converter are given

in the data sheet, and also given in Figure 6-6.

66

Figure 6-6 — Input/Output for the D/A Converter

From Figure 6-6, it is shown that the digital representation of the analog output differs

from the two’s complement representation of numbers that is used in the design of the

FIR filter. The type of digital representation that the D/A converter uses is referred to a

complementary two’s complement representation. Therefore, the output of the FIR filter

must be converted from two’s complement representation to complementary two’s

complement representation. Table 6-1 gives the correlation between the two

representations of digital numbers.

67

Table 6-1 — Two’s Complement Representation vs. Complementary Two’s Complement

Representation of Numbers

Value Two’s Complement
Representation

Complementary Two’s
Complement Rep.

127 01111111 00000000
126 01111110 00000001
2 00000010 01111101
1 00000001 01111110
0 00000000 01111111
-1 11111111 10000000
-2 11111110 10000001

-126 10000001 11111110
-127 10000000 11111111

As seen from Table 6-1, the complementary two’s complement representation is the

inverse of the two’s complement representation with the exception of the most significant

bit (MSB). Therefore, if the output of the filter is adjusted to invert all the output signals

except for the MSB, the analog output of the filter will be the correct value. The AHDL

code to implement the conversion between the two representations is given in Figure 6-7.

1
2
3
4
5
6
7
8
9
10
11
12
13

% Create Output Register%
% Output Register is clocked by clock %
Outdata[15..0].elk = clock;
% Output Register is updated when all processes are finished %
Outdata[15].d = (Add5.result[15] and

(Multstart and Zero)) or
(Outdata[15].q and
(!Multstart or IZero));

Outdata[14..0].d = (!Add5.result[14..0] and
(Multstart and Zero)) or
(Outdata[14..0].q and
((Multstart or (Zero));

Figure 6-7 — Complementary Two’s Complement Representation Generation

Figure 6-7 gives the generation of complementary two’s complement representation of

the output, the signal Add5.result is the output of the final addition stage in the design.

Therefore, when all the processes are finished, Add5.result is set equal to the output

68

register Outdata. However, lines 5 through 8 set the MSB of the output equal to the

result of the final addition stage, and lines JO through 13 set the rest of the output bits

equal to the negative of the result of the final addition stage. Therefore, the output is set

to the complementary two’s complement representation of digial numbers. The output of

the filter is then connected directly to the digital inputs of the D/A converter. The AHDL

code for the FIR filter is given in Appendix D.

Development of a Printed Circuit Board:

A printed circuit board is developed to house all the necessary components for the

FIR filter. Table 6-2 gives the components necessary for the FIR filter.

Table 6-2 — Necessary Components for the Development of the FIR Filter

Component Functionality
1 Altera FPGA (FLEX10K30) FIR Filter
2 Altera EPC2 EPROM FPGA Programming Device
3 Altera EPLD (MAX7032) UART Receiver
4 ADC 1241 Analog-to-Digital Converter
5 PCM54 Digital-to-Analog Converter
6 13.89 MHz Crystal Oscillator Filter System Clock
7 3.6864 MHz Crystal Oscillator UART System Clock
8 1458 Operational Amplifier Pre-Amplifier

With the components given in Table 6-2, the FIR filter can be developed. The

architecture of the printed circuit board designed for the development of the FIR filter is

given in Figure 6-8.

69

Pre-Amp

Serial Data Input
From Host Program

Input Waveform

I

r—

3.6864 MHz
Clock

Output Waveform

Figure 6-8 — FIR Filter Printed Circuit Board Architecture

As seen in Figure 6-8, the input waveform is amplified before being converted into a

digital signal by the A/D converter and the FPGA receives the FIR filter program on

power-up of the processing board. The filter program then residing in the FPGA receives

inputs from both the A/D converter and the UART receiver. The A/D converter provides

the input data, and the UART receiver provides the filter coefficient data given by the

host software. The filtered output of the system then gets input into the D/A converter

and converted back into an analog signal. For musical applications, the analog output is

amplified and sent to a speaker. The result is digitally enhanced audio. The final design

of the variable coefficient FIR filter processing board is given in Figure 6-9.

70

A/D
Converter

Serial Data Input From
Host Program

UART Receiver Power In 3.6864 MHz Clock

Input
Waveform

Pre-Amp
Output
Waveform

FPGA Programmer
13.89 MHz Clock

Variable Coefficient D/A
FIR Filter FPGA Converter

Figure 6-9 — Variable Coefficient FIR Filter Processing Board

The processing board given in Figure 6-9 is designed and built. The sampling rate of the

A/D converter is 44100 KHz, and the baud rate of the serial data input is 28.8 kbits/sec.

71

CHAPTER 7

MATHEMATICAL, SIMULATED, AND EXPERIMENTAL RESULTS OF FILTER
PERFORMANCE

In order to verify the performance of the filter implemented onto the printed

circuit board, several models of the filter’s performance must be developed. In other

words, some tools must be developed to calculate the desired filter output due to certain

inputs. Then, the experimental results taken from the filter can be compared to the

mathematical results and performance can be evaluated.

The mathematical tool used to calculate the ideal filter response is Matlab’s

Simw/infc. Simulink is a graphical tool that runs on top of the Matlab software. The

results given from Simulink are compared both to the Altera simulation results, and the

experimental results of the hardware.

Simulink Model for an FIR Filter:

As said previously, Simulink is a graphical software tool. The FIR filter

developed in Simulink is then a graphical representation of the FIR filter’s architecture.

Figure 7-1 gives the graphical program developed in Simulink.

72

Figure 7-1 gives the Simulink model for a 27-tap folded FIR filter. Note, all of the delays

used in the filter are unit delays of 22.676 /u s. Therefore, the sampling rate of the filter

designed in Simulink is given by:

1
Zv = 22.676^-65

= 44.1/CHz (7.1)

Not surprising, the sampling rate of the Simulink filter is the same as the sampling rate of

the FIR filter implemented in Hardware. Also, the Simulink filter is a folded 27-tap filter,

just as the hardware filter. Therefore, the filter developed in Simulink is a good

mathematical representation of the hardware filter designed in AHDL. Actually, the only

difference between the hardware filter and the filter build in Simulink is that the input

data values of Simulink are infinite precision numbers (for all practical purposes) and all

of the mathematical operations of the Simulink filter are floating-point operations.

However, the performance of the hardware filter still may be compared to that of the

Simulink filter.

73

Step Responses of Various Filters:

The impulse response of an FIR filter gives great insight into the filter’s behavior.

In fact, given an FIR filter’s impulse response, the response to any other input signal is

completely predictable, as stated in Chapter 2. Also, the step function is intimately

related to the impulse function. The relationship of the impulse function an the step

function is given by:

«(z) = p(z)rfz, (7.2)
t

where w(7) is the unit step function, and £(7) is the unit impulse function. From Equation

7.2, it is shown that the step function is the integral with respect to time of the impulse

function. Therefore, if the step response of an FIR filter is given, the output of the filter

is completely predictable. Given that the step response gives great insight into an FIR

filters behavior, it is the input function that used to test the performance of the filter.

First, the coefficients of the filter must be determined. The filter coefficients used

in the Simulink filter are the Kaiser window coefficients of a low-pass filter with a cutoff

7Tfrequency of —. The Kaiser window coefficients are given in Table 7-1

74

Table 7-1 — Kaiser Window Low-Pass Filter Coefficients Used in Performance Analysis

Coefficient Number Coefficient Value

The coefficients given in Table 7-1 are set to the gains of the Simulink model. The

Simulink simulation is then run to give the step response of the low-pass filter. The

frequency response of this filter is given in Figure 2-10, and the step response of the

Simulink filter is given in Figure 7-2.

75

Figure 7-2 — Simulink Step Response of an FIR Low-Pass Filter

As seen in Figure 7-2, the step response of the low-pass filter slowly rises to the final

value of the input step. The output of the Altera simulator is also examined. The

coefficients given in Table 7-1 are loaded into the Altera simulator, and the output is

given. The Serial Loading of Filter coefficients in the Altera simulator is given in Figure

7-3.

720.0ns 1.44us 2.16us 2.88us 3.6us 4.32us

O— clock 0

shiftcoef 0

Coeffin[7..0] D 76 127 X 113 X 76 X 33 X 0 X 240 X 248 X ° X 4 X 3 X 1 X 0

S5" Datain[7..0] DO o X 100

outdata[15..0] DO 0

Figure 7-3 — Altera Simulation Results of the Serial Loading of Filter Coefficients

76

The Altera simulator is run for approximately 600 // s, and the input data transitions from

0 to 100 after the coefficients are loaded into the filter. The output response of the

simulation is given in Figure 7-4.

3500
Altera Simulation Low-Pass Filter Step Response

3000

2500

2000
Q)73
| 1500

1000

500

E<

0

-5000 2

1

3
time(s)

4 65

x 10'
v-4

Figure 7-4 — Altera Simulation Step Response of the Low-Pass Filter

As shown in Figure 7-4, the Altera simulation results slowly rise to the final step value of

the input almost exactly as the Simulink filter step response. The two step responses are

almost identical. However, the step response amplitudes are different. This is due to the

truncation that takes place in the hardware FIR filter. Because the output data is

restricted in 16 bits wide, the output step response amplitude is restricted.

The filter implemented in hardware is given the coefficient values of the low-pass

filter as well, and a real-time performance analysis is made by inputting a low frequency

square wave at the input and monitoring the output on an oscilloscope. The output of the

FIR filter is given in Figure 7-5.

77

Figure 7-5 — Hardware FIR Filter Step Response with Low-Pass Filter Coefficients

As seen in Figure 7-5, the response of the filter with low-pass coefficients exactly

matches the form of the Altera simulation response given in Figure 7-4 and the Simulink

results given in Figure 7-2.

High-pass filter coefficients are then generated and run through both the Simulink

filter and the hardware filter simulation. The high-pass filter coefficients generated are a

71Kaiser window design with a cutoff frequency of —. The filter coefficients input into the
4

filter are given in Table 7-2.

78

Table 7-2 — Kaiser Window High-Pass Filter Coefficients Used in Performance

Analysis

1 Coefficient Number Coefficient Value

The filter coefficients are input into the Simulink filter and the output step response is

given in Figure 7-6.

Figure 7-6 — Simulink Step Response of an FIR High-Pass Filter

79

The high-pass coefficients are then input into the Altera simulator of the FIR filter, and

the step response is given in Figure 7-7.

Altera Simulation High-Pass Filter Step Response

600

400

200

0)
T3
□
I 0
E
<

-200

-400

-600

0 1 2 3 4 5 6
time(s) x w-<

Figure 7-7 — Altera Simulation Step Response of the High-Pass Filter

Again, as seen in Figure 7-7, the Altera simulation results for the step response of the

high-pass filter coefficients exactly matches the step response of the Simulink simulation

The hardware FIR filter is given the high-pass coefficients from Table 7-2 and a

real-time performance test is given in the same was as in the low-pass filter test. The

performance results of the hardware FIR filter with high-pass coefficients are given in

Figure 7-8.

80

Figure 7-8 — Hardware FIR Filter Step Response with High-Pass Filter Coefficients

As seen in Figure 7-8, the step response of the filter matches the step response of the

Altera simulation given in Figure 7-6 and the Simulink results given in Figure 7-5.

The variable coefficient FIR filter designed and built in hardware seems to

function exactly as the software simulation results. Because the step response of an FIR

filter can mathematically predict the filter response due to any input, and the step

responses of various FIR filter coefficients match the software simulations, the filter

seems to perform as specified. However, to ensure proper functionality, some elementary

signals are filtered.

Filtering of a Square wave:

One of the simplest waveforms to filter is the square wave. From Fourier

analysis, it is known that a square wave is proved to be comprised of an infinite sum of

81

sinusoids which exist at harmonic frequencies. These sinusoids that make up a square

wave can then be extracted by filtering.

The low-pass coefficients given in Table 7-1 are input into the FIR filter. These

77
coefficients are designed to cutoff at a digital frequency of —. However, the equivalent

analog cutoff frequency must be determined. The analog cutoff frequency of the Filter is

calculated by equation 1.6.

f =
fsa
277

44100-

277
— s 5512.5Hz (7.3)

A 3 KHz square wave is input into the filter with the set of coefficient given in Table 7-1

The output of the filter should be only the fundamental frequency of the square wave, or

in other words a sine wave. The filter should effectively eliminate all other harmonic

frequencies. Figure 7-9 gives the output of the FIR filter with low-pass coefficients.

Figure 7-9 — Low-pass Filtering of a Square Wave by the FIR Filter

82

As seen in Figure 7-9, the input waveform is shown in Trace 1 and the output waveform

is shown in Trace 2. The output of the filter is indeed a sine wave. All other harmonic

frequencies are effectively eliminated.

The same square wave is input into the hardware filter, but the coefficients are

changed from low-pass to the high-pass coefficient given in Table 7-2. The digital cutoff

frequency of the filter is the same as the lowpass filter. Therefore, this filter will

eliminate the fundamental frequency of the square wave while passing the harmonic

frequencies. The output of the FIR filter is given in Figure 7-10.

Figure 7-10 — High-pass Filtering of a Square Wave by the FIR Filter

As seen in Figure 7-10, the output waveform is quite different than the output given in

Figure 7-9 with the same input waveform. The output of the filter can be determined to

be correct without much analysis. The output looks like a square wave with the

fundamental sine wave “missing”. The high-pass filter functions as specified.

From the performance analysis of the hardware FIR filter, the filter works as

specified. From the simulation results it is verified that the hardware FIR filter performs

83

exactly as specified by the input coefficients. Therefore, any filter designed can be

loaded into the hardware through the serial port of the computer, and any filter designed

can immediately be physically realized in real-time.

Frequency Response of an Audio Equalizer:

The FIR filter may be used as an audio enhancement device, such as an equalizer

as given in Chapter 2. However, the hardware FIR filter has not been tested to verify that

the equalizer coefficients developed in chapter 2 create the same results as the simulation.

The frequency response of the equalizer is given in Figure 2-13, and the hardware

FIR filter should give the same frequency response with the same coefficient values. The

coefficient values of the audio equalizer are given in Table 7-3.

Table 7-3 — Audio Equalizer Coefficient Values

Coefficient Number Coefficient Value

The coefficient values of the equalizer are input into the Altera simulator, and a sinusoid

of varying frequency called a sweep is input into the filter. The sweep signal input into

the filter varies from 0 Hz. to 22500 Hz., thus giving an approximation of the frequency

84

response. The simulated frequency response of the audio equalizer is given in Figure 7

11.

frequency(fo)

Figure 7-11 — Equalizer Frequency Response

The sweep file is generated and run through the Altera simulator. The approximate

frequency response of the hardware FIR filter is given in Figure 7-12.

85

Frequency Response of FIR Filter with Equalizer Coefficients

Figure 7-12 — Altera Simulation of an FIR Filter Sweep Response With Equalizer

Coefficients

Although the sweep response is not a true frequency response, Figure 7-12 does give the

correct magnitude frequency response of the equalizer. The output given in Figure 7-12

is a sweeping sinusoid running through digital frequencies from -n to n. Therefore,

the resolution of Figure 7-12 is not as clear as the resolution of Figure 7-11.

The equalizer coefficients are input into the hardware filter for an actual

frequency response. Sinusoids of varying frequencies are input into the filter, and the

magnitude of the output sinusoids are recorded. In this way, the frequency response of

the hardware FIR filter can be calculated. The frequency response of the hardware

equalizer is given in Figure 7-13.

86

Frequency Response of FIR Filter with Equalizer Coefficients

Figure 7-13 — Hardware FIR Filter Equalizer Frequency Response

Figure 7-13 shows that the frequency response of the hardware FIR filter is the same as

the frequency responses of the simulations. The correlation between the simulated

responses and the real-time hardware responses further verifies that the hardware FIR

filter functions properly.

87

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

The variable coefficient FIR filter works as specified, and the enhanced audio is

successful. Many equalizer designs have been developed, and all can be loaded into the

filter for a frequency response desired by the music listener. The Matlab software

developed makes it easy to obtain a desired frequency response with minimal effort, and

as shown in Chapter 7, the frequency response calculated in the Matlab software becomes

the frequency response characteristic of the filter when the coefficients are loaded.

Although the digital hardware equalizer performs well, there is much work that

can be done to further enhance the quality of music, and for the design to become more

appealing to industry.

First, the audio equalizer developed in this body of work is a monaural design.

For a design that is appealing to the music industry, the design must be adapted to a

stereo design. This is a fairly simple process, however. Two instances of the monaural

design must work in parallel to independently filter the right and left audio components.

The filter coefficients can be the same for both right and left audio filters; so some

resource sharing is possible.

Second, other types of digital filters can be used for audio enhancement. An HR

(Infinite Impulse Response) filter not only uses previous input signal values, but also

88

previous output signal values to calculate the next output value. The HR filter can filter

signals more efficiently than FIR filters. Also, HR filters are able to produce echo and

other types of audio processing that FIR filters cannot. However, the HR filter is more

difficult to design because it necessarily uses floating-point arithmetic. Therefore,

floating-point adders and multipliers must be designed for this type of filter.

Lastly, for the filter design to become more appealing to industry, the dynamic

loading of coefficients must also be accomplished in hardware. The software developed

to load the filter coefficients into the filter is good for demonstrative purposes, but a

stand-alone device is necessary for a commercially viable product. One way to

accomplish this task is to have several filter design coefficient values “burned” into an

EPROM (Electrically Programmable Read-Only Memory), and those coefficient values

may then be loaded into the filter upon the user’s request. However, a more robust

design may serve as a better solution.

89

Appendix

90

Appendix A: Derivation of Ideal Low-pass, High-pass, Band-pass, and

Band-stop FIR Filter Coefficients:

Derivation of Ideal Low-pass Filter Tap Coefficients (Cutoff frequency of 69c):

1 nh(n) =— {H(eo)e
2k j—K

jandco (Al)

(A2)

h(n) = — sin(&> h) .
mi

Derivation of Ideal High-pass Filter Tap Coefficients (Cutoff frequency of 69c):

(A3)

(A4)

n
ft(n)= iH^e^do)

—71
(A5)

-COC n
h(ri) = §eimda>+ $eimd(0

-n co,.
(A6)

^(«)=v-[—+^r—

2k jn 2k jn
(A7)

h(n)= (e1™ e~'m) ’ (e'“r" e^1")
j2mi j2mi

(A8)

h(n) = — sin(/m) —— sin(69c.n)
mi mi

(A9)

=1
n—>0 Kfl

(A10)

sin(/m) = 0,n * 0 (All)

91

h(n) = 8(n) ——sinton)
7UI

(A 12)

Derivation of Ideal Band-pass Filter Tap Coefficients (Pass Frequencies coa to 69/;):

1h(n) =— \H(co)eicaidco
2k j

(A13)

1 1h(n) =— [ej(a'do) + —— [ejcundaf
lir J Ott J2k

-a>i, 2k
(A14)

2k jn 2k 2k
(A15)

2 jmi 2 jnK
(A 16)

h(n) = —[sin(69fcn) - sin(tyan)]
7m

(A 17)

Derivation of Ideal Band-stop Filter Tap Coefficients (Attenuate Frequencies coa to (Ohy.

71

h(n)= \Hia»e!mdm (A 18)

1 n
h(n)= — [ej(atda + — \ej(1*dco + —\ej(axda>

J Orr J 'lir J (A 19)

/!<„) =+_L[±e/««r
2x jn ’ 2x jn “ 2jc jn

(A20)

/j(„) = _!_[e^-e-jm]---- —[eM” -e-W] + —!_[ew (A21)
2 jjm 2 j7M 2 jKn

h(ri) = —sin(^h) +—sin(<2?azi)—— sin(69^n)
7m 7m im

(A22)

92

/:(«) = 5(rc) +— (sin(69u«)-sin(6yfo/i))
7m

(A23)

93

Appendix B: Matlab Software to calculate FIR filter Coefficients:

% FIR .m
% creates FIR window filter coefficients for
% lowpass, highpass, bandpass, and bandstop filters

%clear all;
close all; clc;
d = 0;
h = 0;
k = 0;
N = 0;
M = 0;

disp('Type the number of Taps in the filter');
disp('Number of Taps must be odd');

% user inputs number of filter taps
N = input('Number of Taps>');

% user inputs type of filter
disp('Type the number coresponding to the type'
disp('of filter you wand to create');
disp('l) Lowpass');
disp('2) Highpass');
disp('3) Bandpass');
disp('4) Bandstop');

num = input('Type of Filter>');

% Calculation of half the filter length
M = (N-l) / 2;

if num == 1
disp('Enter Digital Cutoff Frequency, w (between 0 and pi)')
w = input ('Radian Cutoff Frequency>');
% calculate lowpass filter impulse response
d(l) = w/pi;
for i=l:M,

d(i+l) = (sin(w*i)/(pi*i));
end

elseif num == 2
disp('Enter Digital Cutoff Frequency, w (between 0 and pi)')
w = input ('Radian Pass Frequency>');
% calculate highpass filter impulse response
d(l) = 1 - w/pi;
for i=l:M,

d(i+l) - -(sin(w*i)/(pi*i));
end

elseif num == 3
disp('Enter Low Cutoff frequency wa (between 0 and pi)');
wa = input ('Radian Low Pass Frequency>');
disp('Enter High Cutoff frequency wb (between 0 and pi)');
wb = input ('Radian High Pass Frequency>');

94

% calculate bandpass filter impulse response
d(l) = (wb-wa)/pi;
for i=l:M,

d(i+l) = (sin(wb*i)-sin(wa*i))/(pi*i);
end

elseif num == 4
disp('Enter Low Cutoff frequency wa (between 0 and pi)');
wa = input ('Radian Low Pass Frequency>');
disp('Enter High Cutoff frequency wb (between 0 and pi)');
wb = input ('Radian High Pass Frequency:*');
% calculate bandstop filter impulse response
d(l) = 1 - (wb-wa)/pi;
for i=l:M,

d(i+l) = -(sin(wb*i)-sin(wa*i))/(pi*i);
end

else
disp('Illegal Value, Program Terminated');
i = 1;

end

if i ~= 1
disp('Enter Windowing type: ') ;
disp('l) Rectangular Window');
disp('2) Hamming Window');
disp('3) Kaiser Window');
% user input which filter window to use
win = input ('Window Type>');

% clear window?
clc ;
disp('Coefficients are folded, therfore a filter with 21 taps')
disp('Will only have 11 coefficients');
disp('The first coefficient displayed is the coefficiens h(0)')
disp('The next coefficient displayed is h(l) and h(-l), etc.');

w = linspace(-pi,pi,512);

if win == 1
disp('Rectangular window coefficients:');
% extend filter coefficients to entire impulse response
for i=l:M,

dplot(M+i) = d(i);
dplot(M-i+l) = d(i+l);

end
dplot(N+l) = d(M+l);

hw = fft(dplot,512);
% plot frequency response of filter
figure(1);plot(w,abs(fftshift(hw)));
xlabel('frequency(\omega)');ylabel('Magnitude');
title('Rectangular Window? Frequency Response');
d

elseif win == 2

95

disp('Hamming window coefficients:');
h = hwind(d);
% extend filter coefficients to entire impulse response
for i=l:M,

dplot(M+i) = h(i);
dplot(M-i+l) = h(i+l);

end
dplot(N+l) = k(M+l);
hw = fft(dplot,512);
% plot frequency response of filter
figure(1);plot(w,abs(fftshift(hw)));
xlabel('frequency(\omega)');ylabel('Magnitude');
title('Hamming Window Frequency Response');
h

elseif win == 3
disp('Kaiser window coefficients:');
k = kwind(d);
% extend filter coefficients to entire impulse response
for i=l:M,

dplot(M+i) = k(i);
dplot(M-i+l) = k(i+l);

end
dplot(N+l) = k(M+l);
hw = fft(dplot,512) ;
% plot frequency response of filter
figure(1);plot(w,abs(fftshift(hw)));
xlabel('frequency(\omega)');ylabel('Magnitude');
title('Kaiser Window Frequency Response');
k

else
disp('Illegal Value, Program Terminated');

end
end

% hwind.m - Hamming window
%
% w(n) = 0.54 - 0.45 * cos(2*pi*M)/(N-l)
%
% 0.2 % overshoot

function w = hwind(d)

M = length(d) ;
N = 2*M-1;

for n = 0:M-l,
w(n+l) = d(n+1).*(0.54-0.46.*cos((2*pi.*(n+M))/(N-l)));

end

% kwind.m - Kaiser window.
%
% w •- kwind(alpha, N) - row vector

96

% alpha = Kaiser window shape parameter
% N = 2M+1 = window length (must be odd)

function w = kwind(d)

M = length(d)+l;
N = 2*M - 1;

alpha = 7;

den = 10(alpha);

for n = 0:M-2,
num = 10(alpha * sqrt(l - nA2/(MA2)));
w(n+l) = d(n+l) .* (num / den);

end

% 10.m - modified Bessel function of 1st kind and 0th order
%
% S = 10(x)

% defined only for scalar x >= 0
% based on lO.c

function S = 10(x)

eps = 10 A (-9) ;
n = 1; S = 1; D = 1;

while D > (eps * S),
T = x / (2*n);
n = n+1;
D = D * TA2;
S = S + D;

end

97

Appendix C: C++ Software for Windows 95, 98, and NT for Writing

Coefficient Value to FIR Filter

/* A Program to communicate with the serial port */
/* To be used with Variable Coefficient FIR Filter Hardware */
/* 23 Taps, (12 input Coefficients) */
/* Serial data rate is 28800 bps */

include
include
include

<stdio.h>
<windows.h>
<iostream.h>

void main()
{

HANDLE comHandle; /* handle to open serial port file */
BOOL success; /* when open or write is accomplished successfully */
DCB deb; /* Data Control Block */
char str [100];
char writechar[12];
DWORD numWrite;
int coeff;
int i;
/* Open the comm port. Coml */
comHandle = CreateFile("COM1",

GENERIC_READ|GENERIC_WRITE,
0, 0, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, 0);

if (comHandle == INVALID_HANDLE_VALUE)
MessageBox(NULL,"Comm Port Not Opened", "Error",MB_OK);

/* Get the current settings of the COMM port */
success = GetCommState(comHandle, &dcb);
if (!success)

MessageBox(NULL,"Cannot Get Coml State", "Error",MB_OK);
/* Modify the daud rate, etc.
dcb.BaudRate = 28800;
dcb.ByteSize = 8;
deb.Parity = NOPARITY;
dcb.StopBitS = ONESTOPBIT;
deb.fBinary = TRUE;
dcb.fParity = FALSE;
deb.fOutxCtsFlow = FALSE;
deb.fOutxDsrFlow = FALSE;
deb.fDtrControl = DTR_CONTROL_

deb.fDsrSensitivity = FALSE;

*/
/* Transmit at 28.8 kbit/sec. */
/* Eight Bit numbers */
/* No Parity error detection */
/* use only one stop bit */

/* use binary mode */
// do not report parity errors

// do not wait for CTS to transmit
// do not wait for DSR to transmit

DISABLE; //Lowers the DTR line when the device is opened.
//The application can adjust the state of the
//line with EscapeCommFunction

//ignore bytes received
deb.fTXContinueOnXoff = TRUE; /* no flow control */
dcb.fOutX = FALSE;
dcb.flnX = FALSE;
deb.ErrorChar = (char)NULL;
deb.fNull = FALSE;
deb.fRtsControl = RTS_CONTROL_DISABLE;
deb.fAbortOnError = FALSE;
dcb.wReserved = 0;
/* Apply the new comm port settings */
success = SetCommState(comHandle, &dcb);
if (!success)

MessageBox(NULL,"Cannot Apply Coml

//ignore null bytes.
//can modify with EscapeCommFunction
// not used, must be set to zero

Settings", "Error",MB_OK);
/* Set the Data Terminal Ready line */
EscapeCommFunction(comHandle, SETDTR);
cout « "This Program will send numerical eight bit 2's complement data through" << endl;
cout « "the serial port (COM1). Because the data length is only eight bits wide" << endl;
cout << "only values of -127 to 127 are valid. Any data entered that is not" << endl;
cout « "valid will result in an error and a value of zero will be sent to the serial" << endl
cout « "port." « endl;
printf("\n\n");
for (;;)
{

cout « "What type of Filter do you want to implement?" « endl;
-- . . . ---- „ pass (Cutoff at 2800 Hz)" « endl;

hpass (Cutoff at 2800 Hz)" << endl;
dpass (Pass 2800 Hz. through 5500 Hz.)" « endl;

cout << "What type i
cout << "Type 1 for
cout << “Type 2 for
cout « "Type 3 for
cout << "Type 4 for
cout << " Type 0 to i
gets(str);

)" << endl;
<< endl;

98

coeff = atoi(str);
if(coeff == 1)
{

cout << "Lowpass Coefficients input into filter" << endl;
writechar[1] = 127;
writechar[2] = 122;
writechar[3] = 108;
writechar[4] = 87;
writechar[5] = 64;
writechar[6] = 41;
writechar[7] = 22;
writechar[8] = 8;
writechar[9] = 0;
writechar[10] = -3;
writechar[11] = -4;
writechar[12] = -4;
writechar [13] = -2;
writechar[14] = -1;

)
if(coeff == 2)
{

cout « "Highpass Coefficients input into filter" « endl;
writechar[1] = 127;
writechar[2] = -17;
writechar[3] = -15;
writechar[4] = -12;
writechar[5] = -9;
writechar[6] = -6;
writechar[7] = -3;
writechar[8] = -1;
writechar[93 = 0;
writechar[103 = 1;
writechar[113 = 1;
writechar[123 = 1;
writechar[13] = 0;
writechar[14] = 0;

}
if(coeff == 3)
{

cout << "Bandpass Coefficients input into filter" << endl;
writechar[1] = 127;
writechar[2] = 69;
writechar[3] = 30;
writechar[43 = -14;
writechar[5] = -43;
writechar[63 = -49;
writechar[7] = -3 6;
writechar[8] = -16;
writechar[9] = 0;
writechar[10] = 7;
writechar[11] = 7;
writechar[12] = 4;
writechar[13] = 1;
writechar[14] = 0;

3
if(coeff == 4)
{

cout « "Bandstop Coefficients input into filter" << endl;
writechar[1] = 127;
writechar[2] = -16;
writechar[3] = -7;
writechar[4] = 3;
writechar[5] = 10;
writechar[6] = 11;
writechar[7] = 8;
writechar[8] = 4;
writechar[9] = 0;
writechar[10] = -2;
writechar[11] = -2;
writechar[12] = -1;
writechar[13] = 0;
writechar[14] = 0;

}
if (coeff == 0)
{

cout « "Fourteen tap coefficients will need to be entered into the filter
starting with" « endl;

cout << "d(0)" << endl;
/* get coefficient values from user */
for(i=0;i<14;i++)
{

if(i==0)
{

/* get d(0) */
printf("type first coefficient to be entered into filter

(i.e. d[%2d])\n",i);
gets(str);
if (!(coeff = atoi(str)) || (coeff > 127) || (coeff < -127))

printf("Zero Value Entered as Coefficient\n\n");

99

(i.e. d[%2d])\n",i);

}

writechar[1] = (char) coeff;
}
else
{

/* get other coefficient values */
printf("type next coefficient to be entered into filter
gets(str);
if (!(coeff = atoi(str)) || (coeff > 127) || (coeff < -127))

printf("Zero Value Entered as Coefficient\n\n");
writechar[i+1] = (char) coeff;

}
}
printf("Writing Coefficient values into filter\n\n");
for(i=0;i<14;i++)
(

success = WriteFile(comHandle, kwritechar[i+1], 1,
knumWrite, 0);

if (!success)
MessageBox(NULL,"Cannot Write to Coml", "Error ",MB_OK);

)
printf("Writing Complete\n\n");

gets(str);
for(i=0;i<50;i++)

printf("\n");
}

/* Close the file */
CloseHandle(comHandle);

}

100

Appendix D: AHDL Code for Variable Coefficient FIR Filter

% 27-Tap Variable Coefficient Fir Filter %
% 8-bit input wide bus %
% Clock Frequency is 13.89 MHz %
% Clock Period is 72.00 ns, Grid size is 36.00 ns %
% Sampling occurs every 315 clock cycles %
% Sampling frequency is 44.1 kHz %
% Serial Multiplication takes 21 clock cycles %
% times 14 tap multiplications %
% plus one addition wait time %

include
include
include
include
include
include

"DSPadd8.inc";
"DSPadd9.inc";
"DSPaddl2.inc";
"DSPaddl3.inc";
"DSPaddl4.inc";
"DSPaddl5.inc";

Subdesign firfilt8AD'
(
clock
Datain[7..0]
shiftcoef
Coeffin[7..0]
outdata[15..0

:input; % all registers and flip-flops are clocked by clock %
:input; % input data is sampled at 44.1 kHz %

:input; % input signal to shift in FIR coefficients %
:input; % FIR coefficients to be shifted in %

] :output; % Filtered output (16-bits wide) %

% A/D Converter Control I/O %
res :input; % Reset for A/D Converter %
ChipSelect :output; % Select output for A/D Converter %
Read :output; % Read From A/D Converter %
Write :output; % Write To A/D Converter %
CK :output; % A/D Converter clock %
)

Variable

% A/D Controller Variables %
CK
adcount[5..0] :dff;
adreset
ChipSelect
Read
Write

:dff; % 2 MHz clock for A/D Converter^
% counter for A/D Converter^

:dff; % counter reset %
:dff; % Select output %
:dff; % Read From A/D %
:dff; % Write To A/D %

% Filter Variables %
multcnt[3..0]
multcntreset
coeffdelay[1..0]
shiftcoefedge
Zero, One, Two
Three, Four, Five
Six, Seven, Eight
Nine, Ten, Eleven
Twelve, Thirteen
Tapdat[26. .0] [7. .0]
Tapcoef[13..0][7..0]:dff;
addin[13..0][11..0]
Addl[12..0]
Add2[6..0]
Add3[2..0]
Add4[1..0]
Add 5
Outdata[15..0]

:dff; % Counts number of Multiplications that take place %
:dff; % Signal to reset multcnt[3..0] %
:dff; % Two-bit register used to create edge detection %
mode; % Edge detected signal %

:node; % signal flags to indicate how many %
inode; % multiplications have taken place %
:node;
:node;
;node;
:dff; % data input registers %

% Coefficient Registers %
:dff ;

:DSPadd8; % Adders used to fold filter %
:DSPaddl2; % Adders used after all multiplications have %
:DSPaddl3; % taken place %
:DSPaddl4; % Adder architecture is given in include files %
:DSPaddl5;
:dff; % output Register %

% 16 bit multiplier Variables %
%--------------------------------- %
Mplierbus[8..0] :dff; % Register to hold the Multiplier %
Resbus[17..0] :dff; % Register to hold the Result %
count[4..0] :dff; % counter to count number of operations %

101

multDone
multstart
Np, Nc
Pos, Neg
Load, shift
add
Mplier[8..0], Mcand[8..O]
addMult
architecture %
% -------------------------

:dff; % Multiplication done flag %
:dff; % Multiplication start flag %
:dff; % Negative Multiplier and Multiplicand flags %
:node; % Positive and Negative Product Flags %

:node; % Multiplier Control Flags %
:node;

:node; % input multiplier and multiplicand nodes %
:DSPadd9; % adder used in Multiplication

begin

% Creation of the A/D Controller %

% Controller counter is clocked by clock %
adcount[5..0].elk = clock;

% all control outputs are clocked by clock %
adreset.clk = clock;
CK.clk = clock;
ChipSelect.dk = clock;
Read.elk = clock;
Write.elk = clock;

% A/D counter counts every seven clock cycles %
% giving the A/D converter controller a "clock" frequency of 2 MHz %
% 2Mhz is a design specification of the A/D converter %
adcount[5..0].d = (adcount[5..0] + 1 and CK and ladreset and res) or

(adcount[5..0] and !CK and res);

% CK becomes valid during the 0, 7, and 14 counts of the multiplication counter, count %
CK.d = ((!count[4] and !count[3] and count[2] and count[1] and count[0]) or (!count[4] and

count[3] and count[2] and count[1] and !count[0]) or (!count[4]
and !count[3] and

!count[2] and !count[1] and !count[0])) and res;

% adcount counts from 0 to 44, (clock freq/sampling freq/seven clock cycles =45) %
adreset.d = adcount[5] and !adcount[4] and adcount[3] and adcount[2] and !adcount[1] and
!adcount[0] ;

if (res == gnd) then
ChipSelect.d = Vcc;
Read.d = Vcc;
Write.d = Vcc;

end i f;

if (adcount[5..0] == 0) then
ChipSelect.d = gnd;
Write.d = Vcc;
Read.d = Vcc;

elsif (adcount[5..0] == 1) then
ChipSelect.d = gnd;
Write.d = gnd;
Read.d = Vcc;

elsif (adcount[5..0] < 37) then
ChipSelect.d = Vcc;
Write.d = Vcc;
Read.d = Vcc;

elsif (adcount[5..0] == 37) then
ChipSelect.d = gnd;
Write.d = Vcc;
Read.d = Vcc;

else
ChipSelect.d = gnd;
Write.d = Vcc;
Read.d = gnd;

end i f;

% Creation of a serial Multiplier %

102

ChipSelect.dk

% Create timing generator for multiplication %
count[4..0].elk = clock;
multDone.dk = clock;
multstart.dk = clock;

Count[4..0].d = (Count[4..0].q + 1) and (multdone and res; % Count up until multdone flag %

% Start multiplication at count zero %
multstart.d = multDone.q;
% Multiplication is complete at count 17 %
multDone.d = count[4] and (count[3] and (count[2] and count[1] and count[0];

%Create two one bit registers to keep track of negative numbers for 2's comp, multiplication%
Np.dk = clock; % Multiplier register %
Nc.dk = clock; % Multiiplicand register %
Np.d = (Mplier[8] and multstart) or (Np.q and (multstart); % Load Multiplication flags %
Nc.d = (Mcand[8] and multstart) or (Nc.q and (multstart); % at startup %

Neg = Np.q XOR Nc.q; % Negative product flag %
Pos = (Neg; % Positive product flag %

% Create input Register to hold Multiplier %
Mplierbus[8..0].elk = clock;
Mplierbus[8..0]. d = (Mplier[8..0] and Load and (Np) or

% Change Negative number to positive %
(((Mplier[8..0] + 1) and load and Np) or
(Mplierbus[8..0] and (Load);

% Create Output Register to handle addend and shifting %
Resbus[17..0].elk = clock;

% Load, add, Shift and hold architecture for resultant bus %
Resbus[16..9].d = (AddMult.result[7..0] and Add) or (Resbus[17..10] and shift)

or (gnd and Load) or (Resbus[16..9] and (add and (shift and
!load);
Resbus[17],d = (addMult.result[8] and Add) or (gnd and (shift or load))

or (Resbus[17] and (add and (shift and (load);
% 9 least significant bits hold Multiplicand %
Resbus[8..0].d = (Resbus[8..0] and Add) or (Resbus[9..1] and shift)

or (Mcand[8..O] and load and (Nc) or
% Change Negative number to positive %
((!Mcand[8..0] + 1) and load and Nc) or
(Resbus[8..0] and (add and (shift and (load);

% Connect Multiplier adder inputs %
addMult.dataa[8..0] = Mplierbus[8..0];
addMult.datab[8..0] = Resbus[17..9] ;

% Create Multiplier Controller %
% Load data when counter is equal to zero %
% Shift on even counts and add on odd counts when Resbus[0] is one %
if (Count[4..0] == H"01") then

Load = Vcc;
Shift = gnd;
Add = Gnd;

elsif ((Count[0] == gnd) and (Resbus[0] == Gnd)) then
Load = gnd;
Shift = gnd;
Add = Gnd;

elsif ((Count[0] == gnd) and (Resbus[0] == Vcc)) then
Load = gnd;
Shift = gnd;
Add - Vcc;

Else
Load = Gnd;
Shift - Vcc;
Add = gnd;

end i f;
%-- %

% Create counter to count multiplications (Multiplies Sixteen sets of numbers) %
Multcnt[3..0].elk = clock;

103

multDone.dk
multstart.dk

Multcntreset.dk = clock;
Multent[3..0].d = (((!Multentreset) & (Multent[3..0]+1) & multdone) or

(Multcnt[3..0].q and !multdone)) and res;

Multcntreset.d = Multcnt[3] and Multcnt[2] and Multcnt[l] and !Multcnt[0];

% Create Timing generator to keep track of multiplications %

Zero = !Multcnt[3] and !Multcnt[2] and !Multcnt[l] and !Multcnt[0];
One = !Multcnt[3] and !Multcnt[2] and !Multcnt[l] and Multcnt[0];
Two = (Multcnt[3] and !Multcnt[2] and Multcnt[1] and !Multcnt[0];
Three = !Multcnt[3] and !Multcnt[2] and Multcnt[l] and MultcntfO];
Four = !Multcnt[3] and Multcnt[2] and !Multcnt[l] and !Multcnt[0];
Five = !Multcnt[3] and Multcnt[2] and !Multcnt[l] and Multcnt[0];
Six = !Multcnt[3] and Multcnt[2] and Multcnt[l] and !Multcnt[0];
Seven = !Multcnt[3] and Multcnt[2] and Multcnt[l] and MultcntfO];
Eight = Multcnt[3] and !Multcnt[2] and (Multcnt[1] and !Multcnt[0];
Nine = Multcnt[3] and !Multcnt[2] and !Multcnt[l] and Multcnt[0];
Ten = Multcnt[3] and !Multcnt[2] and Multcnt[l] and !Multcnt[0];
Eleven = Multcnt[3] and (Multcnt[2] and Multcnt[1] and Multcnt[0] ;
Twelve = Multcnt[3] and Multcnt[2] and !Multcnt[l] and (MultcntfO];
Thirteen = Multcnt[3] and Multcnt[2] and !Multcnt[l] and Multcnt[0];

% Assign clock and nodes to Taps for data shift %
Tapdat[26..0][7..0].elk = clock;
% Shift data when all processes are finished and ready to %
% Start new processes %
Tapdat[26..1][7..0].d = (((Tapdat[25..0][7..0].q) and Thirteen and multdone) or

((Tapdat[26..1][7..0].q) and ((Thirteen or
(multdone)));
% Data input shifts into Tapdat[0] %
Tapdat[0][7..0].d = ((Datain[7..0] and Thirteen and multdone) or

(Tapdat[0][7..0] and ((Thirteen or (multdone)));

% Create Receiver/Registers to shift in Coefficients %
% create edge detection for coefficient shift %

0].elk = clock;
d = shiftcoef;
d = !coeffdelay[0].q;

coeffdelay[1
coeffdelay[0]
coeffdelay[1]
shiftcoefedge = coeffdelay[0].q and coeffdelay[l].q;

% Tap coefficients are clocked by clock %
Tapcoef[13..0][7..0].elk = clock;
% Shift coefficients when input Shiftcoefedge signal is high %
Tapcoef[13..1][7..0].d = ((Tapcoef[12..0][7..0].q) and shiftcoefedge) or

((Tapcoef[13..1] [7 ..0] .q) and !shiftcoefedge)
Tapcoef[0][7..0].d = (coeffin[7..0] and shiftcoefedge) or

(Tapcoef[0] [7 .. 0] and !shiftcoefedge);

% Fold filter to reduce number of multiplications %
% Semetric Coefficient filtering %
Addl[0].dataa[7. .0] = Tapdat[26] [7 ., .0] • q
Addl[0].datab[7. .0] = Tapdat[0] [7. ..0] . q;
Addl[1].dataa[7. .0] = Tapdat[25] [7 ., .0] • q
Addl[1].datab[7. .0] = Tapdat[1] [7. ..0] . q;
Addl[2].dataa[7. .0] = Tapdat[24] [7 ., .0] • q
Addl[2].datab[7. .0] = Tapdat[2][7...0] . q;
Addl[3] .dataa[7. .0] = Tapdat[23] [7 .. .0] • q
Addl[3].datab[7. .0] = Tapdat[3][7...0] . q;
Addl[4].dataa[7. .0] = Tapdat[22][7.. .0] • q
Addl[4].datab[7. .0] = Tapdat[4][7...0] . q;
Addl[5] .dataa[7. .0] - Tapdat[21][7.. .0] -q
Addl[5].datab[7. .0] = Tapdat[5][7...0] . q;
Addl[6].dataa[7. .0] = Tapdat[20][7.. .0] • q
Addl[6].datab[7. .0] = Tapdat[6][7...0] . q;
Addl[7] .dataa[7. .0] = Tapdat[19][7.. .0] • q
Addl[7].datab[7. .0] = Tapdat[7][7...0] . q;
Addl[8].dataa[7. .0] = Tapdat[18][7.. .0] • q
Addl[8].datab[7. .0] = Tapdat[8][7...0] . q;
Addl[9].dataa[7. .0] = Tapdat[17][7 . .0] • q
Addl[9].datab[7. .0] = Tapdat[9][7...0] . q;

104

Multcntreset.dk

Addl[10].dataa[7 . .0] = Tapdat[16][7. •0]. q;
Addl[10].datab[7 . .0] = Tapdat[10][7. .0],q;
Addl[11].dataa[7 . .0] = Tapdat[15] [7 . .0].q;
Addl[11].datab[7 . .0] = Tapdat[11][7. .0].q;
Addl[12].dataa[7 . .0] = Tapdat[14][7. .0].q;
Addl[12].datab[7 . .0] = Tapdat[12][7. .0].q;

% Create inputs into Serial Multiplier (Multiplicand
Addl[0] *
Addl[1] *
Addl[2] *
Addl[3] *
Addl [4] *
Addl[5] *
Addl[6] *
Addl [7] *
Addl [8] *
Addl[9] *
Addl[10] *
Tapdat[11]

Tapcoef[0] results multiplied at time 0 to time 18%
Tapcoef[1] result multiplied at time 19 to time 37 %
Tapcoef[2] result multiplied at time 38 to time 56 %
Tapcoef[3] result multiplied at time 57 to time 75 %
Tapcoef[4] result multiplied at time 76 to time 94%
Tapcoef[5] result multiplied at time 95 to time 113%
Tapcoef[6] result multiplied at time 114 to time 132%
Tapcoef[7] result multiplied at time 133 to time 151%
Tapcoef[8] result multiplied at time 152 to time 170%
Tapcoef[9] result multiplied at time 171 to time 189%
Tapcoef[10] result multiplied at time 190 to time 208%
* Tapcoef[11] result multiplied at time 209 to time 227%

% Multiplier inputs %
Mplier[7..O] = (Addl[0].result[7..0] and Zero) or (Addl[1].result[7..0] and One) or

(Addl[2].result[7..0] and Two) or (Addl[3].result[7..0] and Three)
or

or

or

Nine) or

Eleven) or

Thirteen);

(Addl[4].result[7..0] and Four) or (Addl[5].result[7..0] and Five)

(Addl[6].result[7..0] and Six) or (Addl[7].result[7..0] and Seven)

(Addl[8].result[7..0] and Eight) or (Addl[9].result[7..0] and

(Addl[10].result[7..0] and Ten) or (Addl[11].result[7..0] and

(Addl[12].result[7..0] and Twelve) or (Tapdat[13][7..0] and

% Tapdat[11][7..0] needs to be lengthened one bit because %
% it was not added to another number in the folding process %
Mplier[8] = (Addl[0].result[8] and Zero) or (Addl[1].result[8]

(Addl[2].result[8]
(Addl[4]
(Addl[6]
(Addl[8]

.result [8]

.result[8]
, result[8]

(Addl[10],result[8]
(Addl[12].result[8]

and One) or
and Two) or (Addl[3].result[8] and Three) or
and Four) or (Addl[5].result[8] and Five) or
and Six) or (Addl[7].result[8] and Seven) or
and Eight) or (Addl[9].result[8] and Nine) or
and Ten) or (Addl[11].result[8] and Eleven) or
and Twelve) or (Tapdat[13][7] and Thirteen);

% Multiplicand inputs %
Mcand[7..O] = (Tapcoef[0][7..0] and Zero)

Thirteen);

Mcand[8] =

(Tapcoef[2][7.
(Tapcoef[4][7.
(Tapcoef[6][7.
(Tapcoef[8][7.
(Tapcoef[10][7
(Tapcoef[12][7

or (Tapcoef[1] [7 .. 0] and One) or
0] and Two) or (Tapcoef[3][7..0] and Three) or
0] and Four) or (Tapcoef[5][7..0] and Five) or
0] and Six) or (Tapcoef[7][7..0] and Seven) or
0] and Eight) or (Tapcoef[9] [7 . . 0] and Nine) or
.0] and Ten) or (Tapcoef [11] [7..0]
.0] and Twelve) or (Tapcoef[13][7.

and Eleven)
. 0] and

(Tapcoef[0][7] and Zero) or (Tapcoef[1][7] and One) or
(Tapcoef[2][7] and Two) or (Tapcoef[3][7] and Three)

and Four) or (Tapcoef[5][7] and Five)
and Six) or (Tapcoef[7][7] and Seven)
and Eight) or (Tapcoef[9][7] and Nine)

or
or
or
or

(Tapcoef[4][7]
(Tapcoef[6][7]
(Tapcoef[8][7]
(Tapcoef[10][7] and Ten) or (Tapcoef[11][7] and Eleven) or
(Tapcoef[12][7] and Twelve) or (Tapcoef[13][7] and Thirteen)

% Create Resgisters to hold different products for addition %
% All addin registers are clocked by clock %
% Negative multiplication is preserved by using Np and Nc values %
% All addin registers are cleared by res %

addin[13..0][11..0].elk = clock;

105

addin[0] [11..0] .d = (Resbus[

addin[l] [11..0] .d = (Resbus[

addin[2][11..0].d = (Resbus[

addin[3][11..0].d = (Resbus[

addin[4][11..0].d = (Resbus[

addin[5][11..0].d = (Resbus[

addin[6][11..0].d = (Resbus[

addin[7][11..0].d = (Resbus[

addin[8][11..0].d = (Resbus[

addin[9][11..0].d = (Resbus[

addin[10][11..0].d = (Resbus

addin[ll][11..0].d = (Resbus

addin[12][11..0].d = (Resbus

addin[13] [11. .0].d = (Resbus

15..4] and multDone and Pos and Zero) or
((!Resbus[15..4] + 1) and multDone and Neg and Zero) or
(addin[0] [11.. 0] and (!multDone or (Zero));
15..4] and multDone and Pos and One) or
((!Resbus[15..4] + 1) and multDone and Neg and One) or
(addin[l][11..0] and (!multDone or (One));
15..4] and multDone and Pos and Two) or
((!Resbus[15..4] + 1) and multDone and Neg and Two) or
(addin[2][11..0] and (!multDone or (Two));
15..4] and multDone and Pos and Three) or
((!Resbus[15..4] + 1) and multDone and Neg and Three) or
(addin[3] [11. .0] and (!multDone or (Three));
15..4] and multDone and Pos and Four) or
((!Resbus[15..4] + 1) and multDone and Neg and Four) or
(addin[4][11..0] and (!multDone or (Four));
15..4] and multDone and Pos and Five) or
((!Resbus[15..4] + 1) and multDone and Neg and Five) or
(addin[5][11..0] and (!multDone or (Five));
15..4] and multDone and Pos and Six) or
((!Resbus[15..4] + 1) and multDone and Neg and Six) or
(addin[6][11..0] and (!multDone or (Six));
15..4] and multDone and Pos and Seven) or
((!Resbus[15..4] + 1) and multDone and Neg and Seven) or
(addin[7][11..0] and (!multDone or (Seven));
15..4] and multDone and Pos and Eight) or
((!Resbus[15..4] + 1) and multDone and Neg and Eight) or
(addin[8] [11. . 0] and (!multDone or (Eight));
15..4] and multDone and Pos and Nine) or
((!Resbus[15..4] + 1) and multDone and Neg and Nine) or
(addin[9][11..0] and (!multDone or (Nine));
[15..4] and multDone and Pos and Ten) or
((!Resbus[15..4] + 1) and multDone and Neg and Ten) or
(addin[10] [11. . 0] and (!multDone or (Ten));
[15..4] and multDone and Pos and Eleven) or
((!Resbus[15..4] + 1) and multDone and Neg and Eleven) or
(addin[11][11..0] and (!multDone or (Eleven));
[15..4] and multDone and Pos and Twelve) or
((!Resbus[15..4] + 1) and multDone and Neg and Twelve) or
(addin[12][11..0] and ((multDone or (Twelve));
[15..4] and multDone and Pos and Thirteen) or
((!Resbus[15..4] + 1) and multDone and Neg and Thirteen) or
(addin[13][11..0] and ((multDone or (Thirteen));

% Add all addin Registers after multiplication %
% Second
Add2[0]
Add2[0]
Add2[1]
Add2[1]
Add2[2]
Add2[2]
Add2[3]
Add2[3]
Add2[4]
Add2[4]
Add2[5]
Add2[5]
Add2[6]
Add2[6]

Add3[0]
Add3[0]
Add3[1]
Add3[1]
Add3[2]
Add3[2]

% Fourth

level of addition %
dataa[11. • 0] = addin[0] [11. 0] .q;
datab[11. .0] = addin[l][11. 0] .q;
dataa[11. .0] = addin[2][11. 0] .q;
datab[11. .0] = addin[3][11. 0] .q;
dataa[11. .0] = addin[4][11. 0] .q;
datab[11. .0] = addin[5][11. 0] .q;
dataa[11. .0] = addin[6][11. 0] .q;
datab[11. • 0] = addin[7][11. 0] .q;
dataa[11. .0] = addin[8][11. 0] . q;
datab[11. .0] = addin[9][11. 0] .q;
dataa[11. .0] = addin[10][11 .0].q;
datab[11. -0] = addin[11][11 .0].q;
dataa[11. • 0] = addin[12][11 .0].q;
datab[11. .0] = addin[13][11 .0].q;

Level of addition %
dataa[12. .0] = add2[0].result[12. .0] ;
datab[12. .0] = add2[1].result[12..0];
dataa[12. .0] = add2[2].result[12..0];
datab[12. .0] = add2[3].result[12..0];
dataa[12. .0] = add2[4].result[12..0];
datab[12. .0] = add2[5].result[12..0];

Level of addition %

106

Add4[0] .dataa[13.
Add4[0].datab[13.
Add4[1].dataa[13.
Add4[1].datab[12.
Add4[1].datab[13]

0]
0]
0]
0]

= add3[0].result[13
= add3[1].result[13
= add3[2].result[13
= add2[6].result[12
add2[6].result[12];

0] ;
0] ;
0] ;
0] ;

% Fifth Level of addition %
Add5.dataa[14..0] = add4[0]
Add5.datab[14..0] = add4[l]

result[14..0];
result[14..0];

% Create Output Register%
% Output Register is clocked by clock %
Outdata[15..0].elk = clock;
% Output Register is updated when all processes are finished %
Outdata[15].d = (Add5.result[15] and (Multstart and Zero)) or

(Outdata[15].q and (!Multstart or [Zero));

Outdata[14..0].d = (!Add5.result[14..0] and (Multstart and Zero)) or
(Outdata[14..0].q and ([Multstart or [Zero))

end;

% 8-bit Adder %
include "adder.inc";
Subdesign 'dspadd8'
(
dataa[7..0], datab[7..O] :Input;
result[8..0] :Output;
)

Variable
Adder8[7..0] :Adder;

Begin
% ***** series of carry assignments ***** %
Adder8[0].Cin=Gnd;
Adder8[7..1].Cin=Adder8[6..0].co;

% ***** Addend assignments ***** %
Adder8[7..0].A=dataa[7..0];
Adder8[7..0].B=datab[7..0];

% ***** sum assignments ***** %
result[7. .0]=Adder8[7..0] .s ;

% ***** Create Automatic Sign Extension Bit ***** %
result[8] = (dataa[7] and datab[7] and Vcc) or

([dataa[7] and [datab[7] and Gnd) or
((dataa[7] xor datab[7]) and result[7]);

End;

% 9-bit Adder %
include "adder.inc";
Subdesign 'dspadd9'
(
dataa[8..0], datab[8..0]
result[9..0]
)

Variable
Adder9[8..0]

:Input;
:Output;

:Adder;

107

Begin
% ***** series of carry assignments ***** %
Adder9[0].Cin=Gnd;
Adder9[8 ..1].Cin=Adder9[7..0]. co;

% ***** addend assignments ***** %
Adder9[8..0].A=dataa[8..0];
Adder9[8..0].B=datab[8 . . 0] ;

% ***** sum assignments ***** %
result[8..0]=Adder9[8..0]. s;

★ ★ ★ ★ ★% ***** Create Automatic Sign Extension Bit
result[9] = (dataa[8] and datab[8] and Vcc) or

(!dataa[8] and !datab[8] and
((dataa[8] xor datab[8]) and

%

Gnd) or
result [8]) ;

End;

% 13-bit Adder %
include
Subdesign
(
dataa[11.
result[12
)

adder.inc"
'dspaddl2

0], datab
.0]

:Input;
:Output;

Variable
Adderl2[11..0] :Adder;

Begin
% ***** series of carry assignments ***** %
Adder12[0].Cin=Gnd;
Adderl2[11..1].Cin=Adderl2[10..0].co;

% ***** Addend
Adderl2[11..0]
Adderl2[11..0]

assignments ***
A=dataa[11..0];
B=datab[11..0];

% ***** sum assignments ***** %
result[11..0]=Adderl2[11..0]. s ;

% ***** Create Automatic Sign Extension Bit ***** %
result[12] = (dataa[11] and datab[ll] and Vcc) or

(!dataa[11] and !datab[11] and Gnd) or
((dataa[ll] xor datab[ll]) and result[ll])

End;

% 14-bit Adder %
include "adder.inc";
Subdesign 'dspaddl3'
(
dataa[12.
result[13

0], datab[12..0]
.0]

:Input;
:Output;

Variable
Adderl3[12..0] :Adder;

Begin
% ***** series of carry assignments ***** %
Adderl3[0].Cin=Gnd;
Adderl3[12..1].Cin=Adderl3[11..0].co;

108

% ***** Addend
Adderl3[12..0]
Adderl3[12..0]

assignments ***
.A=dataa[12..0];
.B=datab[12..0];

% ***** gum assignments ***** %
result[12.. 0]=Adderl3[12..0].s;

% ***** Create Automatic Sign Extension Bit ***** %
result[13] = (dataa[12] and datab[12] and Vcc) or

(!dataa [12] and !datab[12] and
((dataa[12] xor datab[12]) and

Gnd) or
result[12])

End;

% 15-bit Adder %
include "adder.inc";
Subdesign 'dspaddl4'
(
dataa[13.
result [14

0], datab[13..0]
• 0]

:Input;
:Output;

Variable
Adderl4[13..0] :Adder;

Begin
% ***** series of carry assignments ***** %
Adderl4[0].Cin=Gnd;
Adderl4[13..1].Cin=Adderl4[12.. 0].co;

% ***** Addend assignments ***** %
Adderl4[13. . 0] .A=dataa[13..0] ;
Adderl4[13..0].B=datab[13..0];

% ***** Sum assignments ***** %
result[13..0]=Adderl4[13..0] . s;

% ***** Create Automatic Sign Extension Bit ***** %
result[14] = (dataa[13] and datab[13] and Vcc) or

(!dataa[13] and !datab[13] and Gnd) or
((dataa[13] xor datab[13]) and result[13])

End;

% 16-bit Adder %
include
Subdesign
(
dataa[14.
result[15
)

adder.inc"
'dspaddl5

0], datab
-0]

:Input;
:Output;

Variable
Adderl5[14. . 0] :Adder;

Begin
% ***** series of carry assignments ***** %
Adderl5[0].Cin=Gnd;
Adder15[14..1].Cin=Adderl5[13..0]. co;
% ***** Addend assignments ***** %
Adderl5[14. .0] .A=dataa[14. .0] ;
Adder15[14..0].B=datab[14..0];

109

% ***** gum assignments ***** %
result[14..0]=Adderl5[14..0].s;

% ***** Create Automatic Sign Extension Bit ***** %
result[15] = (dataa[14] and datab[14] and Vcc) or

(!dataa[14] and !datab[14] and Gnd) or
((dataa[14] xor datab[14]) and result[14])

End;

Subdesign 'adder'
(
Cin, A, B ;Input;
S, Co :Output;
)
Variable
Temp :Node;
Begin
Temp = A xor B;
% Create Sum Term %
S = Cin xor Temp;
% Create Carry Out Term %
Co = (A and B) or (Cin and Temp);
End;

110

BIBLIOGRAPHY

1. Brain, Marshall. Win32 System Services, The Heart of Windows 95 and Windows NT.
Upper Saddle River, New Jersey: Prentice Hall, 1996.

2. Oppenheim, Alan V. and Ronald W. Schafer. Discrete-Time Signal Processing.
Upper Saddle River, New Jersey: Prentice Hall, 1999.

3. Orfanidis, Sophocles J. Introduction to Signal Processing. Upper Saddle River, New
Jersey: Prentice Hall, 1996.

4. Patterson, David A. and John L Hennessy. Computer Organization and Design, The
Hardware/Software Interface. San Francisco, California: Morgan Kaufmann
Publishers, Inc., 1994.

5. Scarpino, Frank A. VHDL and AHDL, Digital System Implementation. Upper Saddle
River, New Jersey: Prentice Hall, 1998.

Ill

