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ABSTRACT

ANALYSIS AND SYNTHESIS OF SISO CONTROLLERS

Name: Kourany, Emilio
University o f Dayton, 1993

Advisor: Dr. Malcolm W. Daniels

Classical feedback control theories are traditionally concerned with issues like stability 

and performance, however, they typically fail to address issues such as robustness and 

plant perturbation. This thesis is concerned with the robust stability and the robust 

performance o f single-input single-output plants. The basic issue under analysis is how to 

realize the benefits o f the usual feedback control structure in the presence o f model 

uncertainty. This is accomplished by seeking feedback controllers providing robust 

stability and performance by minimizing weighted sensitivity functions o f a linear system 

represented by its transfer function. A characterization of models for plants with 

unstructured uncertainty is introduced. Specifications and measures o f stability and 

performance for robust controllers and the necessary and sufficient conditions to test the 

robust stability and the robust performance conditions of a control design are explored. A 

parametrization o f feedback controllers that guarantee closed loop stability for both stable

and unstable plants is shown and a systematic procedure for synthesizing robust 

controllers, known in the literature as HK controllers, is presented. These systematic

algorithms are based on the theory of interpolation by analytic functions and the solution

to the model matching problem. A case study of the inverted pendulum positioning system 

is developed to illustrate the concepts of robust analysis and the design algorithms.

The controller is compared to a classic state variable feedback solution.
iii
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CHAPTER I
AN INTRODUCTION

1.1 Control Objectives and Norms

The general objective in control system design has been well defined since the 

establishment o f automatic control as an engineering discipline. The classical objective of 

a control system is to ensure that the output o f a system will be stable and behave in a 

specified manner in response to some reference or command input. This objective is 

typically met in either one of two control problem formulations: (i) in a regulator problem 

and (ii) in a tracking problem. Figure 1.1 illustrates a basic feedback system also called a 

servomechanism. In the first case, the objective might be to keep the output o f the 

system "small" or close to some equilibrium point. In the second case, the aim is to keep 

the tracking error "small" for some reference signal variation. In addition, other signals of 

the control structure might have a constraint of a physical nature, like the control signal w 

in figure 1.1, which must be taken into consideration when the controller is designed for a 

real system. But exactly how small must these signals be in order for the control 

objectives to be met?

The input signals to a system are only rarely fixed or known. In most cases the system 

designer is able to characterize to some degree the type o f inputs that the system might be 

exposed to. Based on this characterization of input signals, the system designer
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develops a set o f test inputs. The system is then designed to perform satisfactorily to this 

set o f test inputs such as an impulse, step or ramp inputs, or white Gaussian noise. Despite 

the multitude o f possible input signals, a natural measurement o f the size o f the signal is 

expressed explicitly by its norm. A "small" signal then, is defined as a signal o f bounded 

norm. Which norm is appropriate depends on the particular application. The notion of 

norms and their use in a control design context is not new in the control arena. Norms 

have been implicitly used in classical frequency domain methods to guarantee the stability 

o f the feedback loop. For example, the familiar gain margin imposes a bound or constraint 

on the magnitude o f the open loop system frequency response at a phase angle o f it 

radians.

Figure 1.1 Single loop tracking feedback system

Consequently, the performance and stability objectives o f a control system naturally 

lead to the introduction o f norms. The performance specifications and the stability 

requirements may be expressed in terms o f norm bounds on key signals and transfer 

functions o f the system.
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1.2 Norms of Signals and Systems

Generally speaking a norm expresses a quantifiable size typically o f a mathematical 

function, vector, or signal. For instance, the most common norm is the Euclidean norm. 

This norm quantifies the length o f a vector. There are two norms in particular that 

electrical engineers are well acquainted with. These are the 1- and 2- norms.

The 1-Norm o f a signal x(t), is the integral o f its absolute value. This norm is expressed 

mathematically in the form

oo

ll*lll= (1.1)
—oo

The 2-Norm o f a signal x(t) is related to the rms value o f the signal and is 

mathematically defined by equation (1.2).

11*112 =  J  J*2(*>* (1.2)

Notice that this norm may be used to represent the normalized energy o f a signal. 

Suppose that /(/) is a current through a IQ  resistor. Then the average power consumed by 

this resistor is given by i2(t) and its energy is equal to the square o f its 2-norm.
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A norm that is o f significant importance in the design o f robust controllers is the 

oo-norm. The °°-Norm of x(f), is the least upper bound of its absolute value and is 

denoted in closed form by

ll*lloo = suPlx(OI- (1-3)
t

As an example, consider the equation x(f) = ( l - e " ') M(O= where u(t) is a unit step

function. The graphical representation o f the function x(t) is given in figure 1.2. Observe 

that |x(/)| increases with time to a maximum value o f one. It is clear from the figure that 

the minimum or least upper bound on x(t) is then one. Nevertheless, there are an infinite 

number o f upper bounds for this function. Thus, the infinity norm of x{t) is, by definition, 

equal to one.

Figure 1.2 Plot of x(t).

Linear system theory asserts that the impulse response o f a causal, linear, and time 

invariant system, completely characterizes the system's dynamic response. This means that 

given the impulse response o f the system, it is possible to predict the system's response to 

any input signal. The computational mechanism for obtaining the output response o f an 

LTI system is the usual convolution integral as expressed in (1.4).
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oo

y (t)=  (1.4)
—oo

where u(t) is the system input 
y(t) is the system output 
h(t) is the system impulse response

Thus, it is argued that the impulse response serves as a mathematical model o f an LTI 

system. Since the impulse response o f a system is merely a mathematical function, it is 

possible to compute a norm for this function. Consequently, norm measures for systems 

are computationally feasible. On the other hand, control engineers generally prefer to use 

the Laplace transform equivalent model for single input/single output systems (SISO) 

because it simplifies the mathematical procedures involved in system analysis and design. 

As a result o f the benefits o f the Laplace transform, the transform counterpart o f the 

impulse response is used to mathematically model the system's dynamics. This transform 

counterpart is the transfer function of the system,

Two system norms will be introduced in this section: the «»-norm and the 2-norm. 

The latter is easily derived from knowledge o f the 2-norm of a signal and Parseval's 

theorem expressed by equation 1.5. Since the square root o f the left hand side o f equation 

1.5 is the 2-norm of the impulse response function from 1.2, define the square root o f the 

right hand side o f 1.5 as the 2-norm of a system described by the transfer function H(s). 

Equation 1.6 expresses the definition o f the 2-norm of a system mathematically.

(1.5)
—OO
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(1.6)2 -  norm
2it

J lT /O to /t/co

™ -nornv  | |H ( » | | „  = sup|H(/<D)| (1.7)
CD

The infinity norm of a system is by definition the least upper bound o f the system's 

amplitude frequency response. This is mathematically denoted by (1.7). The °°-norm has a 

convenient graphical interpretation both in the complex Nyquist plane and in the Bode 

magnitude response plot o f the system. In the complex plane, the infinity norm of a 

transfer function equals the distance from the origin to the farthest point on the Nyquist 

plot. Equivalently, the infinity norm of a transfer function is the largest magnitude of the 

Bode plot or frequency response. The value o f the °°-norm may be computed either 

numerically or graphically. The analytic solution for the infinity norm o f H(jca) could be 

found in closed form by solving for the maxima o f The graphical solution requires a 

search in the frequency range {cdn,...,com}. An estimate for ||7/(/co)|[00 is obtained as,

max \H(j(Q k)\ (1.8)
N Z k Z M

To illustrate the procedure, lets examine the Bode plot o f the system expressed by 1.9.

The infinity norm of this transfer function is determined from figure 1.3 and is equal to 4.8 

(or 13.62 dB) at m=l racVsec. The corresponding Nyquist plot o f figure 1.3b illustrates 

the same result. Note that the °°-norm constraints H(s) within a specified circular region of 

the complex plane of radius 4.8 and centered at the origin.
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H (j ) = 1
s2 + 2§s + 1

,£=■1 (1.9)

Magnitude Response o f  H(jco)

Frequency (rede/aec)

Figure 1.3 (a) Bode magnitude plot of H(s)

Nyquist Plane

Solid and Dashed: Nyquist plot o f H(s) 
Dash-dot: Bound on H(s)

Figure 1.3 (A) Nyquist plot of H(s)
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The utility o f the infinity norm in the robust control context arises from certain 

mathematical properties which it possesses that make it desirable for modeling plant 

perturbations. Zames and Francis [8] argue that quadratic norms (e.g. 2-norm) are not 

well suited for plant perturbation studies. Their claim arises from the effects that plant 

perturbations place on the behavior o f the closed loop system. Perturbed systems 

characteristically have closed loop transfer functions which are composed o f the 

sensitivity term multiplied by a perturbation parameter which is a function o f the plant's 

model. Zames and Francis [8] argue that because perturbation effects have this form, it is 

desirable to employ norms that are submultiplicative. This means that the norm o f the 

product ||A6|| o f any two systems/I, B, bears a simple relation to their separate norms

i.e. ||AB||<||/f||»||.6||. The infinity norm of a system presented here has such multiplicative 

properties, whereas quadratic norms do not. It will be demonstrated in later chapters that 

the oo-norm is o f significant relevance and plays an important role in the solution o f the 

robust control design problem.

1.3 Real Systems Versus Mathematical Models

It is necessary to make a distinction between a mathematical model o f a system and the 

physical system it represents. Real or physical systems are those existing in the plant or 

field which the control engineer must successfully control. The mathematical model o f a 

system is one which is obtained by application of the natural laws o f physics and attempts 

to represent the dynamic behavior o f the real physical system. Current feedback control 

design philosophies require a finite dimensional LTI model o f the plant in order to devise 

controller for it. However, the practical reality is that linear processes do not often occur 

in nature. These mathematical models are inevitably contaminated with errors and
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consequently there is no mathematical model that can precisely emulate a real physical 

system. Hence, a model should be considered only partially complete if it lacks some 

assessment of its errors. The control community has adopted the term model uncertainties 

to refer to these errors. Uncertainties usually infiltrate into the model via identification 

errors, unmodeled dynamics, linearization o f the models for the purpose o f controller 

design, and variation of plant parameters during plant operation. Models that are used to 

design controllers which do not incorporate these uncertainties are referred to as nominal 

models. Those models which, by some means, attempt to give a better, or closer to the 

real system, representation o f the physical plant are called perturbed models.

1.4 The Unity Feedback System and Its Trade-offs

Morari and Doyle [7] used the Internal Model Control structure o f figure 1.4 to explain 

the necessity o f the feedback structure in automatic control design. In this case, G is the 

real physical plant to be controlled. The controller to be designed includes the parameter 

Q and the plant model P. Hence, the name internal model control. The feedback signal/is 

expressed as / =  (G -P )u  + d . Morari and Doyle [7] argued that if the model is exact 

(G=P) and there are no disturbances (d=Q), then the model output y m and the physical 

system output yp are identical and the feedback signal / i s  zero. The point being made here 

is that if the open loop process is stable and all its inputs are known perfectly there is no 

need for feedback control. The feedback control structure is only necessary because o f 

the uncertainties and disturbances inherent in natural processes. In fact, due to the lack of 

perfect models and exact knowledge of disturbances, classical and modem design methods 

rely heavily upon the feedback control structure.
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Although the feedback structure has properties which make it desirable to handle 

disturbances and uncertainties, certain strict constraints must be satisfied to achieve 

suitable behavior in terms of disturbance rejection, noise immunity, and system stability 

and performance. Most classical and modem design methods completely ignore the 

uncertainties associated with the mathematical model o f the plant.

Controller

f

Figure 1.4 Internal Model Control (IMC) structure

As a result, typical phase lead I phase lag compensators and even some modem control 

design procedures fail to provide the system with stability and performance robustness to 

parameter variations and other types o f perturbations. This and later sections o f this thesis 

will explore some of the constraints mentioned above, particularly those involved with 

system robustness.
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The diagram in figure 1.5 shows the standard unity feedback control configuration. 

This configuration has the following properties:

1. The input-output behavior is characterized by the closed loop transfer function from all 

the exogenous inputs (i.e. r, d, ri) to the output Note the occurrence o f the same 

characteristic equation (1+PC) in each transfer function.

1PC
r -

PC
(1 + PC ) (1 + PC ) (1+PC)

(1.10)n + -

2. The tracking error is equal to the difference between the output^ and the command or 

reference signal r.

e = r - y =
(1+ P C )

(l.H )

3. The sensitivity o f the system (i.e. the transfer function from r  to e) is

(1+ P C )
(1.12)

4. The complementary sensitivity (i.e. the transfer function from r to>’) is denoted by

T=
PC

(1 + PC)
(1.13)
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r: Reference signal 
u: Command signal 
n: Measurement noise 
C: Controller

e: Error signal 
y: Output signal 
d: Disturbance signal 
P: Plant

Figure 1.5 Elementary servo-control system

For SISO systems, the performance objective generally requires that the loop errors be 

small1. Assuming the system is stable, the second property suggests that loop errors in the 

presence of disturbances can be made small by making the sensitivity operator 

(i.e. (1+PC)"1) small. In the light of classical feedback analysis, making the sensitivity 

operator small degenerates to reasonably reducing its magnitude, or conversely, making 

the open loop gain much larger than one (i.e. PC »  1) over all frequencies where the 

disturbances are significant. Selecting the open loop transfer function gain as suggested, 

also appears to significantly improve the close loop tracking performance to reference 

signals, since PC/(1+ PC) approaches one as PC  approaches infinity. It is these features 

that make the feedback structure appealing for control applications.

typically  this loop error is taken as that defined by the second property.
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Doyle and Stein [6] formulate the control performance objective for classical SI SO 

systems in terms o f explicit inequalities o f the form:

Wx (ja i)^ \l+ P (j(Q )C (ja i)\, V m ^to 0 (1.14),

where Wx(ja)) is a large positive function and gdo specifies the active frequency range. 

Basically, condition 1.14 requires the magnitude o f PC  to be large at the frequencies 

where the disturbances might be significant. This type o f specification guarantees good 

tracking accuracy. Also, it is evident from 1.10 that this condition also guarantees good 

disturbance rejection in the sense thaty  will be small for any appreciable d.

The preceding discussion can potentially mislead the reader into a deceptive conclusion. 

Namely, that feedback control design reduces to accomplishing high loop gains in the 

proper frequency range. Unfortunately, the feedback design problem is not quite so 

trivial. In most cases, loop gains cannot be made arbitrarily high over arbitrarily large 

frequency ranges. This inability to achieve good performance by selectively shaping the 

open loop transfer function typically arises as a result o f the basic trade-offs involved with 

the feedback control structure. One of these trade-offs stems from the inability o f the 

feedback control configuration to reduce the sensor noise error. This property is revealed 

in equation (1.10). Note that the transfer function from r to y  is identical to the transfer 

function from n to y . Consequently, large loop gains over large frequency ranges reduce 

the system's sensitivity to disturbances while increasing the system's tracking accuracy 

both to the reference input and to measurement noise.
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Some modern control theories provide a systematic solution for simultaneously 

achieving reasonable performance and reducing sensitivity to measurement noise. 

Among the most popular of these theories are the familiar LQG or linear quadratic 

Gaussian technique, and the Wiener-Hopf-Kalman frequency domain methods. In fact, 

Doyle and Stein [6] suggest that if the trade-offs between command/disturbance error 

reduction and sensor noise error reduction were the only constraints in feedback design 

the available modern theories would be more than sufficient. The problem however is this. 

Although finite dimensional LTI models may be used to design feedback controllers, these 

must be implemented and operate with real physical plants. This means that, while classical 

as well as modem design methodologies may be successful in achieving stable well 

behaved systems for a nominal plant model, this may only hold as long as the real physical 

plant does not stray too far from the nominal plant model. This introduces yet another 

constraint in the design of feedback controllers due to the inaccurate nature o f the 

models. It turns out that these inaccuracies place strict limitations on the frequency range 

over which the open loop gains may be large.

1.5 Definitions and Classical Measures of Stability

In a typical control application a system's transfer function model, G is expressed as a 

rational function of complex variables with constant coefficients. In this case, G may have 

one o f the following characteristics: It may be proper if G(/'°°) is finite (i.e. the degree of 

the denominator ;> degree of the numerator), it may be strictly proper if G(j°°) = 0 

(i.e degree o f denominator > degree of numerator), improper if G(/°°) = °° (i.e degree of 

numerator > degree o f denominator), and biproper if G and G '1 are proper.
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Given a bounded input u(t), such that { |«(/)| 5  k : V /}, a system G  is said to  be stable  

i f  and only i f  the output, as given by (1.15), is bounded. This definition is common in 

undergraduate control textbooks and is well known as the bounded input/bounded output 

(BIBO ) definition o f  stability.

(1.15)
—oo

Figure 1.6 Basic feedback loop

Figure 1.6 shows the system loop errors in the basic feedback structure. These loop  

errors are defined by equation 1.16 in terms o f  the three exogenous inputs.

er = r -e «  
e<i = d + C e , 
en = n + P e j
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er '  1 0 1' -1 r
in matrix form ed = - C 1 0 ♦ d (1.16)

e» 0 - p 1 n

In order to achieve reasonable results from the design algorithms that will be presented in 

this investigation, it is convenient to place certain constraints on the transfer functions of 

the components o f the feedback structure shown in figure 1.6. The concept o f system 

well-posedness has been used by Doyle, Francis and Tannenbaum [5] and others for 

defining the convenient properties for the transfer functions o f the feedback components. 

In order to establish the meaning of yvell-posedness it suffices to look at the transfer 

functions from all the exogenous signals to the loop errors. A requirement for the system 

to be well-posed is that the 3x3 system matrix in (1.16) be invertible. In other words, the 

numerical value o f the system characteristic equation 1 + PC  must not equal zero at any 

frequency. This requires that PC  # -1 or that 1 + PC  not be strictly proper. Doyle, Francis, 

and Tannenbaum [5] have shown that the system is automatically well-posed if P  is 

strictly proper and C is proper. These conditions will be assumed throughout the 

development o f this work.

er
ed
e»

1
1+PC

' 1 - p -1' r
-c 1 -c ♦d
PC p 1 n

(1.17)

The solution o f equation 1.16 is shown in equation 1.17. A system is said to be 

internally stable if and only if all nine transfer functions in (1.17) are BIBO stable. 

Consequently, internal stability guarantees bounded internal signals for all bounded 

exogenous signals. This definition provides further insight into the stability condition.
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From classical control theory it is well known that a system is stable if the roots o f its 

characteristic equation lie in the left hand s-plane (i.e. Re s<  0). In order to test internal 

stability o f a system it is necessary to fulfill the following two conditions:

(a) The transfer function 1 + PC has no zeros in Re s  2.0.

(b) There is no pole-zero cancellation in Re s 2 0  -when the product PC is formed.

Notice that the system may be internally unstable and still comply with condition (a). This 

case occurs when, in forming the term 1 + PC, unstable poles of C are canceled by the 

RHP zeros o f P  or vice versa. Therefore, condition (b) is critical to ensure internal 

stability. Nevertheless, as far as this paper is concerned the stability condition will be 

sufficiently satisfied in a bounded input-bounded output sense, meaning that a system will 

be considered stable if the output is bounded for any bounded excitation input. Therefore, 

condition (a) will be sufficient to test the stability of a system.

The robust design techniques which will be discussed in this thesis are known in the

control literature as H  infinity methods. Most of the analysis involved in the development 

o f the Hoo design technique considered in this work has been accomplished by

concentrating on the complex mathematical nature o f the problem. Hence, an additional or 

alternative definition of stability will be included which expresses the complex nature of 

the problem. First, let's define an analytic function. A complex function is said to be 

analytic at a point in some domain if the function is differentiable at every point in an 

absolute disk of radius x  that encircles the point on that domain. For example, let the

domain be the closed RHP and the function G(s) be G(s) = —— . Note that G(s) is not

differentiable at s = -1. Therefore, G(s) is not analytic in the RHP. The alternative
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definition of stability then is that a system or transfer function G(s) is stable if it is analytic 

in the right half s-plane.

1.6 Organization

This thesis is composed o f five chapters. Consecutively the chapters are an 

introduction, system analysis for robust design, synthesis o f SISO controllers, a case

study: the inverted pendulum, and concluding remarks. The first chapter treats the

preliminary concepts and definitions required to prepare the reader for the study of 

system robustness and the H-x design methods. The second chapter is devoted to the 

development o f the tools necessary for the analysis o f systems with model uncertainties. 

Also the robust stability and robust performance problems are defined in this chapter. In

the third chapter design procedures are developed for achieving both robust stability and 

robust performance. In the fourth chapter the design procedures introduced in chapter

III are applied to the inverted pendulum problem as a case study. A comparison o f the 

performance of the SISO feedback control structure with an Hx  controller versus the

traditional state variable feedback controller is also included. Finally, chapter five 

presents the conclusion of this investigation and a consideration of some future work.



CHAPTER II
SYSTEM ANALYSIS FOR ROBUST DESIGN

2.1 The Nominal Performance Condition

In quadratic design methods such as LQR/LQG the performance objective is 

formulated as the minimization a cost function. Morari and Doyle [7] argue that 

controllers designed on the basis o f these theories have been shown to be prone to failure 

in environments subject to significant nonlinearity and/or dominated by uncertainties. 

Zames and Francis [8] also maintain that quadratic methods provide satisfactory 

performance only for a constrained disturbance spectrum, and therefore, are not 

dependable under large spectral variations. They suggest that in quadratic methods the 

integral-squared sensitivity is minimized for disturbances d  or commands r having a single 

fixed power spectrum. While the assumption of fixed spectrum is reasonable for 

applications where the disturbance source is constant, for example 60 Hz noise, it is 

unrealistic for servomechanisms subject to broad band disturbances, or under command 

from a wide variety o f signals. In practice, most servo-controllers are governed by a 

spectrum of disturbances and command signals, including pulses, steps, ramps, and narrow 

band signals o f various frequencies. Design techniques that aim to increase the system's 

disturbance rejection to such signals have opted to group the spectrum o f all disturbances 

into a uniquely described class. All signals pertaining to the class have stringent energy
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constraints bounded by a weighting function |F(/co) |2. Equation 2.1 gives a quantitative 

description o f this class.

d (s) = ^ -  j
W  2 n - j F ( » f 2 r  "2

^1 (2.1)

Figure 2.1 Basic system block diagram

The SISO methods that will be presented in this thesis in effect minimize the

maximum output energy for all disturbances in the class. To see this, consider fig. 2.1. 

Here the input signal x  and the output signal y  are related through the transfer function G. 

The 2-norm/2-norm system gain is defined as the least upper bound (i.e. least maximum) 

on the 2-norm of the output given that the 2-norm of the input is bounded.

That is, 5Mp{||y||2 :||x||2 < ;}  (2.2)

It can be shown that the 2-norm/2-norm system gain o f a system described by its transfer 

function G is given by the °o-norm of G. By Parseval's theorem the 2-norm o f a signal is 

directly related to the 2-norm of the signal's transform1.

Then, |[y||2 = ||j>||2 (2.3 a)

’The hat notation in equation 2.3 refers to the Laplace transform of the signal.



-21-

2 j l - o o
(2.3 b)

M G W l l i ™  J | x ( y a ) ) | 2 z / m

—oo

(2.3 c)

s l | G O ' m ) £  - I * l 2
(2.3 d)

M ^ | G O ' a » £ . | x | ’
(2.3 e)

To show that ||G(/cd)||oc is the least upper bound, let cdo be a frequency such that 

|G(/'ol))| is maximum, that is, |G(yo>)| = ||G(y®)L-

Additionally let
c, z / |m - cd0| < e or|m + mo|<  e 

0, otherwise
(2.4)

where e is a small positive number and c is a scalar such that x  has unit 2-norm 

(i.e. c = -Jn/2e).

Then substituting 2.4 into 2.3,

(2.5)

]eo0+e

co„-e

2it
|(z(—jciio+ e)| it +  |G(ycoo+£)| it

\g ( j ® 0)\2 = h i l i

(2.6)
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Therefore, |[y||2 = jC ^  ♦ ||x||2 and the least upper bound on the output then is shown to be 

determined by the infinity norm of the transfer function G.

Suppose that the class o f disturbances is slightly modified to

D= [dl,(s)=H 'I (s)d(s) : (2.7)

where the input disturbance is pre-filtered such that its energy is bounded to one as 

defined in the previous class. Figure 2.2 illustrates this arrangement in the unity feedback 

configuration. Note in this case that W{(s)(l +PC(s))-y is the transfer function from the 

disturbance signal d  to the output signal j 2 in figure 2.2. Due to its similarity to the 

sensitivity transfer function o f 1.12 this transfer function is known in the robust control 

context as the weighted sensitivity. Also, note that letting G in 2.6 be the weighted 

sensitivity, its °°-norm represents the maximum energy transfer from the disturbance d  to 

the output y  This is expressed mathematically by equation 2.8.

™gWk=K //+rcr'L=ML. <2-«>

n

Figure 2.2 Unity feedback loop
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Thus, minimizing the infinity norm of the weighted sensitivity minimizes the maximum 

output energy for all disturbances within the class D. It is not surprising to see that these 

same ideas apply equally to reference signals. Again, suppose that the class of reference 

signals is defined as the set

• W l M ’ (2.9)

where rpf is a pre-filtered input so that its energy is again bounded to one. Recall that in 

this case the weighted sensitivity PTy(5)(7 + PC)'1 is the transfer function from the 

reference input to the error signal shown in figure 2.2. By the same argument as before 

then, minimizing the weighted sensitivity minimizes the maximum error energy.

That is ^ H 2 = |( r , ( s ) ( ;+ p c ) - 'L  = | ^ L  (2.i»)

Suppose now that the performance specification is expressed as a measure o f the 

energy of the error. For instance, a common optimal specification requires that the error 

energy to either tracking or disturbance signals be less than one (i.e. || e ||2 < 1, V r e R ). 

This condition is satisfied provided that ||HZ1S||00< 1. Furthermore, suppose it is known

apriori that good tracking accuracy, or alternatively, disturbance attenuation is achieved if 

the spectrum of S(/a>) lies underneath some predefined spectrum. This can be expressed in 

the form:

I I M l  < 1 »  | S ( » l < l » y O ® ) r ,  Vffl, (2 .H )
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This condition will be denoted the nominal performance condition. If the condition is 

satisfied, the nominal feedback system is guaranteed to satisfy the predefined performance 

specification. The function | FF,(/«x»)|-1 may be conceptually viewed as the desired 

attenuation factor. Since WfjG)) is a function of frequency the designer may specify 

different attenuation factors for different frequencies. The function ^ (/co ) will be referred 

to as the performance weighting function  for the rest o f this thesis.

The nominal performance condition has an interesting graphical interpretation which 

provides additional insight into the performance criteria. Let's examine 2 .11a  little closer.

<=> W i(ja)
1+L(j& )

Vff)
(2.12)

Vco.

where /.(/co) = P(/cd)C(/cd) is the loop transfer function. The last inequality in (2.12) 

indicates that at every frequency, the point Z(/'co), located on the Nyquist plot o f PC(/cd), 

lies outside the disk o f center -1, and radius |IK7(/co)|. This is illustrated in figure 2.3. It is 

clear from the figure that the nominal performance specification will hold for all co if every 

point on L (ja f lies outside the corresponding disk.

Figure 2.3 Performance specification on the Nyquist plot



What remains now is to show that SISO Hx  design method minimizes the infinity

norm o f the weighted sensitivity. This will be demonstrated in a later section. However, it 

is interesting to note that whether the performance specification is posed by focusing on 

the response o f the error to any o f the exogenous signals, the performance criteria is 

reduced to placing a bound on the °°-norm of the sensitivity transfer function S  o f the 

feedback system To illustrate this, consider the transfer function from all exogenous 

inputs to the error e. For either r or n the transfer function is S, so the criteria is as 

previously determined. For d, however, the transfer function is PS. Hence, the 

performance criteria is still given by a weight on S  o f the form:

l l ^ < = M L  ! where W} = WP (2.13)
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2.2 Models of Uncertainty

2.2.1 Representations of Uncertainty

In this section, two popular schemes for representing uncertainty in linear models will 

be discussed. Although representations o f uncertainty vary, depending on the particular 

errors associated with a system model, it seems reasonable to require that these 

representations at least incorporate two things: (i) convenient mathematical manipulation 

and (ii) knowledge of the physical mechanisms which cause differences between a plant 

and its corresponding model. The most basic technique employed is to model the plant as 

a member o f a set P. For instance, parameter variation is one o f the most usual sources 

o f error. Since parameters generally vary within some boundaries, the typical approach is
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to define the parameter as belonging to a specified membership set. For example, consider 

the plant model

1
s2 + 2^+7

This is the standard second order transfer function typical of an RLC circuit or a spring- 

mass damper setup. Suppose that it is known that E, lies in some interval o f values e g.

min, max ] .  The plant P may be characterized as a member o f the structured set

P  = { P = ~ . ---- -------  : }
?  + 2 ^ + l

These are highly parametrized formulations which are commonly referred to as structured 

uncertainty models. This type of uncertainty is frequently used to model the low 

frequency error components. There are, however, higher frequency errors which can not 

be adequately model by parametric formulations and the need exists for an alternative 

model which covers these latter cases. These alternative models are termed unstructured 

and represent high frequency dependent elements like actuator saturations, unmodeled 

dynamics, time delays, or low frequency plant disturbances. According to Doyle, Francis, 

and Tannenbaum [5], models incorporating unstructured uncertainties are more useful for 

two reasons. Firstly, all models should include some form of unstructured uncertainty 

since all models naturally lack accuracy, particularly at high frequency. Remember that a 

physical system, regardless of how linear it might be in a restricted frequency region, will 

cease to behave linearly as frequency increases. Secondly, the system analysis is greatly
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simplified by assuming a specific type o f unstructured uncertainty sometimes denoted disk 

like uncertainty. The technique presented here will concentrate on this latter kind of 

uncertainty. Table 2.1 tabulates the most common of these latter kind o f uncertainty.

Type Unstructured Uncertainties

Pm = P /( 7  + AIF2)

Pm = P /( l+ & W 2P )

Additive Pm = P  + AfP2

Multiplicative Pm = (l+ A W 2)P

Table 2.1 Uncertainty Models

It is worth mentioning that unstructured representations o f uncertainty are well suited 

to include plant model perturbations effects which are not at all uncertain. For example, it 

is customary to deliberately neglect known higher order dynamics in order to achieve a 

simpler nominal design model. In addition, some nonlinear systems can typically be 

accurately modeled. Nevertheless, due to a lack o f effective nonlinear design techniques 

the model is linearized, as a small signal model, about a predetermined operating point in 

order to fit the problem to modem design procedures.

2.2.2 Unstructured Uncertainty Models

There are two major classifications o f unstructured uncertainty models: multiplicative 

and additive. There names reveal their relationship to the nominal plant model, and both 

are readily illustrated graphically and explicitly stated mathematically.
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(a) Multiplicative perturbations: Consider figure 2.4 which illustrates the multiplicative 

unstructured uncertainty model. Let the nominal plant transfer function be P  and the 

perturbed plant transfer function be Pm The multiplicative perturbation model is 

mathematically defined by (2.13) where the perturbed plant belongs to a set o f transfer 

functions Pm described by Am. Figure 2.4 provides a schematic representation o f this 

uncertainty model.

True/Perturbed Plant

Figure 2.4 Multiplicative unstructured uncertainty model

In order to ensure that the model proves tractable for design synthesis the following 

requirements restrict 2 .13:P  and Pm have the same number o f unstable poles,

Am is a variable transfer function satisfying ||Am||00< 1 and Wm is a fixed transfer function.

Algebraic representation of 2 .13 reveals some important features o f this type of 

representation. Considering the first relationship in 2.14, the term &mWm completely 

describes the model uncertainty. The last inequality in 2.14 describes a disk like 

uncertainty in the complex plane. At each frequency the point PmP  lies inside a disk of 

radius and center 1 and the ratio P „ /P  may be considered the normalized plant
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perturbation

Note that

Hence if

Then K ( » | S  V r n (2.14)

It is pertinent to clarify at this time that this type of model might be quite conservative 

for some problems. Its conservativeness stems from the fact that in most cases is not a 

constant, but a function of frequency and at times may constitute a generous 

approximation (see figure 2.8) to the true plant perturbation. The typical region of 

uncertainty is not exactly a disk, but rather an arbitrarily shaped geometric region, 

however, the benefit o f assuming a disk like uncertainty is that the theoretical analysis is 

greatly simplified and the resulting systematic design process is remarkably practical. 

Finally, notice that this uncertainty model characterizes the set of perturbed plants by a 

nominal plant model and a weighting transfer function (ITm), described by the last equation 

in 2.14, which provides an uncertainty profile. It must be emphasized that the weighting 

transfer function must comply with the condition expressed by this inequality.

b) Additive perturbations: The additive uncertainty model, illustrated in figure 2.5, 

characterizes the set o f perturbed plants Pa. Equation 2.15 expresses the additive 

perturbation model mathematically. The same conditions that restrict 2.13 are also 

applicable for equation 2.15. Algebraic reorganization of 2.15 reveals the characteristic 

nature o f this type of representation. In a similar fashion to the multiplicative perturbation
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case, the additive uncertainty is completely described by the term AaWa. Also, the 

weighting function Wa is determined by the last inequality in 2.16 which relates it to the 

absolute model perturbation.

True/Perturbed Plant

Figure 2.5 Additive unstructured uncertainty model

P„ =  { p „ ( i)= P (5 )+ A a(s )» i(s )  (2.15)

Note that, = Pa -  P ,

hence if, I K I L * 1’

then, |^ ( y m ) |^ |^ , - P | ,  Vos. (2.16)

c) Examples:

A few practical examples follow to demonstrate the computation o f the uncertainty 

models described above. Consider the nominal plant transfer function G(s) in 2.17. This is 

the typical model for a satellite with a single axis azimuth control problem (Franklin, 

Powell, Workman [1]). Suppose it is known that a better representation o f the system is 

given by the higher order model Gp(s) in 2.17, where the transfer function Gp(s) would be 

the perturbed model. Equation 2.18 reveals the set o f possible uncertainty profiles for
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this system. The corresponding multiplicative and additive uncertainty models are 

determined from equation 2.14 and 2.16 and are shown graphically in figure 2.6.

G(s) = (2.17 a)

1
? ( ?  + 2)

(2.17 b)

W(Ŝ — t ___ I = ? + 7
? ( ? + 2 )  7 + 2

W ( s )^ ___-____ — = — 7
? ( ?  + 2) ?  52(52 + 2)

(2.18 a)

(2.18 b)

Figure 2.6 Modeling additive and multiplicative uncertainty
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As a second example, consider the uncertainty associated with variable damping 

coefficients. The nominal, "true," and multiplicative weighting transfer functions are given 

in 2.19. The corresponding multiplicative weighting transfer function is shown graphically 

in figure 2.7.

P(s) — - ----- -
52 +2^„5+l

(2.19 a)

Pm(s)~  2
1

& e(.l,.4 ) (2.19 b)
s ' + 2&5+1

, (1005+1)(. 055+1)A 2 (2.19 c)

Figure 2.7 Damping uncertainty model

As a final example, consider the case o f plants with transportation delay commonly 

encountered in chemical processes e g. temperature control o f fluids. Let P(s) be the 

nominal plant and P m(s) be the perturbed plant. The multiplicative model in this case is 

expressed in 2.20.

P (s) = s+1
(2.20 a)
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-hs
Pm(° )  =

S +  1
:he[0,.2]

PrnUn)
P(j<*)

- 1

(2.20 b)

(2.20 c)> e,-hj(n.

2.3 Robustness and its Measures

The theory of control which aims to design controllers based on finite dimensional LTI 

models by incorporating the model uncertainties in the design process, is known in the 

literature as robust control theory. A controller is said to be robust with respect to some 

characteristic of the feedback system if it is able to maintain the characteristic for every 

plant o f the perturbed set. The two most important characteristics o f the feedback system 

are its stability and performance. Doyle, Kimura and Francis among other researchers in 

this field have developed measures to test the robustness o f a system to these particular 

characteristics. These measures will be discussed in subsequent sections. The terminology 

robust stability and robust performance have gained wide acceptance among the control 

community to describe closed loop systems which meet stability and performance 

specifications even if the model does not accurately characterize the plant.

2.3.1 Classical Measures of Robust Stability

The classical measures of SISO stability are the gain and phase margins. The gain and 

phase margins follow directly from the Nyquist stability criterion [2], [3]. These margins 

essentially measure how close the Nyquist plot o f a transfer function comes to 

encirclement o f point (-1,0) or critical point on the Nyquist plane. Figure 2.9 provides a
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graphical interpretation o f these margins on the complex plane. The gain margin is then 

defined as the inverse o f the distance from the origin to the point where the Nyquist plot 

intersects the real line and is a measure of how much the system gain may be increased 

before instability results. The phase margin equals the arc length, in radians, along the unit 

circle, from the Nyquist plot to the critical point. Consequently, if either is small the 

system is close to instability i.e close to encirclement of the critical point.

From figure 2.8 it is evident that these margins measure the distance from the critical 

point to the Nyquist plot in specific directions. The traditional or classical formulation of 

the control design problem incorporates performance and stability requirements into a 

single problem using the G.M. and P.M. definitions. The connection to the preceding

discussion o f the nominal performance condition provides an insightful connection to the 

Hoo design problem. Recall equation 2.12 where ^(/oo) provides a restriction on the open



loop plant transfer function. From figure 2.9 it is evident that ||Hz1(/oo)||00. bounds the G.M. 

and P.M. since (X^ CtGM and Ct{< 0tPM.
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As measures o f robust stability, however, the gain and phase margins are somewhat 

inadequate because they do not convey information about the perturbation's effect on the 

stability o f the system. In fact, they do not correlate the frequency dependent gains o f a 

nominal system to the margins themselves. In order to improve their utility, these margins 

should measure the distance from the critical point to the Nyquist plot in all relevant 

directions. As a simple example consider the Nyquist plot in figure 2.9. This figure 

immediately reveals that gain and phase margins in this case completely fail to represent 

system robustness. While the phase margin is nearly 90 degrees and the gain margin is 

infinite, the system is still very close to instability. As a result, simultaneous small changes 

in gain and phase could cause instability. Thus, these margins do not provide insight into 

the stability o f the system in the light o f plant uncertainties, and therefore, the stability and 

performance o f systems developed by design techniques based on these margins prove to 

be susceptible to plant perturbations.

Nyquist Plane

-1 lAv , s
/

Figure 2.9 Robustness of Gain/Phase margins
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2.3.2 Modern Robust Stability Analysis

Doyle and Francis were among the first to note the enticing relationship between the 

formulation of the stability problem of Nyquist and the infinity norm of the sensitivity 

transfer function. The following proof is developed in Doyle, Francis, and Tannenbaum [5] 

and is repeated here.

Let the smallest2 distance from  -1 to Lfjco) be denoted by d. Here L(Jco) is 

the Nyquist plo t o f  the open loop transfer function. Then d  is expressed by

d  = in f\- l-L ( ja > )\ = in f\l+  L(j® )\
(O CO

1 1
[ l+ L ( ] a ) ] - ‘

(2.21 a)

(2.21 b)

(2.21 c)

Thus as ||S||oo becomes larger, d (i.e. the smallest distance) becomes smaller, the Nyquist

plot comes closer to the critical point and the gain and phase margins decrease. Thus, the 

feedback system becomes nearly unstable and its performance degrades equivalently. It is 

comfortable to see that the later discussion heightens the findings o f section 2.1, namely, 

the weighted sensitivity norm should be small for good performance. This norm then could 

serve as a measure of stability margin as well. However, it suffers partially from the same 

faults as the usual classical measures. While it indeed measures the smallest distance from 

the critical point to the Nyquist plot in all relevant directions, it fails to provide

2 Here { i n f } refers to the minimum distance over all frequencies.
CO
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information about the plant perturbation effects. To remedy this lack o f information, a 

better approach is to take the perturbed model itself into consideration. For instance, let 

the plant be perturbed to Pp(jco) and Lp{j(a) = Pp(j(D)C(j(£>) be the corresponding 

perturbed loop transfer function. Now, stability is guaranteed as long as the following 

inequality holds.

Figure 2.10 illustrates a graphical interpretation of this inequality in the Nyquist plane. 

Recall that d  = ||1S'|~1 is the smallest distance from the critical point to the Nyquist plot of

the loop transfer function. The left hand side o f the above inequality is equivalent to the 

distance from the perturbed loop plot to the nominal loop plot at a given frequency. Since 

the point Lp(ja>) may lie anywhere around the point L(jco), the distance between these two 

points is conservatively bounded to a disk around £(/co) at every frequency m. 

Consequently, as long as this disk does not encircle the critical point robust stability is 

preserved. This measure o f stability is conservative in that it does not permit larger 

perturbations to occur at frequencies where L(j(a) is far from the critical point.

Modern Robust stability margins are obtained explicitly from the frequency dependent 

uncertainty models described in the previous section. Kimura [10] and Doyle, Francis and 

Tannenbaum [5] have developed such margins for the additive and multiplicative models 

respectively.

Consider again the multiplicative perturbation case for the plant set characterized in

2.22 with the unity feedback structure illustrated in figure 2.4. A controller C that
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Nyquist Plane
Imagulary axis

' r f .  /

\  1

; \ L<,> i

I Real Axis

Figure 2.10 Robust stability margin

stabilizes the nominal plant P, will stabilize the entire family of perturbed plants if the 

positive number 8 is small enough. If 8sup is the least upper bound on 8 such that C 

achieves stability for the entire family, then 8sup is the stability margin for this uncertainty 

model.

Pm -  = (1+ :A is stable and  I jA ^ ^ S  } (2.22)

Doyle and Stein [6] developed a test for the robust stability criterion for multiplicative 

uncertainty models in the MIMO context. Later, Doyle, Francis, and Tannenbaum [5] 

presented an elaborated test for the SISO case. This test is summarized in theorem 1.

Theorem 1: A controller C, in a  closed loop feedback system as defined

by figure 1.4, provides robust stability in the light o f  multiplicative 

uncertainties such that |1AJI^ < 1, z/ and only i f  it achieves stability fo r  

the nominal plant and  11 WmT\\e <J.



-39-

The proof o f this theorem follows from the Nyquist stability criterion and can be found 

in Doyle and Stein [6], The theorem can be used to find the stability margin HS^ 

mentioned above. Consider the case when 8 >1, then it follows that, for the family o f 

perturbed plants of equation 2.22,

{/>„ = (1 + A ,8 (^ )P  : ||A ,L S l}  (2.23)

Where Aj = 8_1A and from theorem 1 then:

8 „ p = 5»p{8 : | | 8 ) V t  S l} = | M C '  <2-24>

Note that the smaller the size of H^TlIoo the greater will be the size o f the smallest

destabilizing multiplicative perturbation, and hence the greater will be the stability margin. 

The condition for robust stability defined by theorem 1 offers much insight into the 

stability robustness of a system when contemplated graphically in the Nyquist plane. The 

development o f this graphical interpretation is as follows.

Given IMI_<1

then.
Ul/m(yQ?)t(y(p)

1 + Z -O )
Vto

(2.25)
lwm (j(D)L( jtD)| < |1 + L ( » | , Vco

M L < i

Recall that the right hand side o f the last inequality in 2.25 is the distance from the point 

(-1,0) to the Nyquist plot o f Z(/m). Equation 2.25 then describes a disk o f center Z(jm) 

and radius at every frequency. Thus, at every frequency, much like in the case of 

figure 2.11, this disk must lie outside o f the critical point so that stability is preserved. 

However, unlike the disk described by figure 2.11, the contour o f this disk is shaped by
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the multiplicative uncertainty profile function IFjjm). As a consequence, this margin is 

more relaxed than that previously defined due to the weighting function Wm.

Kimura [10] presented a similar test for the robust stability of additive perturbation 

models. Kimura defined a controller to be a robust stabilizer if it achieved robust stability 

for a set o f perturbed plants. Kimura's test is restated in theorem 2.

Theorem 2: A controller C is said to be a robust stabilizer fo r  a set o f  

plants perturbed by additive uncertainties such that I l^alloo < 1> i f  and

only i f  the closed loop system o f  figure 1.4 is stable fo r  the nominal plant 

oh< /R C S L < 1 ,  Vo).

To close this section, table 2.2 summarizes the robust stability tests for the uncertainty 

models described in table 2.1.

Perturbation

M odel

R obust Stability

C ondition

P/(l+tsW2) IML</
P/(1+AW2P) M L  < i

P+AWa IM L<;
(l+AWm)P IML<;

Table 2.2 Robust stability test for several perturbation models
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2.3.3 Robust Performance

The idea behind the concept o f robust performance is that the desired nominal 

performance, as specified by the designer, be achieved simultaneously with robust stability 

for a set of perturbed plants. It was demonstrated is section 2.1 that the nominal

performance condition may be specified as an infinity norm bound on the weighted 

sensitivity o f the system i.e. ||IK15||OO<1. In addition, theorem 1 established the robust 

stability condition for multiplicative uncertainties to be ||ITm7]|oo< l. Clearly, the robust

performance criteria requires both o f these conditions to hold. More precisely, if a 

perturbed plant is modeled by a multiplicative uncertainty model, the sensitivity transfer 

function is perturbed to:

I _ 1
\+ L p  1 + (1 + AWm )L

1 s  
(1+ Z )(l + A ^ n  =

Therefore, the weighted perturbed sensitivity is WjSp =

(2.26)

and the robust

performance condition will be satisfied if both the robust stability condition and the norm 

II ̂ ri'5plloo< l are satisfied for all allowable perturbations. Theorem 3 provides a combined

test for the robust performance condition. This is a difficult problem to solve. For a proof 

o f this theorem see Doyle, Francis and Tannenbaum [5],

Theorem 3: A necessary and sufficient condition for robust performance is 

|| |^7^| + |^w^| L < 1  (multiplicative perturbations)

|| 1  ̂< 1 (additive perturbations)
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2.4 Design Constraints

2.4.1 Algebraic Constraints on the Sensitivity and Complementary Sensitivity 

Functions

The condition for robust performance as expressed by theorem 3 places stringent 

constraints in the shape o f the open loop frequency response o f the nominal system. An 

elaborated mathematical proof of this fact can be found in Doyle, Francis, and 

Tannenbaum [5], An intuitive analysis of the conditions for robust stability and nominal 

performance lead to the same conclusion and provides convenient graphical interpretation. 

Consider again equation 2.11 and add the robust stability condition o f theorem 1. Noting 

the following relationships,

1 -  L
1 + Z ’ l+ L

If  \L( jca)\»  1 then JS| = -j—: and if \L(y'mj|« 1  then |T| = | i | .  Thus, if it is required 
1̂ 1

from 2.11 that |5| < \Wj | 1, then p r  > \Wj | and consequently |£| > \Wj | for all oa for which 
Pl

\L(ym j|»  1. Similarly, requiring < 1 (fromtheorem 1), then |7 |< | l ^ |_1

and consequently |Z| < for all co for which \L(ja>)\« 1.

The development above reveals the constraints imposed on the shape o f open loop 

frequency response. Typically, the open loop transfer function has a low pass type 

frequency response, hence, the equations above require that the loop transfer function 

must be larger than |JF71 at low frequencies and lower than IIT J'1 at high frequency. These

constraints are graphically illustrated in figure 2.11
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Figure 2.11 Loop shape constraints

The definition o f the sensitivity and complementary sensitivity transfer function also 

places algebraic as well as interpolation restrictions on the design o f a stabilizing 

controller. Note that the algebraic sum S + T=1  must hold for all frequencies. This means 

that |5(jm)| and |T(jco)| can not both be less than 1/2 at the same frequency. On the other 

hand, the conditions shown below must hold for poles p  and zeros z  o f the open loop 

transfer function.

S ( p )  = 0, S (z )  = 1, 
T (p )  = 1, T (z) = 0.

2.4.2 Bounds on Wx and Wm

Consider H^SIloo and suppose that the open loop transfer function has a zero at z in 

the RHP. Then, from the previous section, ||f̂ y-S'l|oo This is a direct
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consequence o f the maximum modulus theorem. Thus, in order to satisfy the 

performance condition < 1 the weighting function must satisfy I^Cz)! <1. That is

to say, that the magnitude of the weight at the RHP zero of P  or C  must be less than 1. 

Similarly, assume that L  has a pole at p. Then, p)\, therefore, a necessary

condition for the robust stability criterion < 1 to hold is that the weight satisfy

I Wm(p)l <1. Furthermore, suppose that P  has a zero z and a pole p  in the RHP, and no 

other poles or zeros there. Also, suppose that C has neither poles nor zeros in the RHP. 

Then, both S  and T  can be factored into an all-pass and minimum phase terms like:

S  = SmpSap and T= Tmp Tap

where Sap = — — , and Tav =
s + p  p s+ z

and Smp and Tmp are the minimum phase transfer functions

From the preceding section it is true that S(z) =1 and T(p) =1. Therefore,

* r z - p

K p - z

Finally, it follows that

l> z + p  
z - p

l>
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The last inequality reveals that the closer the RHP pole and zero are to each other, the 

harder it becomes to achieve the desired performance or robust stabilization. As p  

approaches z the denominator in the right hand side o f above inequalities decreases, 

making the ratio larger. This forces or W\ to be decreased at either p  or z which ever 

may be the case. The weighting functions or W}, however, may be prohibited to be 

decreased at these frequencies by the requirements o f 2.14 and the desired performance 

respectively.

2.5 The Robust Control Problem

In this chapter two prominent tests have been provided to assess both the nominal 

performance as well as the robust stability condition o f the feedback control system as 

defined in figure 1.4. Furthermore, the robust performance condition, that is, guaranteed 

tracking in the face o f plant uncertainty, is accomplished for multiplicative perturbations if 

both inequalities in 2.27 below are satisfied. A test for this condition was given in theorem 

3.

M IL <1 and
WjS

\ + ^ mr
VA (2.27)

Now that the necessary conditions for robustness given certain characteristics o f the 

feedback system have been established. Lets summarize the objectives and design 

specifications of the robust control problem.
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•  Robust Stability Problem: Given the nominal plant P  and the uncertainty 

description Wm, find a controller C, if one exists, that stabilizes all plants belonging to 

the perturbed set P m

•  Robust Performance Problem: Given a class o f plants described by P m and a

weighting upper bound function Wj for the sensitivity S, find a robustly stabilizing 

controller C such that <1 Vco, and VPm e  Pm.

The design o f robust controllers becomes a process o f synthesizing a controller which 

complies with either the robust stability (i.e. theorem 1) or the robust performance (i.e. 

theorem 3) test as required by the designer and the particular control problem. Doyle and 

Kimura have both developed procedures for obtaining robust stabilizing controllers for 

multiplicative and additive perturbed sets respectively [6] [10], Francis and Zames [9], on 

the other hand, have developed procedures for designing controllers that minimize the 

infinity norm o f the weighted sensitivity. Despite considerable efforts among the robust 

control community, a systematic procedure to find a controller that satisfies the robust 

performance condition stated by theorem 3 has yet to be found.



CHAPTER III
SYNTHESIS OF SISO H«x, CONTROLLERS

In this chapter a procedure will be developed to systematically synthesize a controller 

which complies with either the robust stability or the robust performance specifications

discussed in the previous chapter. The design technique which will be used to address the 

robustness problem is referred to as "H ^  control" in the control literature. The first 

section of this chapter defines the standard control problem. Some preliminary

mathematics required throughout the development o f the design procedure are introduced 

in the second section. Finally, the design procedure for robust stabilization and robust 

performance are developed in the last two sections.

3.1 The Standard and Optimal SISO H<x> Control Problem

3.1.1 The Generalized Problem

Figure 3.1 General control structure

-47-
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Consider the generalized feedback structure o f figure 3.1. The generalized plant 

consists o f all o f the fixed components o f the system: the plant, actuators, sensors... The 

controller is the part to be designed. The signal vector v is composed o f all the 

exogenous inputs while u, y  and z  contain all the controlled inputs, the sensor 

measurements, and the signals under control respectively. The tracking error, actuator and 

plant outputs are examples o f signals that might be group under the generalized signal z.

Let T^ represent the transfer function from v to z. The design method aims to 

devise a controller which minimizes the infinity norm of Tw. The generalized design 

problem is summarized by the problem statement below.

Problem 1: Find a controller K(s), stabilizing the generalized plant, such that 

| |TJ | y, where y is a small positive number less than or equal to I.

In addition, if the controller K(s) achieves the desired performance while minimizing the 

value o f y, the controller K(s) is considered optimal. If  K(s) is an optimal controller then y 

is denoted the optimum y or yopt. Therefore, yoptmay be defined as

Yopf = M rvJL V  stabilizing K (s )  (3.1)

3.1.2 The Mixed-Sensitivity Approach

For the SISO unity feedback structure specifically, the generalized diagram of figure

3.1 becomes figure 3.2 a. The diagram of figure 3.2 b is equivalent to that o f figure 3.2 a 

although it exhibits a more familiar and usual feedback structure.
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(*)

(b)

Figure 3.2 control structure-mixed sensitivity approach

Note that for the structure presented in figure 3.2 a, the plant P  has been augmented 

by W] and W2, the performance weighting function and the uncertainty profile function 

respectively. For this structure the transfer function from v  to z  is represented by the 

vector function in 3.2.
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WjS
w2t

where zi
z 2

(3.2)

The infinity norm of this transfer function is sometimes known as the mixed sensitivity 

cost function because it penalizes both the sensitivity and the complementary sensitivity.

The control signal u in figure 3.2 b is referred to as the robust stabilizing control law and 

is equal to C(s)y(j). The standard control problem may now be formulated for the 

system o f figure 3.2. as follows:

Problem 2: Given the desired performance level y > }opt, find a the robust stabilizing 

control law u(s) = C(s)y(s), such that 117^11 y. If y = }opt, the control law is said to

be optimal.

Note that the definition of Tre in equation 3.2 may be conveniently altered by the 

designer to achieve either or both o f the objectives and design specifications described in 

section 2.4. That means that the statement o f problem 2 may serve to satisfy either the 

robust stability problem  or the robust performance problem  separately simply by careful 

selection o f the transfer function Tw. For example, in a regulator case the designer might 

be solely interested in the robust stabilization of the system. In this case Tre could be 

selected to be equal to W2T  with IF, equal to zero. The counterpart o f the former strategy 

is to select T^ to be IF,S  and let W2 zero- The latter selection, subject to the statement 

o f problem 2, would yield the minimization o f the nominal performance test as discussed 

in section 2.1.



Since the standard Hx  control problem aims to make the °°-norm of small it is 

also called in the literature the small-gain problem. Moreover, the method for the

design of a robust controller that will be presented in this chapter is occasionally referred 

to as the mixed sensitivity approach for finding the solution to problem 2, because it 

attempts to minimize the mixed sensitivity cost function.

3.2 Robust Control Synthesis and Related Mathematical Problems

The method o f solution for the mixed sensitivity problem involves the use o f a 

transformation which serves to synthesize all controllers which will make the closed loop 

system stable. This transformation is known as the Q-parametrization and is related to 

the works o f Youla, Jabr, and Bongiomo [12], Briefly speaking, the O-parametrization 

formulates the controller transfer function in terms of a parameter Q. The controller can 

be obtained by proper design of Q and subsequent substitution into the controller 

formulation. The g-parametrization has been used by Zames and Francis [8], Morari and 

Doyle [7], and Kimura [10] to characterize a class o f stabilizing controllers in their 

theoretical investigations of system robustness. Given a parametrized set o f stabilizing 

controllers, the robust stabilizer design problem is rearranged to fit the model matching 

problem which is solved by use of the Nevanlinna-Pick theory. The robust performance 

problem follows along similar lines with some additional adjustments.

The topics that follow are preliminary mathematical problems related to the synthesis of 

the robust controllers presented in this investigation. The discussion o f these topics is 

necessary to understand the development of the systematic procedures that will be 

presented in the latter two sections.

-51-
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3.2.1 The {?-Parametrization

The ^-parametrization was first introduced by Zames in [11] for open loop stable 

plants and later by Zames and Francis [8] for open loop unstable plants to characterize the 

family o f all stabilizing controllers. The convenient feature o f the ^-parametrization is 

that it guarantees closed loop stability. Recall the IMC structure o f section 1.4 (pg. 9). It 

is argued in chapter I that the feedback control structure is only required because of 

disturbances and some uncertainty about the system. In fact, the feedback signal f  as 

described in section 1.4 expresses the uncertainty about the process. Recall that when the 

plant model is exact and there are no disturbances the feedback signal disappears and the 

IMC structure becomes open loop. Under this open loop condition the criteria for stability 

o f the nominal system follows trivially. Basically, for the system of figure 1.4 to be stable, 

under the condition that/ =  0, both the plant G and the parameter Q must be stable.

An alternative representation o f the block diagram of figure 1.4 is given by figure 3.3. 

Note that the block diagram of figure 3.3 has the form of the unity feedback structure. The 

mathematical manipulations which effect this transformation are omitted, but they have no 

effect on the response o f the signals u and y  to the inputs r and d. Indeed, the block 

diagrams o f figures 1.4 and 3.3 are equivalent. The controller block o f figure 3.3 may be 

replaced by a new block containing a compensator C. This compensator C is expressed by 

equation 3.3 in terms of the stable parameter Q and the plant model P,

C = Q
l -P Q ’

Q e (d. (3.3)
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where the symbol cp represents the family o f stable, proper and real rational transfer 

functions. This compensator description, known as the Q-parametrization, provides a 

simple parametrization of all stabilizing controllers for a stable plant G. The essential idea 

is that by using Q as a design variable instead of C, a potentially unstable design variable 

is replaced by a stable one and consequently closed loop stability is guaranteed. The 

advantage o f this type o f parametrization is truly o f remarkable advantage, particularly 

for the case where the plant G is unstable.

Figure 3.3 Alternate representation of the IMC structure

In order to extend the transformation o f equation 3.3 to the case o f unstable plants it is 

necessary to introduce the concept o f a coprime factorization. Let P  be a real rational 

transfer function. A representation of the form

P = A'.AYecp, (3.4)
M

N X  + M Y = 1  (3.5)

where N  and M  are coprime is called a coprime factorization o f P  over <p. Two functions 

N  and M  in cp are said to be coprime if there are two other functions X  and Y  also in cp
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such that 3.5 is true. One consequence of the condition for coprimeness is that N  and M  

have no common zeros in the closed RHP or at infinity. Consider equation 3.6 as an 

example. In this example, if z = p  then equation 3.5 does not hold when evaluated at s = z 

or s = p, thus, N  and M  are not coprime.

AT-
(s-1 )

M  = ( s - p )
( s -1 )

(3.6 a)

i f  z  = p, then at s = z~. 0
( z - z )
( z -1 )

X ( z )  + ( z - p )
( z -1 )

Y (z )  *  1 (3.6 b)

A procedure, based on Euclid's algorithm, for finding four transfer functions in tp 

satisfying equation 3.4 and 3.5 is provided below. Euclid's algorithm is outlined in 

appendix B.

An Algorithm to Find the Coprime Factorization of a Function G(s)

Given the transfer function G, the procedure is as follows:

i, If G is stable, set N  -  G, M  = 1, X  = 0, Y = 1 and stop.

ii. Transform G(s) into g(X) under the mapping .y= (1-X)/X. Let n(X) be equal to the numerator of g(X) 

and m(k) be the denominator of g(X).

iii. Use Euclid's algorithm with polynomials n(X) and zn(X) to find polynomials x(X), y(X) such that

nx + my =  1.
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iv. Transform n(X), m(X), x(X), andX^) to N(s), M(s), X(s), and Y(s) under the mapping X=1/(j +1).

Theorem 4 yields the controller parametrization for the general case.

Theorem 4: Let P = N/M be a coprime factorization over <p, where P may or may not 

be stable. L e tX  and Y be two functions in <p such that N X + M Y = 1. Then the set o f

all controllers C fo r  which the feedback system is stable equals:

X + M Q
Y -N Q

A proof o f this theorem is available in Doyle, Francis and Tannenbaum [5], Notice that 

the parametrization o f equation 3.3 is a special case o f the more general parametrization 

o f theorem 4 . For instance, when the plant is stable the parametrization o f theorem 4 

reduces to that o f equation 3.3 under the following assignments:

N  = P, M = \ ,  X  = 0, 7 = 1

then
X + M Q  Q 
Y -N Q  \ - P Q

3.2.2 Nevanlinna-Pick Theory

Nevanlinna-Pick or NP theory is concerned with an interpolation problem for a 

specified class o f functions. The relevance o f this theory to circuit and linear systems 

analysis has been reported in [13], More importantly, in the context o f this work, NP
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theory plays a crucial part in the solution o f the model matching problem. The SISO 

/Zoo problem is solved by manipulating its formulation to fit the model matching problem

and it is necessary then to discuss the NP problem solution. The NP theory discussed here

has been extracted both from Kimura [10] and Doyle, Francis and Tannenbaum [5], It's 

use in the problem is discussed in the next section of this thesis.

A function u{s), analytic in the closed RHP and satisfying |w(/m)| <1, Vrn, is called a 

bounded real (BR) function. If  the equality condition is dropped then it is called a 

strongly bounded real (SBR) function. Note that a BR or SBR function has an °°-norm 

bounded to 1. The NP interpolation problem may now be formulated.

Assume that the points {otj,...., a„} lie in the open complex RHP, and that the points 

{P!,..., P„} lie in some domain of the complex plane. The NP interpolation problem is to 

find a BR or SBR function u(s) which satisfies the interpolation conditions,

w<a,J = P,., i = l ...... , n  (3.7)

The additional constraints of stability and propemess are added for algorithmic 

convenience.

The NP problem then is to find a stable and proper function u(s) which has an infinity 

norm less than or equal to one, and whose graph passes through all points (a„ p,). The 

NP problem is said to be solvable if such a function u(s) exists. If  u{s) is stable and 

proper and n(a,) = p„ then the magnitude o f u(s) is |p,| at the point s = a (. According to 

the maximum modulus theorem [5] then its maximum magnitude is |p,|. This implies
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Therefore, an additional condition which guarantees solvability o f the NP problem is that 

every member o f the p data set must satisfy |P,| 1, z =

An Hermitian1 matrix exists, associated with the NP problem data called the Pick 

matrix. The ij™ element o f the Pick matrix is

that ||w(5)||0O > p( . One o f the conditions o f the problem is, however, that ||m(^)||oo 1

'-P,Py
a , + bty

where the hat denotes a complex conjugate

The solvability condition of the NP problem is completely determined by the Pick matrix 

in 3.8 and has been established in Walsh [13], It follows from Pick's theorem that the NP 

problem is solvable if and only if the Pick matrix is positive semidefinite for BR functions 

and positive definite for SBR functions.

Pick Matrix = (3.8)

A procedure for synthesizing such a function u(s) which parametrizes all the solutions to 

the NP problem exists and is known as Nevanlinna's algorithm. Nevanlinna's algorithm is 

rather involved and therefore is omitted here, however, it is available in appendix B.

1 Given a square complex matrix A, and its complex conjugate transpose?! * a matrix is said to be 
Hermitian if A =A . The eigenvalues of a Hermitian matrix are real. In addition, A is positive definite or 
semidefinite if and only if its eigenvalues are > 0 or > 0 respectively.
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3.2.3 Model Matching Problem

Let Tj(s) and T2(.s) e  (p. The model matching or approximation problem is to find a 

stable transfer function Q(s) that minimizes the °°-norm (T j-T20 .  The term (T j-T20  

may be considered as an error transfer function under the following interpretation: Tj is 

a model, T2 is a plant, and Q is a cascade compensator to be designed so that the model 

matching error is minimized. The internal model control structure displayed in figures 1.4, 

and 3.3 is closely related to this interpretation.

Denoting the minimum model matching error by yinf,

w  =  x  b  -  W „ .  p »)Q  stable

where the design strategy is to make the definition o f y ^ a s  given by 3.9 fit the 

formulation o f the standard HK control problem as described by problem 2. The

advantage of such a manipulation is that the solution o f the model matching problem 

already exists. This strategy reveals a solution of 3.9 which indirectly leads to a 

systematic method of finding a control law that solves the robust stabilizing control 

problem and satisfies the conditions stated in problem 2. The term y ^  in 3.9 refers to the 

minimum numerical value o f gamma taken over the set o f all stable solutions, Qs, o f  the 

model matching problem.

The subject o f how to transform the control problem into the model matching

problem is discussed in the next section. This section is concerned with the solution of 

equation 3.9. Note that the trivial solution, o f course, is the case when the error or
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yinf= 0. Then Tj = T2(? and the unique solution Q is equal to TjT^1 provided that the ratio 

is stable.

The solution to the model matching problem that will be discussed here may be found in 

Doyle, Francis and Tannenbaum [5], yinf is the minimum gamma such that 

|| 7} -  T2Q\ y for some stable Q. Let y  be a fixed positive number and consider the 

mapping of Q i-> G given by 3.10. The inverse mapping specifies the solution to the 

model matching problem in terms o f G and may be expressed by equation 3.11

G = y - ^ i T j - ^ Q )  (3.10)

(3.11)

The solution o f the model matching problem is found by constructing a function G, 

satisfying equation 3.9, such that the parameter Q is stable. Under the mapping of 3.10,

G will be stable if Q is stable, but the converse is not true since Tj and T2 are members of 

the set <p. In order for Q in 3.11 to be stable, G must satisfy certain conditions.

Let {r, : z = zz} be the zeros o f T2 in the open RHP. It is assumed for simplicity 

that T2 has no zeros in the joo axis. Given a stable Q, then G satisfies the following 

interpolation conditions:

G(^i) = 7 TjfzJ, i=J,...,n. (3.12)
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Therefore, if G is stable and satisfies the condition in 3.12, then Q will be stable. 

Reformulating the definition o f y ^  subject to the mapping o f the relationship in 3.10, yinf

is the minimum gamma such that a function G exist, analytic in the RHP, satisfying the 

interpolation condition in 3.12 and ||G||^ 1. Note that the constraints imposed on G in

order to find a stable Q fit the Nevanlinna-Pick problem description after minor 

adjustments. In this particular case, the NP problem data is given by 3.13.

{ a b  ... , a w} where ot.j=Zj, the RHP zeros o f  T2

..., y JP„} P, = t,(z,) (3.13)

It can be readily shown that the Pick matrix associated with this data set equals B  - y 2D, 

where the ij,h element of B  and D  are, respectively,

1 P,Py
a,- + ay ’ a , + a y

It follows from Pick's theorem that y ^  exists only if the Pick matrix B  - y~2D  is positive 

semidefinite. An explicit way to compute yjnf is given by lemma 1 below. Lemma 1 is a 

direct quote from Doyle, Francis, and Tannenbaum [5],

Lemma 1: y .eq u a ls  the square root o f  the largest eigenvalue o f  the matrix 

B '1' 2 D B'1' 2 , where B '1' 2 is the inverse o f  the square root o f  the matrix B.
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The Model Matching Problem Solution Algorithm

A procedure for solving for 7inf, and Q(s) given T, and T2 is outlined below:

i. Identify the zeros of T2 in the open RHP.

ii. Find the p data set as indicated by 3.13 and form the related matrices B  and D.

iii. Compute the optimum gamma as described by lemma 1 (use the Matlab program "gamopt.m" 

provided in appendix C ) .

iv. Solve the NP problem as indicated in appendix B for the data set:

.-1Y*!/P, •" Y?k/P w

and let the solution be denoted by the function G.

v. The solution to the model matching problem is given by 0 :
Tl ~ 7infG

For the particular case when T2 has only one zero, s0 in RHP, the solution is given by 3.11 

with yinjG  equal to T,(s0). The proof is given in appendix B.

3.3 Optimal and Sub optimal Robust Stabilization

3.3.1 Robust Stability Margin Optimization

In this section a method for designing a controller which maximizes the robust stability 

margin will be addressed. In sections 2.3.1 and 2.3.2 several measures o f stability were



-62-

discussed (e.g. phase and gain margins). In addition, a robust stability margin for a 

multiplicative perturbation model has been introduced in chapter II by equation 2.24, 

Equation 2.24 is shown below for convenience.

5sup = sup{s : 1 1 8 ^ ^  fil} = 1 1 ^ ^ '

It will be shown in this section that the problem of synthesizing a robust control law is 

solved by optimizing the stability margin, which in turn reduces to a model matching 

problem as explained in the previous section. The optimization problem discussed here 

regards to the special case where the set Pm consists o f multiplicative perturbations o f a 

nominal plant P. The method o f solution which will be presented was developed by Doyle, 

Francis and Tannenbaum [5], A procedure for a set o f perturbed plants under additive 

perturbations is available from Kimura [10],

Let's reiterate the robust stability problem. Given a plant P, member o f a set o f the 

form of equation 2.22, and a unity feedback structure, the robust stability problem is to 

find a compensator C that achieves stability for every plant member P  o f the set.

According to theorem 1, a compensator C achieves stability for every plant in Pm, if and 

only if it achieves stability for the nominal plant P  and satisfies ||FK271 |oo < 1 / 8, where 5 is

the stability margin and T is the nominal complementary sensitivity. A compensator C is 

said to be optimal if it achieves the maximum stability margin 8sup while it is considered sub 

optimal if it achieves a stability margin 8 < 8sup. Let yopt be defined by equation 3.14,

y » , = (3.14)
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where the infimum is taken over all stabilizing compensators. Note that under this 

definition has been taken to be merely W2T. It follows that the maximum stability 

margin is2 * *

Yopi = ^ /5 sup. (3.15)

The procedure to synthesize a compensator that satisfies the robust stability criteria is 

now explained.

Consider a coprime factorization of the nominal plant such that 3.4 and 3.5 hold. Then 

by theorem 4 the parametrization of all stabilizing controllers for the nominal plant is 

expressed by 3.16.

X + M Q
Y - N Q '

T = N ( X  + M Q )

(3.16)

(3.17)

It is readily demonstrated that the complementary sensitivity transfer function T  is equal to 

3.17 if P  and C are substituted by their coprime factor equivalents. Substituting 3.17 into 

3.14 yields 3.18. Notice, that the infinity norm term in 3.18 is equivalent to the robust 

stability test introduced in chapter II. By substitution o f Tt = IV-^NX and T2 = - W^NM 

in 3.18 it becomes evident that the formulation of equation 3.18 is nearly equivalent to the 

model matching problem of equation 3.9.

2 The proof of this statement follows directly from theorem 1 and equations 2.24 and 3.14. For instance,
if 5 < 8sup , then there exist a robust stabilizer and therefore from theorem 1, loo < 1 /5 .  But from
equation 3.14 yopl is the infimum of H ^ 7! L  over all stabilizing comtrollers. Thus, ”yopt= 1 / 5sup.
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note that \W2N X -(-W2N M )Q )\ai = ||7J - T2Q\\~ (3.18 b)

with Tj = W2N X and  T2 = W2NM

In addition, recall that it is assumed in section 3.2.3 that T2 has no zeros in the imaginary 

axis. To avoid conflict with the previous postulation it is assumed that P  has no poles or 

zeros on the jco axis and W2 has no zeros on the imaginary axis.

The only difference between the model matching problem in 3.9 and the equivalent 

formulation in 3.18 is that the parameter Q in 3.18 must be proper in contrast to the 

situation of equation 3.9, where Q is only required to be stable. Therefore, before 

itemizing a systematic procedure for the design of a robust stabilizer, it is necessary to 

address the extra requirement that the parameter Q be proper. The solution with this 

minor impediment is a result of direct application of lemma 2 below. The strategy is to 

initially ignore the propemess requirement of Q and find a new parameter, possibly 

improper but stable, and denoted Qjm. Equation 3.18 a  is then slightly modified to

Top, * + A / & X  (3.18 <■)
Q&t>

A proper Q is developed by rolling off Qjm at high frequency through multiplication of 

Qjm by a filter o f the form of 3.19.

r opt = inf[W2N ( X  +  A Y 2 J L  (3.18 a)

J ( s )  =
( s x  +  / J *

(3.19)
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Lemma 2: Let J(s) be described by 3.19, where i  is real and k is an integer. I f  G is

stable and strictly proper, then lim ||Gf 1 - J j || = 0.
-r->0

To show that the suggested manipulation does not affect the integrity o f the 

formulation of equation 3.18 we can review the proof of lemma 2. Figure 3.4 illustrates 

the generalize Bode and Nyquist plots o f J(s) for several values o f x and k .

(*)

(b)

Solid: K = 1, Dashed: K = 2, Dashed-dot: K = 3. 
Figure 3.4 (a) Bode plot of J  (A) Nyquist plot of J
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Consider figure 3.4. Let p be a small positive number and ©j be the -3dB frequency of 

Notice that if x is small enough, then the Nyquist plot o f J  lies in a disk o f center

1, radius p for frequencies less than ©j and in a disk o f center 0, radius 1 for frequencies 

greater than ©P This condition is expressed mathematically by equation 3.20.

max
cdScoz

max |GO©>[7-J(7©>]|
(3.20)

Consider the case when ©^©, in 3.20. Since |7- J\ is the distance from the point (1,0) in 

the Nyquist plane to the polar plot o f 7(j©), this distance is bounded by the radius p when 

©<©r  Therefore, for © <; ©b the norm \\G(1-J)\!«, is bounded by pllGlloo. To illustrate, 

suppose ©j=l/x, then for © ©l5 |7| = 1 and the distance |(7-7)| is very small.

Conversely, for the case when © ^  ©j the lower term in 3.20 can be expressed as in 

3.21a

(3 .2 i«)

The infinity norm of (7-7) in this case is bounded by 2 as can be seen in the following 

equation.

£ ML + PL - 2

Thus, for the case when © ©b ||G(7-j9||cx> is bounded by the expression shown below.

2 max \G(j<a)\ 
<02(01

(3.22)



-67-

In general, the infinity norm of ||G(7-j9||<» is bounded by the expression in 3.23. Note, 

that the right hand side o f 3.23 can be made arbitrarily small by suitable choice o f p and 

coj because, in the limit as C0j approaches infinity, G approaches zero. In conclusion, for 

every small number X > 0, if x is small enough, then ||G(7-J)||oo < X = 0.

For sufficiently small x: ||G( 1 - J < max ̂ pUG^, 2 max (3.23)

Equation 3.18 c is reorganized in 3.24 after Qinl is rolled off by the filter J(s).

W2N (X + M Q imJ )  (3.24)

W2N (X + M Q im) J  + W2N X ( 1 - J )  (3.25)

Notice that 3.24 can be factored into 3.25. From lemma 2 it is evident that the infinity 

norm of the right hand term in 3.25 goes to zero as x approaches zero. The left hand term 

has infinity norm less than one since the infinity norm of J  is one and that o f the term 

W2N ( X  + M Qim)  is less than one by definition. Thus, the postulation o f 3.18 has not 

been affected by the given manipulation.

The Hoo Design Procedure.

Given the nominal plant P  and the uncertainty weighting W2, the procedure for the 

design o f a robust stabilizer controller is as follows: 

i. Select IK, such that W2(p) < 1 where p  are poles of P  in RHP.

N
n. Form a coprime factonzation of P such that P = — , N , M  e <o, and N X + M Y = 1 (using Euclid's 

M

algorithm)
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iii. Solve the model matching problem with T, = W flX  and T2 = -W2 NM. (using Nevanlinna's

algorithm and the procedure outlined in section 3.2.3.)

iv. Denote the solution of the previous step Qjm and let 7 ^ = 7opt (the minimum model matching error). 

T h e n 5 sup= 1 / 7„pr

v. Choose an arbitrary number 8 < 5 Set J ( s )  = ---------------- with k large enough to make Q J
(  ST  +  1 ) K

proper and -r small enough that X  + < 7 / 8

X + M Q
vi. Set Q = Q J  and find C  = ------------ .

Y -N Q

A routine written for the Matlab environment was designed to compute the optimum 

gamma in step iii, given the uncertainty weighting function and the coprime factorization 

o f P. This program named "gamopt.m" is included in appendix C.

3.3.2 A Simple Example

s -1
Consider the following unstable plant: P (s )  = ----------------

(s+  l)(s - .5 )

The procedure for obtaining the robust stabilizer is as follows:

Step i: Determine the uncertainty weight W2(s). 1° this case, W2(s) *s arbitrarily selected 

<5+.7>
as, W2(s )  =

(s+1)

Step ii: Compute the coprime factorization o f the plant following Euclid's algorithm and 

the procedure outlined in appendix B. The results are.
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M (s)

s - I
( s + D 2 

s-.5 
s + 1

X (s )  = -4.5

Y(s) =
s + 7 
s + 1

Step iii: Compute T 1 and T2 and solve the model matching problem to find yopt and Qim 

Solution o f the previous step leads into the following results:

7}

T2

w2nx =

-w2nm

-4 .5 (s+ .l) (s - l)
( s + I )3

-( s - .5 ) (s + .l) ( s - l)
(s+ J )4

The associated NP problem data and the value o f yopt are found using the Matlab 

routine in appendix C. The NP problem data involved is:

related NP problem data: -
T 0.5 
0 0.4

[zeros o f  T2 in the RHP} 
[ y - 'T ia ? ]

Using the Nevanlinna Pick algorithm outlined in appendix B with the data shown above 

J ~ s
yields the function, G (s) = ----- . The value of y ^  is obtained from execution o f the

s+ I

Matlab routine "gamopt.m" and is found to be yinf -  1.2. The solution o f the model 

matching problem, Q, is found to be

T,- linfG fs) 1.2(s+J)(s-1.25)

r2 s+O.J
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Y oPt =  Y in f =  L2. The maximum stability margin 8sup = = 0.8333.

Step v: Arbitrarily select 8 = 0.8 as the required stability margin.

According to the defined procedure, a roll-off filter J  must be selected with x small 

enough to make Qim proper and such that ^ ^ ( X + M Q ^ ^  < 1 / 8  or 1.25.

Step iv: Since the function Q found in step iii is improper, denote it Qtm and set

■ W  =Let,
1

(xs+ 1)

Note that k in this case is 1 which is the relative degree o f Qim. Table 3.1 shows the 

results o f the iterations on i .  From table 3.1 its obvious that x = 0.01 is the an acceptable 

time constant.

X

1 2.1188

0.1 1.4925

0.01 1.2396

Table 3.1 Results of robust stability tests for several x

Step vi: Set Q = QinfJ to find the parameter that characterizes the set o f  all robust 

stabilizing controllers for the given nominal plant and uncertainty weighting. Then,

Set Q (s) = QimJ  =
-J20 (s  + l) (s -1 .2 5 )  

(s+ 0 .1 )(s+ 100)
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c  X + M Q  -(s+ J) (124.5s2 + 240.4 5s+ 120) 
Y - M Q  (s3 + 227.1s2 + 440.7s+220)

The resulting controller is found from 3.16 and is equal to:

and the design is complete. Figure 3.5 provides the graphical interpretation o f the robust 

stability test for this problem with different values of z. Notice from figure 3.5 and table

3.1 that this a sub optimal controller since it does not quite achieve the maximum robust 

stability margin. Recall from step v that we set 8 = 0.8. Thus the robust stability test 

requires that Hlf^fT+A/igini/loo < 1 / 5  or 1.25. With z equal to 1 and 0.1 the infinity 

norm o f the weighted complementary sensitivity (i.e. WW^XfX+MQ-^^JW^) is 2.1188 and

1.4925 respectively. Thus, the requirement that the infinity norm o f the weighted 

complementary sensitivity be less than 1.25 is not met. With z  equal to 0.01, however, the 

infinity norm of ||FK22VfSY+A<f0ilrf7||c<> is equal to 1.2396 satisfying the robust stability test

for this case.

Figure 3.5 Frequency Response of W^(X+MQjmJ) for the t of table 3.1
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3.4 Optimal and Sub optimal Robust Performance

The solution o f the problem 2 statement (i.e. the standard control problem as

defined in section 3.1.2) is the subject under examination in this section. In this case 

is chosen with non zero weighting functions Wx and W2. The test for the robust 

performance condition introduced in section 2.4, is formulated in the context o f theorem 

3, and is repeated below to refresh the readers memory.

II l^/^l * M l l / l  (3.26 «)

Recall from the final section o f chapter II that a systematic procedure to find a controller 

which satisfies the condition shown above has not yet been devised. Instead, Doyle, 

Francis, and Tannenbaum [5] have proposed a method to design robust controllers which 

comply with the robust performance condition by solving an alternate, related but more 

conservative problem. This alternate problem requires that the condition expressed in 3.26 

below be met. Simple plane geometry shows that if condition 3.26 is met then the robust 

performance test of theorem 3 holds. A proof o f this is provided in appendix A.

(3.26 b)

The strategy for finding a controller satisfying the robust performance test is very 

similar to the procedure for optimizing the robust stability margin. Some adjustments are 

essential due to the evident differences between the robust stability test and the robust 

performance test. As in the development o f the former section, the scope of the problem 

treated here is restricted to the case where the set Pm consists o f  multiplicative
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uncertainties o f a nominal plant P. The solution of the robust performance problem that 

will be introduced in this section is based on the work of Doyle [14], and Francis [15], 

[16], However, the procedure is outlined in the more recent publication o f Doyle, Francis 

and Tannenbaum [5]. The following compromising assumptions are made throughout the 

development:

1. P  is strictly proper and has no poles or zeros on the imaginary axis.

2. W{ and W2 are stable and proper.

3. Wx and W2 have no common zeros on the imaginary axis.

3.4.1 Spectral Factorization

Spectral factorization will be used as a tool in the solution process. Given a rational 

function F(s) with real coefficients, let F (s)  denote the function F(-s). If  such a function 

F  has the property F  =F, then its poles and zeros form a symmetrical pattern in the s- 

plane with respect to the real and imaginary axis. A function F  having this property may be 

written in terms o f its gain, poles and zeros as,

F ( s )  = cF ,(s), where F ,(s )  -  -+- ^  (3.27 a)
- s)(Pi + s)

F ( s )  = cH (s)H (s) , where H (s )  = ^ — 2  (3.27 b)
T i(P i+ s)

Note that 7^(0) > 0. Both c and Fj(O) will be greater than zero if and only if F(0) > 0. 

By letting a new function H(s) be composed of the LHP factors o f and H  (5) to be
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formed from the factors with RHP poles and zeros o f F/.v), F(s) may be factored into the 

form given in 3.27 b. Define a spectral factor Fsfs)  o f F(s) as in equation 3.28 where 

c > 0.

Fsf ( s)
n < z ,+ .sj
n < A + s )

(3.28)

The function F(s) may now be factored to get F  = F ^ F ^ w ith  Fsf ,  F ^  stable. This is 

called a spectral factorization o f F.

Consider the following function as an example: F (s ) This function may

be factored into F (s )  = —  ------- -— , therefore it has a spectral factor
( l - s ) ( l + s )

Fs f (s )
1+s

1 - s"

The discussion above may be summarized into a lemma:

Lemma 3: I f  a real rational function F  has the properties, F  = F, no zeros or poles in 

the imaginary axis, and F(0) > 0, then it has a spectral factorization.

3.4.2 Robust Performance Optimization

To synthesize the problem, the coprime factorization o f the plant is computed using 

the procedure outlined earlier in the solution of the robust stability problem. Substitution
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o f Sand T into inequality 3.26 b in terms of Q and the coprime factors o f P  yields 

inequality 3.29.

\WjM(Y~ NQ)\2 + \W2N (X  + M Q )f (3.29)

The problem now, as before, is to manipulate equation 3.29 to fit the formulation o f the 

model matching problem. Defining the following identities,

Py =WjMY S j = W2NX
R2 =W}MN S2 =-w2nm

(3.30)

substitution into 3.29 yields,

< !/, P-ii)
lloo '  ~

The inequality in 3.31 has two square terms in Q. To approximate the model matching 

formulation, equation 3.31 must now be manipulated so that a single inequality in Q 

appears. The general formulation o f the model matching problem is ||?1- P 0 L  < 1. Thus, 

we will start with a term of the form

M -pq|2< i (3.32)

and mathematically manipulate the inequality to have the form o f equation 3.31. 

Substituting A = U jU ]1 and B = U2U'3 into 3.32 yields
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\u -31U1-U'31U2q \2 < 1, V© (3.33)

Continuing the development then equation 3.33 is reorganized as

| U ; - M 2 < H  .Vco (3.34)

Substituting the right hand term in 3.34 by the algebraic summation o f with an 

arbitrary variable, as shown in 3.35, leads into the expression in equation 3.36.

\Ui -U 2Q\2 < y 2 - U4 Vco (3.35)

\Ui -U 2Q\2 + U4 < J/2 , Vcd (3.36)

So far the general form of the model matching problem may be transformed into the 

expression in equation 3.37.

\U !-U 2Q\2 + U4l < /  ,Vm (3.37)
lloo '

In order to make equation 3.31 be equivalent to equation 3.37 expand and equate the left 

half term of both 3.31 and 3.37. The result is expressed in equation 3.38 below,

(R 3-R 2Q )(R 1 -R 2Q )+ (S j -S 2Q X S j -S 2Q ) = ( U j - U .Q X U ^ U .Q ) ^  U4 (3.38)

By multiplying out factors and collecting terms in 3.38 the following equations result:

R2R2 + S2S2 — U2U2 (3.39)
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(3.40)

(3-41)

R2R1 + ^2^1 ~ ^2^1,

RjRj + SjSj = UjUj + Û ,.

These equations must hold in order for 3.38 to be true. Using equations 3.39 through 3.41 

the terms Ux, U2, U3, and U4 can be determined. So the final model matching problem 

then, from equation 3.33, is to find Q in (p satisfying:

(3.42)

The model matching problem variables fy and T2 are now equal to U'31U1 and U31U2, 

respectively. Recall that since Tj and T2 must be elements o f the set (p, Ux and U2 must 

also be members o f <p. t/3 is taken as the spectral factor o f (1/2 - U4) since the 

following expression must hold

However, U4 must have the property U4 = U4 and be real rational. Notice, that by 

letting U3 be a spectral factor, both T, and T2 are guaranteed to be stable and proper. It is 

necessary now to develop a procedure to find the functions Ux, U2, U3, and U4.

In order to determine the functions Ux and U2 equations 3.39 and 3.40 are used. Note 

that U2 could be determined directly from 3.39. U2 is the spectral factor o f the right hand 

term in 3.39, and therefore it will be stable and proper. Unfortunately, Ul which has a 

unique solution from equation 3.40 is not in <p due to the unstable roots o f the 

complemented U2 term. The alternative is to multiply the term U2 resulting from equation
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3.39 by an all-pass function K(s). Then, solve equation 3.40 for £/j in terms o f  F(s). The 

idea is to  make the zeros o f  F(s) equal to the unstable poles o f  the solution to  3.40 such 

that is in <p. The next example will help clarify these ideas:

Suppose that

X , W  -  S ,( s )  -  0
2 + s

R2M  S2(S ) -  I.
J+  s

N ow , from 3.39 and 3.40

77 / „ \TT )_  (>f2 — s)(* j2  +  s )  
^ (S )U 3 (S )- — 1 . S ) ( I + S )  ’

U2( s ) U j ( s )  = -------- -------- -.
2 1 ( J s ) ( 2 + s )

Clearly an d  U ](s )  =
1

( 2  + s ) ( y / 2 - s ) '

Thus, according to the procedure let

U2(s) =
\I~2 +  J 

J + s
V (s ) ,  then U1( s )  =

1
(2  + s) ( 4 2 - s)

V (s ) .

N o w  to  get U2 and £/, in <p let V ( s )  =
j 2 - s  

42 + 7
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Recall from 3.43 that U3 is the spectral factor o f (1/2 - U4). U4 is determined directly 

from 3.41. Following appropriate substitution for R x and 5, equation 3.44 is obtained.

4 WjWt + W2W2 (3.44)

The Ho,, Robust Performance Algorithm:

Given P, W b W2

i. Select W2 such that W2(p) < 1 and W} such that W{(z) < 1. Verify that the cross over frequency of 

1C, (/co) is much smaller than that of

ii. Compute Ua by equation 3.44 and check if ||C/4||00< 1/2. If so, continue. Otherwise the problem is not

solvable, (consult [5])

iii. Obtain a coprime factorization of P and compute /^> ^ b  $2 fr°m equation 3.30.

iv. Set F  = R2R2 + S2S2 and compute its spectral factor Fsj-.

R2R j + S-iS/
v. Select an all-pass function C(j ) such that 2 - — e <p.

V

R jR i + S 2Sivi. Set U ,=  z _— — V, V2 =FSfV -

vii. Compute the spectral factor of -  1/2 - I/4.

viii. Set Tj = V 3 U  j  and T2 =U'^U2- Compute y . If it is less than 1 continue. Otherwise robust

performance problem is not solvable.

ix Solve the model matching problem to find Q. If Q is not proper roll it off at high frequency while

keeping gamma optimum less than one.
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x. Set C =
X  + MQ  
Y -N Q  '

3.4.3 Sample Problem

Step i: Let the nominal plant be P (s )  = ------and
s+1

uncertainty weighting functions are:

suppose that the performance and

^ ( 5 ) = — , W2(S) =
s + 1

0.02 s  
0.01s+1

a

The term a  in W\(s) is a positive constant which will be used as design variable.

Step ii: U4 is computed from equation 3.44 and the weighting transfer functions shown 

above. The resulting U4 is

TJ ,  t 0.0004a2s2
U4(s )  = ---z--------------- 5-------------- 5---------------7

a 2 - (0 .0001a2 + 0.0004)s 2 + 0.0004s4

The infinity norm of U4 i computed for arbitrary values o f a. The outcome o f the iterations 

on a are tabulated in table 3.2.

a

50 0.444

54 0.476

56 0.491

57 0.500

Table 3.2 Infinity norm of U4
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According to  the defined procedure a  can take any positive value in the range 0 to 57  

since when a equals 57 the infinity norm o f  U4 is 0.5. a  is arbitrarily set to  57.

Step iii: The coprime factorization o f  the plant is obtained following the procedure 

outlined in section 3.2.1. Since the plant is open loop stable the coprime factors are 

selected a s N  =  P , M = l , X = 0 , Y = l .

From equation 3.30 the following variable transfer functions are determined:

a

(s+1)2 ’

S rfs)-
0 .02  s

( s + l ) ( 0 .0 1 s + 1)

Step  iv: Setting F  = R2R2 + S2S2 yields,

a 2 -(0.0001a2 + 0.0004)s 2 + O.OOOls'1 
(1 - s ) 2(1 + s ) 2(1 -0 .01s)( 1^ 0.01s)

with F . f ( s ) =  a  +  b s + 0 .0 2 s 2— -where b = (0 .0 0 0 1 a 2 + 0 .04a  + 0 .0004)^ 2 
J ( l + s ) 2( l+ 0 .0 1 s )

Step  v: Set V ( s )  =
a - h s + 0 .0 2 s 2 

a + b s +  0 .0 2 s2

r  r  + S  SStep  vi: Setting U j =  2  2  L V , U2 = F ^ V  yields
Fs f
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Ul (s )  = a 2 1-0.01s
(1+ s)(a+  bs+ 0.02s2 ) ’

U2(s) =
a-bs+  0.02 s2 

(1+ s )2 ( l  + O.Ols)

Step vii: U3 is obtained by computing the spectral factor of f/3 = 1/2 - f/4 The results 

are shown below.

2 1 / U3(s )  = °  + cs+ 0 02s where c = (-0.0007a2 + 0 .004a + 0.0004) ' 2
sf2(a  + bs+0.02s2 )

Step viii: The model matching variables 1\ and T2 are found in the following manner,

Tj( s)  = U'3 ( s )U j(s )  = j 2 a 2 1-0.01s
(1 + s)(a  + cs+ 0 .02 s2 )

T2( s)  = U31( s)U 2( s)  = 4~2
(a-bs+  0.02s2 )(a  + bs+ 0.02 s2 )

(1+ s )2 (1+ 0.01s)(a + cs+ 0.02s2 )

yopt is computed using the Matlab routine "gamopt.m" for selected values o f a  in order to 

make the robust performance test be satisfied, that is, to make yopt less than one. The 

outcome o f the iterations is shown in table 3.3.

a YoP,= W llo o  <1

36 0.938

37 0.956

38 0.974

39 0.993

40 1.012
Table 3.3 Robust performance test
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Step ix: The model matching problem is solved but Q is found not to be proper.

0.3317 s4 + 55.19 s3 + 2838s2 + 64215s + 61432 
s3 + 97.42 s2 + 3978s+ 62585

This Qjm must be rolled off. Since the relative degree o f the Qim is 1, set

S l +  1

It is determined after several iterations on x that a value o f x = 0.0009 yields 

l l ^ 2eiloo = 0.999.

Step x: By setting

C _ X + M Q  _ (0.3317 s4 + 55.19s3 + 2838s2 + 64215s + 61432) ( s + l )
Y -N Q  0.999s5 + 99.05s4 + 4117.02s3 + 67773.8s2 + 64908s + 1153

the controller transfer function is found and the design is terminated.



CHAPTER IV

A CASE STUDY: THE INVERTED PENDULUM

In this chapter a controller will be designed for the inverted pendulum control problem 

using the technique discussed in the previous chapter. A simulation o f the control

system will be performed with a program written for the Matlab simulation environment. 

The objective o f this case study is to provide a comprehensive example o f the SISO Hx

design procedure presented in chapter III and the related considerations and ideas 

introduced in chapter II.

4.1 System Modeling

4.1.1 The Inverted Pendulum Positioning System

There are some classical control problems that feedback control designers and 

particularly theoreticians have long sought use as case studies to test the features and 

effectiveness o f control techniques under research. A classical problem which has gained 

reputation in the control theory context because it is often adopted for such purposes is 

the inverted pendulum positioning system, sometimes referred to as a beam balancer. The 

inverted pendulum system consists o f a cart which has a stick mounted on a bearing at its 

top surface. See figure 4.1 for an illustration and table 4.1 for a description o f the system 

variables.

-84-
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Figure 4.1 Inverted Pendulum Positioning System

The inverted pendulum control problem is to maintain the beam balanced about an 

equilibrium position, typically the upright position or vertical. This system is naturally 

unstable, for the beam will most definitely fall in the absence of an external driving force 

that counteracts the effects o f gravity.

Moment of inertia of 
the pendulum -  J

Mass of the 
cart = M

Horizontal position 
of the cart = x

Mass of the 
pendulum = m

Dynamic Friction -  b f Actuator force = u

Acceleration 
o f gravity = g

Angular displacement 
o f the pendulum = 0

Table 4.1 Definition of variables

Under control action, an external driving force is applied to the cart to force it to 

move in either a forward or backward direction counteracting the gravitational pull and 

stabilizing the pendulum. Note that the problem naturally implies a regulator control



-86-

structure since there is no reference signal commanding the beam to position in a 

particular angular location. Instead, the system continuously measures its current angular

position and instructs the cart to react in a fashion that will maintain the beam vertical. 

Figure 4.2 illustrates the basic regulator structure which provides the context for this H x

design. This figure clearly identifies the input to the system as a command force «(/). The

output signal, however, may be any of the system's related variables depending on the 

control problem of interest of to the designer. The control techniques introduced in

chapter III apply exclusively to the single input-single output case. The inverted pendulum 

problem, on the other hand, has a single input/multi-output structure. Nevertheless, this 

case study will focus on the control o f a single output variable, 0(5), the angular deviation 

o f the beam from a vertical reference position, in order to illustrate the SISO control 

techniques o f chapter III.

Figure 4.2 Basic regulator structure

The fact that the system is open loop unstable makes it an appealing system for the 

study o f the robust stabilization ideas discussed in the earlier chapters. In order to restrict 

the problem complexity and concentrate on the robustness features o f the design, the 

motion o f the cart will be restrained to one axis. Dynamic friction will be asserted as a 

source o f model perturbation.
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4.1.2 Model Development

Figure 4.3 Force diagram of the cart

In figure 4.1 it is assumed that the cart is driven by some actuator that exerts a 

horizontal force u{t) at time t. The laws o f physics are applied to the system to derive 

mathematical equations that model the dynamics of motion o f the system. First, the free 

body diagram of the cart is examined as shown in figure 4.3. This figure reveals that the 

forces acting on the cart are the actuator force, the friction force, and the vertical and 

horizontal reaction forces on the hinge. Application of Newton's second law o f motion 

leads to the summation of all the forces in the horizontal axis yielding equation 4.1.

M x = u - bfx - N x (4.1)
M x + bfx = u - N x

Similarly, a free body diagram of the pendulum, illustrated in figure 4.4, indicates that 

forces affecting the motion of the pendulum are a component o f the centripetal and the 

centrifugal accelerations, the reaction forces on the hinge, and the gravitational pull.



-88-

/9 = Centrifugal acceleration 

0 = Angular acceleration

Figure 4.4 Force diagram of the pendulum

The equations o f motion o f the pendulum are derived by summing the forces in the 

horizontal axis and by summing the torques about the center o f mass o f the pendulum. In 

addition, the summation o f the forces in the direction perpendicular to the pendulum will 

be used in the derivation o f the model. The results are given by equations 4.2, 4.3, and 

4.4 respectively.

= mx
mx = N x - mlQ2siriQ - mlQcosQ (4.2)

mx + mlQ sinQ - mlQcosQ = N x

X T  = JQ

JQ = NylsinQ - N xlco&
(4.3)

N xlcosQ - N ylsinQ + mglsinQ = mlxcosQ + m l2Q (4.4)
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By combining equation 4.1 and 4.2 equation 4.5 is derived. Then, solving for

N xlcosQ - NylsinQ in equation 4.4 and substituting into the right hand side o f 4.3 yields

equation 4.6. The following set o f nonlinear equations completely describe the dynamics 

o f the pendulum.

J6 = -ml ( xco&  + Z0 - gsinQ)  (4.5)

u = ( M  + m )x + bfx + ml ( Q2sinQ - 0cew0 )  (4.6)

The principal objective o f the inverted pendulum problem is to stabilize the beam 

about the upright position. The angular deviation of the pendulum will be measured from 

this position and a value o f zero radians will be assigned to this angular location. Thus, 

the operating point o f the system corresponds to an angular location o f zero radians. 

Having defined the operating point, the next step is to linearize the equations o f motion of 

the pendulum about the given operating point. The procedure used is standard and is 

drawn from Dorf [3], First, manipulate 4.5 to the form:

0 = xco50 + 1'gsirti, where I' = — . (4.7)
J + m r

Let 0O = 0 rads be the equilibrium point. To linearize equation 4.7 about 0 apply 

Taylor's series expansion taking only the first order terms. The results are presented below 

with the linearized equivalent of 4.5 being 4.10.

0 =  -l'xcosQ n -
d  I' xcosQ

dd
. ( ^ ) +rgs ^  + d- ^

e=en dQ e=e.
. ( 0 - 0 o) (4.8)
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(4.9)

Thus,

0 = - 1' xcos§0 + /' xsinQo • 0 + 1' gsinQo + /' gcosQo • 0 
0= - l 'x +  I'gQ

(4.10)

Similarly, the linearized equivalent o f 4.6 is given by equation 4.11

u = (M  + m )x + bfx + zw/0 (4.11)

Hence, the linearized set o f equations that model the dynamics o f the inverted pendulum 

are given by 4.10 and 4.11.

To gain a better understanding of the system and facilitate the analysis and simulation, 

the equations of motion o f the system will be posed in a vector matrix format. That is, a 

state space representation o f the system will be developed. Recall that dynamic friction 

will be asserted as perturbation o f the system model. Thus, two state space models as 

described by 4.12 will be obtained. The first equation, 4 .12a denotes the perturbed 

model, that is, the model with friction, and the second one 4 .12Z> denotes the nominal 

model1.

t) = ApK( t) + Bpz( t) 

k(t) = Afk(t) + B„z(t) 1(0) = K

(4.12 a)

(4.12 b)

'Here X is the state vector and z is the vector of input signals. Notice that in this case z is composed of a 
single input signal: the horizontal actuator's force u(t).
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^■2(0 x(0
X3(() 0(0
X4(()_ 0(0

The dynamics of the system then are described by the state variables: the cart's position 

and velocity, x(t) and x ( t) ,  and the pendulum's angular position and velocity, t )  and 

Q (t). These define the state vector as expressed in 4.13. The perturbed plant model is 

derived by substitution o f the corresponding state variables into the equations o f motion 

4.10 and 4.11. Solving for the state derivatives yields,

X ifO  -  ^ 2 ^ 0 (4.14 a)

= + d * ^ y ( t)  + e* u (t) (4.14 b)

t )  = K4( t ) (4.14 c)

“k 4( t )  = b * k 2( t )  + C .X jfO  + f  *u(t) (4.14 d)

The set o f equations expressed in 4.14 define the perturbed model plant matrix Ap which is 

given by 4.15.

0 1 0  0 
0 a  d  0 
0 0 0 1 
0 b c 0

(4.15)

where a, b, c, and d  are defined by 4.16 and b f  denotes the coefficient o f friction.
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1---------
M  + m

_________I'ml_________
(  M + m )[(M  + m )~rm l]

(4.16 a)

b = b f
r

( M  + m )- l ' ml

(M + m )l 'g  
C ( M + m ) - l 'm l

d  _ I'mlg  
(  M + m ) - l 'm l

(4.16 b)

(4.16 c)

(4.16 d)

Similarly, the perturbed system's input matrix Bp corresponds to

(4.17)

where e and f  are given by

J _________I'ml_________
M  + m ( M + m)[( M  + m )-l'm l]

f  = -------- -----------
( M  + m ) - l 'm l

(4.18 a)

(4.18 b)

The nominal model of the inverted pendulum is readily developed by equating the 

friction coefficient b f  to zero. It is evident from 4.16 that the a  and b terms become zero 

under this assignment. However, the remaining terms are unaltered and are therefore
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identical to the corresponding parameters of the perturbed model. The nominal plant 

matrix A n becomes:

0 1 0  0 
0 0 d  0 
0 0 0 1 
0 0 c 0

(4.19)

and the nominal system input matrix Bn is identical to the perturbed system input matrix

Bn = [5,] (4.20)

The state space model of 4.12 and the four element state vector o f 4.13 can be 

partitioned into subsystems by defining a new two element state vector as shown in 4.21 

and 4.22. Note that each component of the new state vector in 4.22 is composed of a two 

element vector itself.

Carf ssubsystem "kc( t )  = Al l 'kc(t)+  At2^ p ( t )+ BtIz ( t )

Pendulurri s  subsystem ‘k p( t)=  A2i'kc( t )  + A22k p( t )+ B2lz ( t )
(4.21)

(4.22)Where A =
^12

, B  =
X '

and Xc =
X

, A, =
0"

.^21 ^22. B,2. _KP . X e

It is worth noting that the cart subsystem in 4.21 may not be considered a decoupled 

system. For both the nominal and the perturbed plant terms b and/or d  in the system 

matrix couple the subsystem together. Note however that if M »  m, or alternatively, as
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m approaches zero, the term d  becomes very small, until the point where the nominal cart 

subsystem can be considered decoupled. This argument is obvious, since the larger the 

mass of the cart as compared to the mass of the stick, the less effect the stick will have 

on the motion of the system. The system's physical parameters will be selected to reflect 

this condition. The pendulum subsystem in 4.21 on the other hand, may be considered 

decoupled for the nominal plant since the submatrix A21 = 0.

The models developed above will be used mainly for simulation purposes. It was 

mentioned in the previous section that the design technique presented in the preceding 

chapter has been developed for SISO systems represented by the transfer function models. 

Thus, in order to carry out the design procedure as outlined in chapter III, a transfer 

function model will be computed next. According to the theory of linear system analysis 

the transfer function matrix o f a system in state space may be determined from equation 

4.23 [1], [2] as.

H (s )  = C (s I - A ) ']B  (4.23)
where A, B, and C are the matrices o f  the 
state space model.

The system's output matrix C must be determined before H(s) can be developed. By 

careful selection o f C, the desired output signal may be obtained as a linear combination 

of all possible states o f the system as defined in 4.13 . In this particular case, the system 

objective is to control the angular position. Therefore, the state = 0 is the 

corresponding output signal of interest and the C matrix is accordingly selected as:

C  = [ 0  0 J 0] (4.24)
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The transfer function of the perturbed plant model then is expressed as , 

ebs + f ( s - a ) sHp(s) = (4.25)
s4 - a ^  -cs2 -(b d -a c )s

For the nominal transfer function model o f the system, bf=  0 forces substitution of 

a = b -  0 in 4.25 to obtain 4.26.

f i 2
H„(s) = (4.26)

s4 -cs2

Note that whether the transfer functions above model the perturbed or the nominal case, 

they both relate the input signal of the system (i.e. the actuator force) to the output signal 

o f the system (i.e. the angular displacement o f the pendulum).

Before engaging in the design procedure, the physical parameters o f the system will 

be selected. The actual parameter values for this study have been obtained from Hoffman 

[16], Hoffman presented a state variable feedback solution with optimal estimation to the 

stabilization problem of the inverted pendulum. Table 4.2 presents a list o f these 

parameters and table 4.3 displays the corresponding values o f the coefficients o f 4.14.

Mass of the cart = 1 Kg

Mass of the pendulum = 0.15 Kg

Length o f the pendulum = 1 m

Gravitational acceleration = 9.81 m/s2

Moment o f Inertia = 0.2 Kg-m2

Table 4.2 System parameters for the inverted pendulum
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In addition, it will be assumed that the coefficient o f dynamic friction has been found 

to vary between two extremas. Therefore, the coefficient o f friction will be arbitrarily 

modeled by a set o f the form b f  e \bfmin,b f ^ ]  K g / s .  With the parameters given in 

table 4.3 the numerical values o f the coefficients o f the transfer function models o f the 

system are computed. The resulting values are displayed in the transfer functions o f 

equations 4.27 and 4.28.

_____________ -0.3947 s_____________
s3 + 0.9217 .b fs 2 -4.4532 s - 3 .8724 .b f

(4.27)

Hn(s )  =
^n(s)

-0.3947 
s2 -4.4532

(4.28)

Note that 4.27 is left in terms o f the coefficient o f friction. Furthermore, both perturbed 

and nominal models have an unstable pole at s  = 2.1, thus, confirming the aforementioned 

instability o f the system. It is worth reiterating that the robust design technique will be 

employed in this case study to account for unmodeled dynamic effects introduced by
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friction . For the inverted pendulum problem, it is evident by comparizon o f 4.27 with 

4.28 that the presence o f friction in the system perturbs the second order model o f 4.28 

into the higher order model o f 4.27 through the addition o f both a pole and a zero. Figure 

4.5 shows the frequency response o f the nominal model and the perturbed model with 

coefficients o f friction o f 1 and 10 Kg/s. This figure reveals that the addition o f friction 

perturbs the low frequency components of the nominal model. The larger the value o f b f  

the more severe the perturbation and the larger the range o f frequencies affected. In the 

final analysis, b f  will be restricted to the set b f  e [0.5,2] with a nominal value o f one.

Rad/s
Solid: b f=  0, Dotted: b f=  0.5, Dashed: b f= l,  

Dashed-dot: bf=2. Dashed-dot-dot: b f  =3
Figure 4.5 Frequency response of Hfjai) and



4.2 Heo Controller Design

The control structure which will be utilized to stabilize the inverted pendulum is the 

regulator structure introduced in the previous section and shown in figure 4.2. Since the 

control objective for this problem is one of robust stabilization, the design algorithm that 

will be use is the one outlined in section 3.3, "Optimal and Sub optimal Robust 

Stabilization". This algorithm is repeated below.

The Hgo Robust Stability Algorithm

Given the nominal plant P  and the uncertainty weighting W2, the procedure for the design 

o f a robust stabilizer controller is as follows:

i. Select W2 such that W2(p) <1 where p  are poles of P in RHP.

N
ii. Form a coprime factorization of P such that P  — — , N ,  M  e  (p, and N X  + M Y  =  1

M

iii. Solve the model matching problem with T, = WJIX  and T2 = -W2 NM.

iv. Denote the solution of the previous step Qlm and let yuif = y (the minimum model matching error).

Then 8 = 1/ y„..sup • opt

v. Choose an arbitrary number 5 £ 6 . Set J ( s )  = ----- — ------  with k large enough to make QlmJ
(ST + 1)K

proper and r  small enough that ^ ff^ N fX  + M Q )^  < 7 /8  

X + M Q
vi. Set Q = Q J  and find C  = -------------.

-98-
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The Hoo Robust Stability Solution

Step i: Using transfer functions o f equations 4.27 and 4.28 the first step in the design 

procedure can be taken. That is, to find the uncertainty profile transfer function W2.

\W2(jto)\ > H p (jn ) {
Vco. (4.29)

Solid: b f  = 0.5, Dotted: b f=  1, Dashed: b f=  2, 
Dashed-dot: bf=  3, Dashed-dot-dot: b f  = 5

Figure 4.6 Magnitude response of
H p (ja>)

A multiplicative perturbation model will be pursued. It follows from equation 2.14 that in 

order for the inequality in 4.29 to be satisfied, the weighting transfer function W2 must 

have a magnitude response greater or equal to the curves shown in figure 4.6 for the 

corresponding coefficients o f friction. After several design iterations it was empirically 

determined that better results are obtained by allowing the magnitude of the uncertainty
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weighting transfer function to increase with frequency. An explanation for this statement 

conclusion will be given latter when the computation of the parameters o f the control

solution is discussed. However, according to the restriction of W2(s) that preceded from 

analysis of section 2.3.4, the magnitude of the weighting transfer function must be less 

than one at the RHP pole o f the plant. As a result, W2 will be allowed to increase with 

frequency after 10 rad/s, but will be maintained below 1 in the vicinity of 2 rad/s, the RHP 

pole o f the plant. Equation 4.30 defines the mathematical expression for the uncertainty 

profile transfer function selected. Figure 4.7 illustrates the magnitude response o f the 

Bode plot of

W2(s) = 0.02-f
( s + 10 ) 2 

(s+ 2 )
(4.30)

Figure 4.7 Frequency response of uncertainty weights

Consider figure 4.7. It is evident that as b f  increases the robust stabilization problem 

becomes more difficult to solve. This is a consequence of the fact that W2 must be less
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than one at 2.1 rads/sec, but for increasing b f  the requirement o f 4.29 forces W2 to be 

close to one at this frequency. In addition, it is clear from the graph that the defined 

weighting transfer function W2 in this case will yield a robust stabilizer only for the plant 

perturbed by a coefficient o f friction of three or less. For larger magnitudes o f b f  the 

characterization o f W2 becomes more difficult.

Step ii: A coprime factorization o f the nominal plant is now sought. According to the 

procedure outlined at the beginning o f this section, let G{s) be the nominal plant transfer 

function found in 4.28. That is,

and substitute s =

G (s )= H n(s )
u„(s)

-0.3947 
s2 -4.4532

(4.31)

7 -1
1

into 4.31 to get 4.32.

G (s) =
0.3947 I 2 

3.45321? + 2 k - 1
(4-32)

Using Euclid's algorithm with the polynomials o f X expressed by equation 4.33 as inputs, 

yields the functions x(X), and >’(1) in 4.34.

n (k )  = 0.3947 k2

m (k ) = 3.4532k2 + 2k - 1
(4.33)

x (k ) = 17.5k+ 18.883 
y (k )  = - 2 k - l

(4-34)
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x(X) and _y(^) satisfy the requirement that nx + my =1. The coprime factors are obtained 

by substituting the inverse transformation X = l j( s+  7) into 4.33 and 4.34 and are 

expressed by equations 4.35 and 4.36 respectively. Notice that all four transfer functions 

are members o f the set <p as expected. Equally important is the fact that the condition 

7VX + ATT =7 holds.

N(s)
0.3947
(s+ 1 )2 ’

M (s)
-(s2 -4.4532) 

(s+ 1 )2

X ( s )
18 .88(s+ 1.92 ) 

s+1
Y(s) =

-(s+ 3 )  
s + 1

(4.35)

(4.36)

Step iii: The algorithm now dictates that the model matching problem variables Tj and T2 

be computed. The calculations are included below:

Trfs) = W2N X  = 18l x  IO'3
(s+ 1.92)(s+  10)2 

(s+ 1 )3 (s+  2)
0 .3 7 )

T2( s)  = -W2N M  = 9.473̂ < s! -4-45}2/ S+10>1
( s +1)4( s + 2)

(4.38)

The solution o f the model matching problem is computed for Tj and T2 given above.

Step iv: The minimum model matching error yopt, is computed through execution o f the 

MATLAB routine "gamopt.m" included in appendix C and is found to be 0.868. Recall 

from section 3.3.1 that the inverse o f yopt is the maximum robust stability margin. Thus,



-103-

for the given weighting transfer function, the maximum obtainable robust stability margin 

is 1.152. Contrary to the classical gain and phase margins, the robust stability margin has 

no direct relationship to the performance o f the closed loop control system. It does, 

however, provide a measure o f the tolerance of the system to the perturbations in 

question. The larger the robust stability margin is, the smaller the infinity norm of JF2T . 

Consequently, the stability o f the closed system is less affected by perturbations.

Note that the transfer function T2 in 4.38 has only one zero in the RHP at the same 

location as the unstable pole of the inverted pendulum system. The solution of model 

matching problem (i.e the parameter Q ) in the particular case when T2 has only one RHP 

zero is obtained from equation 3.11 with yopt as found above and G(s) = 1 (the proof is 

in appendix B). Equation 4.39 illustrates this fact.

& , -  ,4.39)
h

It is interesting to note that all o f the coprime factors in 4.35 and 4.36 except X(s) 

have relative degrees2 of zero. X(s), on the other hand, is strictly proper with a relative 

degree o f 2. It was mentioned earlier that better results were obtained by allowing the 

magnitude o f W2 to increase with frequency. This implies that JF2 be improper. Had W2 

been chosen strictly proper o f relative degree 1, or proper of relative degree 0, the 

parameter Q would have been improper of relative degree 1 or 2 respectively. Thus, the 

filter J(s) mentioned in the procedure in section 3.3.1 would have to be used to roll off

2 The relative degree of a rational transfer function is equal to the difference: 
{ | order of denominator - order of numerator | }.
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the resulting improper Q at high frequency to enforce JQ(s) to be proper. It was 

empirically determined, after some iterations, that the higher the order of the filter J(s) the 

more difficult it became to obtain optimal or close to optimal stability margins. In fact, it is 

noted that nearly optimal solutions could be achieved the lower the order o f the filter J(s). 

By letting W2 be improper and of relative degree 2, the same as X (s \  proper Q's could be 

obtained directly without the need for a roll off filter. Furthermore, selection of an 

improper W2 o f relative degree 1 would require J(s) to be only o f first order. It appears 

that the requirement for the filter J(s) and the restrictions on its form can be significantly 

impacted by the selection o f fV2(s). Thus, several solutions to the model matching 

problem can be developed for the same robust stability problem.

In this case, W2 is selected to be improper and of relative degree 1. Thus, the model 

matching solution corresponding to the given T, and T2 (equations 4.37 and 4.38) yields 

an improper Q o f relative degree 1 which is expressed below in equation 4.40

Qim( s) (4.40)

Step v: A proper Q is now obtained by rolling off Qim with the filter J(s) shown in 4.41. 

The resulting proper Q is given by 4.42. The filter J(s) has been successfully selected such 

that the subsequent robust stabilizer is optimal.

J  = I
( l x l 0 '3s+ l)

(4.41)
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Step vi:

Q = Q im (s)J(s) ■90.26
(s+  J)(s+ J.92)[(s+ 2 .5 )2 + 1.8: 

(s+ 1 0 )2(s  + 2 .1 ) ( lx l0 '3s + l )
(4.42)

The corresponding controller/compensator is found directly by substitution o f Q, X, Y, 

M, N  into equation 3.16. The mathematical expression o f this controller is given by 

equations 4.43.

C (s) = 90.28
s5 + 7.1 Is4 + 19.6s3 + 26.1s2 + 16.86s -4.23  

-0.001s5 -1.025s4 + 10.306s3 + 36.65s2 + 37.65s +11.18 ’
(4.43 a)

or in polar form:

C (s) = -90276.88
(s  + 2 .1 ) ( s + 2 )(s+ . 78 s  + l . l ) 2 + 0.2152] 

(s+ 0 .5 1 9 )(s-1 2 .8 9 )(s  + 1035.033) \(  s  + 1.22) 2 + 0 .342 ]
(4.43 b)

This is a rather complex and unusually high ordered compensator compared to the 

usual phase lead/lag compensators achieved by more classical SISO frequency domain 

methods. The controller itself is unstable since its transfer function has a pole in the RHP 

at s = 12.89. Nevertheless, the close loop transfer function of the system is stable. The 

closed loop transfer function is given by 4.44.

PC 35632.29(s + 0.785)( s + 2 )[ (  s + l . l ) 2 + 0.2152 ]
1 + PC (s+ 1 0 )2(s  + 1000)(s+ 0.633) [ ( s  +1.18) 2 + 0.322 ]

(4.44)
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Since this transfer function is analytic in the RHP the inverted pendulum system will be 

stabilized under feedback action with the compensator given by equation 4.43. The fact 

that the controller is unstable has no significant implications in this particular problem 

since the open loop plant itself is unstable.

Figure 4.8 illustrates the robust stability test for this controller. Notice that the value 

o f y achieved is 0.86. Therefore, the controller may be consider optimal under the 

definition expressed by equation 3.1. The controller design is now completed.

Rads/sec

Solid: Graph o f  IV2T for controller in equation 4.43 
Figure 4.8 Robust stability test
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4.3 SIMULATION AND RESULTS

The robust stability test shown in figure 4.8 indicates that the system can be balanced 

and stabilized by the feedback controllers o f equations 4.43. In this section the 

simulations o f the inverted pendulum positioning system will be discussed for the 

controller designed in section 4.2. The objective o f the simulation is to investigate the 

behavior o f the system under the stipulated control action. The results o f the simulation 

will demonstrate that the system performs satisfactorily in the presence o f plant 

perturbations.

In order to simulate the inverted pendulum feedback system response, separate state 

space models will be used, one for the plant and one for the controller o f equation 4.43. 

This approach was taken in order to maintain the integrity of the state variables o f the 

plant since the plant models discussed in sections 4.1 are o f a lower order than the 

controller designed in section 4.2. An illustration o f the configuration used for simulation 

is given in figure 4.9. Recall that the state variables o f the inverted pendulum system 

were defined in 4.13. These variables are the cart's position and velocity, and the 

pendulum's angular position and velocity. If the controller and the plant are integrated 

into a single block structure, a new undefined state vector will be inherently formed by the 

new integrated model whose states are not easily traced back to the plant's states. Thus, 

cascading the controller with the plant, but maintaining their simulations separate, 

provides a mechanism which maintains the state vector of the plant intact. The simulation 

is accomplished by a computer program written in MATLAB. The name of the program 

is "simulate.m" and a copy has been included in appendix C. This program implements a 

recursive solution o f the discretized versions of the state space models that describe the 

behavior o f the system in figure 4.9 for a specified interval o f time.
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Figure 4.9 Feedback system in state space form

The simulation will be performed for two sets of plants. These plants will be denoted: 

(i) the nominal reduced state plant and (ii) the perturbed fu ll state plant. The nominal 

reduced state plant is the state space equivalent of the nominal system used for design3. 

The controller will be tested first with this model since this was the model used for design 

Notice that the nominal reduced state plant is only a second order system while the 

controller is o f higher order as was previously mentioned. The system matrices o f the 

nominal reduced state model are shown below.

II

1 
1

4.4532'

0
> ^12 ~

1 
1

L 
J

(4.45)
C  =  [ 0  -0.3947], £ > = [ 0 ]

3The state space equivalent of the system described by the transfer function expressed by equation 4.31.
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The perturbed full state plant was derived in section 4.1.2. and was expressed in 

section 4.1 by equations 4.15 and 4.18. The system matrices for this model are also 

included here and are detailed in 4.46. The remainder o f the simulations will be done with 

the perturbed full state plant to test the performance o f the controller under perturbed 

conditions.

'0 1 0 O' 0
0 -0.921 l* b f -.5809 0 0.9211
0 0 0 I 0
0 0.3947*bf 4.4532 0 -0.3947

(4.46)

C = [0 0 I  0], D =[0]

The simulations are grouped into seven distinct cases. Each case contains particular 

initial conditions and coefficients o f friction. These cases are tabulated in table 4.4.

Initial Conditions

Case
Angular
Position

(rarf)

Angular
Velocity
(ratl/s)

Coefficient 
of Friction 

b f  (kg/s)

I 0.5 0.1 0

II 1 0.1 0

III 0.5 0.1 1

IV 1 0.1 1

V 0.5 0.1 2

VI 1 0.1 2

VII 0.5 0.1 5

The cart's initial position and velocity equal 0 for all cases 
Table 4.4 Simulation Cases
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Consider the inverted pendulum in figure 4.1 with the initial conditions for case I and 

case II in table 4.4. The result of the simulation for case I is illustrated in figure 4.10 and 

4.11, and that for case II in figure 4.12. Both cases I and II in table 4.4 have been 

simulated with the nominal reduced state plant.

0 05  1 15 2 0 05  1 15  2

Nominal Reduced State Model 
Figure 4.10 Simulation case I

In case I the pendulum's initial angular position has been set to 0.5 rad which is 

approximately 28.6 degrees and the pendulum's initial angular velocity has been set to 0.1 

rads/sec. These seem to be reasonable initial conditions and the system is expected to 

balance the pendulum with little trouble. The left figure in 4.10 shows the angular 

displacement of the pendulum. The response reveals that the pendulum's angular 

position is indeed stabilized about the 0 radian operating point in shortly less than two 

seconds. In general, the response of the pendulum's angular position is slightly
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underdamped, but quite swift. The speed of the response is the combined effect o f the 

two closed loop poles at s = -10 and the slower poles at .s = -0.633 and the complex 

poles at 5 = -1 .18  ± jO. 32. The pole at s = -1000 is extremely fast and its contribution to 

the system's response is overshadowed by the more dominant and slower poles. In 

addition, the angular velocity o f the pendulum is somewhat underdamped, however, it 

does reach a rather large overshoot which should be o f concern had the system been 

expected to perform in an actual physical setup.

Since the response o f the angular velocity cannot be resolved for times in the interval 

[0, 0.15] seconds, the response has been repeated for this time interval and it is shown in 

figure 4.11.

Nominal Reduced State Model 
Figure 4.11 Zoom of angular velocity response (case I)

The pendulum's angular velocity starts at 0.1 rads/sec and rapidly increases to roughly -17 

rads/sec in about 0.01 seconds. At this instant o f time the pendulum passes by the 

equilibrium point with a rather large angular velocity. The pendulum continues to rotate in
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this direction until it reaches - 0.25 rads or roughly -14.5 degrees. At this moment the 

angular velocity o f the pendulum momentarily becomes 0 radians/sec as the pendulum 

begins to travel in the opposite direction. The pendulum passes by the equilibrium point 

once again at 0.45 seconds but with a much slower velocity than the first time. This 

behavior continues until the beam is finally positioned at 0 radians in about 2 seconds.

Angular Position

0 0.5 1 1.5 2 0 0.5 1 1.5 2

Nominal Reduced State Model 
Figure 4.12: Simulation case II

The outcome of the simulation for the second case is shown in figure 4.12. In this case 

the pendulum's initial angular position has been set to 1 radian which is approximately 57.3 

degrees and the pendulum's initial angular velocity has been set to 0.1 rads/sec. The 

inverted pendulum system has been conceptually structured to operate within the angular 

range [tt/2,-tc/2] radians. In this case the pendulum is being initially positioned at more 

than half the angular distance away from the equilibrium position. Thus, in this respect
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this case portrays a somewhat worst scenario than the first case. Nevertheless, the 

controller is successful once again in regulating the pendulum to its equilibrium point in a 

stable fashion. The dynamics of the system are very similar to case I with the difference 

that the magnitudes of the response of the system are proportionally increased. This is 

expected since the plant model in this case is linear.

Consider again the pendulum system of figure 4.1 and the initial conditions for cases 

III and IV in table 4.4. Both of these cases have been simulated with the perturbed full 

state model with a corresponding coefficient of friction o f 1 Kg/s. Recall from section 4.1 

that the variation in the coefficient of friction o f the system was restricted to the range 

[0.5,2] with a nominal value o f b f~  1. Thus, cases III and IV test the performance o f the 

system perturbed by the nominal value o f dynamic friction b f  as defined in section 4 .1.

Figures 4.13 and 4 .14 illustrate the results o f the simulation for the third and fourth 

cases respectively. A first glance at these figures reveals the success o f the controller in 

balancing the beam for both scenarios. The dynamics of the pendulum's angular 

displacement and velocity are very similar to the nominal cases. This similarity in the 

behavior o f these variables suggests that the earlier assumption that the pendulum 

subsystem is naturally decoupled is sound. There are no major differences in the behavior 

o f the angular position and velocity between cases I, II and III, IV except that the settling 

time in the latter cases is marginally increased. Additional insight into the behavior o f the 

whole system is gained due to the available information about the cart's position and 

velocity. From figure 4.13 it is evident that the cart's position increases rather rapidly until 

the pendulum reverses its direction and then decreases to settle around 0.9 meters. The 

fact that the position does not return to zero may be attributed to the possible interaction 

between the system variables. Although, the physical parameters o f the system were
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Figure 4.13 Simulation case III
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Figure 4.14 Simulation case IV
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selected to reduce the effects of coupling between the system variables, the cart submatrix 

A12 is not quite equal to zero. Therefore, the position o f the cart is somewhat coupled to 

the pendulum's state variables. In addition, it is observed that as the initial angular position 

o f the pendulum is strectched the cart's final position is increased. In case IV it appears as 

if the cart's position continues to decrease slowly and as if the cart's velocity is zero after 3 

seconds, when in fact, it is small but not identically zero. The velocity o f the cart actually 

decays in an oscillatory manner within a very small dynamic range. This makes the cart to 

slowly oscillate until it eventually settles. The details are not included due to the 

significant amount o f time required to run a simulation of only a few seconds for this 

plant. Again, the only significant differences between case III and IV are the magnitudes 

o f the responses.

Consider now the next two cases in table 4.4: cases V and VI. These cases represent 

the system under extreme perturbation, since the value o f the dynamic friction term is at 

the allowable maximum. Figures 4.15 and 4.16 display the results o f the simulation.

Again, the pendulum is suitably regulated for both cases, however, the settling time has 

increased compared to the previous cases. The beam reaches equilibrium at about 2.5 

seconds.

An interesting observation is that the settling time has increased with increasing 

coefficient o f friction. It appears that the significant differences between the nominal cases 

and the perturbed cases occur as the pendulum angle slows approaching equilibrium. 

Perhaps this effect may be attributed to the fact that the presence o f friction in the system 

primarily affects the low frequency components o f the plant. Nevertheless, the general 

dynamics o f the system are not significantly affected.



-117-

0 0.5 1 1.5 2 2.5 3

Angular Velocity

0 0.5 1 1 5 2 2.5 3

Perturbed Full State Model
Figure 4.15 Simulation case V
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Angular Velocity
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Perturbed Full State Model
Figure 4.16 Simulation case VI
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Perturbed Full State Model
Figure 4.17 Simulation case VII
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Although large overshoots of the cart's velocity and the pendulum's angular velocity 

might be o f concern if this system was to implemented physically, the control objective of 

the system has been achieved for both nominal and perturbed conditions. Since the 

specifications o f the inverted pendulum system have been accomplished by the controller 

designed in section 4.2 and the procedure has been succesfully illustrated, the case study 

serves its purpose thus far. Nonetheless, it would interesting to see how the system 

behaves as the coefficient of friction is increased. Consider case VII where the coefficient 

o f friction is equal to 5 Kg/second. Figure 4 .17 illustrates the result o f this simulation. 

Significant changes have occurred in the dynamics o f the plant by the introduction o f this 

rather large coefficient o f friction. It was asserted previously (section 4.2) that the plant 

was guaranteed to be stable for perturbed plants with friction coefficients up to 3 kg/sec. 

This characteristic is not guaranteed, although it may be the case for higher values o f bf. 

Note in this case that the magnitude of the angle appears to be decreasing, but the 

response is characterized by significant oscillations. This suggests that the system is close 

to the stability boundary. It could be expected that the system will be driven into instability 

by higher coefficients of friction. Thus the system is robustly stable with respect to 

parameter uncertainty albeit in a restricted sense.

It was argued in earlier chapters that most modern control design techniques do not 

address the issue o f uncertainty and perturbations in the model of the plant and 

throughout the design process. One of the most common modern design techniques used 

in recent years is the state variable feedback approach. It proves interesting to pursue a 

simple SVF controller for the inverted pendulum in order to test its effectiveness in dealing 

with the perturbations introduced by the dynamic friction in the system. Consider a state 

variable feedback solution to the inverted pendulum system. Figure 4.18 illustrates the



-121-

structure of the state feedback controller where K is the state feedback gain matrix, and 

A, B, C are the state space system's matrices. Hoffman [16] designed such a controller 

using the nominal model presented in section 4.1 and expressed by equations 4.20 a  and b. 

The solution that Hoffman [16] presented yields four closed loop poles at the point (-1,0) 

in the s-plane. Hoffman's work was involved with the investigation o f optimal estimation 

and Kalman filtering. His desicion to place the closed loop poles at (-1,0) was merely for 

investigative purposes, to study the stabilization o f the inverted pendulum in the presence 

o f measurement noise and the estimation problem. Nevertheless, his results will be 

replicated here.

Figure 4.18 State variable feedback Structure

In order to compare the performance of the controller designed in section 4.2 with 

the state variable feedback solution of Hoffman, the system will be simulated with the 

initial conditions o f case I in table 4.4. In addition, the inverted pendulum will be tested for 

both the nominal and the perturbed models with several coefficients o f friction. The 

effect of additional closed loop pole locations will be investigated. The state variable 

feedback simulations performed on the nominal model are tabulated in table 4.5. The 

objective o f these simulations is two fold. Firstly, to examine the general performance of 

the state variable feedback solution, and secondly, to study the response o f the system as 

the closed loop poles are moved farther away from the jco-axis.
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Poles at Gain M atrix Figure #

( - to ) K =-l*[0.26 1.033 27.082 12.54] 4.19

(-3,0) K=-l*[20.14 27.11 192.6 93.4] 4.20

(-5,0) K = -l*  [157.8 126.96 755.4 346.7] 4.21

(-7,0) K=-l*[610.2 350.1 2174.2 887.6] 4.22
bf= O  Kg/s (Nominal Plant)

Table 4.5 State Variable Feedback Simulations

Figure 4.19 below illustrates the results o f the simulation for the a case with coefficient 

o f friction equal to zero, that is the nominal plant, and the poles located on the real axis at 

s=-J.
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0 2

0

- 0 2
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-0 2

-0.4

-0 6

-0 8

Nominal Full State Model with b f= 0  Kg/s
Figure 4.19 State Variable Feedback Solution (nominal Plant)
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The performance o f the system is satisfactory since the pendulum is indeed balanced. The 

overall dynamics o f the system, however, is slower than for the controller cases since 

the closed loop poles are so close to the jco-axis. The beam reaches the equilibrium

position in roughly 13 seconds. The overshoots o f the cart's and the pendulum's angular 

velocity are more reasonable when compared to the cases.

Figures 4.20 to 4.22 display the results of the simulation for nominal systems with 

closed loop (c. 1.) poles located at points 5 = -3, -5 and -7 on the real axis respectively.

As the c. 1. poles move away from the imaginary axis, the system settling time improves

significantly, as expected. In fact, for the last two cases in table 4.5 the system's dynamic 

response is comparable to the cases with respesct to the settling time. The overshoot

o f all the responses, however, are significantly increased as the closed loop poles are 

placed farther away from the jco-axis.

Nominal Full State Model with b f= 0  Kg/s
Figure 4.20 State Variable Feedback Solution (Nominal Plant)
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In particular, figures 4.21 and 4.22 reveal that as the response becomes faster as a 

consequence o f placing the c.l. poles farther away from the origin, the overshoot o f the 

angular position response approaches the physical angular boundary. Recall that the 

inverted pendulum system is conceptually confined to a physical angular range o f [90, -90] 

degrees or approximately [1.57, -1.57] rads. For the case when the c. 1. poles are placed at 

s = -5 (figure 4.21) the pendulum starts at 5 = 0.5 rads and quickly overshoots to - 0.6 

rads. Furthermore, when the c. 1. poles are located at s = -7  (figure 4.22) the pendulum 

starts at 0.5 rads and quickly overshoots to -1 rads. It can be expected then that the 

overshoot o f the angular position response will exceed the confined physical angular range 

for faster pole locations, and therefore, forcing the system to collapse during the 

regulating process. The danger that the system in figure 4.22 may collapse is heighten by 

the fact that the design has been done using a linear model, but the system is intrinsically 

nonlinear.

0 4

Nominal Full State Model with b f= 0  Kg/s
Figure 4,21 State Variable Feedback Solution (Nominal Plant)
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Nominal Full State Model with b f= O  Kg/s 
Figure 4.22 State Variable Feedback Solution (Nominal Plant)

Thus, in a real physical implementation of the system the pendulum could very likely

collapse in this situation. Also, note the rather large overshoots o f the cart's velocity and 

the angular velocity o f the pendulum. These reach values very similar to the 

simulations. As a consequence, to obtain comparable dynamics to the H „  solution, the

SVF solution requires that the closed loop poles be placed in the conservative range 

s < -5, yet the system is put at a greater risk of collapsing.

The simulations performed on the perturbed model are grouped in table 4.6. The same 

values o f coefficients of friction used for the simulations have used in these cases to

assess the sensitivity of the system to a single parameter variation. The closed loop poles 

have been placed in three different locations to determine the stability robustness o f the 

system with respect to system dynamics.
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Closed Loop

Poles at

b f Figure #

(-1,0) 1 4.23

(-1,0) 2 4.24

(-1,0) 5 4.25

(-2,0) 1 4.26

(-2,0) 2 4.27

(-2,0) 5 4.28

(-3,0) 1 4.29

(-3,0) 2 4.30

( - 3 , 0 ) . 5 4.31

Table 4.6 State Variable Feedback Simulations (Perturbed Plant)

Figure 4.23 reveals the behavior that every control systems engineer fears o f a control 

system which lacks the ability to account for expected unmodeled dynamics. The system 

in figure 4.23 is closed loop unstable and has no chance to recuperate from the addition of 

friction. In fact, after taking a closer look at the results it is evident that all o f the systems 

which had their closed loop poles located at the point (-1,0) are closed loop unstable for 

the three coefficients o f friction used (see figures 4.23, 4.24, 4.25). As the coefficient o f

friction increases the systems oscillatory behavior is severely aggravated. This behavior 

was also observed in the simulations. Most o f the variables display significant 

oscillatory behavior and there magnitudes became unbounded.
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Perturbed Full State Model With b f  = I Kg/s, poles at (-1,0) 
Figure 4.23 State Space Feedback Solution (Perturbed Plant)

Perturbed Full State Model With b f  = 2 Kg/s, poles at (-1, 0) 
Figure 4.24 State Space Feedback Solution (Perturbed Plant)



- 1 2 8 -

Perturbed Full State Model With b f  = 5 Kg/s, poles at (-1,0) 
Figure 4.25 State Space Feedback Solution (Perturbed Plant)

These results illustrate the kind of situation which may occur as a result o f neglecting the 

uncertainties and perturbations inherent in the models throughout the design process.

When the closed loop poles where placed at the point (-2, 0) the results were 

completely opposite to the case with poles at (-1, 0). The responses for these cases are 

shown in figures 4.26, 4.27, and 4.28. The perturbed inverted pendulum system is now

closed loop stable for coefficients of friction equal to 1, 2 and 5. The response is in 

general slower than the response for the H rx case, but this is expected since the poles are

so close to the imaginary axis. The trend observed in the preceding simulations holds in 

these cases also. Namely, the system approaches marginal stability for increasing values of 

the coefficient o f friction. Actually, it was determined experimentally that the closed loop
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system is unstable for the range b f  > 5.75. Consequently, in terms o f stability robustness

this particular design achieves roughly the same margin o f robustness to variations in the 

coefficient o f friction as the solution.

Angular V eloc ity

Perturbed Full State Model With b f  = 1 Kg/s, poles at (-2,0) 
Figure 4.26 State Space Feedback Solution (Perturbed Plant)

Figures 4.29, 4.30, and 4.31 illustrate the responses for the inverted pendulum system 

with closed loop poles a s = -3. Examination o f the responses in figures further confirms 

our previous discussion that increasing coefficient o f friction severely increases the 

oscillations in the responses. In this case the inverted pendulum is unstable for the range, 

b f  > 17.
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Perturbed Full State Model With b f  = 2 Kg/s, poles at (-2,0) 
Figure 4.27 State Space Feedback Solution (Perturbed Plant)

Perturbed Full State Model With b f  = 5 Kg/s, poles at (-2,0)
Figure 4.28 State Space Feedback Solution (Perturbed Plant)
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After analyzing the overall results, it is obvious that there is a trend in the behavior o f 

the c. 1. system with respect to both pole location and the value o f coefficient o f friction.

It may be argued that for this particular problem the tolerance o f the closed loop system to 

variations in the coefficient o f friction improves as the c. 1. poles move away from the jco

axis. There is an evident trade off, however, between the achievable dynamics and the 

robustness o f the system to variations in the coefficient o f friction. Recall that the farther 

the poles are placed away from the origin of the s-plane the more acute the response and 

the higher the risk that the pendulum's angular response overshoot the allowed angular 

range. Thus, in order to achieve both good robustness and acceptable performance the 

poles o f the closed loop system must be placed in the closed range [-5, -3] in the s-plane.

Angular Position

0 4

Perturbed Full State Model With b f  = 1 Kg/s, poles at (-3,0) 
Figure 4.29 State Space Feedback Solution (Perturbed Plant)
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Perturbed Full State Model With b f  = 2 Kg/s, poles at (-3,0) 
Figure 4.30 State Space Feedback Solution (Perturbed Plant)

0 io

Perturbed Full State Model With b f  = 5 Kg/s, poles at (-3,0)
Figure 4.31 State Space Feedback Solution (Perturbed Plant)
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It would have been interesting to pursue a more conventional phase lead/lag SISO

design for comparison purposes. Also, it would be enticing to redesign the control system 

for the inverted pendulum with a MIMO approach. Nevertheless, it has been

demonstrated that in the process of designing controllers, plant perturbation is not to be 

taken lightly. Had Hoffman's design been physically implemented, a nominal value o f 

coefficient o f friction would have had catastrophic effects in the regulation of the 

pendulum, as figures 4.23, 4.24, and 4.25 revealed.

Comparative Assessment:

It is difficult to pin point either control solution as superior. In fact, it is not evident in 

the available literature that there is a definite answer to the question o f superiority. In this

particular case study, both solutions were able to accomplished the desired task, although, 

each had favorable features o f its own. Certainly, the SISO control solution to the

inverted pendulum problem successfully met its design criteria, yielding a satisfactory 

response for the nominal inverted pendulum model while providing the system with

stability robustness to variation of the coefficient of friction for the specified parameter 

range. The controller allowed for a fast response without jeopardizing the stability o f

the system. On the other hand, the SVF control solution achieves higher tolerance to 

variation in the coefficient o f friction when the c. 1. poles are placed in the range 

-5 < s < -3. Thus, the data gathered appears to indicate that the SVF solution yields better 

stability robustness to parameter changes. This poses an intriguing question. Can the 

results observed in this case study be extended to the general case, or are these 

observations particular to the inverted pendulum problem?



CHAPTER V 

CONCLUSION

5.1 Concluding Remarks

The goal o f this work was to investigate a design technique which would account for 

model uncertainties in the design procedure. In achieving this goal several objectives have 

been met. These objectives are enumerated below:

i. A new approach to the control problem analysis and synthesis has been reported.

ii. A method for representation of plant model uncertainties and perturbations was 

discussed.

iii. An alternate way to formulate the performance specification and a technique for 

treatment o f plant perturbations and disturbances in the design process has been 

demonstrated.

iv. An algorithm for designing controllers achieving robust stability and robust

performance for plants with RHP poles and zeros has been presented.

v. A comparative assessment o f the Hx  control method was pursued.

In order to achieve the above objectives some preliminary topics and definitions were 

treated in the introduction. For example, the differences between real systems and 

mathematical models o f systems, as well as the definitions o f signal and system norms 

were discussed in chapter I. A formulation for the performance specification in terms of 

the infinity norm of the weighted sensitivity transfer function was presented. Several

- 1 3 4 -
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representations of unstructured uncertainty in linear models were discussed followed by a 

comparison between the classical and the modern measures o f robust stability. The robust 

stability and performance conditions were analyzed and tests were presented to determine 

if a system complies with these conditions. Some related design constraints were also 

discussed. It was shown that the values of the uncertainty and performance weighting 

functions must be restricted within a certain range at the unstable poles and RHP zeros of 

the nominal model in order for the system to be robustly stabilizable and to achieve robust

performance. It was demonstrated that either the robust stability or the robust 

performance control problem can be formulated into the standard or optimum control 

problem. An outline was developed for a systematic procedure to design controllers

based on the solution o f the Nevanlinna Pick theory and the model mathching problem and 

some simple examples were constructed to illustrate these procedures. A comprehensive

example was developed using the inverted pendulum position system as a case study to 

illustrate the SISO design procedure as well as the related concepts o f robustness. A

controller was devised that achieved robust stability in the presence o f dynamic friction as

source o f model perturbation. Finally a comparative assessment o f the performance of the 

Hrx controller was pursued by comparing its behavior to a more familiar state variable

feedback solution.

Most design techniques lack the ability to incorporate the effects o f uncertainty and 

model perturbations in the design process. Rather the controllers are first designed to 

satisfy particular performance specifications and the system's robustness is subsequently

determined through simulation or experimentation. This is the case with the state variable 

feedback solution that was developed in chapter IV. In contrast, the SISO design

technique introduced here achieves a control system which takes into account such 

perturbations as part o f the design process. The results of chapter four were both
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satisfactory and revealing. These results left unanswered the question of whether the 

robustness feature o f the SVF solution to the inverted pendulum of chapter IV is 

particular to this problem or if it can be generalized to all problems. It is evident that any 

attempt to provide an answer to this question with a somewhat scientific basis would 

require at least additional testing of both methods with a spectrum of possible control

problems. Nevertheless, the fact remains that SVF solutions as such are not concerned 

with the robustness features o f the control system while solutions do. The pole

placement approach o f SVF controllers focuses on achieving a specified dynamic

performance for the nominal plant and therefore can not guarantee robustness in the face 

o f uncertainty and model perturbations. The control techniques, on the other hand,

take into consideration the issues of robustness and uncertainty and actively integrate 

these issues into the design process providing a guaranteed level o f robustness for a 

specified set o f perturbed plants.

5.2 Future Developments

A continuation of the work accomplished in this thesis requires further illustration of 

the robust performance problem and the corresponding SISO H rx design procedure

introduced in chapter III. In order to provide a logical development, it would be 

interesting to apply the control method to the inverted pendulum counter problem.

That is, the controlled positioning of the beam of a crane. Figure 5.1 provides a graphical 

illustration of the problem. The problem requires the design a servo mechanism with 

certain robust performance characteristics which could accurately place the beam o f a 

crane in any desired position.
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The typical undergraduate feedback control theory course concentrates on the study of 

SISO design methods. These usually include root locus and frequency domain methods 

for obtaining phase lead/lag type compensators. State variable feedback control and 

certainly MIMO control in general are rarely addressed in the context o f undergraduate 

control courses. The characterization of robustness and robust design discussed in this 

paper are o f significant relevance in the design of practical control systems. It is only 

reasonable therefore that undergraduate control students are exposed to control theories 

which have practical and realistic value. The design algorithms presented in this thesis 

address the issue o f system robustness in the context o f SISO feedback control structures 

which makes them attractive for undergraduate academic purposes. However, these 

design algorithms may be somewhat complex for undergraduate level courses. Although, 

it was included in the original plans, the efforts of this thesis were concentrated on the 

analysis and synthesis o f robustness in control theory and not on the pedagogical aspects 

o f it. Therefore, the development o f design methodologies of robust control which are

adequate for undergraduate study are left open for future work. The systematic features 

o f this SISO /Zoo design process however and the aid o f digital computers heightens its 

academic and practical value.
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Most practical control problems have multiple inputs and/or multiple outputs to be 

controlled. It is difficult to find real life problems which require a single variable to be 

controlled. Thus, a possible next step in this investigation is to expand the results o f the

analysis o f systems for robust design into the multi-input/multi-output scene. Although 

MIMO //oo control techniques have been developed in recent years, it is my opinion that

these revolutionary control theories should be learned in the context o f single input/single 

output control structures.



APPENDIX A

A.1 Proof of Equation 2.28

Fix a frequency and let x = | and j  = | WmT}. The region in the xy  plane where 

x+ y  < 1 is the triangle as illustrated in the figure below:

Imagine a circle with center zero and radius l/V2 is super imposed on the triangle. It 

follows that if the condition x 2 + y 2 < is satisfied then the condition x + y < l  will

also be satisfied. It is evident form the figure shown above that the first condition is 

somewhat more conservative since those solution which comply with the first condition 

are a subset o f the much larger set o f solutions which comply with the second condition. 

Consequently, a sufficient condition for || | U ; S | + | |  < 1 , is that
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A.2 Proof o f Theorem 4

Theorem 4: Let P = N/M be a coprime factorization over <p, where P may or may not 

be stable. Let X  and Y be two functions in q> such that X X  + M Y  = 7. Then the set o f

all controllers C fo r  which the feedback system is stable equals:

X + M Q
Y -N Q

In chapter I it was argued that the feedback system is internally stable if all nine 

transfer function o f 1.17 are stable. Let P=N/M  and C=NcIMc  be a coprime factorization 

over <p and substitute into 1.17. The result is

e?

e d

Cn

I
NN q + M M q

M M £ 
M N C 

N N C

—NM q — M\ I. 
MMq — MNq 
NMq m m c

r

d

n

Sufficiency is now evident. The feedback system will be stable if and only if

{NNC + M M C} ' e c p

Now suppose that Q belongs to <p and C =
X + M Q
Y -N Q

To show that the feedback system is stable, define

N c  = X + M Q , Mq = Y -N Q
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Now since N X  + M Y  = 7 it follows that

X  = N C -M Q  ; Y = M C + NQ 
N ( N C -M Q )+  M (M C + N Q ) = 1 

N N  c + M M C = 1

Therefore, C=Nc/M c is a coprime factorization and the feedback system is stable.



APPENDIX B

B.1 Euclid's Algorithm

The input to  Euclid's algorithm are tw o polynomials n, m  such that the degree o f  rt is 

greater than that o f  m. I f  the degree o f  n is not greater than the degree o f  m, then 

interchange n  and m.

PROCEDURE:

i. Divide m  into n to  get quotient qj and remainder rt:

n =  m q1 + rh  : degree r} <  degree m

ii. D ivide r, into m  to  get quotient q2 and remainder r2:

m =  r1q 2 + r2> : degree r2 <  degree r2.

iii. Divide r2 into rt to  get quotient qj and remainder r3:

ri  = r2<l3 +  r3 . . degree r3 <  degree r2.

iv. Continue until the remainder rk is a non zero constant.
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N ow  the equations used to obtain polynomials x a n d y  such that nx + m y = 1, depend on 

the order o f  the polynomials n and m. For example for the first order case w e have 

n = m qj + r } .

Consequently r ^ n - m q j  and Therefore, w e have:

mg! 

ri ri

So let

For the second order case:
n = m q1 + r} 

m = r2q2 + r2

In matrix form:

' 1  o' V '7 -g i' n

_q2 7 . 0 . 0 1 m

solving for r2yields: r2 = -q2n + (1 +  q tq2) m .S o  select x  andy  to be:

a n d y - ^ 3 1
r2

The pattern becom es obvious now. Simply solve the simultaneous set o f  equations for rk, 

and properly select x  a n d y

For the third order case:

y _ 7 + M

r3
y =

[-q3 - ^ ; ( 7 + 72??)] 

r3
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For the fourth order case:

and y=
<ll(q2 + <14(J + W l3)) + ('+ gjgJ

r4

B.2 Nevanlinna's Algorithm

Nevanlinna's algorithm is a procedure to construct a solution to the NP interpolation 

problem, if such a solution exists (i.e. to find G in cp such that ||G||oo^l and G(a,)=P„ Vz).

The procedure introduced in this appendix has been drawn directly from Doyle, Francis 

and Tannenbaum [5], The steps have been developed inductively: First, the case with a 

single NP problem data point; then the case with n data points.

Define & Mobius function  and its inverse:

M b(z )  = M b ( z)  = 7 —y  ™here\b\ < 1
I - z b  J+ zb

The Mobius function has the following properties:

1. Mb has a zero at z = b and a pole at z = Mb . Thus Mb is analytic in the open unit 

circle |z| <1.

2. The magnitude o f Mb equals 1 on the unit circle.

3. Mb maps the unit circle onto the unit circle.

4. The inverse map is a Mobius function too since ^ b  = ^ - b .

Also define the all-pass function Aa(s)
s -a
s+ a

Re a > 0 .
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Now for the single data point (a ,, P j  there are to possibilities:

Case 1 |px| = 1. The unique solution is G(s) = pP This is evident from the maximum 

modulus theorem and the discussion in chapter III.

Case 2 |pj| < 1. There are an infinite number o f solutions. The set o f all solutions is 

parametrized by the following equation where G}(s) is stable, proper, and has infinity 

norm less than or equal to one:

{g .- G (s)  = M_p^G}(s )A a i(s )^  Gj e stable and proper, | |G ; L

Note that G interpolates pj at otp

G (a ,)  = = M ^ ( 0 )  =P,

Also, G  is made of the composition o f two functions

s ^ G / s J A ^  (s )  

z ^ M ^ z )

The first one is analytic in the closed RHP and maps into the closed unit circle since 

||C71||OO<1. The second is analytic in the open unit circle and maps it back into the unit 

circle. Therefore, G is analytic in the RHP, proper, and ||G||oo 1. Notice that if  G, is an

all-pass function so is G. Gj is typically selected to be equal to one or an all-pass function.
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Consider the case with n data points and assume the problem to be solvable. Again, 

there are two possibilities:

Case 1 Ip j = 1. Since the problem is solvable, it most be that G(s) = pj by the maximum 

modulus theorem. Hence Pj =• • • = p„.

Case 2 |p t | < 1. Pose a new problem, labeled the NP' problem, with n-1 data points.

P2 • • • P„ where p ■ = <p,J  /  A * / a ,)

Now the set o f all solutions to the NP problem is given by the formula

G(s) =

where Gj ranges over all solutions o f the NP' problem. Note, that n functions 

G„.„ with i'=  1 ,...., n must be found for n problem data points where the function Gn_{ is 

the solution to the n-i NP sub-problem. It follows by induction that the NP problem 

always has an all-pass function solution.

In the application o f the NP theory to the model matching problem it often turns out 

that the data has conjugate symmetry. In this case the solution may be expressed as 

G (s)  = Gr ( s)  + jG j ( s ) ,  where GR and G{ are both real rational. It follows that GR is 

also a solution to the NP problem.
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B.3 Solution of Model Matching Problem With a Single Zero o f T2 in RHP

Suppose that T2 has only one zero otj in RHP. Then, according to  the procedure in 

chapter m  the N P problem must be solved with data:

ai
Y qp/Pl >

where Pj is given by T / a J .  Also,

Yop, = 4 T r/2B A '1/2 = y [B 7 A

where A  = -----an d  B =
a j  + a j  c tj + ctj

However,

B M - P A - l f t f  

••• tc p l  -  l / i f tp  =  Pl

Oti
Thus, the N P problem data above becomes:

From appendix B .2  the NP problem solution for this data is G (s) =  1. Therefore, the 

solution to  the model matching problem is:

„  _ Tj ~yOp(G _  7} ~Yppf (1) _  Tf-Tif oij) 
T2 t2 t2



APPENDIX C

C .l Matlab program "simulate.m"

echo off
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% This program Simulates the initial conditions response o f the full order 
% nominal or perturbed inverted pendulum system under feedback control.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
Ts=.0001; % Sampling Period
Tf=3; % Final Simulation Time
Samples=T PT s; % Number of Samples Required
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% PLANT PARAMETERS
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
b f = 1; % Coefficient of Friction
%
Ap=[0 1 0 0; 0 -0.9211*bf -.581 0; 0 0 0 1; 0 0.3947*bf 4.4532 0];
Bp=[0; .9211; 0; -.3947];
Cp=[0 0 1 0 ] ;
Dp=[0];
[Apd,Bpd]=c2d(Ap,Bp3Ts); % ZOH transformation of the plant analog
model to
% % a discrete equivalent model
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%
% CONTROLLER PARAMETERS
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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numc4=[90.277 642.15 1767.832 2354.867 1522.2 382.03]; % Numerator of
% % the Controller
% % Transfer
% % Function
denc4=[-.001 -1.025 10.306 36.65 37.65 11.184]; % Denominator o f  Controller
% % Transfer Function 

% Transformation o f Controller Transfer 
% Function model to State Space Model

% ZOH transformation of the controller 
% analog model to a discrete 
% equivalent model

[Ac, Be, Cc, Dc] =tf2ss(numc4 ,denc4);
%
%
[Acd,Bcd] =c2d(Ac,Bc,T s);
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% INITIALIZATION OF ARRAYS
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
Xp=zer os(4,Samples); %
X p(:,l)=[10;0;l;.l]; %
Xc=zeros(5,Samples); %
Yp(:,l)=Cp*Xp(:,l); %
U=zeros( 1, Samples); %
control
% %
U c=zeros( 1, Samples); %

Plant system state vector
Initial conditions
Controller system state vector 
Plant output vector
Controller system output vector (Plant

input)
Controller system input vector

%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% SIMULATION ITERATIONS
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
for k = l: Samples, 

td(k)=Ts*(k-l);
Uc(:,k)=0-Yp(:,k);
Xc(:,k+1) = Acd*Xc(:,k) + Bcd*Uc(:,k); 
U(:,k) -  Cc*Xc(:,k) + Dc*Uc(:,k); 
Xp(:,k+1) = Apd*Xp(:,k) + Bpd*U(:,k); 
Yp(:,k+1) =Cp*Xp(:,k);

end
%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% PLOTING ROUTINES
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
subplot(221)
plot(tdyXp(l ,1: Samples))
title(’ Perturbed Full State Plant')
subplot(222)
plot(td,Xp(2,l: Samples))
title ('Perturbed Full State Plant')
subplot(223)
plot(td,Xp(3,l :Samples))
title ('Perturbed Full State Plant1)
subplot(224)
plot(td^Xp(4,l: Samples))
titleC Perturbed Full State Plant1)
pause
end

C.2 Matlab program "gamopt.m"

echo off
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Execution of this function returns the optimum gamma (yopt) and the corresponding
% Nevanlinna's problem data given W2, X,Y,N, and M.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
function [gammaoptJcJb]=gamopts(W2) 
%
%
%

% W2 must be a 2 by 1 vector 
% with the numerator o f W2 being 
% the first element and the denomi- 
% tor being the second element

% c is a vector containing the RHP zeros o f T2
% b is a vector containing the model matching problem Beta data set
%
N=[0 0 0.3947;l 2 1]; 
M =[-l 0 4.4532;1 2 1]; 
X=[18.88 37.3824;1 1];
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Y=[-1 -3;1 1];
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%

% COMPUTING T l AND T2
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
tl =polmult(polmult(W 2,N),X);
t2=polmult(polmult(- W2 ,M) ,N);
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% COMPUTINIG THE ZEROS OF T2 IN Re(sX))
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
zerost2=roots(t2(l
[mm,nn] =size(zer ost2);
n=0;
for k  = 1 :ram, 

if  zerost2(k)>0j
n=n+l;
c(n)=zerost2(k);

end
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% EVALUATING T 1 AT THE ZEROS OF T2 IN Re(sX))
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%

for m = l :n,
val=evalr atf(c(m),tl); 
bb(m)=val;

end
%
%
%

%
%
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% COMPUTING MATRICES B and D
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
for f=l :n, 

for g=l :n,
v=l/(c(g)+conj(c(f)));
B(g,f)=v;
D(g,f)=v*(bb(g) *conj(bb(f))); 

end
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% COMPUTING GAMMAOPT AND THE PICK MATRIX
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
AA=BA.5;
Ap=AA\eye(n);
J=Ap*D*Ap;
V=eig(J);
gammaopt=sqrt(max( V ));
for k  = 1 :n,

b(k) =bb(k)/gammaopt; 
end
pick=B-(D/gammaoptA2);
U=eig(pick);
end

C.3 Matlab program "polmult.m"

%
% Execution o f this function returns the product of two transfer functions V  and U,
% where V  and U are 2 by 1 vectors having the numerator as the (1,1) element 
% and the denominator as the (1,2) element
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
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function W=polmult(V,U)
[njn]=size(V);
[a,b]=size(U);
if((n ~= 2)&(m ~= l)& (a ~= 2)&(b ~= 1)), error('Incorrect input vectors'); end
num=conv(V(l,:),U(l,:));
den=conv(V(2,:),U(2,:));
W=[num;den];
end

C.4 Matlab program "evalratf.m"

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%0/o0/o°/o
%
% Execution of this function returns the value o f the function V evaluated at the point 
% So. The function V is a 2 by 1 vector where the (1,1) element is the numerator o f  V 
% and the element (2,1) is the denominator of V.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
function val=evalratf(So,V)
if  (nargin >2),

errorCToo many arguments'); 
elseif (nargin<2),

errorCToo few arguments') 
end
for e=l:2,

num(e) = evalpol2(So,V(e,:)); 
end
val = num(l)/num(2);

C.5 Matlab program "evalpol2.m"

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Execution of this function returns the value o f the polynomial V evaluated at the point 
% So. V is a 1 by 1 vector whose elements are the coefficients o f the polynomial in 
% decending order.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
function val=evalpol2(So, V)
if  (nargin >2),
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error('Too many arguments'); 
elseif (nargin<2),

error(Too few arguments') 
end
[m,n]=size(V);
sum=O;
limit = n;
for k  = 1: limit, 

vall=V (l,k)*SoA(n-l); 
sum=sum+vall; 
n=n-l;

end
val = sum;
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