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Abstract

The purpose of this study is to examine the biodiversity patterns of a group of fossil organisms called
chitinozoans. Chitinozoans are organic-walled, planktonic microfossils that first appear in the Early
Ordovician Period (488 million years ago) and diversify rapidly through the Paleozoic Era. The Ordovician
Period was a time of great global climate change, and by studying this group of fossil plankton, we hope to
better understand how modern plankton, which are the base of the marine food chain, might respond to
climate change. We used a method called constrained optimization (CONOP9) to construct a composite
range chart of 152 chitinozoan species from 65 Ordovician drill cores and outcrops from the paleo-
continent Gondwana. Our results show that chitinozoan biodiversity increases throughout the Early and
Middle Ordovician, peaks in the middle part of the Late Ordovician and declines thereafter. These results
differ from biodiversity estimates derived from more traditional species counting methods.
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Introduction

Climate change is a serious problem facing our world today. One of the biggest questions
involving climate change is the issue of how it will impact our current biodiversity.
Specifically, how it will impact the complex food chain that exists today, and the base of
the food chain, which is marine plankton. Investigating past climate change and its
relationship to biodiversity in Earth history can provide insights into this issue, because
dramatic climate changes were common in Earth history. One time interval that
experienced climate fluctuation was the Ordovician Period.

The Ordovician Period lasted from about 488 to 443 million years ago. During the
Ordovician, the continental configuration was much different than it is it today. There
were several main continents: Laurentia, Baltica, Avalon, Siberia, and Gondwana, and a
number of smaller paleo-plates. Gondwana was the largest of the continents, and was
located mostly in the southern hemisphere (Figure 1). It consisted of Africa, Antarctica,

India, parts of South America, and parts of Australia.

Middle Ordovician 458 Ma
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Figure 1: The Earth during the Middle Ordovician. Notice the position of Gondwana in the
Southern Hemisphere, and the lack of glaciers. From Cooper and Sadler, 2012.

The Ordovician was a time of dramatic climate change, starting with a “hot house” Earth
(an interval of time when the Earth had no continental ice sheets), cooling throughout the
Late Ordovician, and then ending with an extensive southern hemisphere glaciation
(Cooper and Sadler, 2012). The Earth was so warm during the Lower to Middle
Ordovician that there were no glaciers, and the continents were flooded with shallow
epicontinental (epeiric) seas (Figure 1). However, as the Earth cooled and a large
Gondwanan ice sheet formed, sea levels dropped and these epeiric seas disappeared. The
dramatic climate change, which apparently occurred in multiple episodes (Webby, 2004)
throughout the latest Ordovician, makes the Ordovician an excellent deep time analogue
for modern day climate change.

In addition to this climate change, the Ordovician also has an interesting biological
history. It includes one of the greatest evolutionary radiations recorded in the fossil
record, called the Great Ordovician Biodiversificaiton Event (Webby, 2004), and one of
the Earth’s greatest mass extinctions at its end (Figure 2). Some possible reasons for this
great radiation are the presence of many epicontinental seas that provided a suitable
habitat for marine organisms, and strong magnetic and tectonic activity (Cooper and
Sadler, 2012). This huge increase in marine biodiversity culminated with a mass
extinction in the Late Ordovician (specifically during the Hirnantian Stage). It is
estimated that 85% of the species on Earth became extinct (Sheehan, 2001). As noted
above, this mass extinction event co-occurs with an overall cooling of the Earth and a

sea-level decrease associated with glaciation. Glacial features preserved today suggest
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that the glacier on Gondwana was more than 6000 km long (Sheehan, 2001). These
important biodiversification and extinction events make the Ordovician an interesting

time interval in which to examine the relationship between Earth processes and life.
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Figure 2: Major Extinction Events in Earth History. The sharp increase at the beginning of
the Ordovician indicates the Great Ordovician Biodiversification Event. The decrease at the
end of the Ordovician marks the mass extinction, coinciding with the climate deterioration.

From: geol.umd.edu.

One group of organisms that evolved and flourished throughout the Ordovician is the

chitinozoa. Chitinozoans are organic-walled microfossils that have an unknown
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taxonomic affinity (Paris, 1990). They tend to be flask or beaker-shaped with a hollow
interior and variable exterior ornamentation (Figure 3). The origin and taxonomic affinity
of chitinozoans is unclear, but recovery of chains and clusters of linked chitinozoans have
led some workers (e.g., Paris and Nolvak, 1999) to suggest that chitinozoans may

represent the fossilized eggs of soft-bodied Paleozoic metazoans such as ancient

arthropods or gastropods.

Figure 3: Chitinozoans. Chitinozoans exist in many rapidly changing and distinct forms,
which is one reason why they are excellent index fossils. From: Vandenbroucke et al., 2005.

Chitinozoans first appear in the Early Ordovician and evolve rapidly through the

Paleozoic (Armstrong & Brasier, 2005). The majority become extinct at the end of the
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Devonian Period, although there a few reported (but suspect) occurrences in the
Carboniferous and Permian Periods (Armstrong and Brasier, 2005). Chitinozoans are
exclusively marine and occur abundantly in a variety of paleoenvironments ranging from
carbonate platforms to slope and basinal settings represented by black shales (Paris,
1990). As an abundant part of the Ordovician microfossil record, chitinozoans provide
insights on planktonic biodiversity during the Paleozoic.

Along with graptolites and conodonts, chitinozoans are also extremely important lower
Paleozoic index fossils. Index fossils are fossil organisms whose key ecological and
evolutionary traits make them particularly useful for making correlations between
stratigraphic units and placing them in proper sequence in geological time. Some of these
traits include a wide geographic distribution, broad environmental tolerance, abundant in
fossil record, distinctive morphologic characteristics, and individual species short time
duration. The use of fossils to correlate and relatively age date rocks is called
biostratigraphy. Biostratigraphy is the oldest application of paleontology, and has been
used to build and refine the geologic timescale since the early 1800’s.

Faunal assemblages of different units and ages are typically established over many years
through many studies, and are a primary means to order and correlate rock units. Since
rocks of the same age tend to contain the same fossil species, they can be correlated
biostratigraphically. These fossils are then organized into a set of zones, with each zone
defined by key index taxa. Zones are often set by an index taxa’s first appearance datum,
which could occur at a locality either because of evolution or immigration (Prothero,
2004). Biostratigraphers also document an index taxa’s last appearance datum, which can

be caused by extinction or emigration (Prothero, 2004). Theoretically, biostratigraphical
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zones occur in the same order all over the world. However, determining which order is
correct can be somewhat difficult. Some important applications of biostratigraphy include
finding petroleum deposits, reconstructing ancient continents, and examining the
geologic record of global environmental change. Chitinozoan’s widespread distribution,
abundance, and resistance to weathering processes make them ideal for both local and

global stratigraphic correlations (Armstrong & Brasier, 2005).

Research Goals

There were two main goals of this research: to create a stratigraphic correlation model
using an automated graphic correlation program CONOP9, and to use that model to better
understand the biodiversity patterns of chitinozoans during the Ordovician in the paleo-
continent Gondwana. A stratigraphic correlation model constructed from the stratigraphic
range data of chitinozoans could provide a more accurate understanding of the full
species longevity of chitinozoans in Earth history. This in turn will provide a more
precise picture of Ordovician chitinozoan biodiversity. Since the Ordovician serves as a
deep time model for modern day climate change, assessing the biodiversity of this time

interval could provide insights into the future of modern day biodiversity assemblages.

Methodology

Dataset and Data Collection

In this study, we collected all of our data by using the previously published literature



Page |7

(Appendix One). My data was collected from 31 published chitinozoan studies from
localities in Gondwana. From these studies I collected stratigraphic range (FAD and
LAD) and presence/absence data for 152 species of Ordovician chitinozoans. Although I
collected complete presence/absence data from every collection horizon throughout the
range of a species whenever possible, we were most concerned with locating the first and
last appearances of a species. I either manually documented the presence or absence of
every species on each horizon within stratigraphic sections using Excel, or used a data
collection program called OnlyALad (Sheets et. al., 2014). OnlyALad is a program
designed to collect stratigraphic range data from published range charts with the intent of
minimizing human input error. It does this by calling up a taxonomic diction dictionary
from which taxon names are pasted into an Excel spreadsheet, thereby eliminating taxon
spelling errors. In this study, my complete dataset includes 152 species from 65 outcrops
and drill cores from the paleo-continent Gondwana. Having detailed presence/absence
data from every collection horizon allows for better confidence estimates of the first and

last appearances of species in the fossil record.

Measures of Biodiversity

With this data I constructed a more complete stratigraphic range estimate of each species
in order to attain a precise assessment of chitinozoan biodiversity over time. Since the
occurrence of taxon range ends (FADs and LADS) at any one section are influenced by
sampling and environmental biases, a composite range for each species needs to be
constructed (Sadler et. al. 2014). Once that has been accomplished a better understanding

of biodiversity through time is possible.
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Accurately measuring biodiversity in the fossil record can also be difficult. There are four
basic ways a species can exist within a time interval (Figure 4). A species can exist
throughout the entire time interval, originate before the time interval and become extinct
during the interval, originate within the time interval and become extinct afterwards, or a
species can originate and go extinct within the time interval. These four ways influence

biodiversity calculations (Cooper in Webby, 2004).

g Time unit & d
£ (2my) |
g b
a
Total diversity (d,..) = 4
Species/m.y. (d) =2
Normalized diversity
{ nr.'rm} = 25

FIGURE 4.1. The four ways in which a species can be present in
a time interval; a, range through; b, originate within the interval
and range beyond it; ¢, range into the interval and terminarte
within it; d, confined to the time interval. The three measures

of diversity for the time interval are shown.

Figure 4: From Cooper in Webby, 2004.

There are several different methods of measuring biodiversity. One is simply counting
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the number of species that occur within a time interval. However, this method is highly
dependent on the size of the time interval, and tends to overestimate the mean standing
diversity of taxa (Copper in Webby, 2004). A more accurate method is to count the
number of species and divide by the duration of the time interval in which they occur.
This results in a species per million years count (assuming an interval measured in
millions of years). This accounts for the size of the time interval, and hence makes for a
more precise method of calculating biodiversity than a simple total count.

One final method is called normalized diversity. Normalized diversity assigns a point
system to each species, depending on how well described their range is in the time
interval (Cooper in Webby, 2004). Of these three methods normalized diversity tends to
best estimate mean standing diversity at point in geologic time. While all of these
methods have their faults and merits, this study uses computer algorithm to eliminate
intervals altogether and provide an estimate of true mean standing diversity — the
biodiversity of a taxon group at any one moment in time..

As noted above, in order to obtain a better measure of mean standing diversity, we first
had to construct a composite stratigraphic range chart from the biostratigraphic range data
of all the species that occur in the various sections. We used the stratigraphic correlation
program CONOP9 (Sadler and Cooper, 2008) to produce this composite stratigraphic

range chart.

CONOP?9 is an automated graphic correlation program that is multi-dimensional; it uses
observations from many sections simultaneously (Sadler et. al. in Harries, 2003). As
input data, CONOP uses all of the stratigraphic range data from all of the species in all of

the individual sections (the first and last appearance of each species at each section), and
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using an annealing algorithm produces a correlation model and composite range chart for
the studied sections and species, respectively. Depending on the number of sections and
taxa, this type of correlation exercise can have billions of solutions. CONOP9 uses a set
of rules to eliminate impossible solutions and choose a most probable one. Any time one
of the rules is broken, the solution incurs a penalty. In searching for the best solution,
CONOP9 will pick the solution that incurs the least amount of penalties (Sadler and
Cooper, 2008, Kooser, 2002). The user can set various parameters that determine how

CONOP9 is allowed to search for this best solution.

In addition to assigning penalties CONOP9 eliminates impossible sequences, or
sequences that cannot exist in nature (Sadler et. al. in Harries, 2003). For example, this
computer program would eliminate solutions that include last appearances before first
appearances. CONOP9 also maintains all observed taxon co-existences and tries to
minimize unobserved co-existences. Finally, CONOP9 operates under the parsimonious
tenet; that is, the simplest solution is the correct one. Because of this, CONOP9 searches
for the best of the possible solutions by choosing a model that requires the minimum net

adjustment of observed ranges and having the fewest unobserved co-existences.

This best solution is the composite stratigraphic section that contains all of our 65
sections and 152 taxa, and has the lowest penalty assignment. In order to use this
composite for biodiversity studies, we can simply count the number of species at any
single time as a running total of FADs - LADS. This method of calculating biodiversity
eliminates some of the problems of counting biodiversity. For example, a total count of
biodiversity is dependent on the size of the interval (the larger the interval, the greater the

biodiversity). However, an interval-free method eliminates this bias. We believe this to
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be the best way to obtain an accurate measure of mean standing diversity (Sadler et. al. in

Harries, 2003).

Results

Correlation Model

The correlation model produced by CONOP9 shows that the data is sparse in some
sections and time intervals (Figure 5). For example, there are few FADs and LADs in
much of section RH14 (as shown by the lack of dark gray bars), and so the ranges of
species in that section are not well constrained. This is true of many of the longest
sections. The smaller sections, such as section TA are typically better sampled and have
more events. This suggests that some of our locations are not well sampled or contain
only a few long ranging species, and that the correlation of those sections, particularly in

the data poor intervals, is imprecise.
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Figure 5: Correlation Model. Dark grey areas indicate many events (FADs and LADSs); light
grey areas indicate a lack of events.

Range Chart

CONOP9 provides the composite stratigraphic ranges of each species as part of its
output. From this output file, we created a detailed range chart (Figure 6). This range
chart is mostly consistent with the accepted order of index taxa and biozones for the
Ordovician of Gondwana. However, there are a few range discrepancies. In my range
chart, some of the chitinozoan species’ LADs appear to range much higher, or their FADs
sink much lower than what occurs in nature. For example, in our model Amoricochitina
nigerica has a FAD that is younger than is generally accepted. Also, Spinachitina
formosa ranges too high, while Desmochitina bulla’s range is too low (meaning its first
appearance is older than commonly accepted). Finally in my dataset, Euconochitina
brevis, and Eremochitina brevis both had LADs that were too high.

We may be seeing these differences between my range chart produced from CONOP9
and those from more traditional biostratigraphic studies for several different reasons.
One factor that could influence these differences is the way the CONOP algorithm
assesses range extension penalties. If a LAD at the top of a section or a FAD at the
bottom of a section is artificially truncated by the section end, and it does not co-occur
with the LAD or FAD of another species in the dataset, CONOP may let this LAD or
FAD float or sink unrestrained to the top or bottom of the range chart with no penalty
assessment. [ was mostly able to manually fix these floating or sinking problems, but it
could still cause inconsistences between my range chart and previous studies. Second, it

may be that taxon identification errors by the individual study authors could cause
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erroneous range extensions. Finally, it is possible that the range chart produced from this
study is actually a more accurate picture of species ranges than studies from individual
sections. This may be because this study includes a larger area than previous studies, and

my range chart was produced using multiple (65) sections as discussed earlier.



‘pauIWIAIap 3¢ 30U pjNOI 3Sued 1994109

Y1 1eY3 Sa3ed1pul Mot 3y] ‘dSuel Pa3daLIod Ay} MoYs

sieq Aais ay] ‘Suoj 003 3q 03 umouy] dJe sa8uels asoym sapads

saads 3

91ed1pul sieq pue smodse Aau "ySiy ool Supjuis 1o Suneoyy

9q Aew jeyy saads ajedpul saxoq Aauo “yey) aSuey

9 a4n3i4

Lower

Ordovician

Middle

Upper

Page |14

002

008

©

8

0007

00T
002T

00€T

00T

wi|qoid douod/uoesynuspIsiw a|qissod

eON[eg Ul punoj osfe exe|
BUBMPUOS YHON J0j X[ Xapu|

Lagenochitina destombesi
Conofhitina symmetrica
genochitina ventriosa
Cdnochitina havliceki
Cyathoghitina vaurealensis
Euconohitina paschaensis
Cpnochitina decipien

veligera [
Ermochitina baculata |— 5 N
Efemochitina brevis_A | = N N
Laufeldochitina baculiformis . .
[ Desmochitina bulla] . '

_ '

ol

Sagenachitina oblonga

Lagenochitina obelig(s
Eremochitina brevis |B -

Conochitina gueddichensis
Tanuchitina boumen(ijelae

Eremochitina brevis|

itina brievis

Conochitina hichami  — ¢
ina vulparis

Conochitina redoyanei

i ina jenkinsi

Tanuchitina achaebae
nochitina pseudocafinata

Conochitina pljcatura
Belonechiting henryi

Belonechitina micrcantha

Tanuchitina domfrgntensis

Cyathochitiha calix

Cyathochitina prbtocalix
D

ina minbr

C

ina m

Cyathochifina jenkingi

Laufeldochitina lar

Laufeldpchitina martinae =
Armoricophitina amtoricana -
o °

rdeuxi =

Belonechiting

Conochjtina subcylindrica -
Calpichitina windjana
Cyathochitina hunderumensis

Cpnochiting

Conochitfna kryos |

vibrissa 4

poumoti

-

aiffeldochiti}
Linochiti

ha gracilis

aclavata | —
a pissotens|s —————————

Linochitina mayens|s — .

o
o

hochitina

Saharog
Desmoch

Pistillachi
Conochith

Laufeldoghitina striath
ogonochitina spinifer

Kalo|
Conodh

hitina jaglinf ~ +
itina erinacga -
a

tina capitatg =~ ———
na tomentoga
hitina inflata -
a conulus =

[["Siphonoghitina formdsa = |

Clpichitina
Desmod|

Hercochi;
Ptefs

Hercochitinarobardeti =
dyathochitina varennensis =
Belonechitina puncthta —
Cohochitina dolosa  —————
Lagenochitina cylindfica -
Cyathochitina dispar
Desmochitina ov{ilum

Pisenacktinajyolei -
Kalochliinamultispmata -

Spinachitina bulfnani  ——————
> al

megastroplica -+ '
hitina amphjorea  ~

inavolkheimerii -
ochitinaretiacta +

Belonechitina ghabdensis
Desfnochitina mortoni
Cytichitina legfandi
Eucongchitina shefidani
Desmochitina omanensis

occa

Velgtachitina ngbulosa  « !
Belonechiting capitata
Lagenochitina dalbyensis r——

Armorfcochitina granulifera  =——
Pistill&chitina pistilliformis :——

magna

isenackting rhenana
agenochitia deunffi

Angochitirla curvata  +—

agenochitifia ponceti  ——

Calpichitina lenticularis,

itina elegans
nacommunis ————
Ipichitina lata -
hitina hirsuta
papistillifrons  —
Conocljitina primitiya ~ ——
Conochifina intermedia ~ ——
Euconochijtina tanvillemsis  —|
Angdchitina capillata -
saharochltina fungiforinis
Tanuchjitina ontariefsis
Desmoghitina pirifo{mis

.
.
.
.
.
.
.
%

2,
.

Belomechitina robusta  —
Angochitina m_sp._A |
¢y "9 . >

gensis 1

sitata
Lagenochitina maxima |-
Degmochitina sphaerica |-
L

Cyathochitina cylindrica |-
Lagenochitina prussica
Armgricochitina figeric

Desmochitina nodosa|
Arforicochitinairanica
Hyalochitina hyalophrys| —

Euconochttina leptal
Tanuchitida fistuloga
fcanthochitipa barbat

Ancyrochitina merga

Tanuchitina elonpata
Ancyrochftina longispina
Rhabddchitina tufrgida
Plectochjtina sporjgiosa
Tanuchitina bergstfoemi
Ancyrochitina onnjiensis
Calpichitina complanata
Tanuchitink anticost|ensis
Spindchitina fossensis

Ordochitina ngvadensi
Fungochitinajactonic
Spihachitina pulebsi
Spjnachitinalvemier:

Belonechitina american
+ Herochitina spi

Cqnochiti
d

Hercochitina crickmayi  —

Cyathochjtina kuckersiana ~ «
Ancyrochiting persica
Armoricochitina albgrzensis

is
a —
ri
si

Fungochitinafspinifera  ——

a —

netum —

Euconochitina moyssegoudaensis ——
! SpinacHitina aidaensis —

Belpnechiting kordkuyensis ——
C

inacostata —

Ldgenochitina combazi

na pervulgata
ordinaria

>

Bglonechitina noraensis
canthochitina n_sp._1|




Number
of Species

25

204"

157

Page |15

Biodiversity

The biodiversity curve produced by CONOP’s interval free method shows some
interesting trends (Figure 7). Our chart shows a general upward trend throughout most of
the Lower and Middle Ordovician, with a spike in the Sandbian (early Late Ordovician).
Biodiversity is generally higher in the Upper Ordovician than in the Lower or Middle
Ordovician. However, this could be due the greater amount of data that we have from the
Upper Ordovician. Our highest peak is in the early Hirnantian, or latest Ordovician. After
this high, biodiversity drops dramatically, coincident with the Late Ordovician climate
crash and mass extinction event. A simple origination and extinction rate shows that
origination increases rapidly throughout the Lower Ordovician and steadily decreases

throughout the Middle Ordovician. Extinction is much higher than origination during the

late Upper Ordovician.
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Figure 7: The Biodiversity Chart calculated though CONOP9 using an interval-free
method.

Discussion

Comparison with Previous Studies

These results have some interesting differences with previously calculated biodiversity
trends for Ordovician chitinozoans (Grahn and Paris, 2010; Paris et al. in Webby, 2004).
Grahn and Paris (2010) use balanced total diversity (a measure similar to normalized
diversity) to calculate biodiversity. The high peak on this curve is in the late Middle
Ordovician (Figure 8). Paris et. al. in Webby (2004) uses mean number of species per
million years to calculate their biodiversity curve (Figure 8). Interestingly, their trend
seems to mirror ours more than the balanced total diversity calculation. The mean number
of species per million years has a high in the Upper Ordovician, like the CONOP
interval-free biodiversity. Both calculations from previous studies, and our interval-free
method, show a steady increase in biodiversity throughout the Lower and Middle
Ordovician.

One reason for these discrepancies could be that there is more data in the literature for the
Middle and Upper Ordovician than for the Lower Ordovician. This produces a bias,
where the range chart appears to have more species in the Middle and Upper Ordovician
than the Lower Ordovician. In particular, the newer literature that we used (post-2010)
was heavily weighted with Hirnantian data. Similarly, because there is less data for the
Lower (and Middle) Ordovician, this dataset does not have some index taxa or good
zonal control resulting in poorer constraint on taxon ranges. These characteristics of our

dataset could be one reason for the differences between our diversity curve and those in



Page |17

previous studies.
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Figure 8: Biodiversity Analysis Comparison. The black line is the CONOP9 interval free
diversity curve, which is FAD’s minus LAD’s. Blue and Green Lines show comparative
biodiversity methods.

Correlation with Sea Level

One environmental factor that could be influencing the trends in the biodiversity curve is
sea level rise and fall. Sea level fall exposes the shallow marine shelf to erosion and also
reduces the marine habitat area. Thus there is less area for the chitinozoan animal to live
and less rock preserved from which to extract the fossils. Sea level rise produces the
opposite effect. Hence, I expected sea level rises to coincide with increases in
biodiversity, since this would create more habitats for chitinozoans. Conversely, a

decrease in sea level should coincide with decreases in biodiversity because this creates
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less habitat for chitinozoans. I compared my biodiversity curve with a sea level curve for
the Ordovician, to see if the curves showed any correlation (Figure 9). During the
Ordovician, sea level rose throughout the Lower Ordovician, plateaued throughout the
Middle Ordovician, and decreased throughout the Upper Ordovician with the glaciation
event (Dronov et. al., 2011). Within those general trends, there are smaller rises and falls.
Many of these sea level rises correlated with an increase in biodiversity, while many of
the sea level fall correlate with a biodiversity decrease. This result is not surprising, but it
does support the validity of the CONOP derived biodiversity curve. Overall, the

correspondence of the biodiversity curve and the sea level curve supports my results.
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Figure 9: Correlation with Sea Level. The blue line represents sea level changes. Sea level changes
throughout the Ordovician, starting rather high and decreases with the global cooling event.

Correlation with Global Carbon Cycle

Another environmental factor I compared to my calculated biodiversity curve was
changes in the global carbon cycle recoded as carbon stable isotopic excursions (Figure
10). What events these changes in carbon isotopic ratios are recording are not completely
clear, but they are likely recording a major environmental event. Carbon exists in three
forms: '2C, *C, and '*C. About 99% of the Earth’s total carbon exists as the stable
isotopes '“C or °C, and of that 99%, only 1% is '*C. Photosynthetic processes tend to
sequester Carbon as '2C relative to *C,(Kump and Arthur, 1999). Because of this,
organic carbon tends to have a carbon ratio with more !>C than '*C, and in highly
productive waters the environment becomes depleted in '*C relative to '*C . When
organic matter is buried in sediments, its carbon isolated and does not rapidly return to

the environment. These carbon ratios can be measured and analyzed for the ratio, which

is known as 0'3C. At certain times in Earth history, the amount of 1*C in the sediments is

uncharacteristically high. These are known as carbon isotopic excursions and are thought
to represent major changes in plankton productivity, sea-level changes, and/or shelf

erosion (Young et al., 2005).

Three major carbon isotopic excursions occur during the Ordovician: the Middle
Darriwilian Carbon Isotopic Excursion (MDICE), the Guttenburg Carbon Isotopic
Excursion (GICE), and the Hirnantian (HICE). The MDICE occurs in the Middle

Ordovician, and it is the smallest of the three. The MDICE doesn’t show a strong
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correlation with my biodiversity curve; there is not particularly strong increase or
decrease in biodiversity when it occurs. This may be because it occurs over a long period
of time, and so may not represent as rapid an environmental perturbation as the other
excursions, although this is speculation. Also, the MDICE is not as well studied or
extensively documented as the GICE and the HICE. The GICE and the HICE are known
to record changes in the global carbon cycle. These two carbon isotopic excursions
coincide with a decrease in biodiversity (Figure 10). These results are not unexpected, as

a major change in the environment would most likely result in a local extinction.
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Figure 10: Correlation with Carbon Isotopic Excursion. The relative strength of the
excursion is indicated below each excursion. The two excursions highlighted in green are
the two that correlate the most with the biodiversity curve.
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Future Studies

The results of this study point to some interesting future studies. Expanding the dataset to
include other paleo-continents such as Laurentia and Baltica could increase the accuracy
of the correlation model and the range charts, especially for the Lower Ordovician. It
would also expand the regional biodiversity analysis to global in scope. In addition,
comparing the chitinozoan biodiversity curve to the curve for other Ordovician fossils
like graptolites and conodonts could provide some insights into the overall biodiversity of

the Ordovician, and how environmental change impacted several different groups.

Conclusion

This study sought to examine the biodiversity pattern of chitinozoans in the Ordovician
strata of Gondwana, using an interval free method calculated in the automated graphic
correlation program CONOP9. Studying biodiversity in this time interval is useful
because the Ordovician may serve as a deep time analogue for modern day climate
change. Using CONOP9 to measure biodiversity, I found that the diversity of
chitinozoans increases steadily throughout the Lower and Middle Ordovician, peaks in
the Upper Ordovician, and then decreases rapidly. Previous studies have found a slightly
different trend; typically, there is a peak in biodiversity in the Middle Ordovician. These
differences can possibly be attributed to the nature of our dataset or the CONOP
algorithm, or may better reflect the true diversity pattern of Ordovician chitinozoans in

Gondwana.

Our biodiversity pattern appears to have a correlation with environmental changes during

the Ordovician. When compared to sea level, the lows in our biodiversity often occur at
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the same time as low sea level and the highs in our biodiversity often co-occur with highs
in sea level. Also, two of the three carbon isotopic excursions that occurred during the
Ordovician also match up with lows in chitinozoan biodiversity. These results are not
surprising, but do support a hypothesis that the diversity of marine plankton can be
influenced by global environmental changes. This study may help predict how planktonic

biodiversity might change in response to modern day climate change.
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