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CHAPTER I

INTRODUCTION

The development of the graphing calculator is presenting 

mathematics teachers with new ideas and teaching techniques that could 

supplement the current Advanced Placement mathematics curriculum. In 

addition, the College Board has revised the existing testing program so 

that graphing calculators are required for the advanced placement test 

during the 1994-95 school year. However, many mathematics teachers 

are not familiar with graphing calculators and how they can be utilized in 

the classroom. Therefore, a handbook that provides ideas, teaching 

suggestions, and lesson plans for specific topics in the advanced 

placement curriculum would be useful for mathematics teachers that 

desire to incorporate graphing calculators in their own classroom

situation.

The purpose, then, of this handbook is to fill a need that exists in 

the field of mathematics instruction. In order to prepare students for the 

advanced placement tests and the other changes that have been mandated 

by the state of Ohio and the National Council of Teacher of Mathematics 

(NCTM), changes must also be made in instructional techniques and 

activities that students are involved with in the classroom. This handbook 

provides the classroom teacher ideas, activities, and lesson plans to follow

that incorporate the use of the graphing calculator within the calculus



I have been involved in the teaching of advanced placement calculus 

for the past 6 years. During this period of time, I have used various types 

of calculators in teaching my advanced placement classes. Recently I 

began using a TI-81 graphing calculator in my advanced placement 

classes, and have realized what a excellent tool this calculator is for 

teaching concepts in calculus, and for expanding some of the ideas I 

currently discuss in class.

ASSUMPTIONS AND LIMITATIONS

There are many opportunities to incorporate the use of the 

graphing calculator throughout the high school mathematics curriculum. 

However, the range of this handbook is restricted to the utilization of the 

the graphing calculator in the advanced placement calculus curriculum. It 

is probable that the graphing calculator will be incorporated throughout 

the high school mathematics curriculum through a “trickle down” 

process. By including this type of calculator at the highest level of the 

curriculum, it is inevitable that they will be used in the lower areas as 

teachers and students become familiar with their function and application 

in the mathematics classroom. However, the scope of this handbook

remains at the calculus level.

Although different types of graphing calculators are currently
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available, this project will be limited to utilizing the Texas Instruments



calculator, the TI-82. It will be possible to apply many of the ideas, 

procedures, and activities to other types of graphing calculators.

It is also assumed that all students in the classroom will have access 

to a graphing calculator. Not all school systems have graphing calculators 

available to their students, and it is possible that all students would not be 

able to purchase one of their own. It is suggested that mathematics 

departments request a classroom set of graphing calculators for the 

students to use in the mathematics classrooms, or if possible, require 

students to purchase this type of calculator at the beginning of the school

year.

DEFINITIONS

Graphing Calculator. This is considered to be any calculator that has the 

capability of generating graphs of equations that are built into the 

calculator or that are defined by the user. Currently, Texas Instruments, 

Casio, Hewlett-Packard, and Sharp all manufacture graphing calculators.

Advanced Placement Calculus. A calculus course that is designed for high 

school students that follows curriculum that is set forth by The College 

Board. Upon completing the course, students may take the advanced 

placement test that is administered by The College Board, and possibly 

acquire college credits depending upon the score they receive on the 

Advanced Placement test and the college they attend.

3



CHAPTER n

REVIEW OF LITERATURE

A commonly held perception among many educators is that 

calculators in the classroom, at all levels, have a negative effect on 

learning. This view is expressed in statements such as “students who use 

calculators do not learn basic skills” or “students will not learn to graph 

functions if they have graphics calculators.” In the 1800’s when lead 

pencils and paper were available for all school children, there was also 

great concern among the school teachers of mathematics. What will 

happen, they worried, when their students have this new technology?

What about their ability to do mental arithmetic? Won’t this ability 

decline and therefore cause major disaster for all mathematics education? 

Those in mathematics education that feel that the use of calculators, and 

more specifically, graphing calculators, should look back into history to 

see that these fears are unfounded. The development of the graphing 

calculator should be viewed upon as a tool that will improve and enhance

the current mathematics curriculum instead of a deterrent to instruction.

Many other educators share the same belief that the graphing 

calculator can be a powerful teaching tool. It is thought that precalculus 

students benefit from an intuitive understanding of functions gained 

through the use of graphics calculators, and calculus students gain a 

deeper understanding of functions and their graphs by interactively using



graphics and algebraic capabilities of calculators (Dion, 1990). It has also 

been suggested that graphing calculators empower students by giving 

them the ability to use the power of visualization to do mathematics, and 

that through this power students can add a geometric or visual 

representation to a problem in order to investigate traditional algebraic 

topics (Demana & Waits, 1992a). This is a valid point as it is difficult in 

teaching math to find ways to give students a concrete example for 

mathematics concepts that basically abstract. Students seem to grasp 

difficult concepts much easier when the concept can be presented 

visually, and they can actually “see” results. It is much the same in 

teaching the game of golf, the instructor can tell the student how to hold 

a club and how to swing it, but unless they get visual input and a hands 

on experience they will not understand the concept being taught. They 

must “see” and “feel” what is being presented to them.

The National Council of Teachers of Mathematics (NCTM) has also 

supported the use of technology in the classroom. According to the 

NCTM, “the teacher of mathematics, in order to enhance discourse 

should encourage and accept the use of computers, calculators, and other 

technology” , and also state that “the most fundamental consequence of 

changes in patterns of instruction in response to technology rich 

classroom environments is the emergence of a new classroom dynamic in 

which teachers and students become natural partners in developing 

mathematical ideas and solving mathematical problems” (National Council
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of Teachers of Mathematics, 1989).

Even though there are many proponents of graphing calculators and 

the use of calculators in the classroom, there are many concerns that 

arise as well. For instance, a major concern of many educators is “what is 

there left to teach?” It is important to realize that the graphing calculator 

is being proposed as a tool to supplement instruction, not replace it. As 

Dion suggests, “the effective use of scientific and graphics calculators 

requires a solid understanding of the mathematical concepts involved” 

(Dion, 1990, p. 567). Joseph Mercer concurs in this ideas as he surmises 

that the time that is saved in calculations can be put to use by “teaching 

about graphs, how to model real-world problems with graphs, how to 

glean information from graphs, and how to model graphs with equations” 

(Mercer, 1992, p. 416).

It is important to note that although there are many teachers, 

administrators, and other professionals in the field of mathematics 

education that have determined that using graphing calculators improves 

mathematics instruction and the learning of mathematics, but the 

research to this point is not conclusive in supporting this claim. However, 

Anthony Ralston suggests that current research does in suggest that 

reasoned use of calculators in any grade enhances the learning of 

mathematics generally. He explains that the benefits of the use of 

calculators will be significant; that student interest will be enhanced, the 

drudgery of pencil and paper worksheets will be replaced by calculator



7
explorations for patterns and rules, mental math will actually be

emphasized more in order to facilitate estimation and checking answers 

for reasonableness, and students will learn that mathematics is an 

experimental as well as an exact science (Ralston, 1991).

In summary, current research and trends indicate that the uses of 

the graphing calculator in the classroom are powerful and could change 

the shape of mathematics instruction in the future. If the opportunity 

arises, the mathematics teacher should try to utilize the graphing 

calculator to supplement current methods of instruction in the classroom.
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AP Calculus Lesson Plan

Topic: Graphing c • /(x), /(c  • x), -/(x), /(-x), I /(x ) I

Overview:

The use of the graphing calculator can make it quite easy for 
students to see how the period and amplitude of functions can be affected 
by constants or absolute value. In this lesson, students will graph a 
function, then graph variations of that function and interpret the resulting 
graphs.

O bjective(s):

-the student will describe the amplitude and period changes in the graphs 
of the functions c • /(x), /(c  • x), -/(x), /(-x), 1 /  (x) I .

Procedure(s):

I. Have students enter the equation y = sin x in Y l, and sketch its graph. 
Use a window size so that -it < x < 2it with a scale of it/2 and -2.5 < y < 2.5 
with a scale of 1.

II. Define amplitude and period using the function in I (period 2k , and the 
amplitude = 2).

III. Have students then enter the following equations:

Y2 = 1.5 * sin x Y3 = 2 * sin x Y4 = 2.5 * sin x

Questions: What does the constant do to the graph of the equation? 
Does the constant change the amplitude or period?

IV. Have students enter these equations for Y2, Y3, and Y4:

Y2 = -sin x Y3 = -2 * sin x Y4 = -2.5 * sin x

Question: What does the negative constant do the graph of the equation? 
Does it change the amplitude or the period?
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V. Ask students to give a “rule of thumb” for the graph of c * f(x) and 
graph the following equations using this rule (no calculator!):

y = 10 sin x y = -23 sin x y = 100 sin x

VI. Show students the following graph of a function:

Discuss how y = /(x) would be changed by 2/(x) and -4 /(x).

VII. Enter the following equations and analyze their graphs:

Y2 = sin 2x 
Y3 = sin 4x 
Y4 = sin .5x

Questions: What does the constant do to the graph of the equation? 
Does the constant change the amplitude or period?

VIII. Enter the following equations and analyze their graphs:

Y2 = I sin x I 
Y3 = - I sin x I

Questions: What change does the absolute value make in the graph?
Is there a change in amplitude or period?

IX. Have students graph the equations below, but first have students guess 
or visualize what the graph should look like. Give the amplitude and 
period for each graph.
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1. y = 4 cos x

4. y = -5 cos 2x

2. y = -4 cos x

5. y = 3 cos .5x

3. y = I 4 cos x I

6. y = I .5 cos 3x

X. Reverse thinking. Have the students determine what values for k will 
give the function the given amplitude or period.

1. y = sin kx , period 4k .

2. y = k cos kx, amplitude .25 .

3. y = tan kx, period 2.

4. y = (-1 / k)sin kx , amplitude 3.

XI. Give the students a graph of a function as in part VI, and have them 
graph variations of that graph using the skills they learned in this lesson.

XII. The “friendly” window. Set the window of the TI-82 so that the Xmin 
and the Xmax are multiples of 94, and the Ymin and Ymax are multiples of 
62. This will give the user integer values when using the trace function of 
the TI-82.

For instance, a “standard” window is as follows:

Xmin=-9.4, Xmax=9.4, Xscl=l
Ymin=-6.2, Ymax=6.2, Yscl=l



AP Calculus Lesson Plan

Topic: Graphing /(x ) + c , /(x  + c)

Overview:

This is an extension of the previous lesson, as the student will see 
how a constant can effect the graph of an equation. In this case, the 
constant is added or subtracted “inside” or “outside” of a function.

O bjective(s):

-the student will describe the amplitude and period changes in the graphs 
of the functions /(x ) + c and /(x  + c)

Procedure(s):

I. Have students enter the equation y = x2 . Window size -9.4 < x < 9.4 
with a scale of 1, and -6.2 < y < 6.2 with a scale of 1.

II. After viewing the graph of y = x2 , have students enter the following 
equations, and graph all three:

Y2 = x2 - 2 Y3 = x2 + 3

Question: How does the constant added or subtracted to the original
graph change its picture?

III. Have students theorize how the graphs below will appear:

Original Equation New Equation

y = sin x 
y = sin x

y = (sin x) + 1 
y = (sin x) - 2 
y = x3 + 4 
y = x3 - 5

Have students verify their theory by graphing each with their calculator.
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IV. Have students clear their current graphs, except for Y1 = x2, and enter 
the following graphs:

Y2 = (x + l)2 
Y3 = (x -3)2

Question: How does the constant “inside” the function alter the graph?

V. Have students theorize how the graphs below will appear:

Original Equation New Equation

y = sin x 
y = sin x 
y = x3 
y = x3

y = sin(x + 1) 
y = sin(x + 7t) 
y = (x + 2)3 
y = (x - 4)3

Have students verify their theory by graphing.

VI. Combinations of both types of equations. Have students first try to* 
determine what the graph of the equation will look like based on the 
graph of the original equation and what they have learned so far in this 
lesson. Then graph the equation using their calculator:

Original Equation New Equation

y = cos x

y = (x - 2)2 +3 
y = (x + 5)2 + 7 
y = 3 + cos(x - n)

VII. Putting it all together. These equations summarize the graphing 
concepts discusses in the last 2 lessons. Have students get a “mental” 
picture first, then graph the equation using their calculator.

1. y = 2sin(4x) 2. y = - I cos (x/2) I

3. y = - (x - 2)2 + 4 4. y = (x + 7)3 -2



AP Calculus Lesson Plan

Topic: Vertical Asymptotes

Overview:

This is an activity where students can discover vertical asymptotes 
of rational functions. This activity was prepared for the TI-81 mini course 
at AMATYC in Indianapolis in 1992.

O bjective(s):

-the student will find the vertical asymptotes of a rational function

Procedure(s):

Students should complete the following activity.

D irections: Use your calculator to sketch the graph of the following . 
functions and record your sketch on paper. Window size -9.4 < x < 9.4 
and -6.2 < y < 6.2 .

1. For the equation:
4

a. What happens to the graph at x = 1?
b. What is the domain of the function?
c. Complete the following table of values for this function.

x 1.1 1.05 1.01 1.005 1.001 1.000
y ? ? ? ? ? ?

x .9 .95 .99 .995 .999 .9999
y ? ? ? ? ? ?

d. What is happening to y as x approaches 1 but is bigger than 1?
e. What is happening to y as x approaches. 1 but is smaller than 1?
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2. For the equation:
20x + 10 

(5x - 6)(x + 4)

a. What happens to the graph at x = 6/5 and x = -4?
b. What is the domain of the function?
c. Complete the following table of values for this function.

x -3.9 -3.95 -3.99 -3.995 -3.999 -3 .9999
y ? ? ? ? ? 9

x -4.1 -4.05 -4.01 -4.005 -4.001 -4.0001
y ? ? ? ? ? 9

d. What is happening to y as x approaches -4 but is bigger than -4?
e. What is happening to y as x approaches -4 but is smaller than -4?
f. Complete the following table of values for this function:

X 1.3 1.25 1.21 1.205 1.201 1.2001
y ? ? ? ? ? ?

X 1.1 1.15 1.19 1.195 1.199 1.1999
y ? ? ? ? ? ?

g. What is happening to y as x approaches 1.2 but is bigger than 1.2?
h. What is happening to y as x approaches 1.2 but is smaller than 1.2?

3. For the equation:
5 - x

a. Where is there a break in this graph?
b. What is the domain of the function?
c. What is happening to y as x approaches 2 but is bigger than 2?
d. What is happening to y as x approaches 2 but is smaller than 2?
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4. For the equation:
_ 7

y x2 + x -6

a. Where is there a break in this graph?
b. What is the domain of the function?
c. What is happening to y as x approaches 2 but is bigger than 2?
d. What is happening to y as x approaches 2 but is smaller than 2?
e. What is happening to y as x approaches -3 but is bigger than -3?
f. What is happening to y as x approaches -3 but is smaller than -3?

5. Guess the values 
graphing.

where the graphs of these functions break. Check by

5
b. y =

4x + 15 3
a ‘ Y 2x - 6 (x - 5)(x + 1 )  x2 + 1

x2 - 25
d. v = ------------ e. y = 4x + 4

O a e

6. Answer the following questions:

a. How did your predictions work in the problems 5c, 5d, and 5e?
b. Explain what happened in 5c.
c. Use your trace to explain what happened in 5d and 5e.

7. Conjecture.

a. A vertical line that a graph approaches and never touches is called a 
vertical asymptote. Using what you learned above, summarize how you 
would find the vertical asymptote of a rational function without graphing.

b. Describe what a graph does on either side of a vertical asymptote.



AP Calculus Lesson Plan

Topic: Graphing Piecewise Defined Functions

Overview:

It is possible to graph a piecewise defined function with the TI-82 
calculator, and this function becomes very handy when discussing 
continuity, and right and left hand limits. This lesson simply discusses 
how to use the calculator to graph this type of function.

Objective(s):

-the student will graph a piecewise defined function

Procedure(s):

I. Consider the function defined as follows:

/(x) = / 2x’ 1- lfx^ 1 

1 X2-1, if x > 1

This piecewise defined function is the combination of a line and a 
parabola. A likely discussion in a calculus class would involve the 
continuity of this function at the point x = 1. A graph of this function 
would be of help in this area.

II. Follow these steps in order to graph this function:

1. Choose the Y= key.
2. Enter the following equation for Yl:

(2x - l)(x < 1) + (xM )(x > 1)

3. Choose the GRAPH key to see the graph (Remember to check the
WINDOW before graphing)
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III. Another method for graphing a piecewise defined function is as 
follows:

1. Using the same function in II, select the Y= key.
2. Enter the following equations:

Y1 = (2x - 1) / (x <1)
Y2 = (x2 - 1) / (x > 1) **Notice the division symbol**

3. Choose the graph key to see the graph.

IV. Try to graph these piecewise functions using both methods:

{
4, x > 3

x + 1 ,  0 < x < 3  
-x2 , x < 0

2. {
sin x , x > 0 

1 , x < 0

3. {
x3 - 1 , X > 2 

2 - 3 x ,  x £ 2

(
-2x , x > 2 

x2 0 < x  < 2  
-X2 , X < 0



Topic: Limits

Overview:

This lesson enables the student to understand the meaning of the 
idea that “as x approaches a the limit is L” as they examine the behavior of 
functions at particular points. The table function of the TI-82 as well as 
the graphing capabilities of the calculator help the student “see” the 
concept that is being presented.

O bjective(s):

-the student will state the definition of a limit
-the student will apply the definition of a limit to different types of 
functions

Procedure(s):

I. Define limit as follows:

L =  lim f  (x) 
x-»a

which says “the number L is the limit of the function f  as x approaches a.”

II. Examine the function (sin x) / x as the valueis of x approach zero by 
creating a table as follows:

1. Choose the Y= key and enter the function (sin x) / x
2. Choose the TblSet key, and set the Indpnt option to Ask.
3. Choose the TABLE key and enter the values 1, .9, .7, .5, .3, and .1, 

and 0.

III. Questions to ask students.

What is happening to the Yi values as the X values get closer to 0?
Why does the value of 0 for X yield “ERROR” in the Yi column?

AP Calculus Lesson Plan



III. Change the X table values as follows:

.1, .05, .025, .01, .009, and .001

IV. Questions to ask students.

As the X values get closer to 1, what is happening to the Yj values? 
Why does the X value of .001 yield a value of 1? (Have students 
compute the value of (sin .001) I .001 with their calculator to get 
an accurate response)

V. Other things to investigate.

1. Examine the behavior of the function as x approaches 0 from the
left by changing the chart values to negatives.

2. Have students graph the function and use the TRACE function to
see how the function behaves as x approaches 0.

VI. Examine the behavior of the function (2x2 - x -1) / (x2 - 1) as x
approaches 1 in the following manner:

1. Select Y= and enter the function (2x2 - x - 1) / (x2 -1).
2. Select WINDOW and enter values: -5 < x < 5, -5 < y < 5, scale of

1 each axis.
3. Select GRAPH.
4. After viewing the first graph, select ZOOM and then Zoom In.
5. Move the cursor to a point on the graph so that x is as close to 1

as possible, and then press ENTER.
6. Repeat step 5, and note that that values for x are getting closer to

1.
7. Repeating step 5 a few times will get an x value extremely close to 

1, and a y value very close to 1.5, which is, in fact, the limit that
can be computed by hand.

20



VII. Have students repeat the process in VI for the following functions:

1. cos (itx) / (2x -1) as x approaches .5.

2. (2x3 + 3x2 - 4x - 6) / (x - ^2) as x approaches radical 2.

VIII. Questions for Discussion.

1. Does the limit as x approaches a for a function f  always equal 
/ ( a ) ?

2. Are there functions that exist so that at a point a, the values of
the function do not approach any number? (This can serve as a 
lead in for the next lesson)

21

3. Can the students relate the definition of a limit to the problems?



AP Calculus Lesson Plan

Topic: Limits-nonexistent & the “Pinching” Theorem

Overview:

This lesson demonstrates limits that are nonexistent, and also uses 
the Pinching Theorem to determine the limit, of a function. It would be a 
good idea to review how to graph a compound function using the TI-82. 
The functions the students graph in this lesson would also be good for 
discussing right and left hand limits.

O bjective(s):

-the student will give reasons why a function does not have a limit at a 
particular point
-the student will use the Pinching Theorem to evaluate a limit

Procedure(s):

I. Discuss the definition of a limit
-review that L is the limit as x approaches a.
-/(a ) does not always equal the limit as x approaches a.

II. Have students graph the function y = ((x + l)2 - 2) / x. Then, have 
students use the TRACE to see how the graph behaves around x = 0

III. Questions to ask students.

1. According to the definition of a limit, there must be a value L that
the function is or is near when x approaches a. Is there such a 
value when x approaches 0 for this function?

2. What value does y go to when x approaches 0 from the right? the 
left?



IV. Have students graph the following functions and determine for what 
values would the limit not exist.

1. y = sin ( 1 / x) 2. y = Ixl / x

3. y = (x - 4) / (x - 1) 4. y = x2 / (x + 2)

V. Define the Pinching Theorem.

Assume that the limit of g(x) and h(x) both exist as x approaches a, 
and that these limits are equal to L. If the function f  satisfies the 
inequality

23

g(x) < /(x) < h(x)

for all x in an open interval containing a then the limit as x approaches a 
of /(x ) is also equal to L.

VI. To demonstrate the Pinching Theorem, have the students enter the 
following equations and graph:

Yi = 1 / (cos x)
Y2 = cos x 
Y 3 = (sin x) / x

**Note that the limit as x approaches 0 of both Yi and Y2 is 1

VII. Questions to ask students.

1. Is 1 / (cos x) < (sin x) / x <, cos x ? On what interval(s)?

2. If #1 is true, and the limit of 1 / cos x and cos x as x approaches 0
is 1, then what must be the limit of (sin x) / x ?



VIII. Have students determine the limits of these functions using their 
calculator and the Pinching Theorem.

1. Find the limit as x approaches 0 for the function f  if

1 - x2 < /(x) < 1 + x2 for all x.

2. Find the limit as x approaches 3 for the function f  if

6x - x2 < /(x ) < x2 - 6x + 18 for all x.

3. Find the limit as x approaches 0 for the function f  if

1 - x  ̂ < /(x ) < sec x for -k/2 < x < k/2.

24



AP Calculus Lesson Plan

Topic: The Derivative

Overview:

These graphing calculator activities are designed to supplement the 
teaching of the definition of the derivative. The graphing capabilities of 
the TI-82 are combined with the use of the definition of the derivative in 
order for the student to get a visual idea of how the slope of the tangent is 
directly related to the derivative. In the final activity, the students will

O bjective(s):

-the student will state the mathematical definition of the derivative 
-the student will relate the slope of a tangent line to the definition of the 
derivative.
-the student will be able to determine if a function is differentiable at a 
given point.

Procedure(s):

I. Review the definition of the derivative (this concept should have been 
introduced previously).

The derivative of the function f  on the interval I, denoted by f '  , is 
the function with values:

provided this limit exists for all x that are in the interval I.

II. Introduce the following function:



lines y = m(x - a) + /(a).

1. /(x ) = x2 - 2x + 1, a =

and have the students graph y = m(x) for h = 1.0, 0.1, 0.01, and 
0.001 using the functions listed below:

/(x ) = 2x + 1 /(x ) = x2 /(x) = sin x

Students should be answering the question:

How do these graphs relate to the graph of the derivative of f  ?

III. This activity helps the student decide if a function is differentiable at a 
given point. A function f  and a number a are given . Using the function:

/ (a  + h ) - /(a )
------ R---------

and h = ±2.0, ± 1.5, ± 1.0, ± 0.1, ± 0.01, and ± 0.001, graph the secant 
Determine if f  is differentiable at a.

1

a = 1

26

12x -1 , if x < 1 

x2. if x > 1
2. /(x) =

III. Formula discovery. Have the students complete the following task: 

For the equations listed below, given the function f ,  graph:

, , /(x + h) - /(x)
y = m(x) = --------r-----------

where h = .001. Compare the graph of m(x) with the graphs of other 
functions you know, and conjecture a formula for f '  (x).

1. / (x) = 2x + 3 3. / (x) = x2 + 2x + 3 5. /(x) = x3 - 5x2

2. /(x ) = x2 4. /(x ) = x3



AP Calculus Lesson Plan

Topic: The Derivative

Overview:

One of the most powerful capabilities of the TI-82 and other types 
of graphing calculators is the ability to graph and compute derivatives, 
maximum and minimum values of functions, and to graph tangent lines to 
graphs at particular points. In this lesson the student is exposed to the 
built-in functions of the TI-82 that deal with differentiation.

O bjective(s):

-the student will use a graphing calculator to find the relative maximum 
and minimum values of a function
-the student will use a graphing calculator to find the value of the 
derivative of a function at a given point
-the student will use a graphing calculator to draw the tangent line to a 
graph at a given point

Procedure(s):

I. Have students enter the equation y = x3 - x1 2 3 4 5 -8x , and graph this 
equation on their calculator. Manipulate the range so the “turns” of the 
graph can be seen.

II. Demonstrate how to find the minimum value of the graph in the 
following manner:

1. Select the CALC menu by pressing 2nd then TRACE.
2. To find the minimum, select 3 from the CALC menu.
3. The graph will be displayed, and will be asked to enter a lower 

bound.
4. Using the arrow keys, move the cursor so the lower bound is

approximately x=-3, y=-12, and press ENTER.
5. Using the arrow keys again, move the cursor so the upper bound

is approximately x=4, y=16, and press ENTER.



6 The calculator then asks for a guess. This helps the calculator 
find the correct root, and to find it more quickly. Use the arrow 
keys again and move the cursor to a point that is near the 
relative minimum, and press ENTER.

7. The result cursor is on the solution and the coordinate values are 
displayed.

III. Demonstrate finding the maximum following the same steps in II, only 
this time choosing maximum instead of minimum.

IV. Verify the validity of these calculations by finding the relative 
maximum and minimum by hand. (Relative minimum of -12 at x=2, 
relative maximum of 6.5185 at x=-4/3)

V. Another method to demonstrate the relationship between the 
derivative and the tangent line is to graph the tangent at a point on the 
graph. Use the same equation in I, and demonstrate the following:

1. Graph the equation again, making sure the “turns” are visible.
2. Select the DRAW menu by pressing 2nd, then PRGM.
3. Choose 5, then ENTER to draw a tangent line.
4. Using the arrow keys, move the cursor so the x-coordinate is 2, 

and press ENTER.
5. This result shows a horizontal tangent line at x=2. This would be

a good time to reinforce the idea of why the tangent should be 
horizontal at this point.

6. Use this method to show the tangent line at other points on the 
graph.

VI. Here is an alternative method to drawing the tangent line to a graph as 
well:

1. Make sure that an equation is entered in Yi.
2. Select the DRAW menu, and 5 for Tangent line.
3. To draw a tangent line to the equation stored in Yi, select the Y-

VARS menu, then 1 for function, and then land ENTER to select
Yi.

4. Type a comma, and then an x-coordinate to draw the tangent line 
at that point.

5. Type a ) , then press ENTER.
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6. The graph of the equation in Yj and the tangent line at the x- 
coordinate that was entered will be displayed.

VII. Demonstrate how to find the value of the derivative at a given point 
by the following process:

1. Enter an equation for Yi (The equation from the previous
examples is fine).

2. Select the CALC menu, and 6 for dy/dx.
3. The current graph is displayed. Move the cursor with the arrow

keys to the point to find the value of the derivative, and press 
ENTER.

4. The value of the derivative at that point is displayed.

VII. Equations/Problems to work on:

Find the relative maximum and minimum values of the given functions 
using your graphing calculator. Verify your answers by computing the 
values by hand.

1. y = x2 - 5x -2 2. y = 3x4 - 4x3

3. y = x4 - 6x2 - 3 4. y = xsinx, 0 < x < 2rc

5. y = cos (3x)

Write an equation of the line tangent to the graph at the given point. Use 
your calculator to find the value of the derivative at the point (the slope), 
and graph the equation of the line to check your results.

6. y = x2 - 4 , (2,0) 7. y = x3 - 3x + 1 , (-1,3)

8. y = cos x + 1 , (rc,0) 9. y = tan x + x , (0,0)

29

10. y = x4 - 4x2 + 4 , (1,1)



AP Calculus Lesson Plan

Topic: Applied Max/Min

Overview:

This lesson focuses on the application of determining the maximum 
and minimum values of a function. A “standard” calculus problem is to 
find the maximum volume of a rectangular solid, given the dimensions or 
material that will be used to construct the box. This problem can be 
solved without calculus methods by using a graphing calculator, and then 
can be verified by using calculus.

Objective(s):

-the student will solve a maximization problem using a graphing 
ca lcu lato r

Procedure(s):

I. Present the problem.

An open-topped box with a rectangular base is to be constructed 
from a sheet of cardboard that is 16 inches by 30 inches long by cutting 
squares of equal sides and folding the sides upward. What size squares 
should be cut from the corners in order to maximize the volume of the 
box?

II. Establish parameters for the problem, and determine an equation.

What (theoretically) would be the largest and smallest squares that 
could be cut from the corners?

What would the equation be for the volume of the box, considering 
that rectangular volume is the product of the length, width, and height?

(The following page shows a diagram of this problem)
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X 30 in X

X

16 in

X

X X

Equation: Volume = x(30 - 2x)(16-2x)

Bounds: 0 < x < 8

IV. Set up calculator to graph the equation:

Enter Yi = x(30 -2x)(16-2x)
Window: 0 < x < 9.4 with scale of 1, 0 < y < 940 with a scale of 100 

(this is a “user friendly” window)

V. Graph the equation and then use the TRACE to find the highest point 
on the graph. This point represents the highest or maximum volume (y 
coordinate), the x-coordinate represents the size of the square that must 
be cut from the corners of the box. It might also help to use the ZOOM to 
get a more precise answer.

VI. After finding a “calculator” answer, verify by finding the derivative, 
finding the critical points, and determining the maximum value. The 
calculus answer is:

x = 10/3, volume = 19600/27

How close does the calculator come to this answer?
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VI. Here are some more problems that can be solved using the same 
method. It is important that students verify their answer using calculus.

1. A sheet of cardboard 12 inches square is used to make an open box by 
cutting squares of equal size from the four corners and folding up the 
sides. What size squares should be cut to obtain a box with largest 
possible volume? (2 in. sq.)

2. An open box is to be made from a 3 ft. by 8 ft. rectangular piece of 
sheet metal by cutting out squares of equal size from the four corners and 
bending up the sides. Find the maximum volume the box can have.

3. A rectangular field is to be bounded by a fence on three sides and a 
straight stream on the fourth side. Find the dimensions of the field with 
maximum area that can be enclosed with 1000 feet of fence.

4. A rectangular plot of land is to be fenced in using 2 kinds of fencing. 
Two opposite sides will use heavy-duty fencing selling for $3 a foot, while 
the remaining sides will use fencing selling for $2 a foot. What are the 
dimensions of the plot of greatest area that can be fenced in at a cost of 
$6000?



AP Calculus Lesson Plan

Topic: Newton’s Method

Overview:

In the process of solving a problem or setting up a mathematical 
model, an equation in the form of /(x ) = 0, and the solutions or zeros of 
the function are needed in order to solve the problem. Sometimes this 
process is easier said than done, and it is necessary to approximate 
solutions instead. Newton’s Method is used to approximate the solution 
or solutions to an equation in the form /(x ) = 0. The definition or 
approximation scheme for Newton’s Method is as follows:

Xn + 1 = Xn
/(X n)

O bjective(s):

-the student will use Newton’s Method to find the zero(s) of a function

Procedure(s):

I. Demonstrate how to use Newton’s Method without using the program

-Approximate the cube root of 5 by solving x3 - 5 = 0.
-Approximate the solutions of x3 - x +1 = 0.

II. Give students the following program to enter:

Program Name: NEWTON

Disp “X0”
Input X 
Lbl 1
X - Yi / Y2 -► X 
Disp “X”
Disp X 
Pause
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If abs Yi < IE - 11
Goto 2
Goto 1
Lbl 2
Disp “X=”
Disp X
Disp “Y=”
Disp Yi
Y2 -> D

III. Demonstrate how to use the program in the following manner:

Solve the equation x3 - x +1 = 0

1. Enter the equation x3 - x +1 in YI.
2. Enter the derivative of the equation, 3x2 - 1 in Y2.
3. Select NEWTON from the program menu to execute the program.
4. The user must then choose a value for xo . This value should be a

close to the solution as possible (Use -1 in this case).
5. As the user presses ENTER again and again, the approximations (x)

get more and more exact, until a difference of .00000000001 is 
achieved.

In order to use this program for different functions, enter the equation in 
YI and its derivative in Y2.

IV. Have the students try these examples as well:

Find the roots of the following equations using Newton’s Method:

1. /  (x) = x4 - 5
2. /  (x) = x3 + x2 + 3

Notes:
It is known that Newton’s Method will not always converge to a zero 

of the function. If this occurs in the program, stop and restart with a 
different initial guess. It would be good practice to get the initial guess 
from the graph of the function.



Topic: Riemann Sums

Overview:

The following is a program that can be utilized to draw a graph of a 
function and a Riemann sum approximation of its definite integral. The 
graph is the set of rectangles that make up the Riemann sum. The points 
tj in the interval [ Xj_i , Xj ] can be chosen to be the left endpoints (type 1), 
the right endpoints (type 2), the midpoints (type 3), or random points 
(type 4).

O bjective(s):

-the student will evaluate a definite integral using Riemann sums

Procedure(s):

AP Calculus Lesson Plan

Program Name: RSUMS If W=3 Lbl 4
ClrDraw Goto 3 A+(J-1)*H-*X
Disp “A” If W=4 X-*P
Input A Lbl 1 X+H-»Q
Disp “B” A + (J-1)*H->X H*Rand + X->X
Input B X->P Goto 5
Disp “N” X+H-+Q Lbl 5
Input N Goto 5 Y i-F
Disp “POINT TYPE” Lbl 2 F+R->R
Input W A+J*H->X Line(P,O,P,F)
(B-A)/N-+H X-H-»P Line(P,F,Q,F)
0 - R X -Q Line(Q,F,Q,O)
1-»J Goto 5 IS > (J,N)
Lbl 0 Lbl 3 Goto 0
If W=1 A+J*H-H/2->X Pause
Goto 1 X-H/2-+P H*R-»R
If W=2 X+H/2-+Q Disp “RS=”
Goto 2 Goto 5 Disp R



I. How to use the program.

Example: Evaluate the definite integral of /(x ) = sin x on the interval 
[0, n /2],

1. The function to be evaluated must be placed in Yl, in this case,
the expression sin x.

2. Set the Window size. Since this graph is a trigonometric graph,
set the window so x goes from 0 to rc/2, and the y goes from 0 to 

1.

3. When executing the program you will be asked to enter the
endpoints A and B (0 and rc/2 for this example), and the number 
of points N. This will be followed by a prompt to enter the point 
type: 1 for left endpoints, 2 for right endpoints, 3 for midpoints, 
and 4 for random points. The graph is held on the screen until 
ENTER is pressed and the value of the sum is then displayed.

Notes:

-To change functions, the user must change the equation in Yl.
-Set the window size before executing the program.

III. Other examples to use:

Use midpoints with n=6 to approximate the integral:

1. 1 1 /x  dx 2. J  cos x dx

1 0
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Approximate the integral to five decimal places using Riemann sums:

1. J  x sin 2x dx 2. }  (x2 + 1) 2/3 dx

0 -1
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Topic: Finding Areas by Integration

Overview:

In this lesson, the student will be shown how to find the area of a 
region that is bounded by 2 curves. In this activity, the graph of the 2 
curves will be shown, and the region between the curves will be shaded. 
This helps give the student a good visual idea of what is being computed.

O bjective(s):

-the student will find the area of a region bounded by 2 curves.

Procedure(s):

I. The problem:

Find the area of the region R bounded by the graphs of the equations 
y = -x2 + 5x - 6 and y = -x - 4 between x = 0 and x = 6.

II. Activity:

1. Enter the equations in Y1 and Y2 and select graph. Students 
should determine if Y1 > Y2 or if Y2 > Yl.

2. Have the students find the points of intersection of the 2 curves 
by selecting intersection from the Calc menu (0 and 6 in the

problem).
3. Have students shade the area to be calculated by selecting Shade

from the Draw menu. Shade uses one of these formats:

Shade(lower function,upper function)
Shade(lower function, upper function, resolution)

Shade(lower function, upper function, resolution, X left) 
Shade(lower function, upper function, resolution, X left, X right)

For this problem Shade(Y2,Yl,l,0,6) will show the graph needed.
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4. Now, to calculate the integral, select fnlnt from the Math menu.

fnInt(Yl-Y2, X, 0, 6) calculates this integral.

5. To change the limits on the integral, or other parts of the
problem, follow the format for fnlnt as shown below:

fnlnt(expression,variable,lower limit,upper limit)

III. Other examples to demonstrate or have students compute:

Sketch the region bounded by the graphs of the given functions and then 
calculate the area of the region:

1. y = 4 - x 2 , y = x -  2

2. y = x2 , y = x3

3. y = x3 , y = x

4. y = sin x , y = cos x , 0 < x rc/4



CHAPTER IV

SUMMARY

The graphing calculator can be a powerful tool for learning 

mathematics at all levels, not just at the highest level of the high school 

mathematics curriculum. The future of teaching mathematics seems to 

be heading towards utilizing this technology and other types of 

technology that are quickly becoming available. These tools not only help 

the teacher in terms of using less time, but also give students a visual 

sense of numbers, graphing, and other mathematical concepts. The 

author strongly suggests that schools examine the methods in which they 

provide mathematics instruction for their students and attempt to adopt 

the use of the graphing calculator in all levels of mathematics instruction.

It has been the intent of the author to provide meaningful and 

interesting ways for the classroom teacher to integrate the graphing 

calculator in the calculus classroom, and hopefully furnish teachers with 

thoughts and ideas to help improve their teaching and the education of

their students.
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