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Abstract 
Supramolecular chemistry concerns the manner in which molecular building blocks associate via 

non-covalent interactions and form aggregates. The particular building block in this research is a 
photoresponsive molecule 4,4’-azobenzene dicarboxylic acid (ADA), a molecule that isomerizes reversibly 
around an N-N double bond upon irradiation with different wavelengths of light. The large structural 
changes in the molecule that result from isomerization have the potential to modulate the properties of a 
supramolecular aggregate.  

ADA was studied under a variety of environmental conditions for the purpose of understanding 
aggregation behavior and geometries. A UV-Vis and Circular Dichroism (CD) spectroscopic study of ADA 
showed that it is soluble only at very basic pH (above 10.8) and that a decrease in pH gives rise to the 
formation of an aggregate. Further studies of the self-aggregation process at low pH showed that this 
process is under hierarchical control. Four procedures for the formation of homo- or hetero-aggregates of 
ADA were characterized. Each gave rise to the formation of a different structure showing the importance of 
the pathway undertaken during the aggregation process. CD spectra of the ADA aggregates showed that, 
typically, they have a preferential asymmetric geometry despite the symmetry of the constituent molecules. 
Moreover, the use of a chiral template macromolecule (poly-glutamate) during the formation of the 
aggregate can affect the structure of the supramolecular species and direct its chirality.  

The study of the photoisomerization of ADA in the aggregated form showed that the highly 
packed aggregates of the trans isomer were unable to photoisomerize to the cis isomer upon UV (365 nm) 
irradiation. On the contrary the aggregates containing the cis isomer of ADA were able to retain their 
ability to photoisomerize to the aggregates of the trans form 
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1. INTRODUCTION 

1.1 Supramolecular Chemistry 

Supramolecular chemistry refers to a branch of chemistry in which the self-

assembly of multiple molecular subunits is studied. Supramolecular chemistry is 

distinguished from other types of chemistry due to the fact that the primary type of 

atomic interaction one deals with is not a covalent bond, but rather all varieties of non-

covalent interaction such as electrostatic forces, hydrogen bonds, van der Waals forces, 

and donor-acceptor interactions to name a few.   

In solution, certain molecules containing polar regions, π-bonds, or hydrophobic 

regions may find it more energetically favorable to interact with themselves or other 

molecules in solution than to associate with their solvent. The molecules come together 

with an organization dictated by the non-covalent interactions they are taking advantage 

of, which results in the formation of an aggregate. The geometry and properties of the 

resulting supramolecular structure depend on both the molecular building blocks used 

and the environmental conditions in which the self-assembly process occurred.  

The formation of aggregates containing chromophores can be observed and 

characterized using UV-Vis spectroscopy. Typically, the formation of a supramolecular 

aggregate is associated with a decrease in intensity, known as a hypochromic effect, and 

broadening of the peak corresponding to the main absorption band of the monomer. In 

some cases the position of the maximum of the band shifts to longer or shorter 

wavelengths. 
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Chirality is a common feature of many biological molecules and the possibility of 

creating a supramolecular structure with a defined configuration increases the potential 

applications and significance of these materials. Chiral molecules lack symmetry 

elements and have non-superimposable mirror images. Often, this is caused by a carbon 

with four different substituents or by an asymmetric arrangement of the geometry of a 

macromolecule. Circular Dichroism spectroscopy (or CD) has the ability to reveal if the 

aggregate is chiral or achiral and facilitates the study of the inherent or induced chirality 

of the assembly. 

It has been shown that, starting from an achiral monomer, chirality can be induced 

in the aggregate by the presence of a chiral “template molecule” in solution as the 

molecular building blocks self-assemble1. Usually in the absence of any chiral template 

an achiral molecular building block gives rise to the formation of an achiral aggregate. 

Nevertheless some exceptions where the achiral monomer yields a chiral aggregate have 

been observed. 

In the design of a supramolecular species, it is therefore important to understand 

the relationships between the characteristics of the molecular components (structures and 

sites of interaction), the types of processes that lead to their association, and the 

properties of the resulting aggregate. 

Factors that have an impact on non-covalent interactions include but are not 

limited to solvent, charges, ionic strength, pH, concentration, presence of a chiral 

template and light2. Since the process of self-assembly is determined by non-covalent 

interactions, any changes to these environmental conditions have the potential to alter the 
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assembly process and the resulting aggregate structure and properties. Supramolecular 

chemistry has the potential to yield new and interesting functional materials while 

employing less complex procedures than traditional synthesis methods. 

A desirable option for directing the self-assembly process and modulate the 

properties of the resulting aggregate is represented by the use of light to perform in situ 

morphological changes of the aggregate. Prime candidates for exploiting this manner of 

control are photoresponsive building blocks3. Molecules that change conformation in 

response to a light stimulus are ideal because the reaction is specific to the chromophore, 

and the stimulus does not change any other component of the solution. Photochemical 

reactions occur quickly, produce no chemical waste, and can often be repeated 

reversibly3.  

1.2 Azobenzenes 

Azobenzenes, which contain two phenyl rings separated by an azo bond, are a 

family of chromophores often used in materials research. In addition to being chemically 

stable, azobenzenes are widely used due to the ability of ring substituents to affect the 

electronic absorption band of the nitrogen double bond, allowing it to absorb anywhere 

from the ultraviolet to visible regions of the electromagnetic spectrum4. Azobenzene 

undergoes a reversible photoisomerization from a more stable trans isomer to a cis 

isomer upon irradiation with UV light and reverts back to the trans upon exposure to 

visible light.  

The mechanism through which azobenzene photoisomerization occurs is as of yet 

uncertain and either takes place via a rupture of the  bond and rotation around the N-N 
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single bond or through an inversion in which the  bond remains intact5. In the dark, 

azobenzenes will exist in the thermally stable trans form due to the energetically 

favorable separation of the phenyl groups across the double bond. When exposed to light 

that includes a wavelength in the trans absorption band, the absorption of a photon 

induces the azobenzene to isomerize to the cis form. A second photon corresponding to 

the wavelength of the cis absorption band can cause the reverse of the process, 

regenerating the trans isomer. Upon irradiation, the azobenzene will reach a 

photostationary state in which the two opposing photoisomerization reactions occur at an 

equal rate. The amount of each isomer at the photostationary state is dependent on the 

ratio of their extinction coefficients and the rate of thermal relaxation back to the trans 

isomer6. The steady-state composition varies by system, but neither the trans nor the cis 

isomer can ever exist alone in solution. 

 The azobenzene isomerization is completely reversible and does not yield any 

side reactions. As shown in Figure 1.2.1, the change in the molecule’s length from 9.0 A 

in the trans isomer to 5.5 A in the cis isomer is one of the largest known for a reversible 

reaction7. Additionally, azobenzene undergoes an increase in dipole moment upon 

isomerization from the trans to cis. When an azobenzene is incorporated into a 

supramolecular structure, this isomerization has the potential to be translated into large 

structural changes and also provides a potential mechanism for the conversion of 

photochemical energy into mechanical motion.  



P a g e  | 5 
 

 

 

Another interesting property of azobenzene is that the bent conformation of the 

cis isomer is less conducive to dense molecular packing than is the flat trans isomer3.  

This means that the degree of aggregation depends on the isomer in solution, and, since 

isomerization can be triggered by a light stimulus, azobenzene provides a molecular 

building block that has great potential in modulating self-assembly process. 

The specific azobenzene used in this research was azobenzene 4,4’-dicarboxylic 

acid (ADA). ADA is ideal for working in aqueous solution because its carboxyl groups 

are able to ionize and engender solubility at high pH. At low pH, the carboxyl group 

hydrogen and the electronegative carbonyl oxygen can form hydrogen bonds, so the 

molecule provides opportunities for self-assembly. In addition, the two benzene rings in 

the molecule make it an ideal candidate for an aggregation-oriented system due to the 

ease with which they can participate in - stacking.       

Figure 1.2.1. Conformational changes of azobenzene upon exposure to UV and visible light 
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UV-Vis spectroscopy represents a useful tool to characterize the formation of an 

aggregate and in some cases can help predict the geometry of supramolecular species.  

The spectral shifts that might accompany the hypochromic effect associated with 

the aggregation process have been explained in terms of coupling and geometry of the 

transition moments reflecting, therefore, the geometry of the aggregate. 

In the schemes below the two limiting cases related to the interaction between two 

monomer units whose dipole moments lie in the molecular plane are shown.  

If the monomers are oriented in a face-to-face or parallel manner (H aggregate), the 

splitting of the interacting excited states will give rise to a blue shift of the absorption 

band of the aggregate compared to the band associated with the monomer. This can be 

explained by the fact that only the higher energy transition will give rise to a non-zero 

dipole moment and will therefore be responsible for the absorption (Figure 1.2.2)8. 

If the monomers are oriented in a head-to-tail or linear fiber-like manner (J 

aggregate), the splitting of the interacting excited states will give rise to a red shift of the 

absorption band of the aggregate compared to the band associated with the monomer. 

This can be explained by the fact that only the lower energy transition will give rise to a 

non-zero dipole moment and will therefore be responsible for the absorption (Figure 

1.2.3)8. 
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Figure 1.2.2. Blue shift of the absorption band. 

 

Figure 1.2.3. A red shift of the absorption band. 
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2. MATERIALS AND METHODS 

In the following procedures, UV-Vis spectra were recorded using a Jasco V-630 

Scanning UV-Vis spectrophotometer. Circular dichroism spectroscopy was run on a 

Jasco J-815 CD spectrophotometer. Temperature was held constant at 20.00⁰ C using a 

peltier thermoelectric temperature control system.  All solutions were prepared and 

analyzed in a 1.0 cm quartz cuvette. All experiments were performed in water purified 

with a Milli-Q system. A Mettler Toledo Seven Easy pH meter was used for all pH 

measurements. UV irradiation was performed using a UVP 100 Watt Mercury Lamp (365 

 nm). Visible irradiation was performed using a 120V 300W/MR16 incandescent light 

mounted on a Kodak Ektagraphic projector. 

Starting materials were purchased from commercial sources and were used 

without further purification.  

Sodium hydroxide (NaOH) Pellets Certified ACS ≥97.0 %, sulfuric acid (H2SO4) 

Suprapur™ ACS 96% and hydrochloric acid (HCl) 12.1 N Certified ACS Plus were 

purchased from Fisher Scientific. 

Azobenzene-4,4’-dicarboxylic acid (ADA) >95.0% was purchased from TCI 

America. 

Poly-L-glutamic acid sodium salt (poly-L-Glu) and poly-D-glutamic acid sodium 

salt (poly-D-Glu) were purchased from Sigma Aldrich. The poly-L-Glu had a molecular 

weight of 750-5,000 g/mol which corresponds to 6-40 amino acids per polymer. The 

poly-D-Glu had a molecular weight of 2,000-15,000 g/mol which corresponds to 17-177 

amino acids per polymer. Stock solutions of the two enantiomers were made by massing 
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a small quantity of polymer in a 25.00 mL volumetric flask and dissolving the solid in 

water. The concentration of the solutions were calculated per amino acid using the molar 

mass of the glutamic acid residue (MM=129.13 g/mol). 

The secondary structure of poly-glutamate (pKa ~ 4.5)  is determined by the 

ionization of its carboxylic acid side chains. At acidic pH (less than 5), electrostatic 

repulsion is reduced by protonation to the extent that the polymer can assume an α-helical 

conformation1. When the side chain is ionized at more basic pH, the electrostatic 

repulsion between carboxylate anions causes the polymer to adopt an extended random 

coil conformation. These characteristics are confirmed by the change in characteristic CD 

signal between 200 and 300 nm.  The CD spectra of α-helices have two negative peaks of 

similar magnitude at 222 nm and 208 nm while the CD spectra of a random coil usually 

have a strong negative peak around 200 nm and, in many systems, a small positive peak 

at about 218 nm (Figure 2.1). 

 

Figure 2.1. CD spectra of poly-L-Glu at pH=7 (blue) and pH=3 (red). 
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2.1 Solubilization of ADA 

The solubility in water of the azobenzene 4,4’-dicarboxylic acid  is limited and 

depends on the pH of the solution reaching the highest value at very basic pH (above pH 

10). 

Some preliminary data had shown that a decrease in pH of a solution of ADA was 

promoting its self-aggregation. This process is usually dependent on several factors such 

as concentration, pH, and temperature. In order to study the self-aggregation of ADA, its 

dependence on the mode of solubilization of ADA itself was studied. 

A stock solution of ADA was made by massing a small quantity of the solid 

molecule into a 25.00 mL volumetric flask, adding water, and employing either of the 

following solubilization techniques: 

Method A: pH of ADA stock solution was slowly increased to 11 in approximately 

0.2 pH unit steps using a 0.1 M aqueous solution of NaOH. 

Method B: pH of ADA stock solution was rapidly increased to 11 by a few additions 

of a 1.0 M aqueous solution of NaOH  

In method A, absorbance was monitored with each addition of NaOH in order to 

observe when ADA was fully solubilized (Figure 2.1.1). The increase in absorbance 

leveled off at approximately pH=10.83 and remained constant upon further addition.  
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Figure 2.1.1. Graph of absorbance vs. pH for solubilization method A. 

The pH was then decreased using a 0.1 M aqueous solution of HCl and it was 

observed that ADA did not precipitate out of the solution as it became acidic. Although 

no precipitation was observed, UV-Vis measurements showed a marked decrease in 

absorbance and a blue shift of the peak from 330.5 to 302 nm (Figure 2.1.2) indicating 

the formation of an aggregate. CD measurements showed that despite the symmetry of 

the monomer, the aggregate in solution was chiral (Figure 2.1.3).  
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Figure 2.1.2 UV-Vis spectra of the solution of ADA solubilized by method A at pH 

11.07 (blue) and after decreasing the pH to 3 (red). 

 

Figure 2.1.3. CD spectra of the solution of ADA solubilized by method A at pH 11.07 

(blue) and after decreasing the pH to 3 (red). 
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In method B, pH was increased abruptly to 11 using a 1 M aqueous solution of 

NaOH. Following the addition of base, the solution sat and stirred until the UV-Vis signal 

stopped rising. In the same manner as method A, pH was decreased from 11 to 

approximately 3 without the formation of a precipitate. A decrease in intensity of the 330 

nm peak in the UV-Vis spectra along with the presence of a CD signal again confirmed 

the existence of a chiral aggregate, but neither the UV-Vis nor the CD signals obtained in 

method A and method B were superimposable (Figure 2.1.4 and 2.1.5), suggesting that 

the method of solubilization impacts the subsequent aggregate geometry at low pH.  

 Since solubilization methods A and B were evidently not interchangeable, 

method B was chosen as a standard method of making ADA stock solutions. 

 

Figure 2.1.4. UV-Vis spectra of two ADA solutions solubilized using method A (red) 

and method B (blue) after decreasing their pH to 3. 
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Figure 2.1.5. CD spectra of two ADA solutions solubilized using method A (red) and 

method B (blue) after decreasing their pH to 3. 
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2.2 Extinction Coefficient 

An extinction coefficient for azobenzene-4,4’-dicarboxylic acid was calculated by 

plotting the UV-Vis absorbance value versus concentration for a series of ADA solutions. 

The solutions were prepared by sequential dilutions starting from a stock solution of 

known concentration prepared by massing a small amount of ADA into a 10.00 mL 

volumetric flask and adding water and NaOH by method B.  

All the spectra were measured at pH 11 in a 1.0 cm cuvette and the range of 

concentrations were chosen so that all the absorbances measured were between 0.1 and 1.  

Using the Lambert-Beer Law 

     (1) 

where A is the absorbance, ε is the molar absorptivity or extinction coefficient in M-1cm-1, 

c is the concentration in M and l is the path length in cm, a plot of absorbance versus 

concentration has a slope equal to ε when the path length is 1.0 cm. The plots used to 

determine the extinction coefficient are given in Figure 2.2.1. From the graph, it is 

determined that the extinction coefficient of ADA at pH 11 is 8286.5 M-1▪cm-1. 
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Figure 2.2.1 The Determination of the Extinction Coefficient for Azobenzene 4,4’-

dicarboxylic acid at pH 11. 
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2.3 Photoisomerization 

As shown in Figure 2.3.1, the UV-Vis spectrum of ADA in water at pH 7 has two 

main bands at 228 nm and 330 nm corresponding to the trans isomer with the intense 

peak at 330nm attributed to the π-π* transition of the trans isomer. Irradiation of the 

solution with UV light results in a marked decrease in absorbance at both the 228 and the 

330 nm bands and an increase of two bands at 250 nm and 430 nm corresponding to the 

cis isomer, with the weak peak at 430 nm attributed to the n-π* transition of the cis 

isomer14.  

It was determined that irradiating the sample for 15 minutes with a 100 Watt 

mercury lamp (365 nm) causes the solution to reach a photostationary state after which 

further irradiation does not result in changes to the UV-Vis absorbance. The trans form 

can be restored by irradiation with visible light or via thermal relaxation. Starting from 

the trans isomer, it is possible to perform a full cycle of photoswitching by irradiation 

with UV light followed by irradiation with visible light. Figure 2.3.1 shows how the 

spectra changes after irradiation with UV light and Figure 2.3.2 shows how it is restored 

after irradiation with visible light, demonstrating that the photoisomerization is 

reversible. 
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Figure 2.3.1. UV-Vis spectra of trans-ADA (blue) and cis-ADA (red); cis-ADA is 

photogenerated after irradiation with UV light (365 nm) for 15 minutes.  

 

Figure 2.3.2. UV-Vis spectra of a full irradiation cycle: cycle: (        ) trans-ADA before 

irradiation, (        ) cis-ADA after UV irradiation, and (        ) trans-ADA after irradiation 

with visible light. 
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2.3 Aggregation Procedures  

The trans-ADA solutions were prepared in cuvettes by adding an aliquot of a 

stock solution of azobenzene 4,4’-dicarboxylic acid prepared by method B to either 

Milli-Q water of a 0.6 mM aqueous solution of poly-Glu in order to obtain a 15uM 

solution of trans-ADA. For all the experiments the initial pH of the solution was brought 

to 7 using either H2SO4 of NaOH 

In order to study self-aggregation phenomena at acidic pH, the following four 

procedures were employed for the formation of the aggregates: 

 Procedure 1 (Fast-trans): The pH of the trans-ADA solution was decreased 

from 7 to 3 by a 6 μL addition of 1M H2SO4.  The solution was monitored until 

the UV-Vis and CD spectra no longer changed. 

 Procedure 2 (Slow-trans): The pH of the trans-ADA solution was decreased by 

increments of 0.5 pH units by adding H2SO4. 

 Procedure 3 (Fast-cis): The trans-ADA solution was irradiated with UV light 

for 15 minutes. The cuvette remained under exposure to UV light for the duration 

of the pH measurement. The pH was decreased from 7 to 3 by a large addition of 

H2SO4.  The solution was monitored until the UV-Vis and CD spectra no longer 

changed. The solution was then irradiated with visible light for 15 minutes in 

order to switch back to the trans isomer.  

 Procedure 4 (Slow-cis): The trans-ADA solution was irradiated with UV light 

for 15 minutes. The cuvette remained under exposure to UV light for the duration 

of the pH decrease. The pH was decreased by increments of 0.5 pH units by 
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adding H2SO4. The solution was then irradiated with visible light for 15 minutes 

in order to switch back to the trans isomer. 
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3. ADA SELF-AGGREGATION 

3.1      Fast-trans pH Decrease 

 An aqueous solution of trans-ADA was prepared according to the fast-trans 

procedure (Figure 3.1.1 and 3.1.2). The kinetics of the aggregation was monitored using 

UV-Vis and CD spectroscopy. The band at 330 nm decreased in intensity with pH 

reduction and continued to decrease with time. After 60 minutes the signal no longer 

changed. The decrease was accompanied by a blue shift from 330 nm to 300 nm, which 

suggests the formation of an H aggregate. 

At pH 3, the circular dichroism spectrum confirms the presence of an 

asymmetrical aggregate, and exhibits a broad bisignate signal spanning from 

approximately 400 nm to 200 nm. The intensity of this signal did not change with time. 

The chirality observed is an emergent property of the aggregate structure, since the ADA 

itself is achiral. Although the hypochromic affect observed in the UV-Vis spectra is quite 

pronounced, the CD signal is very small. Since the CD only testifies to the presence of 

chiral aggregates, it seems that a majority of the aggregation in solution is achiral in 

nature.  
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Figure 3.1.1. Effect of decreasing pH on UV-Vis spectra of trans-ADA according to 

procedure fast-trans: trans-ADA at pH=7 (blue); trans-ADA at pH=3 at t= 0 minutes 

(red); trans-ADA at pH=3 at t= 60 minutes (green). 

 

Figure 3.1.2 Effect of decreasing pH on CD spectra of trans-ADA according to 

procedure fast-trans: trans-ADA at pH=7 (blue); trans-ADA at pH=3 (red). The CD 

signal does not change with time. 
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Upon irradiation, the sample did not exhibit the characteristic spectroscopic 

changes associated with trans to cis photoisomerization. There are several possibilities 

for explaining this loss of photodynamic control, but the most likely reason is that the 

tight packing of trans-ADA in an H aggregate geometry provides a hindrance to motion 

that the energy of excitation cannot overcome.  

 Although trans-ADA loses its photoswitching capabilities when aggregated at 

low pH, an increase in pH through addition of NaOH breaks the aggregate, as shown by 

the disappearance of the CD signal and the increase of the absorption band at 330 nm. 

Upon disassembly of the aggregate, the azobenzene regains its photochromic behavior in 

response to UV and visible light. Aggregation is accordingly a reversible process 

dependent on pH, and the ability to isomerize from the trans to the cis forms of ADA is 

determined by the degree of aggregation. The cycle of trans-ADA aggregation, loss of 

photoswitching capabilities, disaggregation, and reinstatement of photoswitching abilities 

is shown in Figure 3.1.3. 
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Figure 3.1.3 Cycle showing the inability of trans-ADA to switch while aggregated and 

regaining ability to photoisomerize at pH=7 due to disaggregation (See Appendix for 

individual spectra, Figures 7.1-7.6). 
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3.2        Slow-trans pH decrease 

An aqueous solution of trans-ADA was prepared according to the slow-trans 

procedure. UV-Vis and CD spectra (Figures 3.2.1 and 3.2.2) were taken for each pH 

value. As pH decreases, the 330 nm band undergoes a hypochromic effect that attenuates 

the peak as the pH decreases until the signal is almost nonexistent. The CD spectrum 

shows two negative bands at 355 nm and 230 nm with intensities of -2.81 mdeg and -2.30 

mdeg, respectively, that appeared at pH=5 and did not increase in intensity as further 

additions of acid were made. Although the CD signal did not increase, the 330 nm band 

in the UV-Vis spectra continued to decrease with further additions. The absence of a blue 

shift and the different CD signal show that the aggregate formed is not an H aggregate. 

Additionally, the absence of a red shift suggests that it is not a J aggregate. A plot of 

absorbance at 330 nm vs. pH for the slow-trans pH decrease yields a sigmoidal curve 

with an inflection point around pH=5.3 that corresponds to the pKa of the trans-ADA. 

The higher pKa value of the carboxyl groups on the ADA compared to those on a benzoic 

acid (pKa = 4.2) suggests that the protonation process is favored by the subsequent 

formation of the aggregate (Figure 3.2.3).  
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Figure 3.2.1 Effect of decreasing pH on UV-Vis spectra of trans-ADA according to 

procedure slow-trans: trans-ADA at pH=7 (blue); trans-ADA at pH=3 (red); 

intermediate pH steps (gray). 

 

Figure 3.2.2. Effect of decreasing pH on CD spectra of trans-ADA according to 

procedure slow-trans: trans-ADA at pH=7 (blue); trans-ADA at pH=3 (red). The 

intermediate steps omitted for clarity. 
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Figure 3.2.3. Plot of absorbance at 330 nm vs. pH for a pH decrease of a solution of 

trans-ADA according to procedure slow-trans. 

 

 

 

 

 

 

 

 

 

 

0

0.05

0.1

0.15

0.2

0.25

0.3

3 4 5 6 7 8

A
b
so
rb
an

ce

pH

pKa=5.3



P a g e  | 28 
 

3.3       Fast-cis pH Decrease 

 A solution of trans-ADA was irradiated with UV light to obtain the cis form of 

the molecule. pH decreases were performed in the dark with continued UV irradiation to 

maintain the highest cis-trans ratio possible. After approximately 15 minutes of 

irradiation, the ADA reaches a photostationary state in which the molecule attains 

equilibrium between the trans and cis isomers with the ratio of cis to trans depending on 

the ratio of their respective extinction coefficients at the wavelength of irradiation. Due to 

overlap of the absorption bands, we can never assume that our solution is entirely in the 

cis form. The aggregate structures obtained could, therefore, contain both the cis and 

trans isomers in the overall geometry.  

A fast decrease in pH was performed on aqueous cis-ADA according to the fast-

cis procedure. The kinetics of the aggregation was monitored using UV-Vis and CD 

spectroscopy. Immediately following the addition of H2SO4, the 230 nm band exhibited a 

slight red shift and hypochromic effect while the 330 nm and 430 nm bands lost their 

maxima and were replaced by a heavily scattered baseline (Figure 3.3.1). After 60 

minutes, the band at 230 nm disappears and a new weak broad band appears at 

approximately 360 nm (intensity of 0.05).  The CD spectra (Figure 3.3.2) suggest that the 

initial aggregate is continually changing until it reaches its final structure after 60 

minutes. The initial signal has a small positive peak, at 390 nm with an intensity of +2.23 

mdeg and three small negative peaks, at 330 nm, 280 nm and 220 nm with intensities of   

-1.43 mdeg, -2.77 mdeg and -2.33 mdeg, respectively. After 60 minutes, the CD spectrum 

shows only three small negative peaks, at 350 nm, 220 nm and 280 nm with intensities of 

2.45 mdeg, -3.0 mdeg and -3.0 mdeg, respectively.  
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The sample was irradiated with visible light in order to isomerize cis-ADA to the 

trans form. The UV-Vis spectrum shows a slight increase in intensity and a blue shift of 

the peak at 340 nm to 300 nm with an absorbance of 0.078. The shape, position and 

intensity of the absorption spectrum are analogous to those of the spectrum of the trans-

ADA aggregate obtained following the fast-trans procedure (see paragraph 3.6), 

indicating that the photoisomerization took place in the aggregated form. The CD 

spectrum shows the disappearance of the three negative bands and the appearance of a 

bisignate signal superimposable with the one obtained with the fast-trans procedure (see 

paragraph 3.6).  

Therefore, the isomerization of the aggregated cis form to trans either breaks the 

existing aggregate and provides environmental conditions similar to those obtained by a 

quick protonation, promoting the formation of the H aggregate, or takes place in a pre-

oriented geometry that favors the H aggregate.  

In order to confirm that the cis-ADA had indeed isomerized to the trans isomer, 

the pH of the solution was increased to 7 with NaOH. The UV-Vis spectrum obtained 

was superimposable with the initial spectrum of the trans-ADA sample before irradiation 

with UV light, demonstrating the high efficiency of the photoisomerization process for 

this supramolecular system. The cyclical nature of this process is shown in Figure 3.3.3.   
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Figure 3.3.1. Effect of decreasing pH on UV-Vis spectra of cis-ADA according to 

procedure fast-cis: cis-ADA at pH=7 (blue); cis-ADA at pH=3 at t-0 minutes (red), cis-

ADA at pH=3 at t=60 minutes (green). 

 

Figure 3.3.2. Effect of decreasing pH on CD spectra of cis-ADA according to procedure 

fast-cis: cis-ADA at pH=7 (blue); cis-ADA at pH=3 at t-0 minutes (red), cis-ADA at 

pH=3 at t=60 minutes (green). 
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Figure 3.3.3. Cycle that involves the photoisomerization of the cis aggregate to the trans 

aggregate. The steps of the cycle are: trans-ADA at pH=7 (top), photoisomerization at 

pH=7 to the cis form (top right), pH decrease and formation of the cis aggregate (bottom 

right), visible irradiation at pH=3 with photoisomerization of cis aggregate to trans 

aggregate (bottom left), increase of pH to 7 and disaggregation (top left), and closing of 

the cycle (See Appendix for individual spectra, Figures 7.7-7.12). 
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3.4      Slow-cis pH decrease 

An aqueous solution of cis-ADA was prepared according to the slow-cis 

procedure. UV-Vis and CD spectra (Figures 3.4.1 and 3.4.2) were taken for each pH 

value. The UV-Vis shows a hypochromic effect and slight red shift of the 230 nm band 

and blue shift of the 430 nm band. The baseline of the UV-Vis spectrum for the aggregate 

undergoes a marked hyperbolic increase and is attributed to scattering of photons, giving 

an apparent increase of the 430 nm band. A CD signal first appears at pH= 4.0, and the 

spectra exhibits a weak, broad negative signal with a maximum intensity of -1.99 mdeg 

around 370 nm, and slightly more intense and narrow signal of -2.9 mdeg at 250 nm.  

The solution at pH= 3 was irradiated with visible light. There was a marked 

decrease in the 230 nm and 430 nm peaks in the UV-Vis spectrum (Figure 3.4.3). The 

CD signal does not change so much in position but increases slightly in magnitude 

(Figure 3.4.4). The broad negative signal, spanning from 680 to 340nm, shows a peak at 

408 nm with an intensity of -3.21 mdeg. The narrow band red shifts slightly and increases 

in intensity to -4.0 mdeg. The only slight change of the CD signal upon irradiation 

suggests that perhaps the initial signal was primarily due to the self-aggregation of the 

portion of trans-ADA present in solution at the photostationary state rather than an 

aggregation of the cis isomer. 
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Figure 3.4.1. Effect of decreasing pH on UV-Vis spectra of cis-ADA according to 

procedure slow-cis: trans-ADA at pH=7 (blue), cis-ADA at pH=7 (red), cis-ADA at 

pH=3.7 (green), intermediate steps (gray).  

 

Figure 3.4.2. Effect of decreasing pH on CD spectra of cis-ADA according to procedure 

slow-cis: cis-ADA at pH=7 (blue); cis-ADA at pH=3.7 (red). The intermediate steps 

omitted for clarity. 
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Figure 3.4.3. Effect of visible irradiation on UV-Vis spectrum of cis-ADA brought to 

pH=3.7 by procedure slow-cis: cis-ADA at pH=3.7 (red), trans-ADA (green). 

 

Figure 3.4.4. Effect of visible irradiation on CD spectrum of cis-ADA brought to pH=3.7 

by procedure slow-cis: cis-ADA at pH=3.7 (red), trans-ADA (green). 
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3.5  Hierarchical Control 

Although the final conditions for both the fast and slow pH decreases were the 

same, comparison of spectra for the two methods reveals that the steps through which 

these conditions were reached affected the geometry of the resulting aggregate. This is 

not surprising since several supramolecular systems are formed under hierarchical 

control, with the aggregation process depending on the order and timing of addition of 

the molecular components. 

 Both pH decreases of the trans isomer yielded a chiral aggregate, as shown by the 

presence of a CD signal in both cases. The structure of the aggregate resulting from the 

fast pH decrease is far more defined than the structure resulting from the slow pH 

decrease. In the fast decrease, the 330 nm band exhibits a marked blue shift as it 

decreases in intensity which is the characteristic optical response of a stacked H 

aggregate (Figure 3.5.1). The slow decrease, however, showed a more pronounced 

hypochromic effect with  no blue shift indicating that the geometry of the aggregate is 

neither parallel (H aggregate) nor head-to-tail (J aggregate), but a sort of intermediate 

arrangement.  The CD signals of the aggregates showed a slightly asymmetric bisignate 

curve suggesting the presence of an exciton coupling between the chromophores 

combined with other intrinsic chiral signals for the aggregate obtained with the fast-trans 

procedure. The geometry resulting from the slow-trans procedure seems unfavorable for 

exciton coupling, giving rise to two negative bands (Figure 3.5.2).  

The difference in aggregate structure between the two methods of pH decrease 

can possibly be attributed to the different extents to which trans-ADA molecules are 
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protonated during the aggregation process. In the fast decrease, all of the trans-ADA is 

protonated at the same time, causing it to snap into the most favorable geometry in order 

to take advantage of hydrogen bonds and π‐π stacking. This results in the orderly parallel 

H-aggregate. In contrast, during the slow pH decrease, the molecules of trans-ADA are in 

various stages of protonation as the aggregation is occurring. For this reason it is assumed 

that the solution contains species with various degrees of protonation.  The protonated 

groups are available to form hydrogen bonds with oxygen and/or nitrogen, but the 

erratically dispersed negative charges might introduce some constraints due to their 

reciprocal electrostatic repulsion. The solution eventually reaches a point when all 

carboxyl groups are protonated, but the presence of negative ions during the aggregation 

process prevents trans-ADA from stacking neatly into an H aggregate and causes a 

different structure to result. One possibility is that the structure consists of a staggered, 

stacked trans-ADA aggregate with protonated carboxyl groups aligned with azo groups, 

allowing for the formation of hydrogen bonds between the –OH and the -N=N groups and 

π‐π stacking between the benzene rings. Further measurements such as x-ray 

crystallography and computational analysis are being considered in order to elucidate the 

structure. 

Similar to the trans aggregate, the cis aggregate also assembles in a hierarchical 

manner. In the two different methods of pH decrease for the cis isomer, both the different 

UV-Vis (Figure 3.5.3) and CD (Figure 3.5.4) spectra at pH 3 indicate that the aggregates 

formed in the two cases have different structures, confirming a hierarchical control of the 

aggregation process for the cis isomer.  
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Figure 3.5.1. Comparison of UV-Vis spectra of solutions of trans-ADA at pH=7 (red), at 

pH=3 obtained by fast-trans procedure (green) and at pH=3 obtained by slow-trans 

procedure (blue). 

 

Figure 3.5.2. Comparison of CD spectra of solutions of trans-ADA at pH=3 obtained by 

fast-trans procedure (green) and at pH=3 obtained by slow-trans procedure (blue). 
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Figure 3.5.3. Comparison of UV-Vis spectra of solutions of cis-ADA at pH=3 obtained 

by fast-cis procedure (green) and at pH=3 obtained by slow-cis procedure (blue). 

 

Figure 3.5.4. Comparison of CD spectra of solutions of cis-ADA at pH=3 obtained by 

fast-cis procedure (green) and at pH=3 obtained by slow-cis procedure (blue). 
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3.6  cis and trans Aggregate Photoisomerization 

 At basic pH ADA switches from the trans to the cis isomer upon exposure to UV 

light, and from the cis to the trans isomer upon exposure to visible light. After a fast pH 

decrease, however, it appears from the unchanging UV-Vis band at 330 nm that the 

photoswitching of trans-ADA is impaired to the point that isomerization to the cis could 

not occur (appendix Figure 7.3). This phenomenon could be attributed to the tightly 

packed stacking of the trans-ADA in the H aggregate. Since the trans is already the more 

energetically stable of the two isomers, the non-covalent interactions might provide too 

high of an energy barrier for the photomechanical effect to surpass. Isomerization also 

might occur, but the cis might revert back to the trans too quickly for spectroscopic 

analysis to detect. 

 In the case of the fast pH decrease for the cis-ADA isomer, the molecule retains 

its photoswitching ability while aggregated and upon isomerization assumes the same 

aggregate geometry attained in the fast pH decrease of the trans (appendix Figure 7.9 

and Figure 7.10). Visible irradiation causes the UV-Vis and CD signals to change 

markedly and become superimposable with the spectra obtained during the quick trans-

ADA pH decrease. cis-ADA’s retention of its ability to photoisomerize while aggregated 

could be explained in one of two ways: 1) the relative instability of the cis-isomer makes 

isomerization more energetically favorable than the non-covalent interactions of the 

aggregate; 2) the presence of the trans isomer in the aggregate disrupts interactions, 

leading to a less compact structure in which the cis isomer is less hindered, allowing for 

isomerization to proceed. Regardless, the fact that the cis isomer forms one type of 

aggregate and then is able to switch upon irradiation and take on the same aggregate 
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geometry obtained in the fast-trans procedure demonstrates the photoresponsive nature 

of the system. The photoisomerization is not reversible in the aggregated form, and once 

the aggregated trans isomer is obtained the structure is locked unless the aggregate is 

broken by increasing the pH.  

 

Figure 3.6.1. CD spectra showing the effects of UV irradiation on the aggregate of trans-

ADA (fast-trans pH decrease). 
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4. AGGREGATION OF ADA AND POLY-GLUTAMIC ACID 

4.1      ADA and Poly-Glutamic Acid Interaction 

Aqueous solutions of ADA showed a tendency for both cis- and trans-ADA to 

form inherently chiral aggregates. Poly-glutamic acid (poly-Glu) was introduced into the 

system to determine if the chirality could be directed or induced by the presence of a 

chiral template molecule. Both the D and the L enantiomers were studied. In order to 

determine if an interaction occurred, a series of experiments were performed in which a 

solution containing ADA (either cis or trans isomer) was decreased from pH 7 to pH 3 

with H2SO4, followed by the addition of poly-Glu. Several varieties of this experiment 

were performed, but only the results relevant in demonstrating the interaction of ADA 

and poly-glutamic acid will be included in this thesis. The results discussed are from 

experiments using poly-D-Glu, but equivalent results were observed in experiments with 

poly-L-Glu. 

A solution containing trans-ADA was brought down in pH via the fast-trans 

procedure. Upon the addition of poly-D-Glu, there was no marked change in either the 

UV-Vis or CD spectra, except for the introduction of the band corresponding to poly-D-

Glu in solution, from 245 nm to 210 nm (Figure 4.1.2). The decrease in absorbance at the 

330 nm band in the UV-Vis spectrum can be attributed to the slight dilution of the ADA 

in solution upon the addition of poly-D-Glu (Figure 4.1.1). This demonstrates that once 

the self-aggregate of the trans-ADA has formed it is inert and does not rearrange in the 

presence of poly-Glu.  
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Using the same procedure, a solution of cis-ADA was decreased in pH via the 

fast-cis procedure and then poly-D-Glu was added. Like the trans-ADA solution, there 

was no change in the UV-Vis or CD spectra (except for the CD signal corresponding to 

poly-D-Glu) (Figure 4.1.3). Upon irradiation with visible light, however, isomerization 

of the cis to the trans is accompanied by the appearance of a bisignate CD signal with 

peaks at 370 nm (-7.18 mdeg) and 300 nm (+2.18 mdeg) (Figure 4.1.4). As shown in the 

previous section, when cis-ADA isomerizes at low pH, the resulting trans isomer quickly 

assembles or rearranges to give rise to the formation of a new aggregate. The presence of 

poly-Glu during this rapid aggregation directs and orders the organization of the trans-

ADA and results in a larger CD signal than that attained by ADA alone in solution. This 

shows that if the chiral template is present during the aggregation process, it is able to 

interact with the monomer and affect the chirality of the aggregate. 

In the following experiments, poly-Glu was introduced before any pH decrease 

and was present during the entire aggregation process. Differences in spectra resulting 

from the solution of ADA alone and solution with ADA and poly-Glu can thus be 

attributed to the ordering influence of the polymer. 
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Figure 4.1.1. Comparison of UV-Vis spectra before (blue) and after (red) addition of 

poly-D-Glu to a solution of trans-ADA at pH 3 prepared by the fast-trans procedure. 

 

Figure 4.1.2. Comparison of CD spectra before (blue) and after (red) addition of poly-D-

Glu to a solution of trans-ADA at pH 3 prepared by the fast-trans procedure. 
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Figure 4.1.3. Comparison of CD spectra before (blue) and after (red) addition of poly-D-

Glu to a solution of cis-ADA at pH 3 prepared by the fast-cis procedure. 

 

Figure 4.1.4. Comparison of CD spectra before (blue) and after (red) irradiation with 

visible light of the solution obtained by addition of poly-D-Glu to the cis-ADA aggregate  

prepared by the fast-cis procedure (see Figure 4.1.3). 
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4.2       Fast-trans poly-Glu pH Decrease  

 An aqueous solution containing trans-ADA and poly-L-glutamic acid was 

prepared according to the fast-trans procedure and the aggregation was monitored using 

UV-Vis and CD spectroscopy. The UV-Vis spectrum exhibits a blue shift similar to the 

solution containing trans-ADA alone, but of a smaller magnitude (Figure 4.2.1). The CD 

spectrum shows a completely different signal compared to the analogous solution 

containing trans-ADA alone. The signal is about ten times more intense and presents 

three peaks at 340 nm (-17.7 mdeg), 307 nm (-9.3 mdeg), and 280 nm (+13.3) (Figure 

4.2.2). These spectra support our hypothesis that the poly-L-Glu plays a role in directing 

and amplifying chirality in a trans-ADA aggregate, and that it can be used to yield a 

more organized aggregate geometry.  The solution was monitored for a total of 60 

minutes, and it was observed that the intensity of the CD signal decreased with time 

(down to -10.1/+9.3 mdeg) possibly due to breakage or partial loss of organization of the 

aggregate. 

 The same fast-trans procedure was performed on a solution containing trans-

ADA and poly-D-Glu. The resulting spectra show greater chiral organization than the 

spectra of ADA alone in solution. The CD spectrum gives a broad monosignate signal, 

unlike the one observed in the case of poly-L-glutamate (Figure 4.2.4). Comparing the 

spectra of the trans-ADA aggregated in the presence of poly-D-Glu with the one 

aggregated in the presence of poly-L-Glu, it is evident from the intensity of both the UV-

Vis and the CD spectra that there is a lesser degree of aggregation in the case of poly-D-

glutamate than poly-L-glutamate (Figure 4.2.3 and 4.2.4). The difference between the 



P a g e  | 46 
 

two signals could be attributed to preferential interactions of the trans-ADA with poly-L-

Glu rather than poly-D-Glu. 

 

Figure 4.2.1: UV-Vis spectra for fast-trans pH decrease of a solution of trans-

ADA/poly-L-Glu from pH 7 (blue) to pH 3 (red) monitored for 60 minutes (green) and 

compared to ADA-only system under same conditions (purple). 

 

Figure 4.2.2. CD spectra for fast-trans pH decrease of a solution of trans-ADA/poly-L-

Glu from pH 7 (blue) to pH 3 (red) system monitored for 60 minutes (green) and 

compared to ADA-only system under same conditions (purple). 
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Figure 4.2.3. Comparison of UV-Vis spectra for fast-trans pH decrease of solutions 

containing trans-ADA/poly-D-Glu (blue) and trans-ADA/poly-L-Glu (green). 

 

Figure 4.2.4. Comparison of UV-Vis spectra for fast-trans pH decrease of solutions 

containing trans-ADA/poly-D-Glu (blue) and trans-ADA/poly-L-Glu (green). 
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4.3      Slow-trans poly-Glu pH Decrease 

Aqueous solutions containing trans-ADA and poly-glutamic acid were prepared 

according to the slow-trans procedure. Aggregation was monitored using UV-Vis and 

CD spectroscopy. In the case of trans-ADA and poly-L-Glu, a CD signal first appeared at 

pH=5, and kept increasing and slightly shifting with further pH decrease. The final signal 

shows a complex profile with an intensity that goes from -18.5 mdeg to +12 mdeg 

(Figure 4.3.2). A comparison of the spectra of the two aggregates formed in the presence 

of poly-L-Glu, the one obtained following the fast-trans procedure and the one formed 

following the slow-trans procedure, shows that the CD signal corresponding to the slow 

decrease has a substantially different profile and is more intense than that obtained with 

the fast decrease (Figure 4.3.3). Once again, the aggregation process, suggests a 

hierarchical control that generates different structures even in the presence of a chiral 

template. The lack in the spectra of the solution prepared according to the slow-trans 

procedure (Figure 4.3.1) of the blue shift of the absorption band observed when using the 

fast-trans procedure confirms the hierarchical control of the aggregation process.  

 In the case of trans-ADA and poly-D-Glu prepared according to the slow-trans 

procedure, the UV-Vis spectrum shows a flattening and broadening of the 330 nm band 

without a blue shift, similarly to the L enantiomer (Figure 4.3.4). The CD spectrum 

(Figure 4.3.5) shows a reduced ability of the D enantiomer to transfer chirality in the 

trans-ADA aggregate as similarly found for the fast-trans procedure. Nevertheless, a 

comparison of both the UV-Vis and CD spectra of the aggregates obtained in the 

presence of the D enantiomer following either the fast-trans or the slow-trans procedure 

shows a hierarchical control of the aggregation process (Figure 4.3.7). 



P a g e  | 49 
 

 

Figure 4.3.1. UV-Vis spectra of slow-trans procedure for a solution of trans-ADA and 

poly-L-Glu: trans-ADA and poly-L-Glu at pH=7 (blue), trans-ADA and poly-L-Glu at 

pH=3 (red), intermediate steps (gray).  

 

Figure 4.3.2. CD spectra of slow-trans procedure for a solution of trans-ADA and poly-

L-Glu: trans-ADA and poly-L-Glu at pH=7 (blue), trans-ADA and poly-L-Glu at pH=3 

(red), intermediate steps (gray).  
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Figure 4.3.3. Comparison of the CD spectra of solutions containing trans-ADA and 

poly-L-Glu decreased in pH via the slow-trans (red) and fast-trans (blue) procedures. 

 

Figure 4.3.4. UV-Vis spectra of slow-trans procedure for a solution of trans-ADA and 

poly-D-Glu: trans-ADA and poly-D-Glu at pH=7 (blue), trans-ADA and poly-D-Glu at 

pH=3 (red), intermediate steps (gray).  
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Figure 4.3.5. UV-Vis spectra of slow-trans procedure for a solution of trans-ADA and 

poly-D-Glu: trans-ADA and poly-D-Glu at pH=7 (blue), trans-ADA and poly-D-Glu at 

pH=3 (red), intermediate steps omitted for clarity. 

 

Figure 4.3.7. Comparison of CD spectra of solutions containing trans-ADA and poly-D-

Glu brought down to pH=3 via the fast-trans (purple) or slow-trans (red) procedures.  
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Figure 4.3.8. Comparison of CD spectra for solutions containing trans-ADA and either 

poly-L-Glu (red) or poly-D-Glu (green) brought down in pH to pH=3 via the slow-trans 

procedure. 
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4.4      Fast-cis poly-Glu pH decrease 

 Aqueous solutions containing trans-ADA and poly-glutamic acid were prepared 

according to the fast-cis procedure and the aggregation was monitored using UV-Vis and 

CD spectroscopy. In the system containing poly-L-glutamate, pH decrease resulted 

initially in only slight aggregation that continued to increase in magnitude with time as 

shown by the increase of the CD signal (Figure 4.4.2). The change in the UV-Vis spectra 

was unusual for an aggregation process since it was not a hypochromic effect of the 

initial bands but rather a change toward a signal that resembles the signal of an 

aggregated form of the trans since the maximum was around 330 nm (Figure 4.4.1).  

Considering the extensive number of carboxyl groups on the polymer, it is possible that 

the exothermic protonation process could provide enough energy to promote the thermal 

isomerization of the cis isomer to the trans isomer. This could account for the 

reemergence of the peak close to 330 nm and the change with time of the CD signal. The 

hypothesis of a thermal isomerization finds support in the absence of a change in both the 

CD and UV-Vis spectra when the solution was irradiated with visible light (Figure 4.4.3 

and Figure 4.4.4).  

 In the system containing cis-ADA and poly-D-Glu, similar phenomena are 

observed. Again, the degree of aggregation increases with time (Figure 4.4.5 and 4.4.6) 

and, as in the case of poly-L-Glu, there is no change in the UV-Vis or CD spectra upon 

irradiation with visible light (Figure 4.4.7 and 4.4.8). This supports the hypothesis that an 

exothermic, rapid protonation provides the thermal energy necessary to isomerize to the 

trans-ADA. This also could explain why the CD signal increases over time. The initial 

signal is weak because there are more cis-ADA than trans-ADA molecules in solution, 
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but the energy released in the protonation of poly-glutamate causes more cis-ADA to 

isomerize into trans-ADA. The increasing concentration of trans-ADA facilitates the 

formation of a more ordered and chiral aggregate, leading to the observed increase in CD 

signal.   

 

Figure 4.4.1. Comparison of UV-Vis spectra for a solution of cis-ADA and poly-L-Glu, 

decreased in pH via fast-cis decrease from pH=7 (blue) to pH=3 (red) and monitored for 

30 minutes (green). 
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Figure 4.4.2. Comparison of CD spectra for a solution of cis-ADA and poly-L-Glu, 

decreased in pH via fast-cis decrease from pH=7 (blue) to pH=3 (red) and monitored for 

30 minutes (green). 

 

Figure 4.4.3. Effect of visible irradiation on the UV-Vis spectrum of a solution of cis-

ADA and poly-L-Glu decreased via the fast-cis procedure: solution before irradiation 

(green), solution following visible irradiation (red). 
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Figure 4.4.4. Effect of visible irradiation on the CD spectrum of a solution of cis-ADA 

and poly-L-Glu decreased via the fast-cis procedure: solution before irradiation (green), 

solution following visible irradiation (red). 

 

Figure 4.4.5. Comparison of UV-Vis spectra for a solution of cis-ADA and poly-D-Glu, 

decreased in pH via fast-cis decrease from pH=7 (blue) to pH=3 (red) and monitored for 

30 minutes (green). 
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Figure 4.4.6. Comparison of Cd spectra for a solution of cis-ADA and poly-D-Glu, 

decreased in pH via fast-cis decrease from pH=7 (blue) to pH=3 (red) and monitored for 

30 minutes (green). 

 

Figure 4.4.7. Effect of visible irradiation on the UV spectrum of a solution containing 

cis-ADA and poly-D-Glu at pH=3 (via fast-cis procedure): solution before visible 

irradiation (green), solution following visible irradiation (orange). 
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Figure 4.4.8. Comparison of CD spectra for a solution of cis-ADA and poly-D-Glu, 

decreased in pH via fast-cis decrease from pH=7 (blue) to pH=3 (red) and monitored for 

30 minutes (green). 
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4.5      Slow-cis poly-Glu pH decrease 

Aqueous solutions containing cis-ADA and poly-glutamic acid were prepared 

according to the slow-cis procedure. Aggregation was monitored using UV-Vis and CD 

spectroscopy. In the case of cis-ADA and poly-L-glutamic acid, unlike the fast-cis pH 

decrease, no CD signal is observed (Figure 4.5.2), and the UV-Vis 330 nm peak does not 

reappear at low pH (Figure 4.5.3). This further supports the hypothesis that energy 

released upon protonation can cause isomerization. When the pH decrease is performed 

in small steps, the quantity of heat released is not large enough to induce thermal 

isomerization.  When protonation occurs rapidly by a large addition of acid, enough heat 

is generated to overcome the energy barrier of thermal isomerization. Upon irradiation 

with visible light, there is a slight increase in the 330 nm band (Figure 4.5.3) and a mild 

increase in CD signal (Figure 4.5.4), which would suggest a certain degree of 

photoisomerization.  

When the slow-cis procedure was performed on a solution containing cis-ADA 

and poly-D-Glu, no CD signal was observed (Figure 4.5.4). Upon irradiation with visible 

light, both the UV-Vis and CD spectra change in such a way as to suggest the 

isomerization from cis to trans. The CD exhibits a chiral signal with the most intense 

peak with a signal of -17.9 mdeg at 370 nm and the UV-Vis spectrum shows a broad 

band near 330 nm (Figure 4.5.5 and 4.5.6).  

It is evident that upon slow pH decrease in the presence of cis-ADA and poly-

Glu, no or very little aggregate is formed, signifying that the cis isomer is possibly unable 

to interact with or be directed by the poly-glutamate. Upon irradiation to the trans isomer, 
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a chiral aggregate is formed, and its CD spectrum has an intensity and profile that 

suggests interaction with the poly-glutamic acid template. 

 

Figure 4.5.1. UV-Vis spectra of a solution containing cis-ADA and poly-L-Glu and 

decrease in pH via the slow-cis procedure: cis-ADA and poly-L-Glu at pH=7 (blue), cis-

ADA and poly-L-Glu at pH=3 (red), intermediate steps (gray). 
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Figure 4.5.2. CD spectra of a solution containing cis-ADA and poly-L-Glu and decrease 

in pH via the slow-cis procedure: cis-ADA and poly-L-Glu at pH=7 (blue), cis-ADA and 

poly-L-Glu at pH=3 (red), intermediate steps (gray). 

 

Figure 4.5.3. Effect of irradiation with visible light on UV-Vis spectra of a solution 

containing cis-ADA and poly-L-Glu brought down to pH=3 via the slow-cis procedure: 

cis-ADA and poly-L-Glu at pH=3 (red), trans-ADA and poly-L-Glu following visible 

irradiation (green). 
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Figure 4.5.4. Effect of irradiation with visible light on CD spectra of a solution 

containing cis-ADA and poly-L-Glu brought down to pH=3 via the slow-cis procedure: 

cis-ADA and poly-L-Glu at pH=3 (red), trans-ADA and poly-L-Glu following visible 

irradiation (green). 

 

Figure 4.5.4. CD spectra of a solution containing cis-ADA and poly-D-Glu and decrease 

in pH via the slow-cis procedure: cis-ADA and poly-D-Glu at pH=7 (blue), cis-ADA and 

poly-D-Glu at pH=3 (red), intermediate steps (gray). 
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Figure 4.5.5. Effect of irradiation with visible light on UV-Vis spectra of a solution 

containing cis-ADA and poly-D-Glu brought down to pH=3 via the slow-cis procedure: 

cis-ADA and poly-D-Glu at pH=3 (red), trans-ADA and poly-D-Glu following visible 

irradiation (green).  

 

Figure 4.5.6. Effect of irradiation with visible light on CD spectra of a solution 

containing cis-ADA and poly-D-Glu brought down to pH=3 via the slow-cis procedure: 

cis-ADA and poly-D-Glu at pH=3 (red), trans-ADA and poly-D-Glu following visible 

irradiation (green).  
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5. CONCLUSIONS 

Through the manipulation of environmental conditions including pH, light 

exposure, and the presence of a chiral template molecule, the response of ADA to various 

stimuli in both its cis and trans isomers in aqueous solution was investigated. 

The study of the pH dependence of the solubility of ADA showed that it needs a 

very basic environment, over pH 10.8, in order to maximize its already poor solubility. 

Moreover, some preliminary data indicated that a decrease in pH of a solution of ADA 

results in its self-aggregation. This process is dependent on several parameters such as 

mode of solubilization, isomeric form, concentration and mode of pH decrease, showing 

that aggregation is subject to a highly hierarchical mechanism. 

In order to reduce the number of variables that can affect the aggregation of ADA 

its concentration and the mode of solubilization of its stock solution were kept constant. 

The dependence of aggregation on the isomer and mode of pH decrease was studied. 

When the pH of a solution of trans-ADA was reduced quickly (fast-trans 

procedure), a blue shift and hypochromicity of the absorption band at 330 nm (trans 

isomer) indicate that a parallel assembly, known as an H-aggregate, is formed. In this 

geometry, both π−π stacking and hydrogen bonds are possible, making the aggregate very 

compact and strong. As expected in such a tightly packed aggregate, trans-ADA 

temporarily loses its photoswitching ability. If the pH is brought back to 7, the trans-

ADA returns to its monomeric form and is able to photo-isomerize again from trans-

ADA to cis-ADA. When an aqueous solution of trans-ADA is made by the slow-trans 

procedure the absorption shows only a hypochromic effect indicating the formation of an 
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aggregate with a different geometry. As in the previous case, the photo-isomerization is 

prevented until the aggregate is disrupted at pH 7 or higher. CD spectra show that in both 

cases the achiral ADA has an intrinsic tendency to interact in an asymmetric fashion, 

giving rise to the formation of chiral aggregates. Consistent with the absorption data, the 

signal for the two species is different, indicating a different geometry and a hierarchical 

control of the aggregation process that depends on the mode of pH decrease.  

When the pH of a solution of mainly cis-ADA is quickly reduced according to the 

fast-cis procedure, both the UV-Vis and CD spectra are consistent with the formation of 

an aggregate as observed with the trans isomer, but with different properties. The cis 

aggregate changes with time before reaching a stable state 60 minutes after the initial pH 

decrease. The maxima at 330 nm and 430 nm are lost instantaneously, while after 60 

minutes a new weak broad band appears at approximately 360 nm. The simultaneous 

presence of the two isomers, cis and trans, might be responsible for this complex 

spectroscopic response. Presumed, the aggregate has a less tightly packed geometry, 

which would explain the observed retention of the photo-isomerization ability of the cis 

isomer in this aggregated form. Irradiation with visible light switches the cis-ADA back 

to the trans-ADA and gives rise to the formation of an aggregate that is analogous to the 

H aggregate obtained following the fast-trans procedure, as the superimposition of the 

UV-Vis and CD spectra shows. When a solution of ADA is prepared according to the 

slow-cis procedure, the aggregate obtained has a different absorption and CD spectrum. 

The different aggregate structures obtained by the fast and slow procedures for both cis 

and trans-ADA provide, therefore, evidence for hierarchical control of the system. The 

degree and speed of protonation affect the manner in which the ADA molecules come 
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together to take advantage of non-covalent interactions, and this changes the geometries 

that result from the aggregation process. 

 The introduction of a chiral template, poly-glutamic acid (L and D enantiomers), 

during the aggregation process was shown to direct the formation of a new asymmetric 

aggregate that has a chirality induced by the polymer as shown by the intensity and 

different profile of the CD spectra of these systems compared to the one containing only 

ADA.  

This ability to order the aggregate was employed in systems where pH was 

decreased both slowly and quickly. As in systems without poly-glutamic acid, the trans 

isomer was unable to switch to the cis isomer upon irradiation with UV light while 

aggregated, but when in solution with poly-Glu, cis-ADA reacts differently to pH 

additions and to irradiation with visible light compared to the behavior of the switch 

without a chiral template. In systems decreased in pH via the fast-cis procedure, both the 

CD and UV-Vis spectra changed with time and ultimately appeared more like the trans 

isomer than the cis. Not only did the CD spectra show chiral aggregation, but the UV-Vis 

spectra showed a return of the 330 nm band after sitting for 30 minutes in the dark. Upon 

irradiation with visible light, these systems did not show evidence of switching, which is 

likely because there was already such a high ratio of trans to cis that the magnitude of 

change due to photoisomerization was much less than previously observed. It is 

hypothesized that the release of energy during the fast and exothermic protonation of the 

poly-Glu carboxyl groups might surmount the energy barrier for the cis to thermally 

isomerize  to the trans isomer and allow the more thermally stable trans isomer to 

become more prevalent in solution.  
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This hypothesis is supported by a lack of chiral signal shown in spectra from a 

slow-cis procedure of the same system, and the absence of a 330 nm peak at low pH. 

During a slow protonation process, the energy release is not quite so immediate and has 

time to be dissipated so that it does not reach a point where it catalyzes thermal 

isomerization. The systems decreased in slow pH steps also retained their ability to 

photo-switch and upon irradiation yielded similar signals to the systems in which pH was 

decreased quickly.  

Several other systems were studied containing ADA and other molecules, 

including various cationic porphyrins and spermine, in order to explore the ability of 

ADA to create photo-responsive hetero-aggregates but the results obtained so far are still 

unclear and further investigation is required. Future studies will focus on the hetero-

aggregation with porphyrins and the concentration-dependence of the ADA process, 

which several experiments have suggested play an important role during aggregation. 

Furthermore, in order to confirm the proposed H aggregate structure and elucidate the 

undefined aggregate geometries observed, theoretical calculations and, if crystallization 

is achieved, X-ray analysis will be explored. 
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7.    APPENDIX 

 

Figure 7.1. Initial step in cycle of Figure 3.1.3: UV-Vis spectrum of aqueous trans-ADA 

at pH=7. 

 

Figure 7.2. Second step in cycle of Figure 3.1.3: Effect of fast-trans procedure on the 

UV-Vis spectrum of trans-ADA: trans-ADA at pH=7 (blue), trans-ADA at pH=3 (red). 
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Figure 7.3. Third step in cycle of Figure 3.1.3: Effect of UV irradiation on UV-Vis 

spectrum of trans-ADA decreased to pH=3 via fast-trans procedure: trans-ADA at pH=3 

(red), trans-ADA after irradiation with UV light (green). 

 

Figure 7.4. Fourth step in cycle of Figure 3.1.3: Effect of pH increase from 3 to 7 on the 

UV-Vis spectrum of trans-ADA following UV irradiation: trans-ADA at pH=3 (green), 

trans-ADA at pH=7 (orange). 
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Figure 7.5. Fifth step in cycle of Figure 3.1.3: Effect of UV irradiation on the UV-Vis 

spectrum of trans-ADA at pH=7: trans-ADA at pH=7 (orange), cis-ADA following UV 

irradiation (purple). 

 

Figure 7.6. Sixth step in cycle of Figure 3.1.3: Effect of visible irradiation on the UV-

Vis spectrum of cis-ADA at pH=7: cis-ADA at pH=7 (purple), trans-ADA following 

irradiation with visible light (blue). 
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Figure 7.7. Initial step in cycle of Figure 3.3.3: UV-Vis spectrum of trans-ADA at 

pH=7. 

 

Figure 7.8. Second step in cycle of Figure 3.3.3 Effect of UV irradiation on a solution of 

trans-ADA at pH=7: trans-ADA (blue), cis-ADA (red).  
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Figure 7.9. Thirds step in cycle of Figure 3.3.3: Effect of fast-cis procedure on UV-Vis 

spectra of cis-ADA: cis-ADA at pH=7 (red), cis-ADA at pH=3 (green). 

 

Figure 7.10. Third step in cycle of Figure 3.3.3: Effect of fast-cis procedure on CD 

spectra of cis-ADA: cis-ADA at pH=7 (red), cis-ADA at pH=3 (green). 
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Figure 7.10. Fourth step in cycle of Figure 3.3.3: Effect of visible light irradiation on 

UV-Vis spectrum of cis-ADA at pH=3 (decreased in pH by fast-cis procedure): cis-ADA 

(green), cis-ADA irradiated with visible light to trans-ADA (orange). 

 

Figure 7.11. Fourth step in cycle of Figure 3.3.3: Effect of visible light irradiation on 

CD spectrum of cis-ADA at pH=3 (decreased in pH by fast-cis procedure): cis-ADA 

(green), cis-ADA irradiated with visible light to trans-ADA (orange). 
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Figure 7.12. Fifth step in cycle of Figure 3.3.3: Effect of pH increase from pH=3 to 

pH=7 on the UV-Vis spectrum of trans-ADA: trans-ADA at pH=3 (orange), trans-ADA 

at pH=7 (blue). 
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