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ABSTRACT

PASSIVE NUTRIENT ADDITION FOR THE BIODEGRADATION OF ETHYLENE 
GLYCOL IN STORMWATER

Name: ROGER ANTOINE AZAR

University of Dayton, 1998

Advisor: STEVEN SAFFERMAN, PH.D., P.E.

The purpose of this research is to study the effect of the passive addition of a solid form, 

slow-release, nutrient source on the the microbiological degradation of carbonaceous 

pollutants. Ethylene glycol (EG) was used as a model pollutant in the research. The 

design and experimental operation of the microbiological contactors is a proof of concept 

study.

Studies were performed on three microbiological contactors operating in parallel. All 

three contactors were physically identical and operated under identical conditions. One

contactor served as a control and had no nutrient source added while the other two had a

solid form, slow-release nutrient source added. The low level nutrient source contactor 

initially had 100 grams of Sta-Green® fertilizer and the high level nutrient source 

contactor had 150 grams of the same fertilizer.
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A comparison between the data collected from a contactor with dissolved nutrients added

in the feed (idealized conditions) and the data from the high level nutrient source

contactor was performed. The high level nutrient source contactor rendered similar or 

better results than the contactor system with nutrients dissolved in the feed (idealized).

The comparison of the data for the two contactors indicated that both contactor effluent 

concentrations of EG were between 25 mg/L and the detection limit of 5 mg/L.

The control contactor achieved approximately 15% to 30% EG removal. The low level

nutrient source contactor was inconsistent, for various reasons discussed below, but could

achieve EG removals in the 50% or better range, while the high level nutrient source 

contactor typically achieved 75% to 100% EG removal efficiencies.

Moreover, a comparison of nutrient influent and effluent, and a theoretical nutrient 

demand based on a C:N:P ratio (100:5:1) was also performed. The higher than 

theoretical C:N ratio obtained from the contactors indicate the possibility of the presence 

of a secondary nitrogen source in the contactor.

An additional study was conducted to evaluate the recuperation process of the contactors 

under intermittent flow conditions and to verify that the innoculated bacteria would 

remain active due to the presence of a moisture retaining additive, Soil-Moist. This 

study included shutting down the low nutrient contactor for 194 hours and then turning it 

back on. The EG concentration level briefly rose to 140 mg/L but decreased to 11 mg/L 

(pre-shut-down conditions) within 96 hours. This indicates a healthy microbial
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population and the presence of sufficient moisture due to the Soil-Moist additive to keep 

the population active during non-flow conditions.

After operating the contactors for over 2,200 hours, it was concluded that the passive

addition of a solid form, slow-release, nutrient source was as effective as if the nutrients

had been added in its soluble form. Among the 3 contactors studied, the high level 

nutrient source contactor exhibited the best aerobic microbiological degradation

properties indicated by the high percent removal values of EG.

In addition, data collected for nitrate and total nitrogen tests were below detection Emit. 

The very low levels of nitrate indicated that the aerobic nitrification and anaerobic 

denitrification processes might have occured.
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CHAPTER I 
INTRODUCTION

Overview

This research was conducted as a proof of concept study to analyze the potential of the

passive addition of a solid form, slow-release, nutrient source to allow the aerobic 

microbiological degradation of ethylene glycol polluted storm water in a subsurface 

microbiological contactor. The findings, however, may be applicable to other 

predominantly carbon-polluted stormwater. Based on the literature search conducted, the

approach of utilizing the passive addition of a solid form, slow-release, nutrient source 

has not been attempted before.

A specific pollutant, ethylene glycol (EG), was the focus of the study. EG is used in 

numerous applications but the main interest in this research is its presence in stormwater 

runoff from aircraft deicing fluids. Deicing fluids (DF) are used worldwide in

considerable quantities as a mean to remove snow, frost, and ice from aircraft (Johnson, 

L., 1997). An estimated 3785 liters of DF are needed to deice a large passenger plane 

(Aviation Week and Space Technology, 1991). EG has a very low freezing point -13°C 

for pure liquid, and a temperature in aqueous solution of -50°C (US Department of 

Transportation, 1991), and thus, is an excellent antifreeze liquid. In very cold weather,
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aircraft pilots often find themselves, passengers, and their planes unable to proceed with 

the flight because of freezing rain and snow that forms a thin coat of ice on the wings, 

reducing the lift by as much as half. EG is sprayed onto the wings of aircraft to melt ice 

and/or prevent its formation. In most cases, the freezing point of the EG and water mix is 

lower than the ambient air temperature, therefore allowing aircraft to function under 

freezing weather conditions. The most common form of DF is EG and propylene glycol 

(PG). These glycol compounds are readily mineralized by microorganisms to carbon 

dioxide and water. DFs are also occasionally used to keep runways and taxiways

accessible.

It is estimated that eighty five percent of all applied DF end up being deposited on the 

ground (ATSDR, 1996). In major airports, most of the DF deposited on the ground is 

collected at the point of application; however, a considerable amount, fifteen percent, still 

finds its way to storm sewers, retention ponds, and streams due to deposition after aircraft

takeoff.

EG and PG exert a high microbial oxygen demand that renders them a problem to the 

environment. The 5-day Biochemical Oxygen Demand (BOD5) at 20°C for pure EG has 

been reported to be in the range of 400,000 to 800,000 mg/L (Halterman-O’Malley, A., 

1997). The Carbonaceous BOD (CBOD) required by diluted DF is equivalent to the 

daily requirements of CBOD by domestic wastewater generated by 5000 people 

(Johnson, L., 1997). The high oxygen demand depletes the dissolved oxygen (DO) in 

ponds, lakes, rivers, and streams killing the fish and other oxygen demanding species.
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Many of the airports in the United States are regulated by the Environmental Protection 

Agency (EPA) and have taken measures to collect these fluids at the point of application. 

Airports may send the collected deicing fluids to wastewater treatment plants, to

recycling units, and/or release it directly to receiving streams if the concentration is low

enough to do so. The problem with recycling DFs is that a high enough initial 

concentration is needed in order to make it economically feasible. Most wastewater 

treatment facilities will require the glycol fluids to be diluted to less than 10 percent 

before they are accepted due to the high BOD requirements (Johnson, L., 1997). Some 

wastewater treatment plants do not have the hydraulic capacity to accommodate the high 

flows of stormwater containing DF. The dillution and metering requirements imposed by 

the wastewater treatment facilities on airports create a storage problem of the stormwater 

and will require building additional detention structures at the airport to hold the

stormwater.

Research Objective

Microbes in nature will degrade EG by using it as a food source and using dissolved 

oxygen as an electron acceptor. The purpose of this research is to study the effect of the 

passive addition of a solid form, slow-release, nutrient source on the the microbiological 

degradation of the carbonaceous pollutant EG. This research is designed to provide 

airports and others with an inexpensive tool that requires very minimal operation and 

maintenance (O&M) to biodegrade carbonaceous pollutants.
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The microbiological contactor proposed for field use is proposed to be designed as a 

subsurface, static unit, requiring no moving parts or electric input. It will use a 

commercially available, solid form, slow-release, water soluble nutrient source to supply 

the required nutrients to the microbes biodegrading the DF in stormwater. The

microbiological contactor will require minimal operation and maintenancein order to 

enable its use in remote areas where electric and access is not readily feasible. The 

microbiological contactor must be placed underground to maintain a temperature range at

which microbes will remain active.

Like a trickling filter, the microbiological contactor will have a medium where microbes 

will attach to form a biofilm. The uniqueness of the microbiological contactor when 

compared to a trickling filter lies in two important differences. Unlike a trickling filter, 

the microbiological contactor can go without hydraulic loading for several days and still 

maintain a living biofilm. This feature is enhanced by adding a moisture additive that 

will retain water and supply the biofilm with the needed moisture during no flow 

conditions (R. Nath, 1997). Another difference between a trickling filter and the 

microbiological contactor is the solid form, slow-release nutrient source that the 

microbiological can contactor provide.

Scope

This research is a continuation of studies conducted by Dr. Steven Safferman of the 

University of Dayton, as well as Rupak Nath and Azeez Saliba, both Masters program 

graduates from the University of Dayton.
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The general experimental plan involved the construction and operation of three (3) 

microbiological contactors in a laboratory environment. All three contactors were

packed with a rock media to which microbes attach and a moisture additive that

maintains a fairly consistent moisture content throughout the contactor. The three 

independent contactors ran simultaneously.

The experiment was conducted in two phases. Phase I involved operating the contactors 

until equilibrium was achieved (defined as having the percent removal of ethylene glycol 

remain constant over 5 days). Phase II involved shutting down a contactor for a given 

period of time and documenting the recovery process and subsequently the efficiency of 

that contactor. This was achieved by comparing the contactor EG effluents before and

after it was shut down.

To initiate Phase I, a leaching study was conducted on numerous commercially available 

fertilizers in order to choose a nutrient source for the contactors. Sta-Green® was selected

as the fertilizer of choice due to its consistency in providing a slow-release source of 

nutrients with time. Concurrently with this source selection study, the contactors were

started so that the biofilm could be developed. A nutrient level nomenclature was used to

differentiate between the contactors. One of the contactors was run as a control and had

no nutrient source added while the other two contactors included two levels of a solid

form, slow-release, nutrient. The high nutrient level contactor had 150 grams of Sta- 

Green® fertilizer while the low nutrient level contactor had 100 grams of Sta-Green®. In
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addition, a parallel nutrient leaching study was performed to compare the nutrient 

influent level going into each contactor and effluent levels coming out. The research was 

conducted mostly under continuous flow conditions, an ambient room temperature 

ranging from 20 °C to 25 °C, and a controlled pH range of 6 to 8.

The research was conducted over a period of four month to allow the bacterial colony to 

be established and the biological activity to stabilize. Samples of effluent from each 

contactor were taken on a daily basis for analysis. No attempt was made to identify the 

microorganisms in the contactors.
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CHAPTER II 
LITERATURE REVIEW

Background

Deicing fluids from runoff at airfields, taxiways, and off aircraft have been found to 

contain high levels of EG while exhibiting low levels of nutrients. The high 

concentration of EG is polluting rivers, streams, and lakes due to the high oxygen 

demand required for EG biodegradation.

EG and PG are clear liquids that are used in antifreeze and deicing solutions. Exposure 

to large amounts of ethylene glycol can damage the kidneys, heart, and nervous system. 

Both compounds can change body chemistry by increasing the amount of acid. Exposure 

to the skin and lungs may cause irritation. Lethal quantities in adults are considered to be 

100 ml of pure EG, but in children, much less may cause serious cardiac, renal, and CNS 

toxicity (Chemical Market Report, 1998). Peak blood levels are generally seen in 1-4 

hours (Chemical Market Report, 1998)

EG is the most widely used of the commercially available aliphatic glycols (1,2- 

alkanediols). It is produced by the non-catalytic liquid-phase hydration of ethylene 

oxide. In January 1996, worldwide capacity was approximately 22.6 billion pounds (10.2
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million metric tons) (Inspection report on FAA deicing program, 1996). In 1995, its 

production volumes ranked it among the top twenty organic chemicals in the United

States. Most ethylene glycol goes into the production of polyester products (fibers, film,

solid-state resins and other products), some food, medical and cosmetic products, 

antifreeze, and deicing fluids. Other smaller uses are in hydraulic fluids, surface coating, 

unsaturated polyester resin, and surfactant markets.

In 1996, releases of ethylene glycol were 18,568,505 pounds. Of those releases, 

6,019,772 pounds were released into the air; 1,842,307 pounds into surface water, 

429,976 pounds onto land, 1,842,307 pounds to underground injection, and 2,576,966 

pounds hauled for disposal off-site (TRI, 1996). EG has been found in at least 34, and 

PG in at least 5, of the 1,416 National Priorities List sites identified by the Environmental 

Protection Agency (EPA) (ATSDR, 1996).

The United States Army has established a reduction goal for ethylene glycol disposal of

100%. The United States Air Force eliminated the use of EG from all its facilities in

1992 and replaced it with PG, a less toxic DF (Halterman-0’Malley, A., 1997).

Biodegradation

Biodegradation rates are influenced by physical and chemical factors. These factors 

include the size of the microbial population, the availability of moisture (water), food (a 

carbon source), an electron acceptor (oxygen or other), macro nutrients (nitrogen and

8



phosphorus), micro nutrients (including trace amounts of Fe, K, Mg, Ca, Zn, Mo, Cu, and 

Mn), and the physical and chemical properties of the molecule being degraded.

In liquid, microbes are either suspended, as in an activated sludge processes, or attached 

to a medium. A fixed film is an active microbial colony that is attached to a media. 

Media can be man-made such as plastics, cloth, composite materials, and metal

structures, or natural such as rocks.

Factors Affecting Biodegradation

Microbial activity can be optimized under certain environmental conditions including 

temperature, pH, moisture, and electron acceptor availability. Microbial activity 

temerature ranges from 20°C to 70°C (K. Baker & D. Herson, 1994) and in general a 

10°C increase in temperature will double the reaction rate. The biodegradation rate is 

also affected by the pH of the overall environment surrounding the microbes. The 

optimal pH for microbial activity is usually between 5.5 and 8.5. However, 

biodegradation can occur in extreme pH ranges due to the activity of some unique 

microorganisms which grow in very acidic or alkaline environments. Moisture plays an 

important role in the rate of biodegradation due to the importance of water for the transfer 

of substrates in the byproducts out of the cell. Fixed film microbes cannot move, so

water acts as a transport mechanism of food to the cells. The presence of an electron 

acceptor is also vital for the growth of the microbial biofilm. The absence of an electron 

acceptor, oxygen in this case, will impede the growth of the bacteria, thus affecting the 

efficiency of the contactor system.

9



The structure and complexity of a compound will also determine its potential for 

degradation. Generally, hydrocarbons can degrade under aerobic conditions, with simple 

hydrocarbons being degraded faster than complex ones (Baker, K. And Herson, D., 

1994). The bio-availability of contaminants is also very vital in the growth and health of 

a microbiological culture. Contaminants that are not water soluble may reside in soils or

other media and thus not be available for microbial biodegradation. Carbon, nitrogen, 

and phosphorous are required for cell growth and biosynthesis of most microbial

constituents.

Rules and Regulations

Ethylene glycol is regulated by the Food and Drug Administration as a residual in food. 

The American Conference of Governmental Industrial Hygienists (ACGIH) lists an 

adopted short term exposure limit value of 100 milligrams of ethylene glycol per cubic 

meter of air (100 mg/m3) for a 15-minute exposure (ACGIH Worldwide, 1998). The 

federal Clean Air Act of 1990 classified ethylene glycol as a hazardous air pollutant. The 

act requires users to carefully monitor the fluid's application and deposition, raising 

administrative and handling costs. Airlines that have relied on ethylene glycol as an 

aircraft deicing agent have been forced to re-evaluate its use. Neither EG or PG 

compound is likely to exist in large amounts in air since about half of the compounds that

enter the air will break down in 24-50 hours.
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EPA regulates EG as an air toxin on the Hazardous Air Pollutant List and as a volatile

organic compound. It is regulated under the Clean Air Act, Comprehensive 

Environmental Response, Compensation, and Liability Act (CERCLA), and the Toxic

Substances Control Act (ATSDR, 1996).

Under the Emergency Planning and Community Right-to-Know Act of 1986, annual 

releases of more than 5,000 pounds of ethylene glycol into the air, water, or land must be 

reported and entered into the national Toxic Release Inventory (TRI) (ATSDR, 1996).

Any time an airline uses ethylene glycol to keep ice off its planes, it must be reported. If 

more than 600 gallons are used collectively in any one day, the airport must report it to 

federal hazardous chemical monitors (The Spokesman-Review, 1998). The CERCLA 

regulations do not make use of ethylene glycol illegal, but appear to discourage its use.

Case Studies

The nation's 17 busiest airports annually release a combined 58 million pounds of 

ethylene glycol, a deicing agent that poses "significant" risks to human health (ATSDR, 

1996). Until recently, thousands of gallons of ethylene glycol were used each winter to 

rid jets of snow and ice for safe takeoffs (Johnson, L., 1997). As an alternative, some 

airlines use nontoxic propylene glycol, but it costs as much as $1 a gallon (Aviation 

Week and Space Technology, 1991).
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Due to regulation imposed by regulatory agencies, primarilly the EPA, on effluent

concentrations of EG allowed to enter the nations waterways, airports have implemented 

different measures to deal with EG contaminated stormwater. Some airports use

collection and detention ponds to hold the stromwater and eventually release it in

controlled amounts into streams or to wastewater treatment plants, while others use 

treatments such as natural microbial activity in ponds or batch reactors. Some 

international airports have implimented a collection and recycling operation at the point 

of application. However, the above listed measures do not take into consideration the 

spilling of EG on the entire length of runways, but rather deal with collecting EG 

contaminated stormwater only at the point of application.

In Spokane and Seattle, it is illegal for car owners to intentionally spill antifreeze or 

dispose of it on the ground, but for years airlines have routinely spilled ethylene glycol on 

the ground while de-icing planes (The Spokesman-Review, 1998). At Spokane

International, the chemical mixes with snow and rain runoff and is diverted to a storm

ditch near the runways where it dissipates. Delta and United airlines have ethylene 

glycol available for de-icing while all other airlines at Spokane International use 

propylene glycol (The Spokesman-Review, 1998), which is less toxic than EG but 

remains as ecologically damaging as EG in terms of oxygen demand and its effects on

surface waters.

Kansas City International (KCI) Airport is spending $ 8.5 million to reduce the 

environmental hazards of deicing planes. Currently, the KCI wastes flow into lakes on
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the airport property. In one of those lakes, the large Berlin Reservoir, a large dose of the 

deicing agent ethylene glycol killed fish in 1992. Ethylene glycol kills fish by consuming 

the oxygen in the water (The Kansas City Star, 1998).

Families who live along Mill Creek near the Dayton International Airport contend that 

chemicals used to deice runways and airplanes are flowing into the creek and have 

contaminated the groundwater, including several wells in the area (The Dayton Daily 

News, 1995). Dayton city officials contend that such deicing agents as ethylene glycol, 

propylene glycol, urea, and ammonia do not pose a health hazard (The Dayton Daily 

News, 1995). The city constructed a collection system at the point of application to 

capture the fluids and meter it to the local wastewater treatment plant.

At La Guardia airport, deicing operations are mostly conducted at the gates (passenger 

boarding area) rather than the deicing pads and the DF are not collected. In 1996, airport 

operator officials estimated that only one aircraft in the last two years used the deicing 

pad because air carriers are responsible for collecting glycols, and they do not use deicing 

pads if an aircraft can make it to the end of the runway within a few minutes of being 

deiced at the gate. (Inspection Report on FAA deicing Program, 1996)

Pittsburg International Airport has containment centers, collection ponds, for DF. The

containment centers store and release DFs in controlled amounts to the wastewater

treatment plants (Environmental Technology, 1997). In addition, Dulles International 

Airport in Washington D.C. has built containment structures where the DF is treated via
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natural microbial activity and the effluent is released to waterways (Environmental

Technology, 1997).

At Chicago’s O’Hare International Airport, a drainage detention basin was constructed

for the collection of DF contaminated stormwater runnoff. The stormwater is then

treated on-site biologically, using a sequencing batch reactor process.

Many other nationally large airports, such as Denver and Cincinnati, as well as other 

international airports have built collection systems for capturing point-of-application EG 

contaminated stormwater. International airports such as Munich, Oslo, and Lulea 

Airports employ a vast recycling operation of deicing fluids (Holmgren, A. And Forsling,

W., 1993).

The subsurface microbiological contactor studied in this research is an additional viable 

option that could be presented to airports as an option for the biodegradation of EG in 

stormwater. This option could replace the need for batch reactors, recycling, and 

stormwater metering to wastewater treatment plants and/or the release into waterways. In 

addition, it will be proposed that the subsurface microbiological contactor be placed at 

the outfalls of the drainage areas surrounding the airport in order to catch the runoff from 

the point of application as well as the spills along miles of runway.
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CHAPTER III
PROCEDURES & EXPERIMENTAL DESIGN

This research is a continuation of previous research studies. This study was conducted to 

analyze the potential of the passive addition of a solid form, slow-release, nutrient source

to allow the aerobic microbiological degradation of predominantly carbon-polluted 

stormwater in a subsurface microbiological contactor. The general experimental plan 

involved the construction and operation of three (3) microbiological contactors in a 

laboratory environment. All three contactors were physically identical, were packed with 

red volcanic rock media and an additive that maintains moisture during no flow 

conditions, and except for nutrient addition rates, were operated under identical 

conditions. The three contactors were run in parallel. The experiment was conducted in 

two phases. Phase I involved operating the contactors until equilibrium was achieved (as 

indicated by having the percent removal of EG remain constant over 5 days). Phase II 

involved shutting down a contactor for a period of seven days and monitoring its 

efficiency after restarting. This was determined by comparing the contactor EG effluents

before and after it was shut down.

One of the contactors served as a control and had no nutrient source added. The other

two had a solid form, slow-release nutrient source added. The low nutrient level
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contactor initially had 100 grams of Sta-Green® fertilizer and the high nutrient level 

contactor had 150 grams of the same fertilizer.

Contactor Components

The fabrication materials used in building the microbiological contactors were 

commercially available from hardware stores and plumbing suppliers. The following 

sections detail each component of the contactor including the types and amount of 

materials used and how the contactors were assembled. Figure 3.1 presents a schematic 

of the system.
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Contactor Shell

The outer shell of the contactors was constructed from black, corrugated, PVC pipe. The 

pipe was seven inches in diameter and three feet long. The contactor pipes were mounted 

vertically onto a steel frame. A heavy construction-grade PVC mesh was placed at the 

bottom of the contactors pipes and fastened with a high density plastic fasteners. The

purpose of the plastic mesh was to hold the contactor’s media in place while still

allowing drainage of fluids and the free flow of air through the contactor. The contactor

unit is presented in figure 3.2.

Figure 3.2 - Contactor Unit

Rock Medium

Five media choices studied were red volcanic rock, marble, granite, limestone, and 

sandstone. They were evaluated for external and internal porosity, water holding 

capacity, and tendency to dry.

The media of the contactors was red volcanic rock. Red volcanic rock was selected

because of its water holding capacity (Saliba, A., 1997). Additional information on red
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volcanic rock can be obtained from the Colorado Aggregate Company in Alamosa,

Colorado.

The red volcanic rock was sized by passing it through a sieve. The rock that passed the 

1-inch sieve but were retained on a subsequent 34-inch sieve were selected for the reactor 

media. Following the size selection, the red volcanic rock was hand washed by placing it 

on a strainer with running tap water until the effluent water was clear. No detergents 

were used in the washing process. This step was intended to remove small rock particles 

and dust that was attached to the media pores. The rocks were placed in bowls in an oven 

at 103°C and allowed to dry overnight. After oven drying, the rocks were removed, 

covered, and placed in the laboratory for one and a half weeks to air dry.

Upon completion of the system set-up, 8,190 grams of the red volcanic rock media was 

placed in each contactor.

Moisture Additive

Three types of moisture retaining materials were evaluated; Soil Moist™, vermiculite, 

and regular sponge. The materials were evaluated to determine their water retention 

capacity and tendency to dry.

Moisture is essential in the development and survival of microbes. In order to maintain a 

moist environment in the contactors during no flow conditions, a moisture retaining

material was included in addition to the media in the contactors. The selection of Soil
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Moist™, the moisture retaining material, was based on the fact that it exhibits maximum 

water retention and slow rate of moisture release with time (Nath, R., 1997). To maintain

TN/fthe necessary required moisture during no flow conditions, 11.4 grams of Soil Moist 

was hydrated and applied to the rock media.

'TTUf
Soil Moist is a synthetic acrylic polyacrylamide with a potassium salt base. Initial 

soaking of the Soil Moist™ was required to prevent the polymer from going through the 

media. The pH of Soil Moist™ in an aqueous system is approximately 6.2 - 7.0. Soil

T'Kyf HRK/fMoist will absorb over two hundred times its weight in water (Soil Moist Polymers, 

1996). Additional information on Soil Moist™ may be obtained from JRM Chemical, 

Inc.

Bacteria

In addition to the red volcanic rock media and the Soil Moist™, a colony of hydrocarbon 

feeding microbes was necessary to degrade contaminants. The microbes selected were 

MP Super CEE, Lot # 2096022, supplied by Microbe Masters.

Five (5) grams of the freeze dried bacteria were mixed with 1.5 liters of deionized water 

in a beaker and gently aggitated on a shaker table. The rock media was submerged in the 

bacteria solution for approximately five minutes.

19



Pump and Tubing System

Three pumps equipped with a motor controler, to control the flow rate through each 

contactor, were used in this experiment. The motor controlers were connected to a timer. 

Each pump was connected to clear plastic tubing that conveyed the system feed to the 

spray nozzles. Metal clamps were used as weights for the clear tubing in the feed

container in order to prevent the tubes from floating to the surface.

The MasterFlex pumps are model number 7553-70 and are adjustable from 6 - 600 

revolutions per minute (rpm) and were obtained from Cole-Parmer Instrument Company. 

The motor controlers are also obtained from Cole-Parmer Instrument Company and are

MasterFlex model number 7553-71. The timer is a Thomas Co. Lab. Controller S/N #

1073179 and was obtained from Control Company.

The flow rates to the contactors were set to 35 milliliters per minute (ml/min) using the 

fill and spill method. To maintain the overall average flow rate of 17.5 ml/min., the 

pump controlers were configured to operate intermittently 30 seconds on and 30 seconds 

off. For every 30 seconds the pumps were on, the spray nozzles delivered 35 ml of feed

solution to each contactor.

Air was supplied via plastic tubing from a laboratory air supply faucet. The air passed 

through a filter, in order to insure cleanliness, and was supplied to the feed container by

air difusers.
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Spray Nozzles

A spray nozzle was connected to the clear plastic tubing from the effluent side of the 

pump. The spray nozzles are the plastic ends of the commercially available spray bottle. 

The purpose of the spray nozzles was to distribute the feed over the entire top surface 

area of the contactor, rather than point feed.

Feed Containers

The feed container was a 30-gallon bucket that is commercially available from a

hardware or farm supply store. The pump and tubing system and feed container are 

presented below in figure 3.3.

Figure 3.3 - Pump and Tubing System and Feed Container
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Feed Components

Table 3-1 lists the chemical components used in preparing the feed source. The amounts 

shown are calculated to prepare 24 gallons of feed. Sodium hydroxide was used, on an as

needed basis, to adjust the pH of the feed to 7.

Table 3-1 Chemical Components

Number Parameter Unit Amount
1 Ethylene Glycol ml 16.5
2 Ferric Chloride (FeCb) gm 0.099
3 Manganese Chloride (MnCl2) gm 0.024
4 Zinc Sulfate (Zn SO4) gm 0.071
5 Cupric Chloride (CuCh) gm 0.011
6 Cobalt Chloride (C0CI2) gm 0.015
7 Ammonium Molybdate ((NH4)6Mo7O24.4H2O) gm 0.011
8 Sodium Borate (Na2B4O7.10H2O) gm 0.007
9 Calcium Chloride (CaCl2) gm 0.679
10 Magnesium Chloride (MgCl2.6H2O) gm 1.245
11 Potassium Chloride (KCI) gm 3.306
12 Sodium Citrate (Na3C6H5O7.2H2O) gm 0.899
13 Sodium Hydroxide (NaOH) gm As Needed
14 Yeast Extract gm 0.006

Nutrient Source Component

The following commercially available fertilizers were considered as nutrient sources to 

be utilized in this experiment.

1. Jobe’s 13-4-5 Plant Food Spikes

2. Jobe’s 15-7-6 Tree Spikes

3. Aquarium Pharmaceuticals, Inc.’s 20-10-5 Pond Care Aquatic Plant Food

4. Scotts 31-3-9 polymer-encapsulated nitrogen lawn food

5. Scotts 18-6-12 Osmocote

6. Pursell’s 18-6-12 time-released Sta-Green®
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To determine the best nutrient for use in the contactors, the following preliminary studies 

were conducted. A sample of Jobe’s Plant Food Spikes was added to the low nutrient 

level and high nutrient level contactors and run for 20 days. After 20 days, Jobe’s Plant 

Food Spikes were removed from the contactors because of the rapid deterioration of the 

nutrient source and the inconsistency in the amount of nutrients leaching. The plant food 

spikes were replaced by Jobe’s Tree Spikes as a nutrient source. The tree spikes lasted 

longer than the plant food spikes, however they were replaced by Sta-Green® time- 

release nutrients after 28 days. The Jobe’s Tree Spikes also showed inconsistency of 

nutrient leaching as well as rapid deterioration.

During the 48 day time period between starting the reactors and the addition of Sta- 

Green® a parallel leaching study was being conducted to determine the fertilizer source 

that would maintain its physical integrity under direct hydraulic loading, and would 

provide a consistent leaching characteristic.

After testing the nutrient leaching characteristics of each of the listed fertilizers, Sta- 

Green® by Pursell’s was selected as the fertilizer of choice due to its consistency of 

nutrient release. Additional information about Sta-Green® can be obtained from Pursell’s

Industries, Inc.

23



Measuring Equipments and Methods

Table 3-2 describes the laboratory equipment used and table 3-3 includes the analytical 

methods used for measurements throughout this research.

Samples were generally collected and analized daily from the effluent of each contactor 

to be analyzed for ammonia, chemical oxygen demand (COD), nitrate, total nitrogen 

(TN), phosphate, dissolved oxygen (DO), pH, temperature, and EG concentration. The 

samples used in the Gas Chromatograph (GC) were preserved with phosphoric acid, and 

the samples designated for COD, nitrate, TN, and phosphate were preserved with sulfuric 

acid. These samples were analyzed weekly. The samples obtained for DO, pH, 

temperature and ammonia were unpreserved since these parameters were to be measured 

immediately.

Ammonia present in the fertilizer is the primary source of nitrogen for the microbes in the 

contactors. Samples are collected daily and the concentration levels of ammonia is used 

as an indicator of the amount of nitrogen being delivered into the contactors. An increase 

or decrease in ammonia concentrations usually indicate an increase or decrease in 

nitrogen supplied to the microbes.

Although not essential for this research, due to GC testing, COD samples were collected 

and analysed in order to confirm the reduction of carbonaceuous pollutants. TN samples 

were analysed in order to study the fate of nitrogen (converted to other than ammonia and 

nitrate) and ensure that nitrogen concentrations do not exceed the regulatory allowable
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discharge limits. In addition, Phosphate samples were collected and analysed to ensure

that phosphate was available for microbial use, and that phosphate concentrations do not 

exceed the regulatory allowable discharge limits.

DO samples were analysed daily to ensure that oxygen was always available for 

microbial use and was not limiting. In addition, the amount of oxygen used is an 

indicator of the health of a microbial colony (more oxygen is used by healthy colonies) 

and/or the rate of biodegradation.

Temperature and pH values were tested daily in order to document the operating ranges

of the contactors.

Table 3-2 Laboratory Instruments

INSTRUMENT USE MANUFACTURER
MODEL

Analytical Balance Weighing of feed 
components

Denver Instrument Co. 
A-200D5

Electronic Scale Weighing red rock & Soil 
Moist

Denver Instrument Co. 
DI-8KD

Gas Chromatograph with 
Flame Ionization Detector

Detection of EG 
concentrations

Hewlet Packard
5890 Series II

Fused silica capillary 
column, 15m, 0.53mm ID, 
0.50um film thickness.

Chemical Compound 
Separation

SUPELCO
Nukol™
Lot: 10912-03E

PH Meter Measuring pH values Fisher Scientific
Accumet 25 pH/ion

Temperature Meter Measuring temperature 
values

Fisher Scientific
Accumet 25 pH/ion

Ammonia Meter Measuring Ammonia 
concentrations

Fisher Scientific
Accumet 25 pH/ion

Dissolved Oxygen Meter Measuring Dissolved
Oxygen concentrations

Yellow Springs Inc.
5100
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Table 3-3 Analytical Methods

PARAMETERS METHOD
IDENTIFICATION

DETECTION 
LIMITS (mg/L)

MANUFACTURER

Chemical Oxygen 
Demand
Manganese II 
Digestion

HACH method 10067 20 HACH Company

Total Nitrogen 
Hydroxide HACH method 10071 > 1 HACH Company

Reactive
Phosphorous HACH method 8048 0.02 HACH Company

Nitrate, HR HACH method 8039 0.8 HACH Company

All analytical results, observations, operation and maintenance, and other laboratory 

activities were documented in a laboratory log book. The log book remained in the 

laboratory at all times. The data log sheets were later transferred to an Excel spreadsheet. 

The GC data was documented immediately on an Excel spreadsheet.

Reactor Maintenance

During the period the contactors were operating, preventative maintenance was necessary 

to maintain a well functioning system. The clear tubing was replaced as needed and the 

spray nozzles were cleaned regularly and changed as needed. The flow rates were 

verified regularly, the timer was restarted as needed, and the feed solution containers

were washed with soap and deionized (DI) water to remove accumulated material on the

sides of the container.
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Reproducibility & Repeatability

It is very important to prove that methods instituted during the setup and running phases

of the research study can be reproduced.

Controlling variables such as temperature, pH, moisture content, and feed solution 

loading will assist in eliminating variations. Using the same test methods, sampling 

procedures, and data collection techniques improve the consistency of the results.

Laboratory procedures were adopted and implemented in order to minimize human and 

instrumental errors. These procedures included obtaining duplicate samples from each 

contactor for all 3 contactors and running tests on these samples to insure consistency of 

results. Additional error minimizing procedures included the testing and calibration of 

instruments using standards daily. In order to minimize cross contamination, clean 

pipettes, beakers, mixing magnets, and sample bottles were used for every sample

collected.
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CHAPTER IV

RESULTS / DISCUSSION

Overview

The data collected from this research was tabulated and graphed. All three contactors 

operated under desireable conditions over the duration of the experiment. Operating 

temperature remained within the 20 - 25 °C (room temperature) range and pH values 

ranged from 5.0 to 8.0. Figures 4-1, 4-2 and 4-3 illustrate temperature and pH values for 

the control contactor, low-level nutrient source contactor, and high level nutrient source 

contactor, respectively. Note that intermittent flow conditions existed for the low level

nutrient source and high level nutrient source contactors. In order to examine and

evaluate the recuperation process of the contactors under intermittent flow conditions, the 

low nutrient contactor was shutdown for a period of 194 hours and then restarted. The 

high nutrient level contactor was shutdown for 93 hours to study the drying effect on 

biofilm removal. Both contactors maintained temperature and pH values within the 

desirable range upon restart.

The collected data used in the following graphs was from the time Sta-Green® was added 

as a nutrient source (time = 1000 hours).
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Nutrient Source

In a parallel leaching study, Sta-Green® was found to exhibit excellent physical 

charateristics under hydraulic loading while providing a predictable amount of nutrients. 

Figure 4-4 presents the results of the leaching study. Ammonia was leached from the 

fertilizer at an average rate of 3.5mg/L for a period of 500 hours. An additional 300 

grams of virgin fertilizer was then added to the leaching study in an effort to examine the 

time required for the fertilizer’s effluent to stabilize. The fertilizer effluent again 

reached an average ammonia concentration of 3.5 mg/L within 150 hours.
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Ammonia Concentrations

Leaching Study

Ammonia effluents were tested for each contactor throughout the experiment. Ammonia 

was a key experimental parameter in this research because it is an indication of the

amount of nitrogen delivered to the microbes in the contactors. Moderate levels of 

leached ammonia allow the biodegradation process to occur, while excess ammonia is 

considered a pollutant.

Figure 4-5 shows the ammonia effluent from the control contactor to be below detection 

limits. These low values were expected since the only potential nutrient source was the 

limited amount of nitrogen in Soil-Moist.

The biodegradation of EG in the low nutrient level and the high nutrient level contactors 

consumed all the ammonia leached from the fertilizer except for some instances where 

external changes to the contactors were performed, Figure 4-6 and 4-7. Unwashed 

fertilizer was applied to the contactors causing ammonia effluent concentrations to reach 

as high as 40 mg/L. The concentrations dropped drastically to undetectable levels within 

5 days from initial application. In another instance, the contactors shutdown due to an 

electrical malfunction. Consequently, the Sta-Green® located at the top of the contactors 

dried out. When power was restored, the contactors were turned back on and the Sta- 

Green® was rewetted, allowing effluent concentrations of ammonia to go up to as high as 

12 mg/L. The concentrations dropped back to the detection limit within half a day. In 

addition, 100 grams of Sta-Green® was added to the low level nutrient contactor because
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biofilm growth on the fertilizer was limiting its leaching capability. This resulted in an 

initial ammonia effluent concentration of 9 mg/L which dropped back to detection limits 

within half a day.

Low ammonia concentrations in the effluent is a good indicator that the microbial biofilm 

in the contactor is healthy. The absence of ammonia in the effluent would indicate the 

possibility of a nutrient defficient scenario where not enough nitrogen is present for

microbial activity. In addition, low ammonia concentrations in the effluent is considered 

a good sign due to the regulated effluent limits of nitrogen into waterways.
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During the last four weeks of research, the nutrient source in the low level nutrient source 

contactor and the high level nutrient source contactor started to exhibit a biofilm growth 

that affected the leaching characteristic of the fertilizer. 100 grams of Sta-Green® was 

added to the low level nutrient contactor, while the biofilm in the high level nutrient

source contactor was manually broken up in an attempt to alleviate the problem. The 

manual breaking up of the biofilm was done by rubbing the fertilizer against each other 

and thus removing the biofilm coating off the surface of the fertilizer. The success of 

manually breaking up the biofilm was immediately exhibited by an increase in effluent 

ammonia levels which indicated improved leaching. However, a few days after manually 

breaking the bio film, heavy concentration of bio film returned. A second approach 

involved spraying the biofilm on top of the nutrients in the high level nutrient source 

contactor with 5 ml of 50% (by volume) hydrogen peroxide in an attempt to kill the 

bacteria encapsulating the nutrient source and preventing it from leaching. Unlike 

manual breaking, this approach did not render immediate results in the contactor effluent. 

After the first two alternatives failed to provide a long term solution, the high level 

nutrient source contactor was shut down for a period of 93 hours to dry the nutrient

source and kill the attached biofilm. The low nutrient contactor was also shut down for a

period of 194 hours. The concentration level of ammonia in both contactors was 

significantly higher after turning the contactor back on, however, the high concentration 

levels tapered to below the detection limit in both contactors within 72 hours.
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Dissolved Oxygen Concentrations

Dissolved Oxygen (DO) tests were conducted on all three contactors on a daily basis

throughout this research. A difference in concentration of DO in the effluents of the

contactors indicates differences in the microbial activities among contactors. The lower 

the DO concentration in the effluent, the higher the microbial activity in the contactor 

(more oxygen is being used). Figure 4-8 illustrates the differences. The feed container 

(Bucket), which contain the air diffusers and had no bacterial activity, inherently had the 

highest levels of DO concentrations. The control reactor had the second highest DO 

levels indicating little bacterial activity due to the absence of a nutrient source. DO levels 

in the low level nutrient source contactor were next highest followed by the high level 

nutrient source contactor. The low DO levels in the high nutrient source contactor 

indicate the highest microbial activity among the contactors. Figure 4-8 also illustrates 

that adequate oxygen was available for microbial use throughout the research.
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Ethylene Glycol Concentrations

The rate of EG biodegradation is assumed to be dependent on the ammount of ammonia 

leached from the fertilizer source. In comparing EG effluent concentrations between the 

low level nutrient source and the high level nutrient source contactors, Figure 4-9, the 

high level nutrient source contactor exhibits a high microbial activity and has the lowest 

EG effluent concentrations. The control contactor had the highest EG effluent levels. 

Figures 4-10, 4-11, and 4-12 show the percent removal of EG and ammonia for the 

control, low level nutrient, and high level nutrient contactors, respectively.

The control contactor exhibited a low concentration of ammonia despite the lack of a 

nutrient source. A laboratory test concluded that EG has no affinity to adsorb to the rock 

media, hence some biodegradation of EG and the low effluent of ammonia in the control 

contactor are attributed to the presence of low concentrations of nitrogen leaching from

the Soil-Moist.

The effluent EG concentration was impacted by external changes in the contactors. The 

growth of a biolfilm around the nutrient source, as indicated by the note “Biofilm 

Observed” on the graph in Figures 4-9, 4-11, and 4-12, restricted the leaching capability 

of the fertilizer, decreasing the amount of nutrients leached. The result was an increase in 

the effluent EG concentration after the biofilm encapsulating the nutrient source was 

manually broken, as indicated by the note “ Biofilm Manually Broken” on the graph in

Figures 4-9, 4-11, and 4-12.
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When the nutrients became limited, an additional 100 grams of Sta-Green® fertilizer was 

added on top of the low level nutrient contactor. Replenishing the nutrients resulted in a 

drop in the effluent EG as indicated by the note “100 gm of Sta-Green Added” in Figures

4-9 and 4-11.
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Phosphorous Concentrations

The amount of phosphorous that leached into each contactor was a function of the 

amount of Sta-Green® present in that contactor. The amount of phosphorous leached 

from the fertilizer is collected in the effluent from each contactor. Figure 4-13 illustrates 

the average concentration of phosphorous present in the effluent. The control contactor 

had the lowest concentrations of phosphorous followed by the low nutrient level 

contactor, and finally the high nutrient level.
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Additional Analysis

Additional tests were routinely conducted on the feed and contactors for the analysis of 

nitrate and total nitrogen. All of the measured values were below the detection limit.

Intermittent Loading

To evaluate the recuperation process of the contactors under intermittent flow conditions,

the low nutrient contactor was shutdown for a period of 194 hours and then turned back 

on. The EG concentration level briefly rose to 140 mg/L but decreased to 11 mg/L (Pre 

shut-down conditions) within 96 hours (Figure 4-9). This indicates a healthy microbial 

population and the presence of sufficient moisture due to the Soil-Moist additive to keep 

the population active during non-flow conditions.

Passive vs. Soluble Nutrient Addition

A comparison between the data obtained from the high level nutrient source contactor 

and the data from a contactor system with nutrients dissolved in the feed (idealized) was

conducted. In the idealized contactor, the effluent concentrations of EG were between 25

mg/L and the detection limit of 5 mg/L. In most cases the high level nutrient source

contactor had similar results to the idealized contactor and in some cases exceeded the

idealized contactor in EG removal efficiency.

Theoretical Nutrient Requirements

A mathematical calculation was performed to compare the bacteria’s use of nutrients and 

the theoretical molar ratio of C:N:P (100:5:1) (M. Hammer & M. Hammer, 1996). The

50



purpose of this comparison is to examine if the amount of nutrients supplied to the 

contactors was adequate or limiting. A sample calculation is shown and the results are 

tabulated in Appendix A, Table A-8.

Sample Calculation:

1. The Molecular Weight of EG (C2H6O2) is 62 grams and the Molecular Weight of 

Ammonia (NH3) is 17 grams; and for sample time = 1619.6 hours, the following low

level nutrient source contactor data was obtained:

Influent Ammonia from parallel leachate study = A = 5.2 mg/L (Table A-5)

Effluent Ammonia for low level nutrient source = Aj = 2.6 mg/L (Table A-2)

EG Influent level = B = 196 mg/L (Table A-6)

EG Effluent for low level nutrient source = Bi = 104 mg/L (Table A-6)

2. The difference between influent and effluent concentrations was calculated:

Alow = A - Aj = 5.2 - 2.6 = 2.6 mg/L = 0.0026 gms/L (Ammonia)

Blow = B - Bi = 196 - 104 = 92 mg/L = 0.092 gms/L (EG)

3. The molar Carbon and Nirtorgen concentration was calculated: 

CarbonLow = 0.092 gms C2H6O2 /L x 24 gms C / 62 gms C2H6O2

x 1 mole C / 12 gms C = 0.003 moles CI Liter.

NitrogenLow = 0.0026 gms NH3 /L x 14 gms N / 17 gms NH3 

x 1 mole N / 14 gms N = 0.00015 moles N / Liter.
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4. The ratio of Carbon to Nitrogen was found:

CarbonLow I NitrogenLow = 0.003 moles CI Liter / = 0.00015 moles NI Liter

= 20 moles CI moles N

An average experimental ratio of 28:1 and 32:1 was obtained for the low level nutrient 

source and the high level nutrient source respectively. The high level nutrient contactor

exhibits a higher C:N ratio than low level nutrient contactor due to the surface area 

covered by the fertilizer in each of the contactors. The 100 grams of Sta-Green® fertilizer 

used in the low level contactor was spread across the top of the unit but did not cover the 

entire surface area. The 150 grams of Sta-Green® fertilizer used in the high level 

contactor was enough to cover the entire surface area on top of the rock bed. While the 

leaching rate of both contactors is the same, more ammonia was leached into the high 

level contactor due to a larger surface area covered by the fertilizer. The experimental 

values of C:N ratios obtained from the research are larger than their theoretical 

counterparts, indicating the possibility of the presence of a secondary nitrogen source in

both contactors.
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CHAPTER V
SUMMARY AND CONCLUSION

Summary

The objective of this research was to analyze the potential of the passive addition of a 

solid form, slow-release, nutrient source to allow for the aerobic microbiological 

degradation of predominantly carbon-polluted storm water in a subsurface 

microbiological contactor. The general experimental plan involved the construction and 

operation of three (3) physically identical microbiological contactors that ran in parallel.

One of the contactors served as a control and had no nutrient source added while the

other two had a solid form, slow-release nutrient source added. The low nutrient level 

contactor initially had 100 grams of Sta-Green® fertilizer and the high nutrient level 

contactor had 150 grams of the same fertilizer. The experiment was conducted in two 

phases. Phase I involved operating the contactors until equilibrium was achieved 

(percent removal of EG was constant over 5 days). A mathematical calculation was 

performed to compare the bacterial use of nutrients and the theoretical molar ratio of 

C:N:P (100:5:1). The purpose of this comparison is to examine if the amount of nutrients 

supplied to the contactors was adequate or limiting. A comparison between the high 

level nutrient source contactor and a contactor system with nutrients dissolved in the feed

(idealized) was also conducted.
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Phase II involves shutting down the low level nutrient contactor for a period of 194

hours. The purpose of this phase was to evaluate the recuperation process of the

contactor under intermittent flow conditions.

All three contactors operated under desireable conditions over the duration of the 

experiment. Operating temperature remained within the 20 - 25 °C (room temperature) 

range and pH values ranged from 5.0 to 8.0.

The control contactor achieved approximately 15% to 30% EG removal. The low level

nutrient source contactor was inconsistent, for various reasons discussed below, but could

achieve EG removals in the 50% or better range, while the high level nutrient source

contactor typically achieved 75% to 100% EG removal efficiencies.

From Phase I, it was determined that the biodegradation of EG in the low nutrient level 

and the high nutrient level contactors consumed almost all of the ammonia leached from 

the fertilizer except for some instances where external changes to the contactors occured. 

However, the levels of ammonia concentrations in the effluent followed a predictable 

pattern. Ammonia levels increased when the contactors where restarted or when

additional fertilizer was added, and decreased when the biofilm restricted the leaching

characteristics of the fertilizer source. In addition, the low concentrations of ammonia in

the effluent, resulting from microbial activity, alleviates the problem of excess effluent 

ammonia which is considered a pollutant.
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The DO concentration in the contactors effluent indicated that oxygen was not a limiting

factor in this research. Furthermore, the level of DO corresponded to the quantity of 

nutrient within the contactors and the EG removal efficiency.

EG effluent concentrations indicated that the high level nutrient source contactor 

exhibited the best EG removal, followed by the low level nutrient source and the control

contactor. In addition, the high level nutrient source contactor rendered similar or better 

results than the contactor system with nutrients dissolved in the feed (idealized). The

comparison of the data for the two contactors indicated that both contactor effluent 

concentrations of EG were between 25 mg/L and the detection limit of 5 mg/L.

The amount of phosphorous that leached into each contactor was a function of the 

amount of Sta-Green® present in that contactor. The control contactor had the lowest 

concentrations of phosphorous followed by the low nutrient level contactor, and finally, 

the high nutrient level. Effluent concentrations indicated that phosphorous was not 

limiting in this study.

All of the data collected for nitrate and total nitrogen tests were below detection limit.

The very low levels of nitrate indicated that aerobic nitrification and anaerobic 

denitrification processes were occuring.

In phase II, the recuperation process of the contactors under intermittent flow conditions 

was examined and showed that the contactor recuperated back to pre-shut-down
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conditions within 48 hours of being turned back on. This was exhibited by low ammonia 

effluent concentrations and high EG percent removals. A healthy microbial colony and 

the presence of sufficient moisture due to the Soil-Moist additive could be accredited for 

the recuperation of the contactor. Also in Phase II, the high nutrient level contactor was 

shutdown for 93 hours to study the drying effect on biofilm removal.

The average experimental carbon to nitrogen ratio was found to be in the vicinity of 30:1 

as compared to the theoretical ratio of 20:1. The higher than theoretical values obtained 

indicate the possibility of the presence of a secondary source of nitrogen. The source of 

nitrogen could be from the Soil-Moist, which leaches low amounts of nitrogen, or from 

the recycling of nutrients in the contactors. The recycling of nutrients is observed when 

live bacteria make use of dead bacteria as a nutrient source. Another possibility of the 

high C:N ratio obtained could be accredited to a special form of bacteria that survives on 

limited nitrogen supplies.

Conclusions

This reaserch proves that the passive addition of a solid form, slow-release, nutrient 

source technology improves the aerobic microbiological degradation of EG and possibly 

other predominantly carbon-polluted storm water in a subsurface microbiological 

contactor. Larger scale studies using stormwater in field conditions is warranted.

The experimental contactor system produced similar results to an idealized contactor and 

was proven to recuperate well under intermittent flow conditions. The components of the
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contactor system are commercially available at a relatively economical price. In addition, 

the high nutrient level contactor provided 88% removal efficiency, on average, while 

producing little or no ammonia in the effluent.

Additional studies on the nutrient source as well as effects of temperature variations on

the contactor should be conducted. The growth of a biofilm around the nutrient source 

was observed in the laboratory study. This growth will limit the leaching capability of 

the fertilizer and will impact the concentrations of EG in the effluent. The nutrients could 

become a limiting factor in the contactor due to the bacterial biofilm growth around the 

fertilizer. Additional studies are required to provide engineering guidance to alleviate 

this problem.

In addition, the temperature flux in nature will affect the biodegradation rates of the 

microorganisms. For every 10 °C decrease in temperature, the microbial activity is 

typically cut in half. This will result in an increase in the concentration of EG in the 

effluent. If economically and logistically feasible, this problem could be resolved by 

physically doubling the size of the contactor for every 10 °C decrease in temperature. 

Additional research needs to be conducted in order to study the effluent concentrations of 

EG under low temperature conditions.

Further research into the polymer coated fertilizer and the relative nitrogen and 

phosphorous concentrations is required. The physical and leaching properties of the 

fertilizer under cold temperatures is another concern that needs to be addressed through
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additional studies. Moreover, a fertilizer with a lower phosphorous content might be 

considered as an alternative for reducing phosphorous concentrations in the effluent.

Due to the high BOD demand exerted by EG degradation, dissolved oxygen might 

become a problem in the reactor in nature. The absence of a continuous air supply could 

render the electron acceptor (oxygen in this case) limiting and additional studies to assess 

this possibility are recommended. A waterfall-type structure could be built in front of the 

contactor to provide mixing of the influent and the needed dissolved oxygen to degrade

EG.

Finally, the proposed subsurface microbiological contactor is an engineered system that 

requires modifications to design parameters for field applications. The laboratory 

experiment provides organic loading data that could be used to estimate the size of the 

proposed pilot scale contactor. Additional organic loading (lb BOD/ft3) factors needing 

consideration include the pollutant of concern, temperature, average and extreme BOD 

concentrations, and permit effluent requirements.

Hydraulic loading (gal/min. ft ) should also be considered for the pilot scale contactor. 

Minimum hydraulic loading should not be a factor of concern due to the presence of Soil- 

Moist that provides the minimum required moisture for microbial survival. However,

maximum hydraulic loading should be taken into consideration in order to insure that the

biomass is not sloughed due to excessive flow.
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In addition to the above mentioned design parameters, the amount of nutrients supplied to 

the contactor should also be taken into consideration depending on the proposed site.

Site locations and temperature variation may very well effect the kind of nutrient used 

and the proposed amounts. Nutrients could be supplied into the influent stream by 

sprinkling the fertilizer on top of the contactor, as in this experiment, or by a more 

sophisticated method of delivery such as a nutrient well.
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TABLE A-1

TIME CONTROL CONI ACTOR

COD DO NITRATE PHOSPH
(Hrs) (mg/L) (mg/L) TEMP (°C) PH NH3 (mg/L) (mg/L) (mg/L) TN (mg/L)

863.3 0.1
1007.3 5.3 22.7 6.58 0.1
1035.8 149 5.2 20.9 6.73 0.1 0.3 2 0
1055.3 138 5.4 21.8 6.67 0.1 0.4
1082.8 141 5.6 22.2 7.56 0.1 0.4 1
1114 52 5.5 22.5 7.98 0.1 0.5

1127.8 15 5.2 21.2 7.76 0.1 0.7 0 2
1153.3 0 4.7 21.8 8.03 0.1 0.6
1184.3 79 5.1 21.7 8.22 0.1 0.6 2
1208 5.0 21.6 8.05 0.1

1223.3 147 5.7 21.4 7.81 0.1 0.7 2 2
1252.55 5.6 21.3 7.83 0.1

1273 135 5.3 21 7.55 0.1 1.2 0 1
1295.5 5.2 21 7.6 0.1
1322.3 64 4.6 21.5 7.7 0.1 0.9 0 2
1352.3 4.8 21.5 7.59 0.1
1375.3 114 5.0 21.4 7.59 0.1 0.9 1
1391.3 140 4.9 20.8 7.63 0.1
1418.5 102 4.7 21.3 7.48 0.1 0.8 0 1
1437.5 149 5.0 20.9 7.53 0.1 0.8 0
1453.8 142 5.1 20.9 7.15 0.1 0.4 0 1
1474.8 171 5.0 20.3 6.9 0.1 0.5 1 1
1504 139 4.9 21.5 6.57 0.1 0.5 0 0
1528 167 4.9 20.4 6.87 0.1 0.5 0

1549.2 147 5.0 20.8 6.71 0.1 0.4 0 2
1576 4.8 21.6 6.77 0.1

1598.3 177 5.0 20.9 6.67 0.1 0.3 0 0
1619.6 4.8 21.2 6.83 0.1
1643.1 294 5.1 21.9 6.6 0.1 0.4 0 1
1669.7 5.3 20.3 6.35 0.1
1690.7 5.2 20.3 6.6 0.1 0.3 0 0



TABLE A-2

TIME LOW EVEL NUTRIENT CONTACTOR

COD TEMP NITRATE PHOSPH
(Hrs) (mg/L) DO (mg/L) rc) PH NH3 (mg/L) (mg/L) (mg/L) TN (mg/L)
863.3 39.9
1007.3 5.1 22.1 6.58 0.1
1035.8 75 3.7 20.9 6.66 2.15 0.5 3 1
1055.3 83 4.4 21.9 6.69 0.957 0.9
1082.8 0 4.3 22.2 7.45 2.6 0.3 6
1114 0 5.2 22.1 7.97 5 0.3

1127.8 9 5.0 21.2 8.07 6.56 0.5 3 10
1153.3 0 4.1 21.8 8.06 8.89 1
1184.3 101 5.1 22 8.07 1.49 0.1 3
1208 4.6 22.2 7.77 0.85

1223.3 39 4.2 21.4 7.48 0.1 0.4 1 1
1252.55 5.0 21.3 7.86 0.1

1273 23 5.3 21 7.44 0.1 0.6 1 1
1295.5 4.7 21.1 7.78 0.1
1322.3 17 4.4 21.5 7.44 0.1 0.2 1 2
1352.3 4.3 21.7 7.38 0.1
1375.3 0 4.4 21.8 7.19 0.1 0 2
1391.3 45 4.2 20.8 7.24 0.1
1418.5 57 4.5 21.3 7.43 0.1 0.3 1 1
1437.5 6 4.6 21 7.37 0.1 0.4 0
1453.8 22 4.5 20.7 7.2 0.1 0.3 1 2
1474.8 70 5.1 20.3 6.91 0.1 0.4 2 2
1504 52 4.8 21.3 6.6 0.1 0.2 1 0
1528 78 4.7 20.4 6.77 0.1 0.2 1

1549.2 136 5.0 20.8 6.46 0.1 0.3 1 1
1576 4.7 21.7 6.83 8.47

1598.3 88 4.7 20.9 6.97 1.09 0.8 1 2
1619.6 4.3 21.3 6.84 2.61
1643.1 109 4.5 21.5 6.72 0.76 0.5 1 1
1669.7 5.3 20.3 6.68 0.989
1690.7 4.4 20.3 6.65 0.306 0.4 1 0
1719.7 
1741.1
1794.7
1838.7
1884.7 183 5.5 21.3 7.42 32.5
1905.7 5.3 22.3 7.01 3.65
1929.7 5.4 21 7.47 0.1 0
1977.7 27 5.0 21.5 7.61 0.133 1
1999.2 5.1 20.8 6.94 0.1 1
2021 5.4 21.6 7.44 0.1 0

2069 5.8 21.4 7.81 0.1 0
2120 5.4 21.8 7.79 4.33 1

2162.5 4.9 21.5 7.19 0.1
2210.5 5.9 21.3 6.9 0.1 1



TABLE A-3

TIME HIGH LEVEL NUTRIENT CONTACTOR

COD TEMP NITRATE PHOSPH
(Hrs) (mg/L) DO (mg/L) (°C) PH NH3 (mg/L) (mg/L) (mg/L) TN (mg/L)

863.3 44.9
1007.3 4.6 22.8 5.7 0.1
1035.8 30 3.5 20.9 6 0.35 0.4 1 0
1055.3 48 4.4 22.2 5.67 0.516 0.4
1082.8 0 4.6 22.2 7.1 0.188 0 2
1114 0 4.5 22.3 7.77 5.27 0.3

1127.8 0 4.8 21.2 7.56 6.74 1.5 4 15
1153.3 0 4.9 21.8 7.73 12.9 0.9
1184.3 0 4.7 22 7.71 2.38 0.1 6
1208 4.2 22.2 7.65 1.67

1223.3 71 3.8 21.4 7.15 0.1 0.4 1 1
1252.55 4.5 21.6 7.51 0.1

1273 48 4.4 21 7.25 0.1 0.9 2 1
1295.5 4.8 21.4 7.38 0.1
1322.3 19 4.3 21.5 7.29 0.1 0.3 2 1
1352.3 4.4 22 7.24 0.1
1375.3 0 4.8 22 7.35 0.1 0.1 2
1391.3 23 4.4 20.8 7.19 0.1
1418.5 30 4.4 21.3 7.38 0.1 0.1 3 2
1437.5 17 4.1 21.3 7.13 0.1 0.6 1
1453.8 0 4.2 21.1 6.82 0.1 0.5 1 1
1474.8 61 4.6 20.3 6.34 0.1 0.4 2 2
1504 75 4.2 21.6 5.3 0.1 0.4 2 1
1528 69 4.5 20.4 6.47 0.14 0.3 1

1549.2 70 4.3 20.8 5.83 0.1 0.2 2 1
1576 4.2 22.1 5.83 0.3

1598.3 54 4.0 20.9 5.22 0.1 0.4 2 1
1619.6 4.6 21.4 5.29 0.1
1643.1 113 4.1 21.5 5.25 0.1 0.6 3 1
1669.7 5.1 20.3 5.82 0.1
1690.7 5.6 20.3 5.96 0.1 0.6 3 1
1719.7 4.5 21.7 5.53 2.05
1741.1 5.2 21 6.24 0.1 0.3 2 1
1794.7 4.0 20.5 6.13 0.1 0.45 2 1
1838.7 74 4.6 22.3 6 0.1 2
1884.7
1905.7
1929.7
1977.7 5.5 21.4 7.64 72
1999.2 5.3 20.9 7.18 9.17 5
2021 4.6 22.2 7.14 1.98 2
2069 5.7 21.8 7.38 1.18 1
2120 5.3 21.7 7.5 0.8 1

2162.5 4.4 21.3 7.07 0.6
2210.5 4.6 21.7 6.5 0.1 1



TABLE A-4

TIME
— . 3 M L

BUCKET

(Hrs)
COD

(mg/L)
DO

(mg/L)
.TEMP

(°C) PH
NITRATE

(mg/L) PHOSPH (mg/L) TN (mg/L)

863.3
1007.3 7.3 21.8 6.3
1035.8 172 7.0 21.5 7.2 0.4 3 0
1055.3 193 7.0 21.5 7.22 0
1082.8 150 6.6 22 7.07 0.9 2
1114 29 7.0 21.9 7.67 0.6

1127.8 42 7.3 20.9 7.14 1.6 0 2
1153.3 17 7.0 21.3 7.8 0
1184.3 136 7.4 20.8 8.46 0.9 3
1208 7.2 21.5 7.76

1223.3 201 7.6 21 7.37 1 1 2
1252.55 7.2 21.2 8.03

1273 252 6.9 21.1 7.18 1.1 1 1
1295.5 7.4 20.7 7.78
1322.3 210 7.3 20.8 7.11 0.7 0 2
1352.3 7.1 21.2 7.76
1375.3 128 7.2 21.3 7.04 0.7 2
1391.3 244 7.2 21 7.82
1418.5 215 6.8 20.8 7.14 0.5 0 2
1437.5 175 7.3 20.4 7.76 0.8 0
1453.8 106 7.0 20.5 6.72 0.6 0 0
1474.8 186 7.6 20 7.14 0.3 0 1
1504 223 7.5 20.5 6.85 0.4 0 0
1528 200 7.3 21.9 6.95 0.3 0

1549.2 212 7.5 20.8 6.93 0.4 1 1
1576 6.6 21.5 6.84

1598.3 222 7.4 21.5 6.94 0.3 0 1
1619.6 7.4 20.7 6.84
1643.1 204 7.3 20.8 6.72 0.3 0 1
1669.7 5.9 20.1 6.84
1690.7 6.0 20.4 6.85 0.3 0 0
1719.7 5.6 21.1 6.58
1741.1 5.7 20.1 6.9 0.3 0 1
1794.7 6.7 20 6.95 0.3 0 0
1838.7 138 7.1 20.4 6.75 0
1884.7 234 6.5 20.8 6.87 0
1905.7 6.7 21 6.91
1929.7 6.5 20.6 7.23 1
1977.7 222 6.7 20.9 7.27 5
1999.2 6.4 20.5 7.05 0

2021 6.4 20.8 7.66 0

2069 6.5 21.2 7.59 0

2120 6.5 20.3 7.65 0
2162.5 6.6 20.5 7.77
2210.5 6.6 20.3 7 0



TABLE A-5

TIME LEACHATE

(Hrs) NH3 (mg/L)

863.3
1007.3 5.9
1035.8 4.2
1055.3 4.4
1082.8 3.6
1114 3.4

1127.8
1153.3 3.2
1184.3 2.8
1208

1223.3
1252.55

1273 1.7
1295.5 2.0
1322.3 2.1
1352.3 2.9
1375.3
1391.3 1.8
1418.5
1437.5
1453.8 2.3
1474.8 3.0
1504 23.0
1528 6.4

1549.2 3.5
1576 4.6

1598.3 6.2
1619.6 5.2
1643.1 2.7
1669.7 2.9



TABLE A-6

TIME GAS CHROMATOGRAPH RESULTS EG E FFLUENT (mg/L)

LOW LEVEL HIGH LEVEL
(Hrs) BUCKET CONTROL NUTRIENT NUTRIENT
863.3
1007.3 
1035.8 167.7 162.6 81.8 32.2
1055.3 171.5 101.6 71.8 17.6
1082.8 162.7 136.1 23.3 2.2
1114

1127.8
1153.3
1184.3 255.3 177.2 9.4 5.6
1208

1223.3
1252.55

200.4 178.3 20.8 61.8

1273 201.9 138.6 1.7 2.9
1295.5
1322.3
1352.3

1800.6 156.6 6.0 3.5

1375.3 175.6 131.1 11.2 2.1
1391.3 156.2 125.4 15.9 2.7
1418.5 161.9 117.6 20.5 1.9
1437.5 194.4 163.0 25.9 12.0
1453.8 205.4 168.9 35.5 40.0
1474.8 208.1 169.0 61.7 ' 26.9
1504 205.5 154.9 78.3 43.7
1528 185.0 175.0 80.0 30.9

1549.2 200.7 195.8 131.9 33.5
1576 199.6 156.3 161.1 31.0

1598.3 183.4 169.8 84.1 19.5
1619.6 196.0 150.9 104.2 19.8
1643.1 211.6 165.7 104.1 13.7
1669.7 209.8 162.3 86.3 46.2
1690.7 196.6 169.5 81.1 27.3
1719.7 231.6 9.8
1741.1 207.4 48.8
1794.7 256.0 48.8
1838.7 235.6 48.8
1884.7 233.2 139.8
1905.7 229.4 60.9
1929.7 229.8 11.1
1977.7 196.8 74.6
1999.2 232.5 45.7 29.3
2021 214.3 11.8 10.1
2069 233.2 10.2 7.2
2120 232.5 44.4 5.4

2162.5 179.0 34.2 10.3
2210.5 177.8 67.9 21.9



TABLE A-7
TIME % EG REMOVAL

LOW LEVEL HIGH LEVEL
(Hrs) CONTROL NUTRIENT NUTRIENT

1035.80 3 51 81
1055.30 41 58 90
1082.80 16 86 99
1184.30 31 96 98
1223.30 11 90 69
1273.00 31 99 99
1322.30 13 97 98
1375.30 25 94 99
1391.30 20 90 98
1418.50 27 87 99
1437.50 16 87 94
1453.80 18 83 81
1474.80 19 70 87
1504.00 25 62 79
1528.00 5 57 83
1549.20 2 34 83
1576.00 22 19 84
1598.30 7 54 89
1619.60 23 47 90
1643.10 22 51 94
1669.70 23 59 78
1690.70 14 59 86
1719.70 96
1741.10 76
1794.70 81
1838.70 79
1884.70 40
1905.70 73
1929.70 95
1977.70 62
1999.20 80 87
2021.00 95 95
2069.00 96 97
2120.00 81 98
2162.50 81 94
2210.50 62 88



TABLE A-8
Carbon to Nitrogen Ratios

TIME (Hrs) C/N LOW-LEVEL C/N HIGH-LEVEL
NUTRIENT SOURCE NUTRIENT SOURCE

1273.00 70 70
1391.30 46 51
1453.80 43 42
1474.80 27 34
1504.00 3 4
1528.00 9 13
154920 11 27
1598.30 11 15
1619.60 20 19
1643.10 31 42
1669.70 35 32
1719.70 28 32

Average 28 32


