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ABSTRACT

DIFF-C-TCP: A NEW TCP USING ECN MARKS TO IMPROVE THE TCP

PERFORMANCE OVER WIRELESS LINKS

Name: Bai, Haowei

University of Dayton, 2001

Advisor: Dr. Mohammed Atiquzzaman

TCP was designed for wireline networks, where loss events are mostly caused by

buffer overflows. The congestion control mechanism of current TCP uses loss events

as the congestion indication which results in TCP reducing its congestion window size.

However, when a wireless link is involved into the TCP connection, TCP performs

poorly which is due to the characteristics of wireless links that are fundamentally

different from wired links, especially the loss behavior. The congestion window size

should not be decreased if the loss event is caused by link corruption. In this thesis,

for better understanding of characteristics of wireless links, we first present a novel

approach to classify the existing wireless error modeling methods, based on different

requirements of different researchers in the practical engineering; we then set up a

complete model to show that zero congestion loss could be achieved by appropriately 

setting the ECN (Explicit Congestion Notification) marking threshold. Based on
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the understanding of wireless links and the possibility of zero congestion loss, we

propose a new TCP algorithm, called Differentiation Capable TCP (Diff-C-TCP),

which assumes packet losses to be the indicator of link corruption and uses ECN as

the indicator of network congestion to differentiate between congestion and corruption

losses over lossy links. The main contribution of this thesis is that a complete model

is set up for achieving zero loss of TCP congestion control by appropriately choosing

the RED threshold and buffer size; and then the Diff-C-TCP is proposed to improve

the TCP performance in the lossy environment. We have shown that the proposed

algorithm performs very well in the presence of lossy links having significant amount

of corruption losses in addition to congestion losses.
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Chapter 1

INTRODUCTION

The TCP/IP (Transmission Control Protocol/Internet Protocol) protocol for the In

ternet was originally designed for wireline networks. Wireless links have a few fun

damentally different characteristics from wired links. They are dominated by low

bandwidth and high error rates, which degrade the performance of TCP. In the

current TCP, the congestion control mechanism uses packet loss as the congestion

indication which result in TCP reducing its congestion window size. However, when

the packet loss is caused by corruption rather than congestion, TCP does not need

to reduce the congestion window size. Unfortunately, packet losses due to corruption

are more significant than congestion losses when a lossy link is involved in a TCP

connection. In such a case, TCP may not be able to transmit or receive at the full

available bandwidth, because the TCP algorithm is spending time in slow-start or 

congestion avoidance procedures triggered by link errors [1]. Consequently, the cur
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rent congestion control algorithms in TCP result in very poor performance over lossy

links.

1.1 TCP Extensions for Wireless Links

Several schemes have been proposed to improve performance of TCP over wireless

links. These can be classified into two classes. In first approach, the TCP sender is

unaware of the losses due to wireless link. So the TCP at the sender does not need to

be changed. In second approach, the sender is aware of the existence of the wireless

link in the network and attempts to distinguish the losses due to wireless link from

that due to congestion. So the sender does not invoke congestion control algorithms 

when the data loss is due to wireless links [3]. We describe the proposed solutions in

this section.

1.1.1 Wireless Aware TCP

In this approach, the fixed host (sender) is aware of the existence of the wireless

link in the network and is able to distinguish the losses due to transmission error on

wireless link from those due to congestion. The sender can avoid invoking congestion

control algorithms when the losses are due to the wireless link. We now discuss TCP

extensions, which are based on this approach.
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Slow-Start and Congestion Avoidance

Recently, TCP has been improved to provide more efficiency and reliability in the 

case of packet losses over large networks. The Slow-Start algorithm [4, 5] is used to 

avoid inappropriately transmitting a large amount of traffic following a packet loss. It

forces TCP to transmit one segment and wait for the corresponding ACK (Acknowl

edgement). During a slow start period, the value of cwnd (Congestion Window) is

increased by one with each ACK received by the sender. When the cwnd size is

greater than or equal to ssthresh (Slow Start Threshold), the Congestion Avoidance 

algorithm [4, 5, 6] is used so that the cwnd increases slower than during slow start.

Fast Retransmit and Fast Recovery

Above two algorithms lead to poor utilization of the available channel bandwidth

when they are used in long-delay satellite networks [7]. Because the Slow-Start and 

Congestion Avoidance mechanisms are generally considered to be essential to well-

behaved TCP implementations on the Internet, those two mechanisms appear to have

a limiting effect on TCP’s performance over lossy links [8]. Moreover, they prevent 

TCP from quickly recovering from packet losses. Fast Retransmit and Fast Recovery 

algorithms [6, 9] are used to reduce the cwnd by half before transmitting new data.

However, Fast Retransmit and Fast Recovery algorithms can lead to a problem that

allows multiple fast retransmits per window of data [10], resulting in the congestion 

window size being reduced multiple times in response to a single loss event. This may
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hurt the performance of TCP [11], especially over corruption-dominated lossy links.

Selective Acknowledgements

The authors in [12] describe a conservative extension to the Fast Recovery algo

rithm by taking into account the information provided by Selective Acknowledge

ments (SACKs) [13]. When SACK based algorithms are used, the sender can be 

exactly informed which packets need to be retransmitted in the first RTT (Round 

Trip Time) following the loss event. In this way, SACK allows TCP to recover from 

multiple segment losses in a window of data within one RTT of loss detection [14]. 

Although Fast Retransmit, Fast Recovery and SACK are generally able to rapidly re

cover from multiple packet losses, they reduce the congestion window to avoid further

congestion. The above behavior, which is based on the assumption that packet losses

are indicators of congestion, results in a degradation of throughput in the presence of

non-congestion related packet losses (such as wireless link errors). Therefore, when

they are applied to lossy links, where most of packet losses are due to link errors

instead of congestion, TCP is unable to determine the available bandwidth.

Using Heuristic Method to Differentiate Congestion losses and Corruption

Losses

Some researchers applied heuristics, such as loss predictors, to distinguish between 

congestion and transmission errors [15, 16], but their simulation measurements in-
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dicated that their loss predictors did not perform well. They proposed a modified

TCP-Reno scheme called TCP-Aware [17] to differentiate between packet losses due 

to congestion and losses due to link errors. However, their scheme works well only

when the last hop for the connection is wireless, the bandwidth of the wireless link is

much smaller than the bandwidth of the wired link, and the overall packet loss rate

is small [17], all of which are too critical and limited in the real world Internet.

Distinguishing Losses by Making Two Connections

The basic model for this method is that the network is wired and the last hop from

the base station to the wireless host is wireless. It is assumed that the wireless host

receives all its packets from the base station. This method does not take care of the

handoffs. The TCP at the sender is assumed to know that the destination host is a

wireless host.

The key idea in this algorithm is that the sender distinguishes between congestion

on the wired network and the transmission errors on the wireless part. The wireless

host assures that if the packets are dropped due to transmission error, the sender

retransmits them before its timeout [18]. When a fixed host wants to communicate

with a wireless host, it opens two connections, one with the base station and the

other with the wireless host. The connection between the sender and the base station

is called control connection. This is used to estimate the congestion on the wired

link. The packets on these two connections are expected to be routed in the same
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way and hence are affected same by the congestion. Sender sends packets on the

control connection in regular intervals sufficiently spaced so as not to cause overhead.

The sender periodically compares the fraction of acknowledged packets on the two

connections and checks if the packets are lost due to congestion or due to transmission

error on the wireless link. If the acknowledged fraction is significantly different in

these two cases, then it concludes that the error in the wireless link is causing the

packets to be dropped so the sender does not apply congestion control and does not

reduce the window size and continues the increment as before. If the two fractions

are same, then congestion control is applied as in normal TCP. When packets are

lost, the TCP at the sender has to wait for the timeout after which it retransmits the

packets. When the wireless host learns about this loss it sends duplicate ACKs. The

sender on seeing the duplicates ACKs knows that its previous packets have been lost

and immediately resends the packets without waiting for the timeout.

1.1.2 Wireless Unaware TCP

In this approach, the non-congestion related losses are hidden from the TCP at the

fixed host (sender), and hence the TCP at the fixed host remains unmodified. This

approach is based on the intuition that since the problem is local, it should be solved

locally and the TCP should be independent of the behavior of the individual links.

We now present some solutions based on this approach.
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The Snoop Module

A simple protocol called snoop protocol that improved TCP performance over wireless 

network has been proposed in [3]. The main idea of their protocol is to cache packets

at the base station and perform local retransmissions over wireless links. However, this

protocol assumes that the wireless link is the last hop in the TCP connection. It also

needs a base station to maintain the state information, and cache the unacknowledged

TCP packets, which results in an increased requirement for resources.

I-TCP (Indirect TCP)

This was implemented at Rutgers University as a part of the Dataman Project. The

scheme works by breaking the connection between the machine on the fixed wired

network and the wireless mobile host in two connections. One connection is between

the fixed host and the base station; the other connection is between the base station

and the wireless host. Data sent to the wireless host is first received by the base

station. Upon receiving the data, the base station sends an acknowledgement to the

fixed host and then the received data is forwarded to the wireless host. The base

station and the wireless host does not need to use TCP for communication. Instead

a specialized protocol that is optimized for mobile applications and for low speed and

unreliable wireless medium can be used.

This indirection helps shield the wired network from the uncertainties of the wire

less network. The TCP/IP at the fixed host side does not to be changed. Because
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of this indirection, the wireless host could be very simple and the base station would

handle most of the complexity about communication overhead. If the wireless host

moves to a different cell while communicating with a fixed host, the whole connec

tion information is transferred from the current base station to the new base station

and the new base station takes over from here. The fixed host is unaware of this

indirection and is not affected when this switch occurs.

However, I-TCP violates the acknowledgement mechanism of current TCP, be

cause acknowledgements of data packets would possibly reach the original source

before the data packets reach the wireless host. If errors due to link corruption hap

pens, since acknowledgements could be received by the original sender before the

wireless host’s receiving data packets, it would be dangerous.

1.2 Zero Loss Congestion Control with Explicit

Congestion Notification

As seen from the description in Section 1.1, if losses due to congestion and corrup

tion in wireless links could be appropriately differentiated, significant performance

improvements can be achieved [2]. Without any other additional information, the ex

isting implicit loss feedback mechanisms in TCP does not allow distinguishing between 

congestion and corruption losses [1]. ECN (Explicit Congestion Notification) [19] was 

proposed as an explicit indicator of congestion. It can be used to quickly and unam

8



biguously inform sources of network congestion, without the sources having to wait 

for either a retransmit timer timeout or three duplicate ACKs (Acknowledgements)

to infer a dropped packet. For bulk-data connections, this mechanism can avoid un

necessary packet drops for low-bandwidth delay-sensitive TCP connections, and can 

avoid some unnecessary retransmit timeouts in TCP [20]. Since ECN is an explicit 

indicator of network congestion, it provides the possibility to differentiate between

losses due to congestion and losses due to link errors. If the buffer has enough space 

and the threshold of the RED (Random Early Detection) router is appropriately set, 

zero-loss congestion control could be achieved by appropriately adjusting the source’s

window size based on the notification of ECN signal. Some researchers have done

some initial work.

Authors in [21] presented a framework for designing end-to-end congestion control 

schemes in a network where each user may have a different utility function. They con

sidered ECN marks as an alternative of losses for the congestion notification. Using

this model, they showed that the ECN marking level can be designed to nearly elim

inate congestion losses in the network by choosing the marking level independently

for each node in the network. However, they ended up with an apparent conclusion

that increasing the network resource is the only option to ensure loss-free service.

Authors in [22] analyzed the queue dynamics at the congested router, and derived 

the closed-form formula and buffer requirements to achieve zero loss and full link

utilization. However, as they stated in their work, they didn’t get the mathematical
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expression for the average share of bottleneck link bandwidth which is the basis of

their model. Instead, they used the simulation to illustrate the relationship between 

the average share of bottleneck link bandwidth and the Round Trip Time (RTT). The 

same difficulty is also encountered by authors in [23]. As a solution, they introduced

an unknown constant into the final expression.

1.3 Our Objective

Motivated by the above results, in this thesis, we model the ECN mechanism and de

duce the zero congestion loss requirements. As one of the most important parameters

in our model, we also derive the exact mathematical expression for the average share

of bottleneck link bandwidth by modeling the ECN marking dynamics as a Poisson

Process. We finally end up with a complete mathematical model for achieving the

zero-loss TCP congestion control.

In the heterogeneous network environment involving lossy links, if we can elim

inate all network congestion losses, or if the congestion losses are a small fraction

of random losses, with the negligible error all losses can be attributed to random

losses. This finally leads to our proposed Diff-C-TCP discussed in Section 5.2. Diff-

C-TCP assumes loss events indicate link corruption and uses ECN as the congestion

indication with the precondition of zero congestion losses to differentiate between con

gestion and corruption. As mentioned earlier, because of links errors, packet loss due

to corruption is more significant in a lossy network. To have a high TCP throughput
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when a TCP connection traverses a lossy link, the TCP source should persist in the

previous utilization of bandwidth instead of reducing the transmission rate when the

loss is due to corruption.

The contributions of this thesis are:

• For better understanding of the characteristics of wireless links, a novel approach

to classify the existing wireless error modeling methods is presented, based on

different requirements of different researchers in the practical engineering.

• A complete analytic model is set up for achieving zero congestion loss with the

use of ECN mechanism; the exact mathematical expression of average share of

bottleneck link bandwidth with multiple competing TCP flows is deduced.

• Finally, based on the zero congestion loss model and the understanding of the

characteristics of wireless links , the Diff-C-TCP is proposed to improve the

performance of TCP over lossy links.

The significance of our proposed algorithm is that it can deal with multiple packet

losses that are due to link errors without reducing the congestion window size, thereby

resulting in a high throughput in the presence of corruption losses. At the same

time, it appropriately reduces the congestion window size in the presence of network

congestion, thereby helping the network to get out of congestion.

This thesis is organized as follows. In Chapter 2, for better understanding of the

characteristics of wireless links, we present a novel approach to classify the existing
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wireless error modeling methods. In Chapter 3, we briefly describe the loss detection

schemes deployed by current TCP. In Chapter 4, we set up a complete model used

to achieve zero congestion losses with multiple competing TCP flows which is the

basis of our proposed Diff-C-TCP algorithm discussed in Chapter 5. In Chapter 6,

we describe the simulation methodology that has been used to test the performance

of our proposed algorithm. Performance improvements achieved by our proposed

algorithm are also shown in this chapter. Concluding remarks are finally given in

Chapter 7.
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Chapter 2

PROPAGATION

CHARACTERISTICS AND

ERROR MODELING FOR

WIRELESS COMMUNICATION

CHANNELS

2.1 Introduction

Several physical media, ranging from light to radio, could be used for wireless com

munication, which leads to the complexity of modeling wireless channels, because
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of several reasons. First, wireless channels are inherently dependent on the physical

properties of transmission media, such as reflections from a smooth surface, diffrac

tions around a corner and scattering caused by a lamp post. Secondly, the characteris

tics of wireless channels are closely related to the characteristics of different geometric

sites in which the wireless channel is formed. It is known that the mean power is the

basic requirement for reliable wireless communications. The energy should be suffi

cient, but not too strong, in order to avoid cochannel interference. Since the radio

link is highly variable over short distances due to the statistical distribution of PL 

(Path Loss) and physical properties of propagation environments, the statistical dis

tribution of channels is also very important. From another point of view, even if

there is adequate power for communication, the quality of received signal might not

be perfect. This arises from rapid movement through the scattering environment, or 

impairments due to long echoes leading to inter-symbol-interference [24]. Again, it is

necessary to obtain a basic understanding of wireless channels in order to find better

modulation and coding schemes to improve the quality of channels.

Several effects that can lead to bit errors and packet losses over a wireless channel

are described below.

• The quality of received signal is often evaluated by Signal-to-Noise Ratio (SNR).

If the SNR value is too low, the received signal will not be detected at the

receiver, consequently yielding bit errors and packet losses. However, note that

SNR is not the only factor leading to errors.
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• The second one is Inter-Symbol-Interference caused by delay spread, which

means that the arrival of an earlier transmitted symbol is delayed, thereby

partially cancelling out the current symbol.

• The third one is Doppler Shift due to relative velocities of the transmitter and

the receiver. Doppler shift causes frequency shifts in the arrived signal, thereby

complicating the successful reception of the signal.

It is difficult for researchers, especially for wireless network protocol developers, to

consider so many factors that affect the error performance of wireless channels. There

fore, wireless error models will be very helpful in evaluating the performance of wire

less networks and communication systems.

Wireless channels are usually modeled by capturing the statistical nature of the

interaction among reflected radio waves. The statistical calculations for Bit Error 

Rate (BER), which is usually used to characterize channel errors at the physical

layer, is a well-known practice. From the perspective of higher layer, network proto

col developers and algorithm designers are interested in block errors (packet errors), 

since almost all of the applications running on top of link layers exchange blocks of

data. It has been observed that wireless errors can be approximated using a two-state

Markov process in order to more easily evaluate the block-error rate. Both statistical

calculations for BER at the physical layer and error approximation at higher layers

use analytical modeling methods which are described in this survey. In addition to

analytical modeling methods mentioned above, it is highly desirable that wireless
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networks be modeled in a thoroughly repeatable fashion, which is especially neces

sary for people who must experiment with realistic channel parameters. The results

from analytical modeling methods are either inaccurate or unlikely to be reproduced,

giving rise to another modeling method named empirical distribution-based model

ing methods in this survey. The empirical distribution-based methods are capable of

solving this problem.

In this chapter, our objective is to present a novel approach to classify the existing

wireless error modeling methods. In contrast to traditional classification methods,

our approach is based on different requirements of different researchers in the practi

cal engineering. Our goal is to provide the appropriate method for modeling wireless

error channels to different researchers. According to our classification, we recom

mend that researchers who need to analyze characteristics of wireless error channels

should use Analytical Models] network protocol designers and evaluators who need

to synthesize a wireless error channel, i.e., build an appropriate error model for their

simulations and evaluations over special communication environments, should use

Empirical Distribution-Based Models.

The rest of this chapter is organized as follows. The nature of radio propagation

is described in Section 2.2 followed by discussion of the characteristics and models of

fading channels in Section 2.3. Several wireless error modeling methods are classified

and introduced in Section 2.4. Finally, concluding remarks are given in Section 2.5.
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2.2 Properties of Radio Propagation

There are three main mechanisms that impact radio propagation in a wireless com

munication environment [25] as described below:

• Reflection, which may interfere constructively or destructively at a receiver,

occurs when a propagating electromagnetic wave impinges on a smooth surface

with very large dimensions compared to the wavelength of the radio wave.

• Diffraction occurs when the radio path between the receiver and the transmitter

is obstructed by an impenetrable body with large dimensions as compared to 

the RF (radio frequency) signal wavelength. This causes secondary waves to be 

formed behind the obstructing body, even though there is no LOS (line of sight)

path between the two. Diffraction, which is also named shadowing because the

diffracted field can reach the receiver even when shadowed by an impenetrable

obstruction, explains how RF energy can travel in urban and rural environments

without a LOS path.

• Scattering occurs when the radio channel contains objects with dimensions that

are on the order of the wavelength or less, causing energy from a transmitter

to be radiated in many different directions. In urban environments, typical

examples that yield scattering are lamp posts, street signs and foliage.
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2.3 Fading Channels

In a practical wireless communication system, a signal may travel between the trans

mitter and the receiver over multiple paths, which is referred to as multipath propaga

tion. Multipath propagation can cause fluctuations in the received signal’s amplitude,

phase and angle of arrival, giving rise to the term multipath fading. In this section,

we describe the various types of fading followed by models of fading channels.

2.3.1 Large-scale Fading and Small-scale-Fading

Based on the distance over which the mobile moves, there are two different types 

of fading effects: large-scale fading and small scale fading [26]. If the mobile moves

away from the transmitter over a large distance, the received signal will experience

large-scale signal variation. Large-scale fading represents the average signal power

attenuation and path loss due to motion over large areas. The receiver is often

represented as being shadowed by such prominent terrains as hills, forests, billboards,

clumps of buildings, etc.

Small-scale fading refers to the dramatic changes in signal amplitude and phase 

that can be experienced as a result of small changes (as small as a half-wavelength)

in the spatial separation between the transmitter and the receiver. When there are a

large number of reflective paths and there are no LOS signal components, the envelope 

of the received signal can be statistically described by the Rayleigh distribution [27] 

[28]. If dominant non-fading components exist, such as LOS propagation path, the
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small-scale fading envelope is Rice distributed [27] [28]. A mobile radio propagating 

over a large area will experience both types of fading, in other words, small-scale

fading super-imposed on large-scale fading.

2.3.2 Modeling of Fading Channels

In this section, we present the different types of fading channels typical of practical

communication environments and the mathematical models that can be used to de

scribe the channels. Table 2.1 [29] shows these various fading channel models classified 

by environments to which they apply.

Multipath fading arises from the constructive and destructive combination of ran

domly delayed reflected, scattered, diffracted signal components. Based on the nature

of the radio propagation environment, there are different mathematical models de

scribing the statistical behavior of the multipath fading envelope.

• The Rayleigh distribution typically agree very well with experimental data for

mobile system where no LOS path exists between the transmitter and receiver 

antennas [30].

• The Nakagami-q distribution is typically observed on satellite links subject to 

strong ionospheric scintillation [31].

• The Nakagami-n distribution, known as the Rice distribution, is often used

to model channels consisting of one strong direct LOS component and many
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random weaker components [32].

• The Nakagami-m distribution often gives the best fit to land-mobile, indoor- 

mobile multipath propagation, as well as scintillating ionospheric radio links [33].

In terrestrial and satellite land-mobile systems, due to the effects of shadowing

from terrain, buildings and trees, the link quality is also affected by slow variation

of the mean signal level. The shadowing can generally be modeled by a log-normal 

distribution for various outdoor and indoor environments [34]. If the receiver is able 

to average out the fast multipath fading, the performance of mobile system depends

only on shadowing. However, in the environment consisting of multipath fading super

imposed on shadowing, the receiver does not average out the fading envelope. This 

scenario, named composite multipath/shadowing, is typically observed in congested 

downtown areas with slow moving pedestrians and vehicles [35]. A detailed discus

sion of this topic and corresponding probability density functions of fading amplitude 

and SNR (the signal-to-noise ratio) can be found in [36].

2.4 Error Models of Fading Channels

With the increasing deployment of wireless networks, most of research has focused on 

improving the quality of wireless systems. This has led to a growing interest in char

acterizing the loss behavior of many wireless technologies. A number of error models 

have been proposed in the literature to simulate the loss behavior of transmission
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channels. The errors models can be classified into two groups: analytical models and

empirical distribution based models.

2.4.1 Analytical Models

Errors occurring on wireless channels are due to the diversity of wireless connections

and the complicated physical impairments. As a result, it is difficult to generalize

the mathematical results from one specific domain to another. Therefore, analytical

modeling methods are highly dependent on the characterization of error environments,

such as fading channels.

The traditional metric used for characterizing channel errors at the physical layer

is the average BER (bit-error-rate), which gives rise to the first class of analytical

modeling methods called physical layer oriented modeling which deals with bit errors.

It is expected that future wireless communications will include image, video and data

applications, which requires the efficient usage of spectral resources. In order to take

this into effect, the mixed media encoding algorithms will have to carefully designed

to overcome the impact of wireless errors.

Though wireless channel errors are due to various physical impairments, the chan

nel interactive with those higher layer applications is never the raw physical channel.

At the same time, higher layer applications running on top of a link layer usually man

age data transfer in blocks containing multiple bits or symbols and employ various

block error detection and retransmission mechanisms. This gives rise to the second
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class of analytical modeling methods named higher layer oriented modeling which

is interested in block errors. In the following subsections, we describe both physical

layer oriented modeling and higher layer oriented modeling.

Physical Layer Oriented Modeling

This method aims at determining the BER performance of a wireless communica

tion system over fading channels. Based on the specific channel model and modula-

tion/detection combination, the average BER is obtained through statistical calcula

tions. A lot of results have been reported using this modeling method [45] [46] [47] 

[48] [49] [50] [51] [52]. They deal with different fading channels and combinations 

of modulation/detection techniques. However, a useful generalized expression [29] 

for the average BER performance of wireless communication systems over AWGN

(Additive White Gaussian Noise) and fading channels which unifies all the results

mentioned above is given in Equation 2.1.

Figure 2.1 [29] shows a typical multilink channel model, which is used to develop 

the generalized model for determination of the BER performance. As shown in Figure

2.1, the transmitted signal is received over L independent channels. Each of them 

is a fading channel. In Figure 2.1, {r^t)}^ is a set of L received replicas of the 

signal, where I is the index of the channel, and «, 3, t are the random fading channel 

amplitudes, phase and delays, respectively. The first channel (with index of 1) is

assumed to be the reference channel whose delay is 0. The fading amplitude, oy of
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the Zth channel is a random variable with a mean squared value of of which is denoted 

by Q/. The probability distribution of the random variable cq is any of the family of 

distributions presented in Table 2.1. Based on this channel model, authors in [29] use

alternate representations of Gaussian and Marcum Q-functions that are characteristic

of error-probability expression for coherent, differentially coherent and noncoherent

forms of detection to obtain the generalized BER expression as follows:

Pb(E-n) =

1
(1 T 7/)2Lr-l

EC-71)’?
1=2

(1 + 7) 2Lr-l
(a2 + 62)ex exp

2 Io(aby)

LZ=2

2Lp — 1 \ — 1 + Z X [Qi(b^y,a^y) - Qi(byfy,ay/y)} (2-1)

+ X

where the function Q(-) is the generalized Marcum Q-function obtained by the authors 

in [29] and is given by

ai-i

roo/ / { x2 + a2\
/ x exp
J/3 L \ 2 /J Ii~i(ax)dx. (2.2)

The /(•) function in Equation (2.2) is the first kind (/ — l)st order modified Bessel 

function. The parameter I in Equation (2.1) is the channel index, 7 = Efei 7/ is the 

total instantaneous SNR per bit.

Typical values of 77, a and b corresponding to specific modulation/detection schemes 

are shown in Table 2.2 [29]. Note that in all possible cases, a and b are independent of
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Figure 2.1: Generalized fading channel

the fading channel model. For the case of single channel reception, the value of Lr in 

Equation (2.1) is equal to one. Otherwise, Lr > 1, which corresponds to the case of

multichannel detection. Details on the derivation of this generalized expression can 

be found in [29].

Example: The usefulness of the generalized BER equation (as given by 2.1) 

is shown by an example below, in which, by plugging in appropriate parameters

summarized in Table 2.2, the well-known conditional BER expression for orthogonal

DPSK with single channel reception is obtained.

Let Lr = 1 (i.e., single channel reception). The latter two summations in Equation
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(2.1) do not contribute. One can immediately obtains the result, i.e.

Pb(E-y) = exP ~a..^oHy). (2.3)

For 7=1, fl=0 and b=y/2 (See Table 2.2), Equation (2.3) can be reduced to the well- 

known expressions for DPSK as reported by a lot of authors, which is given by

P^E-^dpsk = |errp(-7). (2.4)

Higher Layer Oriented Modeling

As mentioned in Section 1, modeling of higher layers aims at calculating the aver

age block-error rate (packet-error rate) which is very important to the performance 

analysis of link layer protocols. The special structure of Markov models makes them 

naturally useful and tractable [53]. The study of Markov approximation dates back 

to early work of Gilbert [54] and Elliott [55]. They built a two-state Markov channel 

known as the Gilbert-Elliott channel. In a simplified Gilbert model [56], the error 

probabilities in bad state and good state are 1 and 0, respectively. Assume 0 and 1

denote successful and erroneous transmission in a given slot, respectively, and let

P =
(pD)o

P10

P01

P11 ?

(2-5)
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be the transition matrix for the packet-error process. The average packet-error rate

is then given by [57]

e = ———. (2.6)
Pio + Poi

This Markovian model for average packet error probability can be easily extended

for diversity. The performance can be improved by using two (or more) suitable 

spaced antennas over fading channels [57]. For example, if a diversity of order two 

(i.e., two antennas) is employed, and the signals received at the two antennas fade

independently, the channel can be modeled by three states: both channels are good 

(state 0), two channels have different states (state 1), and both channels are bad 

(state 2). If the transition matrix of each channel has the same form as Equation 

(2.5), the transition matrix of this three-state Markov process can be written as [57]

Poo 2poiPoo Poi

PioPoo PiiPoo + P10P01 P01P11

P?o 2pioPn P?r

In this model, both state 0 and state 1 correspond to successful transmission, while

state 2 corresponds to a transmission failure.

A Binary Symmetric Channel (BSC) with a given crossover probability can be

associated with each state so that the channel quality for each state can be identified.

Unfortunately, the Gilbert-Elliott channel is a special case, because the crossover
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probability of the BSC are 0 and 0.5, respectively [58]. When the channel quality 

varies dramatically, a two-state Gilbert-Elliott model is not adequate. As a solution, 

a FSMC (finite-state Markov channel) is proposed in [58] as the extension of two-state 

Markov model. By partitioning the range of the received SNR into a finite number 

of intervals, FSMC models can be constructed for Rayleigh fading channels [58].

2.4.2 Empirical Distribution-Based Models

A large number of measurements have been conducted by telecommunication com

panies, research laboratories, and universities in order to determine reasonable prop

agation parameters for wireless communication systems. These measurements show

that environmental factors, such as terrains, construction materials, speed of pedes

trians and vehicles, etc., have a direct impact on radio propagation characteristics.

Therefore, although analytical modeling methods as described are sound in theory,

in practice it is hard to determine the values of the parameters in these models, es

pecially when we want to build a specific model under a special environment. This

gives rise to empirical distribution-based modeling methods.

Empirical distribution-based models consist of three phases: Data collection, sta

tistical analysis and model construction, model validation.

• In the data collection phase, a large number of statistical data are collected and

recorded by network tracing or measurements for many different scenarios.

• Those statistical data are extracted in terms of interests, such as packet errors,
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and are modeled in the statistical analysis and model construction phase.

• The model is built by fitting known probability distributions to data. In the

model validation phase, the models are simulated or analyzed and validated.

The models are refined to make them consistent with the collected data and

traces.

Example: A good example of an empirical distribution-based model is presented 

in [59] where the loss behavior of the AT&T WaveLAN, a popular in-building wireless

interface, is characterized and modeled using empirical distribution-based modeling

method. Packet loss information is recorded and analyzed by conducting network

tracing. As a result, evaluating wireless network protocols with a uniform error model 

has been shown to be inaccurate [59]. Furthermore, authors in [59] also reveal that the 

wireless error behavior of WaveLAN can not be accuratley modeled by a simple two-

state Markov chain using analytical modeling method. Instead, another improved

two-state Markov model, based on the distribution of the error length (defined to 

be the number of packets that are lost consecutively) and error-free length (defined

to be the number of packets that are successfully received between two adjacent 

bursts of errors [59]) of the packet stream has been shown to be more appropriate. 

The key difference between the two lies in the probability distribution of the error

and error-free length. The simple two-state Markov model assumes that the error

length and error-free length are geometrically distributed. However, results of the

empirical distribution-based modeling shows that the error length is better described
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by a combination of two Exponential distributed segments, and the error-free length is

better described by a combination of three segments, two Pareto distributions and one

Exponential distribution. The above example shows the usefulness of the empirical

distribution-based modeling method for modeling wireless errors.

2.5 Summary

Wireless error modeling methods have been introduced in this chapter. A number of

error models used to approximate the loss behavior of transmission channels have been

classified into two groups: analytical models and empirical distribution-based models.

Since errors occurring on wireless channels are due to the diversity of wireless connec

tions and the complicated error environment, analytical modeling methods are highly

depended on the characterization of error environments, such as fading channels. Al

though physical layer oriented modeling methods and higher layer oriented modeling

methods can be used to evaluate the BER performance and packet error performance

respectively, it is highly desirable that wireless errors be modeled in a thoroughly re

producible way, which is especially necessary for developers of network protocol and

mobility algorithms who must experiment with realistic channel parameters. The

empirical distribution-based modeling approach which alleviates the above problem

has been described in this article.

According to our classification, we recommend that researchers who need to ana

lyze characteristics of wireless error channels should use Analytical Models] network
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protocol designers and evaluators who need to synthesize a wireless error channel, i.e.,

build an appropriate error model for their simulations and evaluations over special

communication environments, should use Empirical Distribution-Based Models.
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Table 2.1: Models that can be used to characterize various wireless environments.

Environment Channel Type
Mobile systems with no LOS path 
between transmitter and receiver 
antenna, propagation of reflected and 
refracted paths through troposphere 
and ionosphere, ship-to-ship radio links [37].

Rayleigh [30]

Satellite links subject to strong 
ionospheric scintillation [38].

Nakagami-q (Hoyt)
(spans range from one-sided 
Gaussian (g=0) 
to Rayleigh (g=l)) [31]

Propagation paths consisting of one strong 
direct LOS component and many random 
weaker components - microcellular urban and 
suburban land mobile, picocellular 
indoor and factory environments [39].

Nakagami-n (Rice)
(spans range from
Rayleigh (n=0) to 
no fading (n=oo)) [32]

Often best fit to land mobile [40], indoor 
mobile multipath propagation as well as 
ionospheric radio links.

Nakagami- m 
(spans range from 
one-sided Gaussian (m=|), 
Rayleigh (ra=l) to 
no fading (m=oo)) [33]

Caused by terrain, buildings, trees - urban 
land mobile systems, land mobile satellite 
systems [42].

Log-Normal shadowing [41]

Nakagami-m multipath fading superimposed 
on log-normal shadowing. Congested down town 
areas with slow-moving pedestrians and vehicles. 
Also in land mobile systems subject to 
vegetative and/or urban shadowing [43].

Composite
gamma/log-normal [41]

Convex combination of unshadowed multipath 
and a composite multipath/shadowed fading.
Land mobile satellite systems [44],

Combined (time-shared) 
shadowed/unshadowed [44]
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Table 2.2: Special Cases of Generalized Equation Corresponding to Specific Modula- 
tion/Demodulation Schemes

Detection Type Modulation (Signal Set) Parameters of
Marcum Q-Function

Noncoherent Equal energy, equiprobable correlated

binary signals
(A=complex correlation coefficient)

b=yi+4—

Noncoherent Equal energy, equiprobable uncorrelated 
binary signals, e.g., BFSK

77 = 1, a = 0, = 1

Differentially
Coherent

Binary phase-shift-keying (DPSK) g = 1, a = 0, b = y/2

Differentially Quadrature phase-shift-keying (DQPSK) 77 = 1,g = ^2 - \/2,

Coherent with Gray coding b — \J 2 \/2
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Chapter 3

LOSS DETECTION IN TCP

CONGESTION CCONTROL

3.1 Current TCP

In the current TCP, two mechanisms have been deployed for the recovery of lost

packets: the timeout mechanism and the Fast Retransmit and Recovery algorithm.

A TCP sender uses packet loss as an implicit signal for network congestion with

the assumption that packet losses are mainly caused by congestion. Packet losses

are indicated by a timeout or by the receipt of three duplicated ACKs. The TCP

sender continuously increases its traffic into the network until either one of above two

indications is received. As shown in Figure 3.1, a retransmit timer timeout always

forces TCP to enter the Slow-Start phase, during which the transmission rate is
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1
Time out

Figure 3.1: Current TCP states transition diagram.

doubled every RTT (Round Trip Time). When ssthresh is reached, TCP switches to 

Congestion Avoidance phase, during which the transmission rate increases linearly 

at one MSS (Maximum Segment Size) per RTT. The TCP sender will retransmit a 

packet if it receives three duplicated ACKs for the packet sent immediately before the

lost packet. This procedure is called Fast Retransmit (See Figure 3.1). If the TCP 

sender detects a packet loss using Fast Retransmit, Fast Recovery will be used, which

halves the congestion window. Congestion window size is denoted by W in Figure

3.1.

As mentioned previously, loss events in a network with lossy links are predomi

nantly caused by link errors instead of congestion. Unfortunately, using current TCP,

packet loss will be implicitly notified by either a timeout or the TCP source’s receipt

of three duplicated ACKs, which will always trigger the congestion control mechanism
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of TCP. Since loss events are not always caused by network congestion, this operation

will cause poor performance of TCP over lossy links.

3.2 ECN Marks

Active queue management mechanism, such as Random Early Detection (RED) [60, 

61], allows a router to detect congestion before the queue overflows. Explicit Conges

tion Notification mechanism was proposed recently [20] to provide a fast and explicit 

indication of network congestion. Routers are therefore no longer limited to using

packet drops to indicate congestion. This provides the basis for our proposed Diff-

C-TCP, where we no longer use packet losses as the indicator of network congestion 

(more details could be found in Section 5.2). For ECN-capable TCP, if the sender 

receives an ECN_ECHO packet, then the sender knows that congestion was encoun

tered on the path from the sender to the receiver. The receipt of ECN_ECHO packet

indicating network congestion should be treated the same as a congestion loss in non-

ECN-capable TCP. In other words, the congestion window should be halved and the

slow start threshold ssthresh should be reduced. A router can indicate congestion by

sending CE (Congestion Experienced) packets to the receiver. On receiving the CE

packet, the TCP receiver will keep sending ECN_ECHO packet back to the sender 

till it receives CWR (Congestion Window Reduced) packet from TCP sender, which 

means the sender has already responded to network congestion. The sender does not

react to the receipt of ECN_ECHO packets more than once every RTT.
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Chapter 4

ELIMINATING CONGESTION

LOSSES WITH ECN

If the buffer has enough space and the threshold of the RED router is appropriately

set, zero-loss congestion control could be achieved by appropriately adjusting the

source’s window size based on the notification of ECN signal. In this section, we

model the ECN mechanism and deduce the zero congestion loss requirements. As

one of the most important parameters in our model, we also derive the exact math

ematical expression for the average share of bottleneck link bandwidth by modeling

the ECN marking dynamics as a Poisson Process. We finally end up with a complete

mathematical model for achieving the zero-loss TCP congestion control.

36



4.1 Analysis Assumptions

In order to set up a proper but not complicated model and analyze the queue dy

namics, as well as zero-loss requirements, we make the following assumptions:

• Senders always have data to send and will send as many as their windows allow.

• Receiver windows are large enough.

• Only one bottleneck link in the network causing queue build-up.

• There are no delayed acknowledgements.

• All packets have the same length.

4.2 Queue Dynamics Analysis with One TCP Flow

Along the path with only one TCP connection, if the bottleneck link bandwidth is 

d packet/second, then the downstream packet inter-arrival time and the acknowl

edgement inter-arrival time on the reserve link must be greater than or equal to J 

[22].

Based on this statement, we use the analytical model shown in Figure 4.1 and

notations as follows:

w(t) = The sender’s window size at time t. 

r = Round Trip Time (RTT).

/i = Bandwidth of the bottleneck link.
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Figure 4.1: Analytical model of one TCP connection.

ts = The time a packet needs to traverse from the sender to the router.

T = The threshold of RED router.

P = The packet which increases the queue length over T.

From the reported work in [22], we know that if at time t the bottleneck link has

been busy for at least r seconds, and a packet just arrive at the congested router, the

queue length at the congested router is

Q(t) = w(t - p) - r/z. (4-1)

Based on this theorem, requirements for achieving zero congestion loss could be

described by the relationship between the queue length and the threshold of RED

router. In two different phases, slow start and congestion avoidance, we have different

results [22].

• Slow Start Phase

The maximum queue length in slow start phase is 2T + r/j, + 1.

• Congestion Avoidance Phase

38



The maximum queue length in congestion avoidance phase is T+l; the minimum 

queue length is T~y+1. For the full utilization of the bottleneck link,

T — r/i + I 
2~ >0, (4.2)

which means

T > r/j, — 1. (4.3)

However, if T > rn — 1 indicating the minimum queue length is a positive

number, the RED router may have long queueing delay. Thus, the optimal

value of threshold for achieving zero congestion loss, full link utilization and

minimum queueing delay in congestion avoidance phase can be calculated from

T — rn + 1 
2~ = 0. (4-4)

In other words, the optimal value of threshold is

T = rn~l- (4.5)

Finally, we end up with various cases of possible threshold shown in Table 4.1.
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Table 4.1: The value of threshold T for the case of one TCP flow.

T Description
T > rn — 1 The link is fully utilized, but 

packets suffer larger queueing delay.
T — r/i — 1 Optimal threshold; zero congestion loss,

full link utilization and minimum queueing delay.
T < r/i — 1 The link is under-utilized.

Figure 4.2: Analytical model of multiple competing TCP connections.

4.3 Queue Dynamics Analysis with Multiple Com

peting TCP Flows

Figure 4.2 shows the system model considered in this section. We use the following

notations in the analysis:

Wi(t) = The ith sender’s window size at time t. 

ri — Round Trip Time (RTT).

~jli = The average share of the bottleneck link bandwidth.

tSi = The time a packet needs to traverse from the ith sender to the router.

T = The threshold of RED router.
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The analysis of the case of multiple competing TCP connections is based on the

discuss in Section 4.2. For the analytical model shown in Figure 4.2, we get the queue

length expression as shown below.

QW = _ M - nMi)- (4-6)
i=l

As we mentioned in Chapter 1, the difficulty to use Equation 4.6 is how to calculate

/q. We show the calculation of JJi in Section 4.4.

Similar to the discussion in Section 4.2, we give out the requirements for achieving

zero congestion loss by two different cases, slow start phase and congestion avoidance

phase [22].

• Slow Start Phase

It is almost unlikely for multiple TCP connections to send at the same time.

If some connections are in slow start phase, while others are in congestion

avoidance phase, the queue length cannot be increased as fast as all connections

are in slow start phase. If all connections start simultaneously, this could be

considered as one aggregate flow. Accordingly, the maximum queue length is

still 2T + + 1.

• Congestion Avoidance Phase

The maximum queue length in congestion avoidance phase is T + cv, a E [1, ra]; 

the minimum queue length is Tz£dn±£, a [1, m]. Similarly, all possible thresh-
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Table 4.2: The value of threshold T for the case of multiple TCP flows.

T Description
T > rn — 1 The link is fully utilized, but 

packets suffer larger queueing delay.
/x — m < T < rfi — I Optimal threshold; zero congestion loss,

full link utiliztion and minimum queueing delay.
T < r/i — m The link is under-utilized.

old values for the case of multiple TCP flows are shown in Table 4.2.

4.4 Modeling ECN Marks with Multiple TCP Flows

In this section, we show the calculation of the average share of the bottleneck link

bandwidth which is the precondition of the zero-loss model we setup in the previous

two sections. We consider the system model shown in Figure 4.2 and the Reno version

of TCP. To keep the consistence, we use all the assumptions we made in the previous

model.

Figure 4.3 shows the window evolution approximation for TCP-Reno sessions

with different round trip delays sharing a bottleneck link with a RED gateway. This

approximation has been used by many researchers for the analytic understanding of 

the RED performance, such as, authors in [23]. Based on Figure 4.3, we use the 

following notations in our model.

Wij(t) = The jth TCP session’s window size right before the previous loss event.

= The jth TCP session’s window size right before the current loss event.
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Figure 4.3: The window evolution approximation with two TCP-Reno flows.

Wjav (t) = The time-average window size for the jth TCP session. 

rij = Round Trip Time (RTT) of the jth TCP session.

/q = The average share of the bottleneck link bandwidth.

Li = The time when ith congestion loss event happens.

Consider the scenario in Figure 4.3; Xi = —L;_i denotes the inter-loss duration.

The window evolution could be approximately described by the following equation.

^i+l,j (^)
2 r ij

(4-7)

Since loss events are determined by both the traffic type and the random marking of 

RED router, it is reasonable to consider {XJ as an Independent Identical Distributed 

(i.i.d.) renewal process. If we assume in any length of time interval, the number of

loss event is Poisson distributed, then the total number of loss events in the interval

(0,£) is a Poisson process, denoted by N(t). Therefore, the loss time interval is 

an i.i.d. exponential random variable with the parameter A. Its probability density
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function (pdf) is

fXi(t) = \e xtu(t). (4.8)

In addition, the waiting time T[n] = Y^=1Xk for a loss event is a gamma distributed 

random variable with parameters (n, A). Its pdf can be found as

jr(t) - Ae^At)71"1
rH

w(t), (4-9)

which is, in the other form,

Mt) -
xrle_Xttn-l 

(n — 1)!
(4-10)■«(<)•

Based on the mathematical nature of the window evolution we analyzed above,

we finally calculate the average share of bottleneck link bandwidth, which can be

expressed as

_ Wja,9(t)
Hi = --------- ■

ri,j

Taking the expectation for both sides of Equation 4.7, we have

(4-11)

Wi,j (^) Xj 

2
(4-12)

Since any two loss events have the same statistical characteristics, it is apparent that
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Wi+i,j(t) and Wjj(t) have the same expected value. Thus,

w/t) = 2 A (4.13)

Recall that the loss time duration is a renewal process and the total number of loss

events during any length of time interval is a Poisson process, from Equation 4.8, we

should have

V = £[Xi] = i (4.14)

Therefore,

= IT-' (4'15)

Because Poisson process is ergodic in mean (See Appendix for the proof), using

the property of ergodicity, we have

= \r*,3
(4-16)

Finally, the average share of the bottleneck link bandwidth is

WiaJf) 2
f^i — Xri,j'

(4-17)

Remarkably, the above result implies that the connection with the shortest RTT 

has the largest average share, which is also found by authors in [22, 62].
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Chapter 5

USING ECN TO IMPROVE THE

TCP PERFORMANCE OVER

LOSSY LINKS — DIFF-C-TCP

From the previous discussion, we can eliminate all network congestion losses (or the 

congestion losses are a small fraction of random losses) in the heterogeneous network

environment involving lossy links. Therefore, with the negligible error all losses can

be attributed to random losses. This leads to our proposed Diff-C-TCP discussed in

this section.
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5.1 Design Assumptions

Before we start to illustrate the principle of our proposed Diff-C-TCP algorithm, we

make the following assumptions:

• Our proposed algorithm is used within a WAN or an enterprise network, where

it is possible to make all routers and end-systems ECN-capable.

• When we mention wireless links, we do not look at mobility issues such as

handoff or power requirements.

5.2 The Proposed Diff-C-TCP

In this section, we describe our proposed modification to TCP, called Differentiation 

Capable TCP (Diff-C-TCP).

Authors in [63] have pointed out that packet losses due to queue buffer overflows 

is relatively infrequent when a majority of end-systems become ECN-capable and

participate in TCP or other compatible congestion control mechanisms. Furthermore,

we are able to use the model we set up in the previous sections to eliminate congestion

losses. In addition, link errors become more significant compared to packet losses due

to buffer overflows in wireless links. Therefore, it is reasonable to assume that all loss

events come from links errors, unless some congestion indications could be found.

Our proposed algorithm assumes that packet losses indicate corruption, and the

TCP sender uses ECN as an explicit signal of network congestion. Diff-C-TCP’s
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response to ECN is similar to TCP’s response to packet losses. In other words, the

receipt of ECN packets should trigger a response to network congestion. Packet losses

are treated as link errors unless ECN packets are received.

Figure 5.1 shows the kernel of our proposed Diff-C-TCP algorithm at the sender’s

side. A Diff-C-TCP sender treats the situation that the retransmit timer times out

without receiving any ECN_ECHO packet and (or) receiving duplicate acknowledge

ments as the indication of link errors. Most often, this is the case in a network with

wireless links (packet losses due to link errors). In this case, the Diff-C-TCP source 

does not decrease cwnd. If the Diff-C-TCP sender receives the ECN_ECHO packet

sent by the receiver, the sender treats it as network congestion and triggers the Fast 

Recovery algorithm [20] as in the current TCP.

In Diff-C-TCP, the congestion window size is appropriately controlled in the pres

ence of either network congestion or corruption. Congestion window is halved using

Fast Recovery algorithm when there is network congestion (explicitly notified by 

ECN_ECHO packets), and persists at the previous value in the presence of corrup

tion. There are two mechanisms that might be applied to adjust congestion window

when Diff-C-TCP sender detects corruption: (i) keep cwnd unchanged as the previ

ous value; (ii) use Congestion Avoidance algorithm to slowly increase cwnd. In our 

algorithm, we adapt the first mechanism — make congestion window persist in the

previous value.

ECN mechanism will be most effective if it is used with active queue management
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' DO NOT decrease the 

congestion window 
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Figure 5.1: States transition diagram of Diff-C-TCP for Diff-C-TCP kernel.

ECN_ECHO n ECN_ECHO
Packets Packet drops Packets

[] due to buffer
overflows

Figure 5.2: A simple Diff-C-TCP based model.

(such as RED) [20] as illustrated in Figure 5.2. In active queue management, when 

a buffer reaches a certain threshold, the router will send a CE packet to the TCP

receiver. Routers send CE packets before their buffers overflow. Therefore, packet

drops due to congestion happen only after the router has sent CE packets. Upon

receiving the CE packet, the TCP receiver will keep sending ECN_ECHO packet

back to the sender until it receives a CWR packet from the sender, which means the

sender has responded to network congestion. The sender only responds to the first

ECN_ECHO packet and ignores others up to one RTT. Depending on the threshold
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of RED and the level of network congestion, ECN_ECHO packets can arrive at the

sender either before or after the retransmit timer times out due to congestion packet

losses (caused by buffer overflow). Our proposed Diff-C-TCP is effective in both the

above cases as described below.

5.2.1 Case 1: Retransmit Timer Times Out After ECN_ECHO

Packets Are Received By the Sender.

In this case, the sender has already responded to congestion which had been indicated

by the receipt of ECN_ECHO packets. This case is desirable.

5.2.2 Case 2: Retransmit Timer Times Out Before ECNJECHO

Packets Are Received By the Sender.

In this case, as shown in Figure 5.3, the retransmit timer timeout due to buffer

overflow happens at time C, and ECN_ECHO packets are received by the sender

at time t2. If the difference between and t2 is small enough, though the TCP

sender does not respond to packet losses indicated by retransmit timer timeout at ti 

(according to our Diff-C-TCP), ECNJECHO packets will arrive very quickly, which 

will trigger Fast Recovery mechanism to get the network out of congestion.

The difference between C and t2 can be decreased by decreasing t2 as described

below. As mentioned above, using active queue management such as RED, when
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0 ti t2 time

Figure 5.3: Time sequence of Case 2.

buffer reaches threshold, it will send the CE packet to receiver. Upon receiving the

CE packet, the receiver starts to send ECN_ECHO packets to the sender. Though

it is difficult to control the travel time of ECN_ECHO packets from the receiver to

the sender, we can make the receiver send ECN_ECHO packets earlier by letting the

router send the CE packet earlier. The earlier ECN_ECHO packets are sent, the

earlier they arrive at the sender, i.e., the smaller the value of £2 is. The time when

the router sends the CE packet is decided by the value of threshold. Therefore, an

optimum value of RED’s threshold is very important and expected, which is one of

our current research topics.
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Chapter 6

PERFORMANCE EVALUATION

6.1 Simulation Methodology

We have evaluated the performance of our Diff-C-TCP algorithm using the ns (ns 

Version 2.1b6) simulation tool from Berkeley [64]. The implementation is based on 

RFC 2481 [20], the current TCP with ECN capability and our proposed Diff-C- 

TCP. Our network topology for conducting simulations is shown in Figure 6.1. Two 

local area network (10 Mbps) are connected using a satellite link (64Kbps) with 

a propagation delay of 280ms. Like previous researchers, a Uniform random error 

model is used to generate random errors on the satellite link [65, 66]. Instead of

LAN LAN

Figure 6.1: LAN interconnection using a satellite link.
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dropping packets at routers, Random Early Detection (RED) routers are used in our 

simulations to set the CE (Congestion Experienced) bit.

All the links in Figure 6.1 are labeled with a (bandwidth, propagation delay) pair.

The full-duplex link between router A and router B has a bit-error rate BER, which

varies between le-7 to 1.2e-4 in our simulation. The receiver’s advertised window

size (initial ssthresh) is set to 30 segments. The packet size is set to 1000 bytes (when 

BER is below 5e-5) or 512 bytes (when BER exceeds 5e-5).

To ensure a fair comparison between the performance of the current TCP with

ECN capability and Diff-C-TCP, we use the above in our simulation. The reason is as

follows. For a certain packet size, an increase in the BER results in a high number of

packets being dropped due to link errors. If the BER is increased sufficiently enough,

every packet passing through the link will probably have errors and will be dropped,

thereby hurting the measurement. However, if we decrease the packet size when the

BER reaches a certain high value, fewer packets will be dropped for the same value

of BER, which makes it possible to consider the effectiveness of our algorithm under

high BER scenario.

Ftp was used in our simulation to transfer data from the source to destination.

We used a method called dynamic test to make the throughput measurement easier

to control. Instead of fixing the size of the file to be transferred, we controlled the

simulation time as a function of the BER. By changing three parameters, viz, the

number of packets being dropped, simulation time and packet size, we could carry

53



out simulations for a wide range of BER values. This resulted in a flexible and efficient

way to avoid a lot of difficulties in realizing simulations under high BER conditions.

In the next section, we present results regarding the effectiveness of our algorithm.

6.2 Simulation Results

In this section, results obtained from simulation experiments for both Diff-C-TCP and

the current TCP with ECN capability are shown. We compare the performance of

Diff-C-TCP and the current TCP with ECN capability by analyzing their congestion

window size and throughput.

6.2.1 Congestion Window Size: cwnd

We used the network configuration and simulation methodology described in Section

6.1 to perform this simulation. Figure 6.2 shows the number of data packets trans

mitted using the current TCP with ECN capability. There are two separate marks

for each packet: one when packets arrive at the router and one when they leave the

router. The x axis represents time, and the y axis shows the packet number mod 90.

Each dropped packet is denoted by x. The ECN_ECHO packet is denoted by a small

open square. Each CWR packet is denoted by a solid diamond. It is seen that mul

tiple packet losses due to corruption happen at time 57 sec, and network congestion

happens at 19 sec, 22 sec, 34 sec and 50 sec. Figure 6.3 shows the congestion window
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Figure 6.2: Number of packets transmitted for the current TCP with ECN capability.

at the sender. As seen in Figure 6.3, at time of 57 sec, the congestion window is 

reduced to the initial value due to triggering of Slow-Start mechanism (in the current 

TCP with ECN capability) arising from corruption losses. It is also seen that net

work congestion at 19 sec, 22 sec, 34 sec and 50 sec result in the congestion window

being halved due to triggering of Fast Recovery mechanism. Figure 6.5 shows the

congestion window when Diff-C-TCP is applied with the packet transmission shown 

in Figure 6.4. It is seen that the congestion window doesn’t go down when multiple

packet losses happen at 57 sec, but is halved at 19 sec, 22 sec, 34 sec, 50 sec and 68

sec.
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Figure 6.3: Congestion window size for the current TCP with ECN capability.

Comparing Figures 6.5 and 6.3, we find that, when Diff-C-TCP is used, the con

gestion window never goes down in the presence of packet losses due to link errors;

instead, it persists in the previous value as mentioned in the Diff-C-TCP algorithm 

(See Section 5.2). The Fast Recovery mechanism is triggered in the presence of net

work congestion (notified by ECN_ECHO packets). However, when the current TCP 

(with ECN capability) is used in the simulation, the timeout caused by packet losses 

triggers the Slow-Start mechanism that results in the reduction of congestion window

to the initial value. The reason is that the current TCP (though it is ECN capable 

in our simulation) makes the assumption that all losses are caused by congestion.

Thus, when there is the packet loss, no matter whether it is caused by congestion or

corruption, the current TCP with ECN capability triggers TCP’s congestion control

mechanism. Since Diff-C-TCP assumes by default that losses are due to link errors,
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Figure 6.4: Number of packets transmitted for Diff-C-TCP.
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6.2.2 Throughput and Goodput

.......... ....... ............ ......—-«' TCP

„ W. k "

57



cwnd
cwnd

Figure 6.5: Congestion window size for Diff-C-TCP.

amount of useful information, in bit, being received by the receiver per second, not

including errors) and the normalized throughput of both the TCPs for BER values 

ranging from le-7 to 1.2e-4.

Figure 6.6 compares the goodput in bit/s of both Diff-C-TCP and the current

TCP with ECN capability. The normalized throughput of both the TCPs are shown

in Figure 6.7. We see that Diff-C-TCP’s throughput is much higher than that of the 

current TCP with ECN capability. At a BER of 5e~5, the goodput of our Diff-C-TCP 

is almost 5 times higher than that of the current TCP. From Figures 6.6 6.7, this

improvement is much higher at higher values of BER. In addition, the throughput of

the current TCP with ECN suffers more severely than our Diff-C-TCP as the error

rate increases. We can also see that, with the increase of the value of BER, the

throughput of the current TCP with ECN capability decreases much faster than the
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Figure 6.6: Comparison of goodput (bit/s).

throughput of our Diff-C-TCP. For example, according to Figure 6.6, when the value 

of BER increases from le-5 to 5e~5, the current TCP’s goodput decreases by 77 % 

in contrast to our Diff-C-TCP whose goodput only decreases by 12 %. This is also

valid for normalized throughput as shown in Figure 6.7.

As mentioned previously, the current TCP with ECN used in our simulation makes

an assumption by default that every loss event is caused by network congestion and a

congestion control algorithm is triggered. As a result, the congestion window size must

be reduced. Therefore, each loss event, irrespective of whether it is due to congestion

or corruption, will affect the throughput and lead to lower throughput compared to

Diff-C-TCP’s. In the case of Diff-C-TCP, all packet losses are assumed to be caused by

link errors and network congestion is indicated by the receipt of ECN_ECHO packets.

The congestion window will not be changed in the presence of packet losses due to

corruption. Thus, only network congestion can affect its throughput. Furthermore,
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Figure 6.7: Comparison of normalized throughput.

for the current TCP with ECN, a higher value of BER results in more packets dropped

and more frequent reduction of the congestion window. Because of this, at higher

values of BER, the frequency of reduction of the congestion window of the current

TCP with ECN is so high that it is almost impossible for the congestion window size

to reach a high value. This eventually hurts the throughput, because the value of

congestion window size is not very high even during the no loss period. It is totally

different when our Diff-C-TCP is applied, because the congestion window size is only

affected by real congestion that is explicitly notified by ECN_ECHO packets. As

described in Section 5.2 and shown in Figure 6.5, packet losses due to corruption

never change the congestion window size.
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Chapter 7

CONCLUSIONS AND FUTURE

WORK

7.1 Conclusions

In this thesis, we first presented a novel approach to classify the existing wireless

error modeling methods, based on different requirements of different researchers in

the practical engineering. A number of error models used to approximate the loss

behavior of transmission channels have been classified into two groups: analytical

models and empirical distribution-based models. According to our classification, we

recommend that researchers who need to analyze characteristics of wireless error

channels should use Analytical Models; network protocol designers and evaluators who

need to synthesize a wireless error channel, i.e., build an appropriate error model for
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their simulations and evaluations over special communication environments, should

use Empirical Distribution-Based Models.

We have set up a complete model to achieve zero congestion losses with multiple

competing TCP flows in the heterogeneous network involving lossy links. In addition,

we have also deduced the exact mathematical expression of the average share of the

bottleneck link bandwidth, one of the most important parameters in our model, which

has been found by other researchers to be the biggest difficulty.

Finally, having both the extensive understanding of wireless links and the possi

bility of zero-loss TCP congestion control, we proposed a new TCP algorithm (named 

Diff-C-TCP) to improve the TCP throughput performance in the presence of non

congestion related losses. Diff-C-TCP differentiates between losses due to network 

congestion and corruption on lossy links by assuming that all loss events are caused by

link errors, unless the network explicitly informs the sources of congestion. Network

congestion is explicitly indicated by the receipt of ECN_ECHO packets. Whenever

the TCP retransmit timer times out without the sender receiving any ECN_ECHO

packet, the congestion window in Diff-C-TCP persists in its previous value as a re

sponse to corruption. When the Diff-C-TCP sender receives an ECN_ECHO packet,

Fast Recovery algorithm is triggered as a response to network congestion.

The proposed Diff-C-TCP has been studied in detail using simulation and has

been found to significantly improve TCP performance on the lossy satellite link.

Our simulation results have shown that Diff-C-TCP does not reduce the congestion
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window in the presence of packet loss due to corruption. Congestion window is

changed only due to network congestion. We have also achieved significant goodput

improvement, up to 5 times, over the current TCP with ECN for data transfer across

a typical satellite link with high bit-error rates.

7.2 Recommendations for Future Work

We have developed a new TCP, named Diff-C-TCP, to improve the TCP performance

over wireless links. As we have shown, Diff-C-TCP produces much higher throughput

than the current TCP does over the lossy environment. However, we find that our

current version of Diff-C-TCP is too aggressive to be used in the global Internet. In

this section, we describe this issue, and accordingly, make some recommendations for

the future modifications to our current scheme.

7.2.1 ECN Compatibility

The development of our Diff-C-TCP algorithm is based on the assumption that it is

used within a WAN or an enterprise network, where it is possible to make all routers

and end-systems ECN-capable. However, if it is used in the global Internet, routers

that do not generate ECN_ECHO packets would be highly incompatible with Diff-C-

TCP, because zero-loss congestion control is proposed in this thesis to be implemented

with ECN mechanism. In such a case, packet droppings due to buffer overflows must
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happen. If a Diff-C-TCP session was to operate over such a router, then the session

would not respond to the router dropping packets due to congestion. Instead, the

Diff-C-TCP session would interpret the packet loss due to a link error, and continue

to transmit at a constant rate. This would cause dead-lock at the router.

Therefore, to find a solution to the ECN compatibility problem has the first pref

erence among future works.

7.2.2 The Consideration of Mobility

Another assumption made for the development of Diff-C-TCP is that only the loss

behavior of wireless links is considered. In the future work, the hand-off problem of

wireless networks should be considered. During the hand-offs and situations where

long fades occur, such as turning a corner and entering a region of heavy shadowing

by some obstruction, there could be long bursts of packet loss, or long periods of

reduced bandwidth on the wireless channel, in which case the effective bandwidth

of the wireless link has been reduced, and therefore the offered load (the sender’s 

congestion window size) must also be reduced.

In such a case, an algorithm which is able to differentiate packet losses due to

hand-offs and packet losses due to congestion is to be developed. This might be an

investigation of delay characteristics of TCP sessions.
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7.2.3 Quantitative Benefits of ECN for TCP over Wireless

People used to use computer simulation to test the performance of existing or pro

posed algorithms. But what are the quantitative benefits of ECN for TCP over wire

less? What new dynamics does ECN add to TCP, in terms of competition between

ECN-capable and non-ECN-capable traffic, the robustness of ECN in the presence

of dropped ACK packets, performance with multiple congested gateways, etc.? Ap

parently, this needs much modeling work on both ECN performance and TCP over

wireless.
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Appendix A

THE PROOF OF THE 
ERGODICITY OF POISSON 
PROCESS

Poisson process can be expressed as (See Figure A.l)
oo

W) = £>(i-T[n]). (A.l)
0

As mentioned in Section 4.4, T[n] = E? AA is the arrival time for a loss event. Because 
N(t) is a Poisson process, during any time internal length of t, say, (0, t), the total 
number of events is Poisson distributed with mean Xt.

Define a random sequence Y[n] = the total number of events happened in the 
time interval (0,Z), according to the above analysis,

£[y[n]] = Xt. (A.2)

N(t)

3
2
1

0 t1 t2 t3

Figure A.l: Poisson process.
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Then, according to Strong Law of Large Numbers,

lim — V Y[k\ = Xt.
n—>oo 77 z'

A:=l

(A.3)

Thus,
1 n

= = W)]. (A.4)
rL k=l

In other words, the time average is equal to the expected value. Therefore, Poisson 
process is ergodic in mean.
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Appendix B

TCL/TK CODES OF 
PERFORMANCE TESTS 
SIMULATION

set dir [pwd]
catch "cd tcl/test"
source misc_simple.tel
catch "cd $dir"

set flowfile fairflow.tr; # file where flow data is written
set flowgraphfile fairflow.xgr

Class Topology

Topology instproc node? num { 
$self instvar node, 
return $node_($num)

}

Topology instproc makenodes ns 
$self instvar node, 
set node.(sl) [$ns node] 
set node_(s2) [$ns node] 
set node.(rl) [$ns node] 
set node_(r2) [$ns node] 
set node_(s3) [$ns node] 
set node_(s4) [$ns node]

}

# file given to graph tool

{
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Topology instproc createlinks ns {
$self instvar node_
$ns duplex-link $node_(sl) $node_(rl) 
$ns duplex-link $node_(s2) $node_(rl) 
$ns duplex-link $node_(rl) $node_(r2) 
$ns queue-limit $node_(rl) $node_(r2) 
$ns queue-limit $node_(r2) $node_(rl) 
$ns duplex-link $node_(s3) $node_(r2) 
$ns duplex-link $node_(s4) $node_(r2)

}

10Mb 2ms DropTail 
10Mb 3ms DropTail 
64Kb 280ms RED 
25
25
10Mb 4ms DropTail 
10Mb 5ms DropTail

$ns
$ns
$ns
$ns
$ns
$ns
$ns

duplex-link-op
duplex-link-op
duplex-link-op
duplex-link-op
duplex-link-op
duplex-link-op
duplex-link-op

$node_(si) 
$node_(s2) 
$node_(rl) 
$node_(rl) 
$node_(r2) 
$node_(s3) 
$node_(s4)

$node_(rl) 
$node_(rl) 
$node_(r2) 
$node_(r2) 
$node_(rl) 
$node_(r2) 
$node_(r2)

orient right-down 
orient right-up 
orient right 
queuePos 0 
queuePos 0 
orient left-down 
orient left-up

Class Topology/net2 -superclass Topology 
Topology/net2 instproc init ns {

$self instvar node_
$self makenodes $ns 
$self createlinks $ns

}

Class Topology/net2-lossy -superclass Topology 
Topology/net2-lossy instproc init ns {

$self instvar node_
$self makenodes $ns 
$self createlinks $ns

$self instvar lossylink_
set lossylink_ [$ns link $node_(rl) $node_(r2)]
set em [new ErrorModule Fid]
set errmodel [new ErrorModel/Periodic]
$errmodel unit pkt 
$lossylink_ errormodule $em 
$em insert $errmodel 
$em bind $errmodel 0 
$em default pass

1
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TestSuite instproc finish file { 
global quiet PERL
$self instvar ns_ tchan_ testName. cwnd.chan. 

exec $PERL getrc -s 2 -d 3 all.tr I \
$PERL raw2xg -a -e -s 0.01 -m 90 -t $file > temp.rands 

exec $PERL getrc -s 3 -d 2 all.tr I \
$PERL raw2xg -a -e -s 0.01 -m 90 -t $file > tempi.rands 

if {$quiet == "false"} {
exec xgraph -bb -tk -nl -m -x time -y packets

temp.rands &
# The line below plots both data and ack packets.
# exec xgraph -bb -tk -nl -m -x time -y packets

temp.rands \
# tempi.rands &

}
## now use default graphing tool to make a data file 
## if so desired

if { [info exists tchan.] && $quiet == "false" } {
$self plotQueue $testName_

}
if { [info exists cwnd.chan.] && $quiet == "false" } { 

$self plot.cwnd
}
$ns_ halt

}

TestSuite instproc enable.tracequeue ns {
$self instvar tchan_ node.
set redq [[$ns link $node_(rl) $node_(r2)] queue] 
set tchan. [open all.q w]
$redq trace curq.
$redq trace ave.

#$redq monitor-queue {$node_(rl) $node_(r2)}
$redq attach $tchan_

}

76



TestSuite instproc plotQueue file { 
global quiet 
$self instvar tchan_
#
# Plot the queue size and average queue size, for RED gateways
#
set awkCode {

{
if ($1 == "Q" && NF>2) {

print $2, $3 >> "temp.q"; 
set end $2

}
else if ($1 == "a" && NF>2) 

print $2, $3 » "temp.a";
}

}
set f [open temp.queue w] 
puts $f "TitleText: $file" 
puts $f "Device: Postscript"

if { [info exists tchan_] } { 
close $tchan_

}
exec rm -f temp.q temp.a 
exec touch temp.a temp.q

exec awk $awkCode all.q

puts $f \"queue 
exec cat temp.q >@ $f 
puts $f \n\"ave_queue 
exec cat temp.a >@ $f 
###puts $f \n"thresh
###puts $f 0 [[ns link $rl $r2] get thresh]
###puts $f $end [[ns link $rl $r2] get thresh] 
close $f
if {$quiet == "false"} {

exec xgraph -bb -tk -x time -y queue temp.queue &
}

}

TestSuite instproc tcpDumpAll { tcpSrc interval label } {
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global quiet
Sself instvar dump_inst_ ns_
if ![info exists dump_inst_($tcpSrc)] {
set dump_inst_($tcpSrc) 1
set report $label/window=[StcpSrc set

window.]/packetSize=[$tcpSrc set packetSize.] 
if {Squiet == "false"} {

puts Sreport
}
$ns_ at 0.0 "Sself tcpDumpAll StcpSrc Sinterval $label" 
return 
}
$ns_ at [expr [$ns_ now] + Sinterval] "Sself tcpDumpAll StcpSrc

$interval $label"
set report time=[$ns_ now]/class=$label/ack=[StcpSrc set

ack_]/packets_resent= [StcpSrc set nrexmitpack.] 
if {Squiet == "false"} {

puts $report
}

}

TestSuite instproc emod {} {
Sself instvar topo_
$topo_ instvar lossylink.

set errmodule [$lossylink_ errormodule] 
return $errmodule

}

TestSuite instproc setloss {} {
Sself instvar topo_
$topo_ instvar lossylink.

set errmodule [$lossylink_ errormodule] 
set errmodel [Serrmodule errormodels] 
if { [llength Serrmodel] > 1 } {

puts "droppedfin: confused by >1 err models..abort" 
exit 1

}
return Serrmodel

}
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TestSuite instproc setTopo {} {
$self instvar node_ net_ ns_ topo_

}

set topo_ [new Topology/$net_ $ns_]
if {$net_ == "net2" I I $net_ == "net2-lossy"} {

set node_(sl) [$topo_ 
set node_(s2) E$topo_ 
set node_(s3) E$topo_ 
set node_(s4) [$topo_ 
set node_(rl) E$topo_ 
set node_(r2) [$topo_ 
E$ns_ link $node_(rl)

}
if {$net_ == "net6"} { 

set node_(sl) E$topo_ 
set node_(s2) [$topo_ 
set node_(rl) [$topo_ 
set node_(kl) [$topo_ 
[$ns_ link $node_(rl)

}

node? si]
node? s2]
node? s3]
node? s4]
node? rl]
node? r2]
$node_(r2)] trace-dynamics

node? si]
node? s2]
node? rl]
node? kl]
$node_(kl)] trace-dynamics

$ns_ stdout

$ns_ stdout

#######################################################################

Class Test/ecn -superclass TestSuite
Test/ecn instproc init {} {

$self instvar net_ test_
Queue/RED set setbit. true 
set net. net2
set test. ecn
$self next

}
Test/ecn instproc run {} {

$self instvar ns. node. testName.
$self setTopo

Agent/TCP set old.ecn. 1 
set stoptime 10.0
set redq EE$ns_ link $node_(rl) $node_(r2)] queue] 
$redq set setbit. true
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set tcpl E$ns_ create-connection TCP/Reno $node_(sl) TCPSink

$node_(s3) 0]
$tcpl set window. 15 
$tcpl set ecn_ 1

set tcp2 [$ns_ create-connection TCP/Reno $node_(s2) TCPSink

$node_(s3) 1]
$tcp2 set window. 15 
$tcp2 set ecn. 1

set ftpl E$tcpl attach-app FTP] 
set ftp2 [$tcp2 attach-app FTP]

$self enable.tracequeue $ns_
$ns_ at 0.0 "$ftpl start"
$ns_ at 2.0 "$ftp2 start"

$self tcpDump $tcpl 5.0

# trace only the bottleneck link
$self traceQueues $node_(rl) E$self openTrace $stoptime $testName_]

$ns_ run

}

#######################################################################

TestSuite instproc ecnsetup { tcptype {stoptime 3.0} { tcplfid 0 } {

delack 0 }} {
$self instvar ns. node. testName. net.
$self setTopo

##
## Agent/TCP set maxburst. 4
##

set delay 280ms
$ns_ delay $node_(rl) $node_(r2) $delay 
$ns_ delay $node_(r2) $node_(rl) $delay
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set redq EESns. link $node_(rl) $node_(r2)] queue]
$redq set setbit_ true

if {Stcptype == "Tahoe" && Sdelack == 0} {
set tcpl E$ns_ create-connection TCP $node_(sl) \
TCPSink $node_(s3) $tcplfid]

} elseif {Stcptype == "Sackl" && $delack == 0} {
set tcpl E$ns_ create-connection TCP/Sackl $node_(sl) \ 
TCPSink/Sackl $node_(s3) Stcplfid]

} elseif {Sdelack == 0} {
set tcpl E$ns_ create-connection TCP/$tcptype $node_(sl) \ 
TCPSink $node_(s3) Stcplfid]

} elseif {Stcptype == "Tahoe" && $delack == 1} { 
set tcpl E$ns_ create-connection TCP $node_(sl) \
TCPSink/DelAck $node_(s3) Stcplfid]

} elseif {Stcptype == "Sackl" && Sdelack == 1} {
set tcpl E$ns_ create-connection TCP/Sackl $node_(sl) \ 
TCPSink/Sackl/DelAck $node_(s3) Stcplfid]

} else {
set tcpl E$ns_ create-connection TCP/$tcptype $node_(sl) \ 
TCPSink/DelAck $node_(s3) Stcplfid]

}
Stcpl set window. 30 
Stcpl set packetsize. 512 
Stcpl set ecn_ 1
set ftpl EStcpl attach-source FTP]
Sself enable.tracecwnd $ns_ Stcpl

#$self enable.tracequeue $ns_
$ns_ at 0.0 "Sftpl start"

Sself tcpDump Stcpl 5.0

# trace only the bottleneck link
Sself traceQueues $node_(rl) ESself openTrace Sstoptime StestName.]

}

TestSuite instproc second.tcp { tcptype starttime } {
Sself instvar ns_ node, 
if {Stcptype == "Tahoe"} {

set tcp E$ns_ create-connection TCP $node_(sl) \
TCPSink $node_(s3) 2]
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} elseif {Stcptype == "Sackl"} {
set tcp [$ns_ create-connection TCP/Sackl $node_(sl) \

TCPSink/Sackl $node_(s3) 2]
} else {

set tcp [$ns_ create-connection TCP/$tcptype $node_(sl) \ 
TCPSink $node_(s3) 2]

}
Step set window. 30
Step set ecn_ 1
set ftp [Step attach-app FTP]
$ns_ at Sstarttime "$ftp start"

}

# Drop the specified packet.
TestSuite instproc drop.pkt { number } {

Sself instvar ns_ lossmodel 
set lossmodel [Sself setloss]
Slossmodel set offset. Snumber 
Slossmodel set period. 10000

}

TestSuite instproc drop.pkts pkts {
Sself instvar ns. errmodell
set emod [Sself emod]
set errmodell [new ErrorModel/List]
Serrmodell droplist Spkts 
Semod insert Serrmodell 
Semod bind Serrmodell 1

}

#######################################################################
# Performace Tests #
#######################################################################

# Plain ECN
Class Test/ecn.nodrop.tahoe -superclass TestSuite
Test/ecn.nodrop.tahoe instproc init {} {

Sself instvar net. test.
Queue/RED set setbit. true
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set net_ net2-lossy
Agent/TCP set bugFix_ true

set test. ecn.nodrop.tahoe 
$self next

}
Test/ecn_nodrop_tahoe instproc run {} {

$self instvar ns_
Agent/TCP set old_ecn_ 1 
$self ecnsetup Tahoe 3.0 
$self drop.pkt 10000 
$ns_ run

}

# Two ECNs close together
Class Test/ecn_twoecn_tahoe -superclass TestSuite 
Test/ecn_twoecn_tahoe instproc init {} {

$self instvar net. test.
Queue/RED set setbit. true 
set net. net2-lossy

Agent/TCP set bugFix. true
set test. ecn.twoecn.tahoe 
$self next

}
Test/ecn.twoecn.tahoe instproc run {} {

$self instvar ns. lossmodel 
Agent/TCP set old.ecn. 1 
$self ecnsetup Tahoe 5.0 
#$self drop.pkt 243

$self drop.pkt 4
#$lossmodel set markecn. true

$ns_ run
}

# ECN followed by packet loss.
Class Test/ecn.drop.tahoe -superclass TestSuite 
Test/ecn.drop.tahoe instproc init {} {

$self instvar net. test.
Queue/RED set setbit. true 
set net. net2-lossy

Agent/TCP set bugFix. true
set test. ecn.drop.tahoe
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$self next
}
Test/ecn_drop_tahoe instproc run {} {

$self instvar ns_
Agent/TCP set old.ecn. 1 
$self ecnsetup Tahoe 3.0 
$self drop_pkt 243 
$ns_ run

}

# ECN preceded by packet loss.
Class Test/ecn_dropl_tahoe -superclass TestSuite 
Test/ecn_dropl_tahoe instproc init {} {

$self instvar net_ test_
Queue/RED set setbit_ true 
set net_ net2-lossy

Agent/TCP set bugFix_ true
set test_ ecn_dropl_tahoe 
$self next

}
Test/ecn_dropl_tahoe instproc run {} {

$self instvar ns_
Agent/TCP set old_ecn_ 1 
$self ecnsetup Tahoe 3.0 
$self drop_pkt 241 
$ns_ run

}

# ECN preceded by packet loss.
Class Test/ecn_drop2_tahoe -superclass TestSuite 
Test/ecn_drop2_tahoe instproc init {} {

$self instvar net_ test_
Queue/RED set setbit_ true 
set net_ net2-lossy

Agent/TCP set bugFix_ true
set test. ecn_drop2_tahoe 
$self next

}
Test/ecn_drop2_tahoe instproc run {} {

$self instvar ns_ node, count.
#Agent/TCP set old.ecn. 1 
$self ecnsetup Tahoe 500.0 1
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$self drop_pkts {550 551}

$ns_ run 
}

TestSuite runTest
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Appendix C

TCL/TK CODES FOR TRACING 
SIMULATION RESULTS

Object instproc exit args {
set ns [Simulator instance] 
catch "$ns clearTimers" 
eval exit $args

}

Class TestSuite

TestSuite instproc init { {dotrace 1} } { 
global quiet
$self instvar ns_ test_ node_ testName. 
$self instvar allchan, namchan. 
if [catch "$self get-simulator" ns_] {

set ns. [new Simulator]
}
if { $dotrace } {

set allchan, [open all.tr w] 
$ns_ trace-all $allchan_

set namchan. [open all.nam w] 
if {$quiet == "false"} {

$ns_ namtrace-all $namchan_
}

}
set testName. "$test_"

}
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#
# Arrange for tcp source stats to be dumped for StcpSrc every
# $interval seconds of simulation time
#
TestSuite instproc tcpDump { tcpSrc interval } { 

global quiet
$self instvar dump_inst_ ns_
if ! [info exists dump_inst_($tcpSrc)] {

set dump_inst_($tcpSrc) 1
$ns_ at 0.0 "$self tcpDump $tcpSrc $interval" 
return

}
$ns_ at [expr [$ns_ now] + $interval] "$self tcpDump $tcpSrc

Sinterval"
set report [$ns_ now]/cwnd=[format "%.4f" [$tcpSrc set

cwnd_]]/ssthresh=[$tcpSrc set ssthresh_]/ack=[$tcpSrc set ack_] 
if {$quiet == "false"} {

puts Sreport
}

}

#
# Trace the TCP congestion window cwnd_.
#
TestSuite instproc enable_tracecwnd { ns tcp } {

$self instvar cwnd_chan_
set cwnd_chan_ [open all.cwnd w]
$tcp trace cwnd_
$tcp attach $cwnd_chan_

}

#
# Plot the TCP congestion window cwnd_.
#
TestSuite instproc plot_cwnd {} { 

global quiet
$self instvar cwnd_chan_ 
set awkCode {

{
if ($6 == "cwnd_") {
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print $1, $7 » "temp.cwnd";
} }

}
set f [open cwnd.xgr w] 
puts $f "TitleText: cwnd" 
puts $f "Device: Postscript"

if { [info exists cwnd_chan_] } { 
close $cwnd_chan_

}
exec rm -f temp.cwnd 
exec touch temp.cwnd

exec awk $awkCode all.cwnd

puts $f \"cwnd
exec cat temp.cwnd >@ $f
close $f
if {$quiet == "false"} {

exec xgraph -bb -tk -x time -y cwnd cwnd.xgr &
}

}

TestSuite instproc cleanup { tfile testname } {
$self instvar ns_ allchan_ namchan_
$ns_ halt
close $tfile
if { [info exists allchan_] } { 

close $allchan_
}
if { [info exists namchan_] } { 

close $namchan_
}
$self finish $testname; # calls finish procedure in test suite

file
}

TestSuite instproc openTrace { stopTime testName } {
$self instvar ns_ allchan_ namchan_ 
exec rm -f out.tr temp.rands
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set traceFile [open out.tr w]
puts $traceFile "v testName $testName"
$ns_ at $stopTime "$self cleanup StraceFile $testName" 
return $traceFile

}

TestSuite instproc traceQueues { node traceFile } {
$self instvar ns_
foreach nbr [$node neighbors] {

$ns_ trace-queue $node $nbr $traceFile
[$ns_ link $node $nbr] trace-dynamics $ns_ $traceFile

}
}

proc usage {} { 
global argvO
puts stderr "Valid tests are:\t[get-subclasses TestSuite

Test/]" 
exit 1

}

proc isProc? {cis pre} {
if [catch "Object info subclass $cls/$prc" r] {

global argvO
puts stderr "$argvO: no such $cls: $prc" 
usage

}
}

proc get-subclasses {cis pfx} { 
set ret ""
set 1 [string length $pfx]

set c $cls
while {[llength $c] > 0} { 

set t [lindex $c 0] 
set c [lrange $c 1 end] 
if [string match ${pfx}* $t] {

lappend ret [string range $t $1 end]
}
eval lappend c [$t info subclass]
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}
set ret

}

TestSuite proc runTest {} {
global argc argv quiet

set quiet false 
switch $argc {

1 {
set test $argv 
isProc? Test $test

}
2 {

set test [lindex $argv 0] 
isProc? Test $test

set param [lindex $argv 1] 
if {$param == "QUIET"} {

set quiet true
}

}
default {

usage
}

}
set t [new Test/$test]
$t run

}

### Local Variables:
### mode: tel
### tcl-indent-level: 8
### tcl-default-application: ns
### End:
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Appendix D

C++ CODES OF DIFF-C-TCP

Available upon request; To save space here.
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