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Abstract 

The focus of my research revolved around the intersection between the Hippo 

tumor suppressor pathway and the Src oncogenic pathway. Both pathways control tissue 

and organ size during development by regulating cell proliferation, cell death, cell 

migration, and cell adhesion. Aberrant functions in either pathway are often detected in 

human cancers and correlate with poor prognosis. The Drosophila C-terminal Src kinase 

(dCsk) is a genetic modifier of warts (wts), a tumor-suppressor gene in the Hippo 

pathway, and interacts with the Src oncogene. Reduction in dCsk expression and the 

consequent activation of Src are reported in hepatocellular and colorectal tumors. 

Previous studies show that dCsk regulates cell proliferation and tissue size during 

development. Given the similarity in the loss-of-function phenotypes of dCsk and wts, we 

investigated the interactions of dCsk with the Hippo pathway components. We tested if 

loss of dCsk resulted in changes in activity levels of Hippo pathway target Yki, and if 

dCsk and Hippo pathway genes genetically interact. We found multiple lines of evidence 

suggesting that loss of dCsk using RNAi mediated elimination of dCsk in large patches of 

cells causes overgrowth due to increased proliferation, due to increased Yki activity. The 

effects of loss of dCsk are cell autonomous, and our results of epistasis experiments of 

dCsk and Hippo pathway components place dCsk between Dachs and Zyx that function 

downstream of Fat in the Hippo network. Hence we concluded that dCsk regulates 

growth via the Hippo signaling pathway. 
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General Introduction 

The growth of an organism must be tightly controlled by cellular signals during 

its development. The phenomenon of unregulated growth, known as cancer, is one of the 

major leading causes of death worldwide. Cancer arises from tumor cells that continually 

divide due to their inability to recognize growth regulatory signals, including signals 

controlling apoptosis (Kerr et al., 1972; Jacobson et al., 1997; Wyllie et al., 1980) and 

contact inhibition. Cells that repetitively undergo cell cycle are likely to become 

cancerous, due to multiple errors that have accumulated from the numerous DNA 

replications. Most cancer cells contain at least one mutated gene, viz., an oncogene, 

which can permanently activate the cell cycle and cause malignancy. In addition, 

inactivation or deletion of both copies of a tumor suppressor gene can also give rise to 

cancerous cells.  These malignant tumors evade apoptosis, or programmed cell death, and 

continue to proliferate by increasing in their number. These malignant tumors may spread 

throughout the body via metastasis, inducing the surrounding cells to also become 

tumorous. Studies to identify genes and genetic mechanisms that are involved in 

tumorigenesis and metastasis have led to the discovery of several tumor-suppressor 

networks (e.g., the MAPK, p53, Hippo, TSC/TOR pathways) whose genes are found 

mutated in cancers. These studies reveal that only some cells in the tumor acquire the 

ability to metastasize, suggesting that additional mutations are responsible for metastatic 

defects. The Hippo pathway is one of the signaling pathways involved in tumorigenesis 

and largely contributes to organ size regulation (Harvey and Tapon, 2007) in both 

vertebrates and invertebrates (Figure 1).  



P a g e  | 4 

 

 

 
Figure 1. The Hippo Signaling Network in Drosophila and Mammals 
Corresponding proteins in Drosophila and mammals are indicated by matching colors 
and shapes. Solid lines indicate direct biochemical interactions whereas dashed lines 
show interactions that may be indirect. Arrowed or blunted ends each indicate activation 
or inhibition. Selected target genes are shown.   
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Literature Review: The Hippo Tumor-Suppressor Pathway 

The Hippo signaling pathway, also known as the Salvador/Warts/Hippo (SWH) 

pathway, is a network of tumor suppressor genes and oncogenes. It regulates organ size 

by inhibiting cell proliferation and promoting apoptosis in all metazoan animals, such as 

mammals and Drosophila, in addition to participating in other various cellular processes 

(Figure 2). The pathway attains its name from the protein kinase Hippo (Hpo), one of its 

key signaling components; mutations in the Hpo gene lead to a hippopotamus-like 

overgrowth phenotype in the tissues of the imaginal discs and adult organs (Figure 3) 

(Reviewed by Edgar, 2006; Pan, 2007; Saucedo and Edgar, 2007; Kango-Singh and 

Singh, 2009). Aberrant Hippo pathway function in humans, for example, due to 

mutations or amplification of genes, epigenetic silencing, and oncogenic transformation, 

is often detected in human cancers and correlates with poor prognosis. Although loss of 

Hippo signaling clearly makes cells resistant to apoptosis and promotes cell survival, the 

molecular mechanism by which Hippo signaling regulates apoptosis remains largely 

unknown (Kango-Singh et al., 2009).  

Hippo pathway comprises of a core kinase cascade involving the Ste-20 family 

kinase Hippo (Hpo, the serine/threonine Ste20-like kinase) (Harvey et al., 2003; Jia et al., 

2003; Pantalacci et al., 2003; Udan et al., 2003; Wu et al., 2003), and the DMPK family 

kinase Warts Warts (Wts, the nuclear Dbf-2-related (NDR) family kinase; also known as 

Lats) (Justice et al., 1995; Xu et al., 1995). Given normal Hippo signaling, Hpo forms a 

complex with an adaptor protein called Salvador (Sav, the WW domain scaffolding 

protein) (Kango-Singh et al., 2002; Tapon et al., 2002) to phosphorylate Wts.  Wts, in 

turn, forms a complex with another adaptor protein called Mob as Tumor Suppressor 
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(Mats) (Lai et al., 2005) to phosphorylate the transcriptional co-activator Yorkie (Yki) 

(Huang et al., 2005), the major downstream target of the Hippo pathway. Upon 

phosphorylation by Wts, Yki creates a binding site for 14-3-3 proteins; this binding 

restricts Yki in the cytoplasm and leads to its degradation.  

When active due to a lack of inhibition by proper Hippo signaling, Yki 

translocates to the nucleus where it forms a complex with the transcription factor 

Scalloped (Sd) [or Mothers against Dpp (MAD), Teashirt (Tsh) or Homothorax (Hth)] 

(Oh and Irvine, 2011) to induce the expression of target genes that promote (1) cell 

proliferation and cell survival like the bantam miRNA, myc, (2) cell cycle progression 

e.g., E2F1, cyclins A, B, E, and (3) inhibitors of apoptosis like drosophila inhibitor of 

apoptosis (diap1), causing tissue overgrowth (Table 1). Thus Hippo signaling regulates 

the expression of several genes within its pathway via a negative feedback loop. 

Yki is influenced by several upstream regulators; multiple points of signal 

integration have been found in the Hippo Pathway, suggesting that the core kinase 

cassette responds to diverse stimuli. Examples of the upstream regulators include 

Expanded (Ex), Merlin (Mer) (Hamaratoglu et al., 2006), Kibra, Fat (Ft, the 

protocadherin) (Bennett and Harvey, 2006; Cho et al., 2006; Silva et al., 2006; Willecke 

et al., 2006), Tao1 (Boggiano et al., 2011; Poon et al., 2011), Crumbs (Crb), Ajuba (Jub), 

and Scribble (Scrib) (Verghese et al., 2012).  Ex, Mer, and Kibra function together to 

activate the Hpo kinase cascade by directly binding to the Hpo-Sav complex (Yu et al., 

2010).  Additionally, Ex is known to directly repress Yki. The Ex-Mer-Kibra branch is 

modulated by the Fat/Dachsous branch, which does so by regulating Ex levels.  The 

Fat/Dachsous branch consists of the atypical cadherins, Ft and Dachsous (Ds), and the 
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downstream effectors Discs overgrown (Dco, a serine-threonine kinase; aka casein kinase 

1ε), Dachs (D, an atypical myosin), Approximated (App, a palmitoyltransferase), Lowfat 

(Lft), and Zyxin (Zyx) (Grusche et al., 2010; Rauskolb et al., 2011).  Tao1, a sterile 20-

like kinase, is found to phosphorylate and activate Hpo. 

Furthermore, the Hippo pathway activity is thought to be also modulated by cell 

polarity, cell adhesion, and cell junction proteins, such as Crb, Jub, Scrib.  The cell 

junction proteins exist in the epithelial cells of Drosophila melanogaster at the sub-apical 

region (SAR), adherens junction (AJ) or septate junction (SJ). Notably, the Hippo 

pathway activity is also affected by the modulation of the apical level of filamentous 

actin (F-actin).  High accumulation of F-actin inhibits the Hippo signaling, thereby 

activating Yki. The activation of Yki, by phosphorylation-dependent or –independent 

mechanisms, results in autoregulation of some upstream genes, such as ex, mer, kibra, 

crb, and fj via a positive feedback loop.   

Such broad spectrum of target genes confers tremendous versatility to Hippo 

signaling and allows context-dependent response of Hippo signaling activity. Emerging 

evidence demonstrates that the Hippo pathway crosstalks with other signaling pathways 

to regulate different target genes. 
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Figure 2. Roles of the Hippo Pathway 
The Hippo signaling pathway regulates various cellular activities, including cell growth, 
proliferation , cell death, cell cycle, morphogenesis, and cell-to-cell interactions.   
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Figure 3. (A) Models of the Hippo signaling pathway in Drosophila and mammals. 
Corresponding proteins in Drosophila and mammals are indicated by matching colors 
and shapes. Arrows represent positive regulation, whereas blunted ends indicate negative 
inhibition.  (B) A normal (left) and a yki-overexpressing (right) Drosophila wing 
imaginal disc. (C) A normal (left) and a YAP-overexpressing (right) mouse liver. The 
dramatic increase in organ size induced by Yki/YAP overexpression illustrates the potent 
growth-regulatory activity of Hippo signaling in Drosophila and mammals.  
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Table 1. Function of the Hippo Pathway Target Genes 

Function Example Target Gene(s) 

Cell cycle exit expanded  

Cell growth and survival homothorax (hth), diminutive (myc), bantam microRNA 

(miRNA) 

Proliferation cyclins A, B, E, E2F transcription factor (E2F1), hth, 

bantam miRNA 

Apoptosis merlin (mer), diap1 

Morphogenesis dally, dally-like 

Planar Cell Polarity crumbs, fat 

Contact Inhibition Mer 
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Literature Review: The Src Oncogenic pathway and csk 

Analogous to the role of the Hippo pathway, the Src family tyrosine kinases 

(SFKs) are involved in the regulation of normal development. Their misregulation is 

implicated in several types of cancer, particularly in liver, breast, and colon (Masaki et 

al., 1999; Bougeret et al., 2001; Cam et al., 2001; Frame, 2002), and is associated with 

metastatic behavior (Yeatman, 2004). The SFKs were originally identified in the 

transforming gene of the Rous-Sarcoma virus, v-src. Drosophila melanogaster has two 

SFK members, Src42 and Src64 (Simon et al., 1985; Potter et al., 2000). This family of 

proteins is regulated by signaling pathways (e.g., G protein-coupled receptors) that are 

involved in the regulation of cell cycle entry, cytoskeletal rearrangement and cell-

adhesion. 

The SFK activity is inhibited (i.e., Src proteins are maintained in inactive state) by 

phosphorylation of their Carboxyl-terminal (C-terminal) region by C-terminal Src kinase 

(csk), a gene first identified by its ability to negatively regulate the SFK activity (Cole, 

2003). This function of csk is conserved in mammals and flies; flies have  one csk 

homolog, Drosophila C-terminal Src kinase (dCsk) (Read, 2004; Stewart, 2003), which 

functions similarly to the mammalian csk (Hoffmann et al., 1983; Simon et al., 1985; 

Takahashi et al., 1996).  

dCsk is a conserved Src family kinase (SFK) that acts as a tumor-suppressor gene 

by interacting with several signaling proteins via phosphorylation-mediated interactions 

(e.g., paxillin, c-Jun, lats) (Reviewed by Okada, 2012). Reduced levels of dCsk activate 

Src kinases (Thomas and Brugge, 1997; Schwartzberg, 1998; Bjorge et al., 2000), 

including Jun N-terminal kinase (JNK), Stat, and Btk29A (Pedraza, 2004, Read, 2004); 
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this Src activation results in organ size increase, lethality of the organism, and 

overproliferation due to extra cell cycles (Read, 2004; Stewart, 2003). Thus, csk acts as a 

tumor suppressor through the Src pathway regulation (Read, 2004), while also negatively 

regulating the JNK pathway.  

csk is known to have Src-independent functions as well. Independently of the 

SFK activity, csk links G-protein signaling to the actin cytoskeleton (Lowry et al., 2002).  

In addition, csk phosphorylates a number of other downstream molecules (Autero et al., 

1994; Hildebrand et al., 1995; Cloutier and Veillette, 1996; Tremblay et al., 1996).  

Within the past decade, dCsk has been reported to regulate cell proliferation by 

genetically modifying wts tumor suppressor gene, a core component of the Hippo 

pathway, by direct phosphorylation (Stewart 2003).  Presumably, mammalian wts 

molecules may also be substrates of Csk, considering that the C-terminal dCsk 

phosphorylation site is conserved in other wts homologs.   

Loss of dCsk using a RNAi approach (UAS-dCskRNAi) showed that effects of loss 

of dCsk are mediated through Src activation, and loss of dCsk in large patches leads to 

increased proliferation and decreased apoptosis (Read et al 2004). Whereas broad loss of 

csk results in overproliferation (Figure 4 G), inhibition of apoptosis, and decreased cell 

adhesion, local inactivation of dCsk in discrete patches surrounded by normal cells does 

not cause overgrowth (Figure 4 A-E), as dCsk mutant cells begin to delaminate and 

disperse from the growing imaginal disc tissue, leading to their elimination by 

macrophages (Vidal et al., 2006). Although loss-of-function phenotype of dCsk is 

strikingly similar to that of hpo, wts, sav, and mats (or gain of Yki function), clonal 

patches of dCsk cells fail to survive to adulthood unlike cells containing the others four 
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genes.  Instead, these cells spread among the wild-type cells while simultaneously 

undergoing apoptosis, which may reflect the function of Src in promoting motility and 

invasion (Langton, 2007).   

More recently, Src has been reported to control tumor microenvironment by JNK-

dependent regulation of the Hippo pathway (Enomoto and Igaki, 2013).  Clone cells of 

Src overexpression activate the Rac-Diaphanous and Ras-mitogen-activated protein 

kinase (MAPK) pathways, which induces accumulation of F-actin, one of the upstream 

regulators of the Hippo pathway. Highly accumulated F-actin inhibits the Hippo 

signaling, thus activating yki (Fernandez et al., 2011; Richardson, 2011; Sansores-Garcia 

et al., 2011) in both Src mutants and wild-type cells. Simultaneously, Src activates the 

JNK pathway, which signals the propagation of yki activity to surrounding wild-type 

cells; the surrounding tissue is overgrown as a result. On the other hand, activated STAT 

acts independently of the Hippo pathway (Rodrigues, 2012). Src is also known to interact 

with STAT. Thus we concluded that it is important to continue investigating the new, 

independent roles of Src and csk. 
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Figure 4. The outcomes of the local and broad loss of dCsk  
(Panels A-E from Vidal et al., 2006; F-G from Kwon et al., 2014) 
Arrows mark the anterior/posterior boundary in panels A-E. (A-E) Loss of dCsk in 
discrete patches resulted in epithelial exclusion, invasive migration through the basal 
extracellular matrix (green arrows in D’), and eventual apoptotic death; these events 
occurred exclusively at the boundary between dCsk and wild-type cells. (F-G) Wing discs 
were stained with Wingless. (F) Wild-type wing imaginal disc is shown. (G) Broad loss 
of dCsk in the developing wing (nub>dCsk) resulted in overproliferation and disruption 
of anterior/posterior polarity.    
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Preliminary Data 

            We first tested the effects of downregulation of dCsk on wing imaginal disc 

growth (nub-GAL4; UAS dCskRNAi) and found overgrowth in the wing pouch (Fig. 5a). 

Next, we tested the effects of activation (nubGAL4;UAS HpoΔINH) (Fig. 5b) (Udan et al., 

2003; Verghese et al., 2012a, 2012b), and inactivation (nub-GAL4 UAS HpoRNAi) (Fig 

pathway (Fig. 6). Coexpression of UAS d-cskRNAi with UAS HpoΔINH caused enhanced cell 

death (Fig. 5c) and wg induction (Fig. 6c), whereas coexpression of UAS d-cskRNAi; UAS 

HpoRNAi together showed overgrowth (Fig. 5e), and expansion in wg expression (Fig. 5e) 

suggesting no additive effects. In summary, our preliminary data showed that d-csk 

interacts with hpo, and affects the target genes of Hippo pathway. Therefore, we 

proposed to test these interactions in detail. (Fig. 5d) on d-csk phenotype (Fig.5c, e), and 

regulation of Wingless, a target of Hippo.  
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Figure 6. Wingless staining of wing imaginal discs from third 
instar mutant larvae: Regulation of Wg expression during 
dCsk loss of function reveals the over-proliferation of cells in the 
wing pouch. Over-expression of Hpo leads to cell death and loss 
of dCsk is unable to reverse this effect. 

Figure 5. Caspase 3 staining of wing imaginal discs from 
third instar mutant larvae: Cell death induced by over-
expression of Hpo (b) is unaffected by co-expression of dCskRNAi 

(c) suggesting that d-csk requires Hpo for regulating cell 
proliferation and growth. 
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Why Study These Subjects 

Emerging evidence supports that 

tumor development is regulated by cell-to-

cell communication through multiple 

signals, namely Hippo and Src. Certain 

genes in each Hippo and Src pathway (i.e., 

wts and src) have been shown to be 

regulated by a common kinase, Csk, 

suggesting that there may be a molecular 

link among the three (Figure 7). Although 

Csk activity is known to regulate metastatic 

behavior by decreasing cell adhesion, 

reduced csk expression alone is not 

sufficient to direct stable tumor growth. The fact that discrete patches of dCsk fail to 

maintain survival of migrating cells called for further investigation of the Src-

independent role of Csk in metastasis, specifically in relation to how important the Hippo 

signaling input is to Csk-mediated growth regulation.  

Given that the growth regulatory functions of Wts occur through its interactions 

with Yki and the Hippo signaling pathway, we proposed that dCsk also regulates growth 

via the Hippo signaling pathway. 

 

 
 

 

Figure 7. Csk at the Intersection 
between Src and Hippo Signaling 
Pathways 
Certain genes in each Hippo and Src 
pathway (i.e., wts and src) have been 
shown to be regulated by a common 
kinase, Csk, suggesting that there 
might be a molecular link among the 
three. 
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Hypotheses 

Given the similarities of the loss of function phenotypes of csk and wts, we have 

studied the genetic interactions between dCsk and the Hippo signaling pathway. We 

hypothesized that dCsk is another input into Hippo pathway. To test this hypothesis, 

we took genetic approaches using mutations that modulate the levels of Hippo signaling 

to test two specific aims: (1) whether dCsk regulates the expression of transcriptional 

targets of Hippo signaling, e.g., ex-lacZ, fj-lacZ, dronc1.7kb-lacZ, and diap1-4.3GFP, and 

(2) genetic epistatic interactions between dCsk and components of the Hippo pathway. 

 Specific Aims: 

Aim 1: Determine whether dCsk regulates the expression of the transcriptional 

target genes of Hippo signaling, including ex-lacZ, fj-lacZ, dronc1.7kb-lacZ, and diap1-

4.3GFP. We tested if d-csk regulates the expression of the transcriptional targets [ex-

lacZ, fj-lacZ, dronc1.7kb-lacZ, and diap1-4.3GFP] of Hippo pathway. Our rationale was 

that all genes that act through Hippo pathway share a common set of transcriptional 

targets to regulate tissue size. At the conclusion of these experiments, we found evidence 

that dCsk requires Hippo signaling to regulate growth. 

Aim 2: Determine whether dCsk interacts with other components of Hippo pathway. 

Our goal was to find the hierarchy of gene action; toward this aim, we carried out a series 

of genetic epistasis experiments with dCsk and other genes within Hippo pathway [yki, 

wts, sav, D, zyx, and ex]. We used combinations of the gain of function and loss of 

function phenotypes in order to place the genes in an epistatic pathway. These 

experiments were meant to provide the framework for dCsk-dependent input within 

Hippo signaling pathway.  
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Materials and Methods 

Fly genetics:  Many routine fly rearing and fly genetic techniques were used, such as the 

GAL4-UAS system to misexpress genes. Fly phenotypes were assessed for the aspects of 

pattern formation, growth regulation, and cell proliferation in the adult wings and wing 

imaginal discs.  

Immunohistochemistry: Wing imaginal discs from third-instar larvae were dissected in 

phosphate buffered saline (PBS), fixed in 4% paraformaldehyde for 20 minutes, and 

washed twice in PBST (PBS + 0.2% TritonX-100) for 10 minutes each at room 

temperature. Tissues were then blocked with 2% normal donkey serum for two hours and 

stained with primary antibody at 4°C overnight. Next, tissues were washed twice and 

incubated in secondary antibody for two hours at room temperature in foil-wrapped 

eppendorf tubes. Finally, tissues were mounted in Vectashield after three rounds of 

washing. Images were taken using confocal microscopy. The following primary 

antibodies were used: mouse-anti DIAP1 (1 250); mouse-anti βgal (1 100), mouse-anti 

Wingless (1:100), and rabbit-anti Caspase (1 250). Secondary antibodies (Jackson 

Immunoresearch) used were anti-mouse Cy3 (1 1000) and anti-rabbit Cy3 (1 1000). The 

samples were imaged using Olympus Fluoview 1000 Laser Scanning confocal 

microscope, and processed using Adobe Photoshop CS6. 

Adult Fly Wing Mounting and Imaging 

Adult flies were collected in 70% Ethanol and dehydrated in an ascending alcohol series. 

The wings of completely dehydrated flies were clipped in 100% ethanol and mounted in 

Canada Balsam (3 Canada Balsam: 1 Methyl Salicylate). Wings were photographed using 

Olympus BX51 Microscope mounted with an Olympus XM10 camera and CellSens 
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Dimensions Software. Adult flies showing no-wing phenotype were maintained at 4°C 

overnight before they were mounted. Adult fly images were taken with the Zeiss apotome 

microscope and Axivision software.  

Fly Stocks: The following strains were obtained from the Bloomington Stock Center 

unless otherwise specified: UAS-dCskRNAi; Sb/ S-T (from R. Cagan), y w; FRT-82B 

dCskQ156Stop (from R. Cagan), yw; UAS-RasV12; FRT82B dCskQ156stop (from R. Cagan), yw 

hsFlp; nub-Gal4 UAS-HpoRNAi/ CyO-GFP (from G. Halder), yw; nub-Gal4 UAS-HpoΔINH/ 

CyORoi (from G. Halder), Ubx-Flp; FRT-42D ykiB5/ CyO (from G. Halder), UAS-

ScribRNAi, UAS-D-V5, UAS-ZyxRNAi, UAS-Sav-7A (from G. Halder), UAS-Wts-13F (from 

G. Halder), UAS-Ex-18 (from G. Halder), UAS-FtRNAi (VDRC # V9396), UAS-Yki-V5, 

and nub-Gal4. To test the loss-of-function phenotype of dCsk, we generated the line 

UAS-dCskRNAi; nub-Gal4 by using appropriate genetic crosses. This line was outcrossed 

to other UAS-bearing transgenes to study genetic interactions between dCsk and Hippo 

pathway genes. Other crosses were performed to create the following lines: UAS-

dCskRNAi; nub-Gal4 UAS-D-V5/ CyO Roi, UAS-dCskRNAi; dronc1.7kb-lacZ, UAS-dCskRNAi; 

ex697-lacZ, UAS-dCskRNAi; fj-lacZ, UAS-dCskRNAi; Diap1-4.3 GFP, MS-1096; dronc1.7kb-

lacZ, MS-1096; ex-lacZ, MS-1096; fj-lacZ, and MS-1096; Diap1-4.3 GFP. Flies were 

grown at 25°C unless noted otherwise. 
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Results: Loss of dCsk in large patches results in overgrowth 

To study the effects of loss of dCsk we overexpressed UASdCskRNAi in the wing 

pouch using the nubbin-GAL4 (nub-GAL4) driver (Fig. 8a), and found that loss of 

function of dCsk resulted in large overgrown wing pouch (Fig. 8g-i) in the imaginal discs 

and in adult wings (Fig. 8f). Earlier studies have also shown that loss of dCsk in 

homozygous discs induces apoptosis (Langton et al., 2007), therefore, we tested the 

effects of loss of dCsk (nubGAL4 UASdCskRNAi) on cell death using antibodies against 

activated Caspase 3 (Casp3*) and the Drosophila Inhibitor of Apoptosis Protein 1 

(DIAP1). In addition, we used the expression of Wingless to mark the boundary of the 

wing pouch (Neumann and Cohen, 1998). Compared to wing imaginal discs that show 

wild-type expression of Wg (Fig. 8b), activated Caspase 3 (Fig. 8c) and DIAP1 (Fig. 8d), 

loss of dCsk resulted in mild induction of Caspase 3 (Fig. 8h), and a remarkable 

downregulation of DIAP1 (Fig. 8i) expression. On the other hand, small patches of dCsk 

mutant cells generated using MARCM approach (Lee and Luo, 1999) resulted in small 

clones that did not overgrow, as the mutant cells were competed out by the surrounding 

wildtype cells (Vidal et al., 2006; Fig. 4 A-E). Thus loss of dCsk results in context 

dependent effects on growth, together with mild effects on apoptosis despite 

downregulation of DIAP1. 
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Figure 8. Comparison of wild-type and nub-GAL4 UAS-dCskRNAi (Kwon et al., 2014) 
Panels show comparison of wing imaginal discs from third instar larvae of wild-type (a-
d) and nub-GAL4 UAS-dCskRNAi  (g-i) and corresponding adult wing phenotypes (e, g). 
The nub-Gal domain is shown using GFP expression (a). Loss of dCsk in the nub-Gal4 
expression domain causes overgrowth of the wing pouch (f). Regulation of Wingless 
expression during dCsk loss-of-function reveals over-proliferation of cells in the wing 
pouch (g). The overgrowth of dCsk mutant cells occurs despite induction of Casp3* (h) 
and down-regulation of DIAP1 (i).  
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Results: Loss of dCsk affects Yki activity  

The increased proliferation and decreased apoptosis caused by loss of dCsk is 

similar to the effects of loss of function of Hippo pathway genes, so we tested the effect 

of loss of dCsk on transcriptional targets of Hippo signaling (Fig. 9). We tested several 

transcriptional targets of Hippo pathway (ex-lacZ, fj-lacZ, dronc-lacZ and diap4.3GFP). 

Compared to the wild-type expression of ex-lacZ (Fig. 9A), and fj-lacZ (Fig. 9C), in cells 

where dCsk is downregulated (nubGAL4 UASdCskRNAi) the levels of expression of ex-

lacZ (Fig. 9B) and fj-lacZ (Fig. 9D) is upregulated suggesting that loss of dCsk leads to 

Yki activation. We also tested the expression of diap1-4.3GFP, the reporter transgene 

that contains the Hippo response element in diap1 (Wu et al., 2008; Zhang et al., 2008), 

to check if loss of dCsk affects diap1 expression via the Hippo pathway. Compared to the 

expression of the diap1-4.3GFP in wild type wing discs (Fig.9E), we observed a 

downregulation of diap14.3-GFP expression in wing discs from nubGAL4 UASdCskRNAi 

larvae (Fig. 9F). This effect is similar to downregulation of DIAP1 protein in dCsk 

mutant cells. The Drosophila homolog of Caspase 9, dronc, is another cell death pathway 

gene that is transcriptionally regulated by the Hippo pathway.   

Taken together, this data suggests that loss of dCsk results in increased Yki 

activity leading to upregulation of ex and fj transcription, but not diap1 transcription. This 

increased Yki activity may in part explain the overgrowth phenotype of the nubGAL4 

UASdCskRNAi wing discs. 
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Figure 9. Hippo target genes are affected by loss of dCsk.  
(A, C, E, G) Panels show ex-lacZ (A), fj-lacZ (C), and diap1-lacZ (E) and dronc-lacZ (G) 
expression in wild-type wing imaginal discs.  (B, D, F, H) Panels suggest that loss of 
dCsk affects Yki activity. dCskRNAi causes induction of ex-lacZ (B), fj-lacZ (D), and 
dronc1.7kb-lacZ (F). Interestingly, diap1-lacZ (F) remains down-regulated. 
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Results: dCsk genetically interacts with the Hippo pathway 

Since the phenotypes of dCsk suggested that dCsk caused increased Yki activity, 

we tested if dCsk genetically interacted with Hippo pathway genes. First we tested 

genetic epistasis interactions between dCsk and Yki. For all epistasis experiments, we 

used two criteria to analyze the interaction. First, we tested for the effects of epistatic 

interactions on DIAP1 expression, and second, we compared the size of the wing pouch. 

The nub-GAL4 driver is expressed in the wing pouch, and the size of the wing pouch can 

be measured using the expression of Wg as a guide for the extent of the nubbin domain. 

This is because the edge of nubbin expression overlaps with the outer wing hinge-specific 

expression of Wg (Neumann and Cohen, 1998). Over-expression of Yki leads to up-

regulation of DIAP1 levels (Fig. 10c) and an overgrowth of the wing pouch (Fig. 10d) in 

the nub domain. In comparison, loss of dCsk leads to downregulation of DIAP1 (Fig.8i) 

and an overgrowth of the wing pouch (Fig. 8g-i). Co-expression of dCskRNAi and Yki 

resulted in up-regulation of DIAP1 levels (Fig. 10e) and an overgrowth of the wing 

pouch (Fig. 10f). Taken together, these data suggest that Yki may act downstream of 

dCsk.  

To further clarify this epistatic relationship, we tested if the overgrowth caused by 

loss of dCskRNAi is affected by heterozygosity for ykiB5- the null allele for yki. It is well 

established that Hippo signaling is sensitive to dose of Yki, and reduction in Yki levels is 

known to affect loss of function phenotypes of other upstream genes in the Hippo 

pathway (Doggett et al., 2012; Verghese et al., 2012). In wild type, reduction in yki levels 

(ykiB5/+) has no obvious effects on growth (Fig. 10g,h). Heterozygosity of yki creates a 

sensitized background. We observed that heterozygosity of ykiB5 resulted in reduction in 
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the overgrowth observed in the wing pouch of nubGAL4 UASdCskRNAi wing discs (Fig. 

10i,j compared to Fig. 8g,i), and DIAP1 levels were restored (Fig. 10i).  This suggests 

that dCsk acts upstream of Yki, and may require Yki for regulating cell proliferation/ 

tissue growth. 

Previous studies identified dCsk as a genetic modifier of loss- or gain-of-function 

phenotypes of Wts (Stewart et al., 2003). Wts acts downstream of dCsk to mediate its 

growth regulatory functions in vivo, and dCsk phosphorylates Wts in-vitro (Stewart et al., 

2003). We confirmed this epistatic interaction between dCsk and Wts using our 

experimental system in the wing pouch (Fig. 11 a-d). Over-expression of UAS-Wts results 

in hyperactivation of the Hippo pathway and results in smaller organs due to increased 

apoptosis (Tapon et al., 2002; Verghese et al., 2012b). Over-expression of UAS-Wts 

under nubGAL4 results in reduction of wing pouch size (Fig. 11a, b). Co-expression of 

UAS-Wts with UAS-dCskRNAi (Fig. 11c, d) resulted in a complete suppression of dCsk 

phenotype of overgrowth (Fig. 8g,i), suggesting that dCsk acts upstream of Wts.  

Next, we tested the genetic interaction between Hpo and dCsk using a similar 

approach. Overexpression of UAS-Hpo also results in induction of apoptosis and 

reduction in organ size (Udan et al., 2003; Verghese et al., 2012a; Wu et al., 2003). Over-

expression of UAS-Hpo under nubGAL4 results in smaller wing pouch (Fig. 11e, f), and 

coexpression of UAS-dCskRNAi and UAS-Hpo resulted in generation of small wings (Fig. 

11 g,h) akin to the phenotype of Hpo overexpression suggesting that dCsk acts upstream 

of Hpo. Taken together, these data suggests that dCsk interacts with the core components 

of the Hippo pathway to regulate cell proliferation, and tissue sizes. 
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Figure 10. dCsk requires Yki to regulate growth. (Kwon et al., 2014) 
(a, b) Wild-type wing imaginal discs stained for expression of DIAP1 (a) and Wg (b) are 
shown. (c, d) The effect of overexpresion of Yki on DIAP1 (c), and Wg (d) in wing 
imaginal discs is shown for comparison. Note the overgrowth of the wing pouch due to 
increased Yki levels. (e, f) Co-expression of UASdCsk-IR (UASdCsk-IR; nub-
GAL4/UASYki) leads to induction of DIAP (e) and overgrowth of wing pouch (f). (g, h) 
Wing imaginal discs from FRT42D ykiB5/CyO larvae stained with antibodies against 
Diap1 (g) and Wg (h). (i, j) UASdCsk-IR; nub-GAL4/FRT42D ykiB5 wing discs showing 
reduced expression of DIAP (i) and reduced growth of the wing pouch (j) due to 
heterozygosity of ykiB5. (k-m) Adult wings from wild-type (k), nub-GAL4/UASYki (l) and 
UASdCsk-IR; nub-GAL4/UASYki (m) flies showing increased growth defects caused by 
co-expression of Yki and dCsk-IR. (n) The chart shows quantification of wing pouch 
growth for wing imaginal discs of the indicated genotypes. Asterisks indicate that the 
genotypes where there is significant difference in wing pouch growth (n=5, p<0.05). 
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Figure 11. dCsk interacts with the Hippo pathway.  
Panels show wing imaginal discs from nub-GAL4 UAS- wts (a, b), nub-GAL4 UAS-hpo 
(e, f), nub-GAL4 UAS-zyxRNAi (I, j), and nub-GAL4 UAS-D (m, n) larvae stained for 
DIAP1 and Wg (respectively). Phenotypes of nub-GAL4 UAS-wts UAS-dCskRNAi (c, d), 
nub-GAL4 UAS-hpo UAS-dCskRNAi (g, h), nub-GAL4 UAS-zyxRNAi UAS-dCskRNAi (k, l) 
show reduction of the wing pouch size, whereas nub-GAL4 UAS-D UAS-dCskRNAi (o, p) 
shows overgrowth. Interestingly, all co-expression phenotypes (c, g, k, o) with dCskRNAi 
show down-regulation of DIAP1, which is characteristic of nub-GAL4 UAS-dCskRNAi. 
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Results: dCsk acts upstream of Zyx and downstream of Dachs  

Next, we extended our investigation of genetic interactions between dCsk with 

two other upstream components of the Hippo pathway: Zyxin (Zyx), and Dachs (D). Zyx 

and D act downstream of the atypical cadherin Fat and are known to negatively regulate 

levels of Wts protein (Rauskolb et al., 2011). Downregulation of Zyx (using UAS-

ZyxRNAi) results in an overall reduction in the wing pouch (Fig. 11i, j). Co-expression of 

UAS-dCskRNAi with UAS-ZyxRNAi phenocopies the UAS-ZyxRNAi phenotype of reduction in 

wing pouch (Fig. 11k, l), suggesting that dCsk acts upstream of Zyx, likely requires Zyx to 

regulate growth. Over-expression of D (UAS D) leads to upregulation of DIAP1 (Fig. 

11m) and overgrowth of the wing pouch (Fig. 11n). Co-expression of UAS-D and UAS-

dCskRNAi phenocopies the effects of UAS-dCskRNAi over-expression, suggesting that dCsk 

acts downstream of D. Taken together, our epistasis interactions place dCsk downstream 

of D and upstream of Wts. 

To further confirm the dCsk-D epistasis, and to test if dCsk regulates growth 

through the Hippo pathway, we tested if the expression of fj-lacZ, the transcriptional 

target of Ft and Yki signaling, is affected in discs co-expressing UAS-dCskRNAi and UAS-

D. fj is expressed in a gradient in the wing pouch, with the highest levels of fj expression 

coinciding with the presumptive (DV) wing margin, and a gradient of decreasing fj 

expression that extends in both the dorsal and ventral wing pouch (Fig. 12a) (Cho and 

Irvine, 2004; Ishikawa et al., 2008; Simon et al., 2010). Loss of dCsk leads to robust 

induction of fj-lacZ expression and overgrowth (Fig. 9D), whereas over-expression of D 

causes moderate upregulation of fj-lacZ and mild hyperplasia (Fig. 12b). Co-expression 
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of UAS-dCskRNAi with UAS D caused robust overgrowth of the wing pouch and robust 

induction of fj-lacZ expression (Fig. 12d) due to increased Yki activity.  
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Figure 12. dCsk acts downstream of Dachs in the Hippo pathway.  
A comparison of fj-lacZ expression is shown for wing imaginal discs from (a) wild-type, 
(b) nub-GAL4 UASDv5/+, (c) UASdCsk-IR; nub-GAL4/+, and (d) UASdCsk-IR; nub-
GAL4 UASD v5/+larvae. 
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Conclusions 

The Drosophila C-terminal src kinase (dCsk) is a tumor suppressor gene, whose 

loss-of-function is reported to cause multiple defects in growth regulation (Read et al., 

2004, Stewart et al., 2003, Vidal et al., 2006). Our characterization of the effects of loss 

of dCsk and genetic interaction analysis showed that dCsk mutant cells induce the 

transcriptional activity of the Hippo pathway effector Yki; increased Yki activity leads to 

uncontrolled proliferation and formation of larger organs. Our genetic epistasis places 

dCsk between Dachs and Warts, which corroborates with the findings from earlier studies 

in flies where dCsk was shown to act upstream of Wts (Stewart et al., 2003). Further, the 

analysis of Yki activity in cells deficient for dCsk revealed that loss of dCsk induced 

transcription of ex-lacZ and fj-lacZ, two well-established reporters of Yki activity.  

We concluded that dCsk acts downstream of the atypical myosin Dachs, and 

upstream of the Ajuba LIM protein Zyx and the Wts kinase within the Hippo pathway 

through which it affects Yki activity. D is known to bind Zyx, and D also stimulates 

binding of Zyx to Wts. Zyx and D act downstream of Fat in the Hippo pathway and 

regulate the stability of Wts. Thus, in the future it would be interesting to investigate if 

dCsk is a part of the D/Zyx/Wts complex, or if it regulates Wts via phosphorylation 

dependent mechanisms, or if D or Zyx are involved in the mechanisms that localize dCsk 

to the membrane, where dCsk acts on its substrates. In summary, our data uncovers dCsk 

as a new input in the Hippo signaling pathway, and reveals the intersection of the Hippo 

and Src signaling pathways, which are of wide interest because of the roles they play in 

the regulation of normal development and the effects of their misregulation occurred in 

cancers. 
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Abstract
Growth of a single-celled zygote to a fully 
developed organism requires three processes:  
cell division, cell differentiation and quiescence 
following morphogenesis. Developmental genetic 
pathways control all of these processes.  The 
molecular underpinnings of these pathways (e.g., 
the MAPK, p53, Hippo, TSC/TOR pathways) are 
beginning to emerge.  It is clear that not only the 
genes comprising these pathways play essential 
roles during development, but loss of these genes 
is responsible for several diseases including 
cancer. Two such pathways, viz., Hippo and Src 
which comprise a network of tumor suppressor 
genes and oncogenes, are the focus of this review.  
These pathways control tissue and organ size 
during development by regulating cell prolifer-
ation, cell death, cell migration, and cell adhesion. 
Overall, the chief components and known  
interactions of the two pathways are discussed.

Introduction
The transformation of a single-celled zygote into 
a complex multi-cellular organism requires three 
processes: cell division, cell differentiation, 
and morphogenesis. A fertilized egg, called the 
zygote, undergoes multiplicative or embryonic 
growth via mitosis, dividing into a multi-cellular 
organism (Raff, 1992; Conlon and Raff, 1999). 

After multiplication, these cells specialize in 
different structure and function due to differ-
ential gene expression, and organize themselves 
into three-dimensional organs. Yet, growth of 
an organism does not stop after embryogenesis. 
The growth of certain body parts, such as the 
muscle, is due to auxesis, in which the size 
of cells increases while the number of cells 
remains the same. In a mature organism, the 
differentiated cells have lost the capacity of 
undergoing division, but undifferentiated cells 
present at some locations keep dividing mitoti-
cally to replace worn-out cells; this production 
of reserve cells from an increase of intercel-
lular material is called the accretionary growth. 
Evidently, ongoing growth is restricted to the 
formation of cells that are needed to be replen-
ished. As opposed to a tightly controlled growth 
during development, the phenomenon of unregu-
lated growth is named cancer, one of the major 
leading causes of death worldwide.

Cancer arises from tumor cells that continually 
divide due to their inability to recognize growth 
regulatory signals, including signals controlling 
apoptosis (Kerr et al., 1972; Jacobson et al., 1997; 
Wyllie et al., 1980) and contact inhibition. Cells 
that repetitively undergo cell cycle are likely 
to become cancerous, due to multiple errors 
that have accumulated from the numerous DNA 
replications. Indeed, most cancer cells contain at 
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least one mutated gene, or an oncogene, which 
can permanently activate the cell cycle and 
cause malignancy. In addition, inactivation or 
deletion of both copies of a tumor suppressor 
gene can also give rise to cancerous cells. 
These malignant tumors evade apoptosis, or 
programmed cell death, and continue to prolif-
erate by increasing in their number. The more 
serious problem occurs when the malignant 
tumors spread throughout the body via metas-
tasis, inducing the surrounding cells to also 
become tumorous. Studies to identify genes and 
genetic mechanisms that are involved in tumori-
genesis and metastasis have led to the discovery 
of several tumor-suppressor networks (e.g., the 
MAPK, p53, Hippo, TSC/TOR pathways) whose 
genes are often mutated in cancers. These 
studies reveal that only some cells in the tumor 
acquire the ability to metastasize, suggesting 
that additional mutations are responsible for 
metastatic defects. Amongst the pathways 
involved in tumorigenesis, the recently identified 

Hippo pathway has garnered the most attention. 
Originally identified by studies in Drosophila, 
the Hippo signaling pathway largely contributes 
to organ size regulation (Harvey and Tapon, 
2007) in both invertebrates and vertebrates 
(Figure 1). Loss-of-function of the genes within 
this pathway leads to potent tumorigenesis  
in flies and humans.

The Hippo Signaling Pathway
The Hippo signaling pathway is a complex 
network of tumor suppressor genes and 
oncogenes, whose mutations lead to large, 
Hippopotamus-like phenotype (reviewed by 
Edgar, 2006; Pan, 2007; Saucedo and Edgar, 2007; 
Kango-Singh and Singh, 2009). It regulates organ 
size by inhibiting cell proliferation and promoting 
apoptosis (Figure 2). At the core of the pathway 
reside two kinases, Hippo (Hpo, the serine/
threonine Ste20-like kinase) (Harvey et al., 2003; 

Figure 1. The Hippo Signaling Network in Drosophila and Mammals:  Corresponding proteins in Drosophila and mammals are indicated by matching 
colors and shapes. Solid lines indicate direct biochemical interactions, whereas dashed lines show indirect interactions. Arrowed or blunted end indicates  
activation or inhibition. Selected target genes are shown.
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Jia et al., 2003; Pantalacci et al., 2003; Udan et al., 
2003; Wu et al., 2003) and Warts (Wts, the nuclear 
Dbf-2-related (NDR) family kinase; also known 
as Lats) (Justice et al., 1995; Xu et al., 1995), and 
two adaptor proteins, Salvador (Sav, the WW 
domain scaffolding protein) (Kango-Singh et 
al., 2002; Tapon et al., 2002) and Mob as Tumor 
Suppressor (Mats) (Lai et al., 2005). Initially, 
Hpo forms a complex with Sav to phosphorylate 
Wts. Wts, in turn, forms a complex with Mats to 
phosphorylate Yorkie (Yki) (Huang et al., 2005), 
a transcriptional coactivator, retaining Yki in the 
cytoplasm. In the absence of Hippo signaling, 
the dephosphorylated Yki translocates into the 
nucleus and binds to the transcription factors 
(e.g., Scalloped, Sd), inducing the expression of 
target genes that (1) promote cell proliferation 
(e.g., bantam microRNA, myc), (2) induce cell 
cycle progression (e.g., E2F1, cyclins A,B, E), or 
(3) inhibit apoptosis (e.g., diap1), which results in 
tissue overgrowth (Huang et al., 2005) (Table 1).

Multiple points of signal integration have been 
found in the Hippo Pathway, suggesting that the 
core kinase cassette responds to diverse stimuli. 
Examples of the upstream regulators include 
Expanded (Ex), Merlin (Mer) (Hamaratoglu 
et al., 2006), Kibra, Fat (Ft, the protocadherin) 
(Bennett and Harvey, 2006; Cho et al., 2006; Silva 
et al., 2006; Willecke et al., 2006), Tao1 (Boggiano 
et al., 2011; Poon et al., 2011), Crumbs (Crb), 
Ajuba (Jub), and Scribble (Scrib) (Verghese et 
al., 2012). Ex, Mer, and Kibra function together 

to activate the Hpo kinase cascade by directly 
binding to the Hpo-Sav complex (Yu et al., 2010). 
Additionally, Ex is known to directly repress 
Yki. The Ex-Mer-Kibra branch is modulated 
by the Fat/Dachsous branch, which does so 
by regulating Ex levels.  The Fat/Dachsous 
branch consists of the atypical cadherins, Ft and 
Dachsous (Ds), and the downstream effectors 
Discs overgrown (Dco, a serine-threonine kinase; 
aka casein kinase 1ε), Dachs (D, an atypical 
myosin), Approximated (App, a palmitoyltrans-
ferase), Lowfat (Lft), and Zyxin (Zyx) (Grusche 
et al., 2010; Rauskolb et al., 2011).  Tao1, a sterile 
20-like kinase, is found to phosphorylate and 
activate Hpo.  Furthermore, the Hippo pathway 
activity is thought to be also modulated by cell 
polarity, cell adhesion, and cell junction proteins, 
such as Crb, Jub, Scrib.  The cell junction proteins 
exist in the epithelial cells of Drosophila melano-
gaster at the sub-apical region (SAR), adherens 
junction (AJ) or septate junction (SJ).  Notably, 
the Hippo pathway activity is also affected by 
the modulation of the apical level of filamentous 
actin (F-actin).  High accumulation of F-actin 
inhibits the Hippo signaling, thereby activating 
Yki.

Yki is the major downstream target of the 
Hippo signaling pathway.  Upon phosphory-
lation by Wts, Yki creates a binding site for 
14-3-3 proteins; this binding restricts Yki in the 
cytoplasm and leads to its degradation.  Without 
proper phosphorylation, however, Yki can 
bind to several transcription factors, such as 
Scalloped (Sd), Homothorax (Hth) (Peng et al., 
2009), Teashirt (Tsh), and Mothers against DPP 
(Mad) (Oh and Irvine, 2011), to promote tissue 
growth.  In addition, the activation of Yki results 
in autoregulation of some upstream genes, 
such as ex, mer, kibra, crb, and fj via a positive 
feedback loop.  Such broad spectrum of target 
genes confers tremendous versatility to Hippo 
signaling.  Emerging evidence demonstrates 
that the Hippo pathway crosstalks with other 
signaling pathways to regulate different target 
genes.

Table 1. Function of the Hippo Pathway Target Genes

Figure 2. Roles of the Hippo Pathway:  The Hippo signaling pathway  
regulates various cellular activities, including cell growth, proliferation, cell 
death, cell cycle, morphogenesis, and cell-to-cell interactions. 



Proceedings 2013 29

NATURAL SCIENCES

The Src Pathway and Csk
The Src-family protein tyrosine kinases (SFKs) 
are implicated in various cellular processes, such 
as cell cycle exit, cell proliferation, survival, 
differentiation, adhesion, and cytoskeletal 
rearrangement. For instance, abnormal activation 
of the SFKs is involved in proliferative disorders 
such as cancer, particularly in liver, breast and 
colon (Masaki et al., 1999; Bougeret et al., 2001; 
Cam et al., 2001; Frame, 2002), and is associated 
with metastatic behavior (Yeatman, 2004).  The 
SFKs were originally identified in the trans-
forming gene of the Rous-Sarcoma virus, v-src. 
Drosophila melanogaster has two SFK members, 
Src42 and Src64 (Simon et al., 1985; Potter et al., 
2000).  The SFK activity is inhibited by phosphor-
ylation of their Carboxyl-terminal (C-terminal) 
region by C-terminal Src kinase (Csk) (Cole, 
2003).  Flies have one Csk homolog, dCsk (Read, 
2004; Stewart, 2003), which functions similarly 
to the mammalian Csk (Hoffmann et al., 1983; 
Simon et al., 1985; Takahashi et al., 1996).  In 
fact, Csk was first identified by its ability to 
negatively regulate the SFK activity.  Reduced 
levels of dCsk activate Src kinases (Thomas and 
Brugge, 1997; Schwartzberg, 1998; Bjorge et al., 
2000), including Jun N-terminal kinase (JNK), 
Stat, and Btk29A (Pedraza, 2004, Read, 2004); 
this Src activation results in organ size increase, 
lethality of the organism, and overproliferation 
due to extra cell cycles (Read, 2004; Stewart, 
2003).  Thus, Csk acts as a tumor suppressor 
through the Src pathway regulation (Read, 
2004), while also negatively regulating the JNK 
pathway.

Csk is known to have Src-independent functions 
as well (Figure 3). Independently of the SFK 
activity, Csk links G-protein signaling to the 
actin cytoskeleton (Lowry et al., 2002).  In 
addition, Csk phosphorylates a number of other 
downstream molecules (Autero et al., 1994; 
Hildebrand et al., 1995; Cloutier and Veillette, 
1996; Tremblay et al., 1996).  Within the past 
decade, dCsk has been reported to regulate 
cell proliferation by genetically modifying wts 
tumor suppressor gene, a core component of 
the Hippo pathway, by direct phosphorylation 
(Stewart 2003).  Presumably, mammalian Wts 
molecules may also be substrates of Csk, consid-
ering that the C-terminal dCsk phosphorylation 
site is conserved in other Wts homologs.

Broad loss of csk results in overproliferation 
(Figure 4 G), inhibition of apoptosis, and decreased 
cell adhesion.  However, local inactivation of 

dCsk in discrete patches surrounded by normal 
cells does not cause overgrowth (Figure 4 A-E), 
as dCsk mutant cells begin to delaminate and 
disperse from the growing imaginal disc tissue, 
leading to their elimination by macrophages 
(Vidal et al., 2006).  Although loss-of-function 
phenotype of dCsk is strikingly similar to that of 
hpo, wts, sav, and mats (or gain of Yki function), 
clonal patches of dCsk cells fail to survive to 
adulthood, unlike cells containing the others four 
genes.  Instead, these cells spread among the 
wild-type cells while simultaneously undergoing 
apoptosis, which may reflect the function of Src 
in promoting motility and invasion (Langton, 
2007).

More recently, Src has been reported to control 
tumor microenvironment by JNK-dependent 
regulation of the Hippo pathway (Enomoto and 
Igaki, 2013).  Clone cells of Src overexpression 
activate the Rac-Diaphanous and Ras-mitogen-
activated protein kinase (MAPK) pathways, 
which induces accumulation of F-actin, one of 
the upstream regulators of the Hippo pathway.  
Highly accumulated F-actin inhibits the Hippo 
signaling, thus activating Yki (Fernandez et al., 
2011; Richardson, 2011; Sansores-Garcia et al., 
2011) in both Src mutants and wild-type cells.  
Simultaneously, Src activates the JNK pathway, 
which signals the propagation of Yki activity 
to surrounding wild-type cells; the surrounding 
tissue is overgrown as a result.  On the other 
hand, activated STAT acts independently of the 
Hippo pathway (Rodrigues, 2012).  Src is known 
to interact with STAT. Thus, it is important to 
continue investigating the new, independent 
roles of Src and Csk.

Figure 3. Csk at the Intersection between Src and Hippo Signaling Path-
ways:  Certain genes in each Hippo and Src pathway (i.e., wts and src) have 
been shown to be regulated by a common kinase, Csk, suggesting that there 
might be a molecular link among the three.
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Discussion
Emerging evidence supports that tumor  
development is regulated by cell-to-cell commu-
nication through multiple signals, namely Hippo 
and Src.  Certain genes in each Hippo and Src 
pathway (i.e., wts and src) have been shown to be 
regulated by a common kinase, Csk, suggesting 
that there might be a molecular link among the 
three (Figure 3).  Although Csk activity is known 
to regulate metastatic behavior by decreasing 
cell adhesion, reduced csk expression alone 
is not sufficient to direct stable tumor growth.  
The fact that discrete patches of dCsk fail to 

maintain survival of migrating cells calls for 
further investigation of the Src-independent 
role of Csk in metastasis, specifically in relation 
to how important the Hippo signaling input is  
to Csk-mediated growth regulation.

Csk may have specific roles as a tyrosine kinase 
by modifying proteins within the Hippo Pathway, 
a hypothesis that remains untested.  These modifi-
cations may reveal the molecular circuitry that 
enhances the migratory behavior of certain types 
of tumors, which can then be targeted for thera-
peutic intervention.  For example, suppressing 
Csk activity could revert defects, or disrupting 
the binding domains of Csk with the Hippo 
Pathway components could prevent the cellular 
changes required for metastasis.  Therefore, 
understanding the genetic relationship between 
Csk with the Hippo Pathway would enhance the 
therapeutic approaches to relevant diseases 
such as cancer.
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Notation
In keeping with Drosophila nomenclature, gene 
names are italicized (e.g., dCsk), proteins coded 
by the corresponding genes are capitalized (e.g., 
dCsk). Species names are also italicized (e.g., 
Drosophila).

Figure 4. The Outcomes of the Local and Broad Loss of dCsk:  (Panels A-E 
from Vidal et al., 2006; F-G from Kwon et al., manuscript in preparation.) 
Arrows mark the anterior/posterior boundary in panels A-E. (A-E) Loss of 
dCsk in discrete patches resulted in epithelial exclusion, invasive migration 
through the basal extracellular matrix (green arrows in D’), and eventual 
apoptotic death; these events occurred exclusively at the boundary between 
dCsk and wild-type cells. (F-G) Wing discs were stained with Wingless. (F) 
Wild-type wing imaginal disc is shown. (G) Broad loss of dCsk in the devel-
oping wing (nub>dCsk) resulted in overproliferation and disruption of ante-
rior/posterior polarity.
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a b s t r a c t

The Hippo signaling pathway is involved in regulating tissue size by inhibiting cell proliferation and
promoting apoptosis. Aberrant Hippo pathway function is often detected in human cancers and
correlates with poor prognosis. The Drosophila C-terminal Src kinase (d-Csk) is a genetic modifier of
warts (wts), a tumor-suppressor gene in the Hippo pathway, and interacts with the Src oncogene.
Reduction in d-Csk expression and the consequent activation of Src are frequently seen in several cancers
including hepatocellular and colorectal tumors. Previous studies show that d-Csk regulates cell
proliferation and tissue size during development. Given the similarity in the loss-of-function phenotypes
of d-Csk and wts, we have investigated the interactions of d-Csk with the Hippo pathway. Here we
present multiple lines of evidence suggesting that d-Csk regulates growth via the Hippo signaling
pathway. We show that loss of dCsk caused increased Yki activity, and our genetic epistasis places dCsk
downstream of Dachs. Furthermore, dCsk requires Yki for its growth regulatory functions, suggesting
that dCsk is another upstream member of the network of genes that interact to regulate Wts and its
effector Yki in the Hippo signaling pathway.

& 2014 Elsevier Inc. All rights reserved.

Introduction

Growth regulation requires a balance between cell proliferation
and cell death (Raff, 1996; Stanger, 2008). Amongst these pathways
the Hippo pathway regulates organ size by inhibiting cell prolifera-
tion and promoting apoptosis in all metazoan animals from
Drosophila to mammals (Schroeder and Halder, 2012; Staley and
Irvine, 2012; Tumaneng et al., 2012; Yu and Guan, 2013). The Hippo
pathway is a network of tumor suppressor genes and oncogenes,
and mutations in Hippo pathway lead to overgrowth of the
imaginal discs and adult organs (Kango-Singh and Singh, 2009).
Aberrant Hippo pathway function in humans (due to amplification
of genes, epigenetic silencing and oncogenic transformation) is

often detected in human cancers and correlates with poor prognosis
(Halder and Camargo, 2013; Harvey et al., 2013; Johnson and
Halder, 2014; Pan, 2010; Zeng and Hong, 2008).

The Hippo pathway comprises of a core kinase cascade involving
the Ste-20 family kinase Hippo (Hpo) (Harvey et al., 2003; Jia et al.,
2003; Pantalacci et al., 2003; Udan et al., 2003; Wu et al., 2003) and
the DMPK family kinase Warts (Wts) (Justice et al., 1995; Xu et al.,
1995), which acts upon the transcriptional co-activator Yorkie (Yki)
(Huang et al., 2005). Nuclear availability of Yki is regulated by
phosphorylation-dependent and -independent mechanisms (Badouel
et al., 2009; Oh and Irvine, 2008, 2010; Oh et al., 2009). Wts-mediated
phosphorylation of Yki causes its cytoplasmic localization and degra-
dation. When Hippo signaling is down-regulated, active Yki translo-
cates to the nucleus where it forms a complex with the transcription
factor Scalloped (Sd) [or Mothers against Dpp (MAD), Teashirt (Tsh)
or Homothorax (Hth)] to induce the expression of target genes
that promote (a) cell proliferation and cell survival like the bantam
miRNA, myc, (b) cell cycle progression e.g., E2F1, cyclins A, B, E, and
(c) inhibitors of apoptosis like drosophila inhibitor of apoptosis (diap1)
(Edgar, 2006; Enderle and McNeill, 2013; Halder and Camargo, 2013;
Halder and Johnson, 2011; Kango-Singh and Singh, 2009; Saucedo and
Edgar, 2007). Hippo signaling also regulates the expression of several
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genes within its pathway via a negative feedback loop (Edgar, 2006;
Kango-Singh and Singh, 2009; Saucedo and Edgar, 2007). Thus, there
are several upstream regulators of Yki in the Hippo pathway, and the
Hippo pathway activity shows context-dependent response to these
upstream inputs (Grusche et al., 2010; Halder and Johnson, 2011).
Recent studies have revealed that the Hippo pathway cross-talks with
other signaling pathways (e.g., TGFb/Dpp, Wnt/Wg, EGFR/MAPK, G-
Protein Coupled Receptors[GPCRs]) in several contexts(Boggiano and
Fehon, 2012; Mauviel et al., 2012; Schroeder and Halder, 2012; Staley
and Irvine, 2012). We tested the interaction of C-terminal Src kinase
(Csk), a Src-family protein tyrosine kinase (SFK) (Okada, 2012; Read
et al., 2004; Stewart et al., 2003) with the Hippo pathway, to
investigate the mechanism of growth regulation by SFKs—an area that
remains poorly understood.

Analogous to the role of the Hippo pathway, the SFKs are involved
in the regulation of normal development, and their misregulation is
implicated in several types of cancers (Ingley, 2008; Okada, 2012).
This family of proteins is regulated by signaling pathways (e.g., GPCRs)
that are involved in the regulation of cell cycle entry, cyto-skeletal
rearrangement and cell-adhesion. Src proteins are maintained in
inactive state by C-terminal Src kinase (Csk), a conserved Src family
kinase (SFK) (Imamoto and Soriano, 1993; Okada, 2012). C-terminal
Src kinase (Csk) maintains SFKs in an inactive state by an inhibitory
phosphorylation (e.g., Tyr527 in avian c-Src) (Cole et al., 2003). Csk
acts as a tumor-suppressor gene by interacting with several signaling
proteins via phosphorylation-mediated interactions (e.g., Paxillin,
c-Jun, Lats) (reviewed by Okada (2012)). Mammalian Src is well
known for mitogenic signaling, and can act as a proapoptotic or anti-
apoptotic signal by its context-dependent interactions with the Ras-
MAPK, PI3 Kinase/Akt, and Stat3 signaling pathways (Alexander et al.,
2004; Martin, 2006; Thomas and Brugge, 1997). Thus, tissue context
decides the outcome of Src activation.

The Drosophila Csk homolog, dCsk, acts as a tumor suppressor
gene because loss of dCsk in homozygous mutant animals results
in hyperplasia of imaginal discs (Read et al., 2004; Stewart et al.,
2003), whereas loss of dCsk in somatic clones results in poor
growth of the mutant cells (Read et al., 2004; Vidal et al., 2006).
Loss of dCsk using a RNAi approach (UASdCsk-IR) showed that large
patches of dCsk mutant cells lead to increased proliferation and
decreased apoptosis (Vidal et al., 2006), and effects of loss of dCsk
are mediated through Src activation(Read et al., 2004). Although
Src expression is elevated in several tumors (Yeatman, 2004), Src
overexpression in epithelial cells in flies is known to cause both
proliferation and apoptosis (Vidal et al., 2007). Recently, activation
of Src oncoprotein was shown to activate Yki in a JNK-dependent
manner (Enomoto and Igaki, 2013). Over-expression of Src caused
Rac-Diaphanous and Ras-MAPK activation (Enomoto and Igaki,
2013), which cooperatively activate F-actin a Hippo pathway target
gene (Fernandez et al., 2011; Richardson, 2011; Sansores-Garcia et
al., 2011). These studies revealed that both the cell autonomous
and the non-cell autonomous effects of Src activation depend on
JNK mediated Yki regulation (Enomoto and Igaki, 2013). Further-
more, dCsk is known as a genetic modifier of Wts, and is known to
phosphorylate Wts (Pedraza et al., 2004; Stewart et al., 2003).

Given that the growth regulatory functions of Wts occur
through its interactions with Yki and the Hippo signaling pathway,
we proposed that dCsk regulates growth via the Hippo signaling
pathway. We tested if loss of dCsk resulted in changes in Yki
activity levels, and if dCsk and Hippo pathway genes genetically
interact. We present multiple lines of evidences suggesting that
loss of dCsk using RNAi mediated elimination of dCsk in large
patches of cells causes overgrowth due to increased proliferation –

due to increased Yki activity. The effects of loss of dCsk are cell
autonomous, and genetic interactions between dCsk and Hippo
pathway components place dCsk between Dachs and Zyx that
function downstream of Fat in the Hippo network.

Material and methods

Fly stocks

The following strains were obtained from the Bloomington Stock
Center unless otherwise specified: UASdCsk-IR; þ; TM3Sb/SM6a-
TM6B, Tb (from R. Cagan), y w; FRT82B dCskQ156Stop (from R. Cagan),
yw; UASRasV12; FRT82B dCskQ156stop (from R. Cagan), yw hsFlp; nub-
Gal4 UASHpoRNAi/CyO-GFP (from G. Halder), yw; nub-Gal4 UASH-
poΔINH/CyORoi (from G. Halder), Ubx-Flp; FRT42D ykiB5/CyO (from D.J.
Pan), UASWts13F (from G. Halder), UASFtRNAi (VDRC # V9396),
UASScribRNAi, UASDV5, UASZyxRNAi, UASYkiV5, en-GAL4 UASGFP, ex697
en-GAL4 (from G.Halder), and nub-Gal4. To test the loss-of-function
phenotype of dCsk, we generated the line UASdCsk-IR; nub-Gal4/CyO
by using appropriate genetic crosses. This line was outcrossed to
other UAS-bearing transgenes to study genetic interactions between
dCsk and Hippo pathway genes. Other crosses were performed to
create the following lines: (1) UASdCsk-IR; nub-Gal4 UASDV5/CyO, (2)
UASdCsk-IR; ex697-lacZ/CyO, (3) UASdCsk-IR; fj-lacZ/CyO, (4) UASdCsk-
IR; Diap1-4.3 GFP/TM6B, Tb, (5) MS-1096; ex-lacZ/CyO, (6) MS-1096;
fj-lacZ/CyO, and (7) MS-1096; Diap1-4.3 GFP/TM6B. Flies were grown
at 25 1C unless noted otherwise.

Immunohistochemistry

Immunohistochemistry was done following the previously
published protocol (Kango-Singh et al., 2002). Briefly, wing imagi-
nal discs from third-instar larvae were dissected in phosphate
buffered saline (PBS), fixed for 20 min in 4% paraformaldehyde,
and washed twice for 10 min each in PBST (PBSþ0.2% TritonX-
100) at room temperature. Tissues were then blocked with 2%
normal donkey serum for 2 h and stained with primary antibody
at 4 1C overnight. Next, tissues were washed twice and incubated
in secondary antibody for 2 h at room temperature in foil-wrapped
eppendorf tubes. Finally, tissues were mounted in Vectashield
after three rounds of washing. Images were taken using confocal
microscopy. The following primary antibodies were used: mouse-
anti DIAP1 (1:250); mouse-anti βgal (1:100), mouse-anti Wingless
(1:100), and rabbit-anti Caspase (1:250). Secondary antibodies
(Jackson Immunoresearch) used were anti-mouse Cy3 (1:1000)
and anti-rabbit Cy3 (1:1000). The samples were imaged using an
Olympus Fluoview 1000 Laser Scanning confocal microscope, and
the images were processed using Adobe Photoshop CS6.

Quantification of disc size

The size of the wing pouch was measured using the expression
of Wg as a guide for the extent of the nub-GAL4 domain (Fig. S1,
Fig. 4). The size of the wing pouch was measured by marking the
edges Wg expression in the wing disc corresponding to region of
the wing margin. The area of the wing pouch was measured (in
pixels) using the histogram function in Adobe Photoshop CS6.0 for
each genotype (n¼5). A two-tailed T-test was performed using
Excel 2013 to quantify if the observed differences between pouch
sizes were significant (po0.05).

Adult fly wing mounting and imaging

Adult flies were collected in 70% ethanol and dehydrated in an
ascending alcohol series. The wings of completely dehydrated flies
were clipped in 100% ethanol and mounted in Canada Balsam (3
Canada Balsam: 1 Methyl Salicylate). Wings were photographed
using an Olympus BX51 Microscope mounted with an Olympus
XM10 camera and images acquired using the CellSens Dimensions
Software. Adult flies showing no-wing phenotype were maintained
at 4 1C overnight before they were mounted. Adult fly images were
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taken with the Zeiss Apotome microscope, and Z-stack projections
were generated using Axiovision software.

Results

Loss of dCsk in large patches results in overgrowth

To study the effects of loss of dCsk, we overexpressed UASdCsk-IR
(Vidal et al., 2006) in the wing pouch using the nubbin-GAL4 (nub-
GAL4) driver (Fig. 1a). The UASdCsk-IR is an inverted repeat (IR)
containing transgene that targets the dCsk transcript (Vidal et al.,
2006). The nub-GAL4 driver is expressed in the wing pouch
(Neumann and Cohen, 1998). We used the expression of Wingless
(Wg) to mark the boundary of the wing pouch, as the edge of nub
expression overlaps with the outer wing hinge-specific expression
of Wg (Neumann and Cohen, 1998). Compared to wild-type (a–d),
loss of function of dCsk resulted in large overgrowths in the wing
pouch in imaginal discs (Fig. 1g–i) and in adult wings (Fig. 1
compare e to f). Earlier studies have also shown that loss of dCsk
in homozygous discs induces apoptosis (Langton et al., 2007);
therefore, we tested the effects of loss of dCsk (UASdCsk-IR; nub-
GAL4/þ) on cell death using antibodies against activated Caspase 3
(Casp3n) and the Drosophila Inhibitor of Apoptosis Protein 1
(DIAP1). Compared to wing imaginal discs that show wild-type
expression of Wg (Fig. 1b), activated Caspase 3 (Fig. 1c) and DIAP1
(Fig. 1d), loss of dCsk (UASdCsk-IR; nub-GAL4/þ) caused overgrowth
of the wing pouch accompanied by mild induction of activated
Caspase 3 (Casp3n) (Fig. 1h), and a remarkable downregulation of
DIAP1 (Fig. 1i) expression.

On the other hand, compared to wild-type clones (Fig. 2a–c),
small patches of dCsk mutant cells generated using an MARCM
approach (Lee and Luo, 1999), resulted in small clones that did not
overgrow (Fig. 2d green, gray in e). dCsk mutant clones resulted in
strong upregulation of Casp 3n in the eye (Fig. 2c) and wing discs
(data not shown). This phenotype of loss of dCsk in somatic clones

differs from the effects of loss of dCsk in larger regions of the discs
where dCsk mutant cells can overcome apoptosis and cause over-
growth (compare Fig. 2d to Fig. 1g). Earlier studies have shown
that loss of dCsk causes microenvironment specific phenotypes,
e.g., loss of dCsk over larger areas of the wing discs using 769-GAL4
or omb-GAL4 results in enlarged wings, whereas somatic clones of
dCsk fail to survive (Vidal et al., 2006). Consistent with these
reports, further analysis of the dCsk mutant clones (Fig. 2) revealed
that the mutant cells were competed out by the surrounding wild-
type cells, and resulted in no developmental defects in the adult
fly. Taken together, loss of dCsk results in context dependent
effects on growth, together with mild effects on apoptosis despite
downregulation of DIAP1.

Loss of dCsk affects Yki activity

The overgrowth phenotypes resulting from loss of dCsk are similar
to the effects of loss of function of Hippo pathway genes like expanded
(ex), merlin (mer) and fat (ft), that induce excess cell proliferation and
mild effects on apoptosis in mutant cells resulting in formation of
larger structures(Bennett and Harvey, 2006; Pellock et al., 2007; Silva
et al., 2006; Willecke et al., 2006). Therefore, we tested the effect of
loss of dCsk on transcriptional targets of Hippo signaling (ex-lacZ, fj-
lacZ, and diap4.3GFP) (Fig. 3, Fig. S1). Compared to the wild-type
expression of ex-lacZ (Fig. 3a–c), and fj-lacZ (Fig. 3g–i), downregulation
of dCsk using en-GAL4 in the posterior compartment of the wing disc
results in upregulation of ex-lacZ (Fig. 3d–f) and fj-lacZ (Fig. 3j–l)
suggesting that loss of dCsk leads to Yki activation. We confirmed this
observation as dCsk downregulation in the wing pouch under nub-
GAL4 (UASdCsk-IR; nub-GAL4/þ) upregulates the levels of expression
of ex-lacZ (Fig. S1a andb) and fj-lacZ (Fig. S1c and d). We also tested the
expression of diap1-4.3GFP, the reporter transgene that contains the
Hippo response element in diap1 (Wu et al., 2008; Zhang et al., 2008),
to check if loss of dCsk affects diap1 expression via the Hippo pathway.
Compared to the expression of the diap1-4.3GFP in wild type wing
discs (Fig. S1e), we observed a downregulation of diap14.3-GFP

Fig. 1. Loss of function phenotypes of dCsk. Panels show comparison of wing imaginal discs from third instar larvae of wild-type (a–d) and UASdCsk-IR; nub-GAL4/þ (g–i) and
corresponding adult wing phenotypes (e and f). The nub-Gal domain is shown using GFP expression (a), and wild-type expression of Wg (b), activated Caspase 3 (Casp3*) (c),
and DIAP1 (d) is shown. Loss of dCsk in the nub-Gal4 expression domain causes overgrowth of the wing pouch (f). Regulation of Wingless expression during dCsk loss-of-
function reveals over-proliferation of cells in the wing pouch (g). The overgrowth of dCsk mutant cells occurs despite induction of Casp3* (h) and down-regulation of DIAP1
(i). The resulting adult wing phenotype is shown in panels e and f.
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expression in wing discs from UASdCsk-IR; nub-GAL4/þ larvae (Fig.
S1f). This effect is similar to downregulation of DIAP1 protein in dCsk
mutant cells. Taken together, this data suggests that loss of dCsk results
in increased Yki activity leading to upregulation of ex and fj transcrip-
tion, but not diap1 transcription. This increased Yki activity may in part
explain the overgrowth phenotype of the UASdCsk-IR; nub-GAL4/þ
wing discs.

dCsk genetically interacts with the Hippo pathway

Since the phenotypes of dCsk suggested that dCsk caused increased
Yki activity, we tested if dCsk genetically interacted with Hippo
pathway genes using genetic epistasis approaches (Figs. 4, 5, S2).
For all epistasis experiments, we used two criteria to analyze the
interaction. First, we tested for the effects of epistatic interactions on
DIAP1 expression, and second, we compared the size of the wing
pouch. Previous studies identified dCsk as a genetic modifier of loss-
or gain-of-function phenotypes of Wts (Stewart et al., 2003). Wts acts
downstream of dCsk to mediate its growth regulatory functions
in vivo, and dCsk phosphorylates Wts in-vitro (Pedraza et al., 2004;
Stewart et al., 2003). We confirmed this epistatic interaction between
dCsk and Wts using our experimental system in the wing pouch
(Fig. 4a–d). Over-expression of UASWts results in hyperactivation of
the Hippo pathway and results in smaller organs due to increased
apoptosis (Tapon et al., 2002; Verghese et al., 2012b). Over-expression
of UASWts under nub-GAL4 results in reduction of wing pouch size
(Fig. 4a and b). Co-expression of UASWts with UASdCsk-IR (Fig. 4c and
d) resulted in a complete suppression of dCsk phenotype of over-
growth (Fig. 1g–i), suggesting that dCsk acts upstream of Wts.

Next, we tested the genetic interaction between Hpo and dCsk.
Overexpression of UASHpo results in induction of apoptosis and
reduction in organ size (Udan et al., 2003; Verghese et al., 2012a;
Wu et al., 2003). Over-expression of UASHpo under nub-GAL4 results
in smaller wing pouch (Fig. 4e and f), and co-expression of UASdCsk-
IR and UASHpo resulted in generation of small wings (Fig. 4g and h)
akin to the phenotype of Hpo overexpression suggesting that dCsk

acts upstream of Hpo. Taken together, these data suggests that dCsk
interacts with the core components of the Hippo pathway to regulate
cell proliferation, and tissue sizes.

Next, we extended our investigation of genetic interactions bet-
ween dCsk with two other upstream components of the Hippo
pathway—Zyxin (Zyx) (Rauskolb et al., 2011), and Dachs (D) (Mao
et al., 2006). Zyx and D act downstream of the atypical cadherin Fat
and are known to negatively regulate levels of Wts protein (Mao
et al., 2006; Matakatsu and Blair, 2008; Rauskolb et al., 2011).
Downregulation of Zyx (using UASZyxRNAi) results in an overall
reduction in the wing pouch (Fig. 4i and j). Co-expression of
UASdCsk-IR with UASZyxRNAi phenocopies the UASZyxRNAi phenotype
of reduction in wing pouch (Fig.4k and l), suggesting that dCsk acts
upstream of Zyx, and likely requires Zyx to regulate growth. Over-
expression of D (UASD) leads to upregulation of DIAP1 (Fig. 4m) and
overgrowth of the wing pouch (Fig. 4n). Co-expression of UASD and
UASdCsk-IR phenocopies the effects of UASdCsk-IR over-expression
(Fig. 4o and p), suggesting that dCsk acts downstream of D. A
quantification of the wing pouch size further confirmed the epistatic
interactions between loss of dCsk and over-expression of Wts, Hpo,
Zyx or D (Fig. S2). Taken together, our epistasis interactions place
dCsk downstream of D and upstream of Wts in the Hippo signaling
pathway.

dCsk requires Yki to regulate growth

Since the signaling inputs in the Hippo pathway converge on the
Yki oncoprotein, we tested genetic epistasis interactions between
dCsk and Yki using similar genetic epistasis approaches. Compared to
wild-type (Fig. 5a and b), over-expression of Yki (nub-GAL4/UASYki)
leads to up-regulation of DIAP1 levels (Fig. 5c) and an overgrowth of
the wing pouch (Fig. 5d) in the nub domain. In comparison, loss of
dCsk (UASdCsk-IR; nub-GAL4/þ) leads to downregulation of DIAP1
(Fig. 1i) and an overgrowth of the wing pouch in imaginal discs
(Fig. 1g–i). Co-expression of dCsk-IR and Yki (UASdCsk-IR; nub-GAL4/
UASYki) resulted in up-regulation of DIAP1 levels (Fig. 5e) and an

Fig. 2. dCsk mutant cells are out competed by neighboring wild type cells. GFP labelled somatic clones of wild type (a–c) and loss of dCsk (d–f) is shown. Wild-type clones
(green in a) were induced in the eye imaginal discs using the MARCM approach, and stained with antibodies against activated Caspase 3 (Casp 3*) to assess the extent of cell
death (red in a). MARCM clones of dCsk (d–f) fail to cause large overgrowths, and Casp3* (red in d) is induced in dCsk mutant cells (green in d), which may account for their
elimination from the tissue due to cell competition.
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overgrowth of the wing pouch (Fig. 5f). The wild type adult wing
(Fig. 5k) is presented as reference. The size of the wing pouch and the
resulting adult wings appear very similar when comparing UASdCsk-
IR; nub-GAL4/UASYki (Fig. 5m) to either nub-GAL4/UASYki (Fig.5l) or
UASdCsk-IR; nub-GAL4/þ (Fig. 1g–i). However, the UASdCsk-IR; nub-
GAL4/UASYki double mutant wings show upregulation of DIAP1
expression similar to effects of over-expression of Yki. Taken together,
these data suggest that Yki may act downstream of dCsk.

To further clarify this epistatic relationship, we tested if the
overgrowth caused by loss of dCsk-IR is affected by heterozygosity
for ykiB5-the null allele for yki. It is well established that Hippo

signaling is sensitive to dose of Yki, and reduction in Yki levels is
known to affect loss of function phenotypes of other upstream genes
in the Hippo pathway (Baumgartner et al., 2010; Doggett
et al., 2011; Gilbert et al., 2011; Poernbacher et al., 2012; Sun and
Irvine, 2011; Verghese et al., 2012b; Wu et al., 2008). In wild type,
reduction in yki levels (ykiB5/þ) has no obvious effects on growth
(Fig. 5g and h). Heterozygosity of yki creates a sensitized background.
We observed that heterozygosity of ykiB5 resulted in reduction in the
overgrowth observed in the wing pouch of UASdCsk-IR; nub-GAL4/þ
wing discs (Fig. 5i and j compared to Fig. 1g and i), and DIAP1 levels
were restored (Fig. 5i). A quantification of the wing pouch size also

Fig. 3. Yki activity is upregulated in dCsk mutant cells. (a–c) Wing imaginal discs from enGAL4 larvae stained for the anterior compartment marker Ci (green in a, gray in b)
and wild-type expression of ex697-lacZ (red in a, gray c) is shown. (d–f) Downregulation of dCsk using enGAL4 causes upregulation of ex697-lacZ (red in d, gray f). Ci expression
(green in d, gray in e) marks the anterior compartment where dCsk levels are wild-type. (g–i) Panels show enGAL4 domain marked using UASGFP (green in g, gray in h), and
wild-type expression pattern of fj-lacZ (red in g, gray in i). (j–l) Loss of dCsk in the enGAL4 domain (GFP positive- green in j, gray in k) leads to upregulation of fj-lacZ (red in j,
gray in l) in the posterior compartment.
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supported the genetic interaction data, where the overgrowths caused
by loss of dCsk or over-expression of Yki are similar to the effect of the
double mutant (Fig. 5n); and the overgrowth caused by loss of dCsk is
strongly suppressed by reduction in Yki levels (Fig. 5n). This suggests
that dCsk acts upstream of Yki, and may require Yki for regulating cell
proliferation/tissue growth.

dCsk acts downstream of Dachs

Our genetic epistasis places dCsk downstream of D. Therefore,
to further confirm the dCsk-D epistasis, and to test if dCsk
regulates growth through the Hippo pathway, we tested if the
expression of fj-lacZ, the transcriptional target of Ft and Yki

Fig. 4. dCsk interacts with the Hippo pathway. Panels show wing imaginal discs fromwild-type (a and b), UASdCsk-IR; nub-GAL4/þ(c and d), nub-GAL4/þUASWts/þ(e and f),
nub-GAL4/UASHpo (i and j), nub-GAL4/þUASZyxRNAi/þ(m and n), and nub-GAL4UASDV5/þ(q and u) larvae stained for DIAP1 and Wg (respectively). Phenotypes of UASdCsk-IR;
nub-GAL4/þ; UASWts/þ(g and h), UASdCsk-IR; nub-GAL4/UASHpo (k and l), UASdCsk-IR; nub-GAL4/þ; UASzyxRNAi/þ(o and p) show reduction of the wing pouch size, whereas
UASdCsk-IR; nub-GAL4 UASDV5/þ(r and s) shows overgrowth. All co-expression phenotypes (g, k, o, and r) with dCsk-IR show down-regulation of DIAP1, which is
characteristic of UASdCsk-IR; nub-GAL4/þ .
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signaling, is affected in discs co-expressing UASdCsk-IR and UASD. fj
is expressed in a gradient in the wing pouch, with the highest
levels of fj expression coinciding with the presumptive (DV) wing
margin, and a gradient of decreasing fj expression that extends in
both the dorsal and ventral wing pouch (Fig. 6a) (Cho and Irvine,
2004; Ishikawa et al., 2008; Simon et al., 2010). Over-expression of
D causes moderate upregulation of fj-lacZ and mild hyperplasia
(Fig. 6b), whereas loss of dCsk leads to robust induction of fj-lacZ
expression and overgrowth (Fig. 3j–l; Fig. 6c). Co-expression of
UASdCsk-IR with UAS D caused robust overgrowth of the wing
pouch and robust induction of fj-lacZ expression (Fig. 6d) due to
increased Yki activity. These data also support a role of dCsk
downstream of D but upstream of Wts in the Hippo pathway.

Discussion

dCsk is as an upstream regulator of the hippo pathway

The Drosophila C-terminal src kinase (dCsk) is a tumor suppressor
gene, and loss of dCsk is reported to cause multiple defects in growth
regulation dependent on the tissue microenvironment, for example,
loss of dCsk in homozygous mutants causes extensive hyperplasia of
tissues due to increased proliferation and decreased apoptosis (Read
et al., 2004; Stewart et al., 2003; Vidal et al., 2006). Loss of dCsk in a

narrow band of cells or loss of dCsk in small patches in somatic
clones (Fig. 2) results in increased proliferation, decreased cell
adhesion, epithelial exclusion, upregulation of invasive/ cell migra-
tion related markers, and eventually apoptosis (Vidal et al., 2006).
Our characterization of the effects of loss of dCsk and genetic
interaction analysis showed that dCsk mutant cells induce the
transcriptional activity of the Hippo pathway effector Yki (Fig. 3).
Increased Yki activity leads to uncontrolled proliferation and forma-
tion of larger organs (Huang et al., 2005). Our genetic epistasis
places dCsk between Dachs and Warts, which corroborates with the
findings from earlier studies in flies where dCsk was shown to act
upstream of Wts (Stewart et al., 2003). Further, the analysis of Yki
activity in cells deficient for dCsk revealed that loss of dCsk induced
transcription of ex-lacZ and fj-lacZ, two well-established reporters
of Yki activity (Fig. 3). Thus, taken together these findings suggest
that dCsk is another upstream component of the Hippo pathway
that exerts its effects on tissue growth by affecting Yki activity
through Wts.

DIAP1 suppression and its implications on dCsk mediated growth
regulation

Interestingly, loss of dCsk shows a strong suppression of DIAP1
—as revealed by downregulation of DIAP1 protein (Fig. 1h), and
these effects on DIAP1 regulation likely occur through the Hippo

Fig. 5. dCsk requires Yki to regulate growth. (a and b) Wild-type wing imaginal discs stained for expression of DIAP1 (a) and Wg (b) are shown. (c and d) The effect of
overexpression of Yki (nub-GAL4/UASYki) on DIAP1 (c), and Wg (d) in wing imaginal discs is shown for comparison. Note the overgrowth of the wing pouch due to increased
Yki levels. (e and f) Co-expression of UASdCsk-IR (UASdCsk-IR; nub-GAL4/UASYki) leads to induction of DIAP1 (e) and overgrowth of wing pouch (f). (g and h) Wing imaginal
discs from FRT42D ykiB5/CyO larvae stained with antibodies against Diap1 (g) and Wg (h). (i and j) UASdCsk-IR; nub-GAL4/FRT42D ykiB5 wing discs showing reduced
expression of DIAP1 (i) and reduced growth of the wing pouch (j) due to heterozygosity of ykiB5. (k–m) Adult wings fromwild-type (k), nub-GAL4/UASYki (l) and UASdCsk-IR;
nub-GAL4/UASYki (m) flies showing increased growth defects caused by co-expression of Yki and dCsk-IR. (n) The chart shows quantification of wing pouch growth for wing
imaginal discs of the indicated genotypes. Asterisks indicate that the genotypes where there is significant difference in wing pouch growth (n¼5, po0.05).
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signaling pathway as the Hippo response element in diap1—diap1
4.3GFP—is downregulated in dCsk mutant cells (Fig. S1). These
findings have many implications on the known effects of loss of
dCsk. First, loss of DIAP1 in small clones of dCsk may present them
for elimination (due to cell competition). Second, increased apop-
tosis observed in dCsk homozygous mutant discs may be due to
downregulation of DIAP1 (Langton et al., 2007). Third, the over-
growth of cells despite increased apoptosis and reduced DIAP1
levels in dCsk mutant discs may be explained by the faster rate of
proliferation which outcompetes the effects of cell elimination
from the developing tissue. Alternatively, the overgrowth in the
mutants may be caused by activation of Caspases that result in
apoptosis-induced proliferation, a well-documented phenomenon
in several growth contexts (Fan and Bergmann, 2008; Levayer and
Moreno, 2013). These effects of loss of dCsk are very similar to two
other tumor suppressor genes, scribble (scrib) and discs overgrown
(dco) that show similar effects on growth regulation. Homozygous
mutant animals cause dramatic overgrowths while generation of
small patches of mutant clones in somatic mosaics grows poorly
when compared to their wild-type twin clones, or neighboring
heterozygous cells (Chen et al., 2012; Enomoto and Igaki, 2011;
Guan et al., 2007; Verghese et al., 2012b). Furthermore, DIAP1 is
downregulated in all three mutants (Fig. 1) (Guan et al., 2007;
Verghese et al., 2012b), and genetic and molecular analyses place
these genes downstream of Fat in the Hippo pathway(Feng and
Irvine, 2009; Sopko et al., 2009; Verghese et al., 2012b).

dCsk requires Yki and acts upstream of Zyx to regulate growth

Although previous studies had identified some similarities in the
Csk loss of function phenotype to the loss of function phenotype of

tumor suppressor genes within the Hippo pathway (e.g., Sav or Wts),
a clear link between dCsk and the Hippo pathway was not estab-
lished (Pedraza et al., 2004; Read et al., 2004; Stewart et al., 2003;
Vidal et al., 2006). Our work links dCsk to the Hippo pathway, as our
findings suggest that dCsk requires Yki for growth regulation (Fig. 5).
This is because the overgrowth caused by loss of dCsk is strongly
suppressed by heterozygosity for yki. Loss of dCsk or overexpression
of Yki induces overgrowth; however, these genes interact synergis-
tically as the UASdCsk-IR, UASYki double mutant wings are larger
than those of the single mutants [dCsk-IR or Yki overexpressing]
animals. Thus, our data suggests that dCsk requires Yki to regulate
growth, and may also have other Yki-independent functions.

Our data place dCsk downstream of the atypical myosin Dachs,
and upstream of the Ajuba LIM protein Zyx and the Wts kinase
within the Hippo pathway (Fig. 4). D is known to bind Zyx, and D
also stimulates binding of Zyx to Wts (Mao et al., 2006; Rauskolb
et al., 2011). Zyx and D act downstream of Fat in the Hippo
pathway and regulate the stability of Wts (Rauskolb et al., 2011).
Thus, in the future it would be interesting to investigate if dCsk is a
part of the D/Zyx/Wts complex, or if it regulates Wts via phos-
phorylation dependent mechanisms, or if D or Zyx are involved in
the mechanisms that localize dCsk to the membrane, where dCsk
acts on its substrates.

SFK and the Hippo pathway

Csk is a known regulator of the activity of Src-family kinases
(SFKs) (Okada, 2012; Okada et al., 1991). Elevation of Src activity,
and increased Src expression is associated with increased prolifera-
tion, invasion and metastasis in several cancers (e.g., colon cancer)
(Cao et al., 2008; Cole et al., 2003). One mechanism that promotes

Fig. 6. dCsk acts downstream of Dachs in the Hippo pathway. A comparison of fj-lacZ expression is shown for wing imaginal discs from (a) wild-type, (b) nub-GAL4 UASDV5/þ ,
(c) UASdCsk-IR; nub-GAL4/þ , and (d) UASdCsk-IR; nub-GAL4 UASDV5/þ larvae.
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Src mediated tumor progression involves activation of focal adhe-
sion kinases (FAKs), JNK and matrix metalloproteases (MMPs),
which together cause decreased cell adhesion and degradation of
the basement membrane, two important criteria for tumor progres-
sion and metastasis (Je et al., 2014; Okada, 2012). Loss of dCsk in a
Drosophila model of tumor invasion revealed that the mutant cells
at the boundary (that contact the normal cells) show reduced cell
adhesion, which promotes their basal exclusion and migration.
Further studies showed that JNK, Rho1, E-Cadherin and p120Cn
(alpha Catenin) all promote increased cell migration and apoptosis
(Vidal et al., 2006, 2007). Furthermore, increased Src activity was
shown to induce JNK and the Hippo pathway, via Rac-Diaphanous,
and RAS-Mitogen activated protein kinase (MAPK) pathways, lead-
ing to propagation of Yki activity to non-cancer cells, which
contribute to the tumor phenotype (Enomoto and Igaki, 2013).
Taken together, our studies suggest that dCsk may reveal another
signal integration point between the SFK and the Hippo pathway,
two potent tumor suppressor networks.

In mammalian models, Csk is known to regulate SFK via
phosphorylation of a C-terminal regulatory tyrosine (equivalent to
Tyr-527). Besides, SFKs, substrates of Csk include Paxillin, c-Jun and
Lats (Okada, 2012; Pedraza et al., 2004; Stewart et al., 2003). These
proteins are part of different signaling pathways, supporting a role of
Csk in multiple signaling interactions during development. Another
important aspect of Csk function that remains unclear is its
localization with respect to that of its target substrates (e.g. SFK or
Lats or Paxilin), which are all preferentially expressed on the cell
membrane. Thus, Csk needs to be translocated to the membrane,
and several scaffolding/adapter proteins (e.g., Caveolin-1, Paxillin)
have been identified for their role in anchoring Csk to the membrane
(Martin, 2006; Okada, 2012). Interestingly recent studies have
emphasized the importance of localization of several key compo-
nents of the Hippo pathway to the apical membrane for their
regulation and function (Ho et al., 2010; Schroeder and Halder,
2012). Overall, if Csk is localized to the membrane via conserved
mechanisms, and if Csk interacts with other signaling pathways
using phosphorylation-independent mechanisms remain to be
determined. In summary, our data uncovers dCsk as a new input
in the Hippo signaling pathway, and reveals the intersection of the
Hippo and Src signaling pathways. Both these pathways are of wide
interest because of the roles they play in the regulation of normal
development, and the effects of misregulation of these pathways in
diseases like cancer.
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