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Abstract—Memory errors such as buffer overruns are no-
torious security vulnerabilities. There has been considerable
interest in having a compiler to ensure the safety of compiled
code either through static verification or through instrumented
runtime checks. While certifying compilation has shown much
promise, it has not been practical, leaving code instrumentation
as the next best strategy for compilation. We term such compilers
Memory Error Sanitization Compilers (MESCs). MESCs are
available as part of GCC, LLVM and MSVC suites. Due to
practical limitations, MESCs typically apply instrumentation
indiscriminately to every memory access, and are consequently
prohibitively expensive and practical to only small code bases.
This work proposes a methodology that applies state-of-the-
art static analysis techniques to eliminate unnecessary runtime
checks, resulting in more efficient and scalable defenses. The
methodology was implemented on LLVMs Safecode, Integer
Overflow, and Address Sanitizer passes, using static analysis
of Frama-C and Codesurfer. The benchmarks demonstrate an
improvement in runtime performance that makes incorporation
of runtime checks a viable option for defenses.

I. INTRODUCTION

Security vulnerabilities resulting from unsafe memory ac-

cesses such as buffer overruns are notorious. Starting from the

highly publicized Morris worm in the 80s, exploits resulting

from memory safety errors have received considerable atten-

tion. Prevention of these errors has been a topic of intense

research over the past two decades.

While manual methods are currently the most widely

adopted approach, they are either error prone or tedious for

large applications as well as legacy code. We thus focus here

on automated approaches.

An attractive automated method for vulnerability protec-

tion is to use a compiler for ensuring safety of the code

it produces. Code that passes through a compiler can be

checked or retrofitted with defenses, and the approach can

be transparently applied to large codebases. In particular, in

several approaches, the compiler is used to instrument the

compiled code with runtime checks that ensure the safety of

memory related accesses. We term such compilers Memory

Error Sanitization Compilers (MESCs). MESCs have been

developed and available as part of compiler suites such as

GCC (as of gcc 4.8)1, LLVM framework (from Clang compiler

version 3.1)2 and MSVC (Microsoft Visual Studio platforms).

Since every piece of code that is compiled goes through

a compiler toolchain, it is possible for this approach to

be transparently applied to codebases that use the compiler

toolchain. Compared to stand-alone tools [5] for retrofitting

code, a compiler-based retrofitting strategy has a better chance

of critical mass adoption.

A main challenge with code that is retrofitted for memory

safety is performance. While there has been considerable

research in the recent past to address this issue, much of

this work has not become part of MESCs. One reason is that

compiler writers hesitate to include analysis algorithms of high

complexity in the compiler toolchain for reasons of (static)

compile-time performance. The GCC wiki3 has as rule 1: “Do

not add algorithms with quadratic or worse behavior, ever.”

Due to the lack of high-precision algorithms for performing

a precise instrumentation, MESCs typically apply instrumenta-

tion indiscriminately to every memory access. (Section II has a

brief analysis of the performance of LLVM’s instrumentation).

Hence, they do not scale, resulting in prohibitive overhead.

This work proposes a methodology to curb the performance

costs of software compiled with a MESC. Our approach is to

facilitate the use of state-of-the-art static analysis techniques

by incorporating their results inside the compiler to eliminate

unnecessary runtime checks, making this class of defenses

more efficient and scalable. Our main contribution is to build a

practical linkage between LLVM and static analysis tools and

use this to reduce sanitization overhead. The main benefits of

our approach are:

• No compiler modification for analysis: Our approach

utilizes the results of state-of-art analysis algorithms in-

side the compiler, without changing the compiler analysis

procedures. (Our approach does require modifications to

the retrofitting module of the compiler in order to make

use of these results.)

• Generality: Our approach is general enough to include the

1https://gcc.gnu.org/
2http://llvm.org/
3https://gcc.gnu.org/wiki/Speedup areas
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results of any static analysis tool. In our implementation,

we have utilized the results of Frama-C and CodeSurfer,

two of state-of-the-art static analysis tools.

• Performance: Our approach has been tested with a variety

of benchmarks, including small and large applications.

These benchmarks demonstrate improvements in runtime

performance that make incorporation of runtime checks

a viable option for defenses.

This paper is organized as follows: Section II motivates

the work, describing the need for runtime checks and the

shortcomings of current implementations. Section III provides

the high-level architecture of the design. Section IV details the

implementation. Section V presents data from our experiments

using the method. Section VI describes previously published

work that address these issues. Conclusions are given in

Section VII.

II. BACKGROUND AND PROBLEM STATEMENT

Memory safety related errors constitute some of the most

critical security bugs in programs. There is a long history

of security incidents whose root-cause is due to errors such

as out-of-bounds access, integer overflow, and use-after-free

scenarios.

There is also a long history of security defenses for these

types of attacks, a focus of intense research over two decades.

Our focus here is on directly addressing vulnerabilities; miti-

gation defenses are discussed in Section VI.

Despite the intense level of focus, software vulnerabilities

abound. We discuss the main issues that contribute to this next.

Issue 1: Performance. The overhead of runtime checking that

is required to prevent memory safety errors has been high

(overheads from 2x to 80x). There has been considerable

progress made with respect to performance and we can hope

that this trend will lead to efficient defenses. However, given

that a wide range of software is developed and distributed,

in order to achieve critical mass, they need to be hardened

through developer-transparent toolchains. Compiler writers

have recognized this need, and have integrated memory error

sanitization techniques in the compilation cycle. As mentioned

earlier, we call these compilers Memory Error Sanitization

Compilers (MESCs). MESCs are an attractive solution to the

critical mass adoption problem and have been developed for

mainstream compiler suites, e.g., GCC, LLVM and MSVC.

While these sanitization passes are rarely incorporated in

production software due to performance concerns, their func-

tionality aids in testing, error detection and error diagnosis.

Issue 2: Precision. Practical (compile-time) performance re-

quirements on a production compiler do not facilitate using

advanced analysis techniques (for instance, using quadratic

or even super-linear algorithms). This limits the precision of

the analysis results and, in turn, the optimizations which can

be performed. Secondly, it requires non-trivial effort to build

compiler passes that incorporate algorithms yielding more

precise results. As a result of these two factors, end users

of MESCs do not benefit from the recent advances in static

analysis algorithms that could improve the runtime overheads

due to instrumentation.

Issue 3: Lack of critical mass adoption. Many defense tech-

niques developed have been through stand-alone implementa-

tions or ad-hoc extensions of existing compilers. For a defense

technique to become mainstream, critical mass adoption in a

developer-transparent toolchain framework is essential.

A. Analysis of runtime overheads

In a preliminary work we assessed candidate benchmarks

for testing the efficacy and usability of three sanitization

protocols, measuring the performance overhead imposed on

the applications by the inserted runtime checks [6]. The three

sanitization tools, Safecode [7], Address Sanitizer (ASAN) [8],

and Integer Overflow Checks (IOC) [9], are discussed in detail

below. Similar conditions obtained as for the measurement

runs reported in the Evaluation section (Section V). Our

runtime data are shown in Table I, which displays the over-

head with respect to the original introduced by the different

sanitizations.

We find large overhead for most of the benchmarks, with

some exhibiting a slowdown exceeding a factor of 90 times

slower than the original code; a few showed modest perfor-

mance cost, as low as 9%. These costs present a challenge to

the security community, for runtime enhancements to become

acceptable in production software. We note that for Safecode,

throughout our experiments, we used the production version

available at the official page 4, which, according to the devel-

opers does not incorporate certain unstable optimizations. The

current work addresses this situation by designing strategies

for targeted restriction of runtime checks insertion.

Benchmark Safecode IOC ASAN

oggenc 0.28 0.21 3.48
LasPack 30.30 0.97 4.29
gzip 15.70 0.22 0.94
debie1 46.12 0.56 4.46
appbt 97.98 4.85 2.60
bzip2 70.15 0.39 3.87
susan 18.23 2.35 4.12
quicklz 19.04 0.59 1.80
cpumaxmp64 4.00 0.09 0.07
linpack 28.00 0.34 3.44
NEC-Matrix 55.67 18.8 4.63

TABLE I: Benchmark Overhead due to Runtime Checks, for

Three Sanitization Tools

B. Optimizing runtime checks

To address Issue 1, current implementations of runtime

checks in MESC deal only with reducing the overhead of

the runtime infrastructure through a variety of implementation

strategies that involve the runtime data-structures (e.g., fat

pointers [7], [10], shadow memory [8], pool allocation [11]).

4http://safecode.cs.illinois.edu/

324



Our solution to Issue 1 is to reduce the time overheads due

to runtime checks by making use of precise static analysis.

The results from such analysis are then used to remove those

checks that can be statically determined to be safe. Indeed,

every MESC employs several static analysis algorithms to per-

form optimizations, but production compilers typically restrict

these algorithms to the most efficient ones, not necessarily the

most precise.

To address Issue 2, we present a method to improve the time

performance of MESC compiled code by leveraging external
static analysis tools. We aim to develop an approach that has

the same safety guarantees of a conventional MESC without

the runtime overheads, specifically retaining memory safety

while removing unnecessary checks. To guarantee the safety,

if proof cannot be obtained, we leave the checks untouched.

We highlight that while using external static analysis tools

will add their running times as overhead to the compilation,

very often, for safety critical programs (e.g., web servers), such

cost may be justified by the better performance and security

at runtime.

Finally, to address Issue 3, we build a general method of

propagating information and assertions from different static

analysis tools into the LLVM optimization chains.

III. DESIGN

To leverage the analysis power of current tools for MESCs,

we design a methodology that connects the analysis tools with

the safety instrumentation frameworks. This path is responsi-

ble for transporting analysis information related to runtime

checks from external analysis tools, through a compiler’s

front and back-end, to the code that implements the safety

instrumentation (Figure 1). We highlight that while some

information-propagation infrastructure exists inside compilers

to transport information from the front-end to the backend

(e.g., # pragma directives or profiling metadata), this is highly

specialized and can be used only for very specific optimization

purposes. Our framework, in contrast, provides a general way

to bring any analysis information generated by external an-

alyzers, to any safety instrumentation implementation, where

such information can be used.

In a larger context, not explored in this paper, our framework

may be used to open a path among external analyzers and other

back-end optimizations, further enhancing them by providing

high quality analysis information, which is not available to a

production compiler.

Requirements and issues. Our design is required to preserve

the safety of the checks inserted by the MESCs. This must be

guaranteed by the established soundness of the external tool

analysis, restricting the choice of these tools. Given sound

analysis, we must then bridge the semantic gap between

tool output, and the assertion descriptions to be injected into

the code: each tool has its own representation for analysis

results, and these must be translated to a form usable by the

compiler. Finally, the representation within the compiler of

these analyses must not interfere with the ordinary work of

the compiler.

1 int* p = (int*) malloc(100*sizeof(int));
2 int i=0;
3 while(i<100) {
4 p[i] = i*i;
5 i++;
6 }
7 //....
8 free(p);
9 //....

10 for(i=0;i<100;i++)
11 p[i] = 0;

Listing 1: The running example in C source

1 if(shadow(i)!=0) throw_UAF_Exception();
2 while(i<100) {
3 if(i< 0 || i >= getSize(p))
4 throw_OOB_Exception();
5 if(shadow(p[i]) !=0) throw_UAF_Exception();
6 t = multiply.with.overflow(i, i);
7 if(t.overflow == true)
8 throw_IOF_Exception();
9 p[i] = t;

10 i++;
11 }

Listing 2: Program snippet from the running example (the

for loop is not shown) with runtime checks

Overview. A high level view of the main components and

steps along this path is depicted in Figure 1. In the first

step, C programs are given as input to external analyzers,

which produce facts and information useful for removing

unnecessary runtime checks; this information is encoded as

assertions. For instance, if a runtime check’s purpose is to

catch out of bounds access, the information in the assertions

is about object boundaries and variable ranges. In the next

step, the assertions are given as input to the compiler’s front-

end and are transported through the parsing and Intermediate

representation (IR) code generation phases to the back-end.

In the back-end, the information contained in the assertions is

associated with the intermediate code and transported through

the chain of optimizations to the instrumentation framework,

where it is finally used to remove checks.

After introducing a running example, in the rest of this

section, we provide details about each of these steps.

Running Example. To illustrate our approach, we provide

a simple running example in Listing 1 containing several

operations that are instrumented with runtime checks. In

reality, these runtime checks are inserted in the intermediate

code generated by the front end, however, we show them in

the source code for clarity. In Line 4, the variable i is used

as an index into the array starting at p, where such access

might cause an out of bounds access for values of i greater

than 100. In the same line, i is also used as the operands

of a multiplication, whose result may cause integer overflow

for large values of i. Finally, in Line 8, the variable p is

deallocated, and then used in Line 11. To prevent memory

safety errors, MESCs insert runtime checks into the program.

Listing 2 illustrates such checks, related to the while loop

from Listing 1.

Lines 1 and 5 of Listing 2 contain checks inserted by
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Fig. 1: Steps on the Pathway from the Analysis Tools to the Safety Instrumentation

Address Sanitizer. Address Sanitizer creates for every memory

region, such as the memory region where p[i] is allocated,

a shadow memory location, which contains the status of the

program’s region. When the program’s memory region is not

valid anymore (e.g., because of free), Address Sanitizer

sets the shadow region to a non-zero value. In our example,

the check in Line 5 computes the shadow memory location

associated with the variable p[i], which is used inside the

condition of the while loop, and checks that it is still

allocated.

Lines 3-4 contain another runtime check, inserted by Safe-

code. The check verifies that the access is within the bounds

of the array pointed by p and throws an exception if this

is not true. The function getSize exemplifies the Safecode

operations to retrieve the runtime size of the object pointed

to by p. Finally, Lines 6-8 contain the code transformed

by the Integer Overflow Check instrumentation. Here, the

original multiplication is substituted with a safe multiplication

function, which returns a structure containing the result and a

flag indicating if overflow occurred.

Evidently, the runtime checks inserted in Listing 2 by the

safety instrumentations are not necessary. In fact, the value of

i is between 0 and 100 for every possible run, therefore out of

bounds checks and integer overflow checks are not necessary.

In addition, the use of p[i] inside the while loop occurs

before the free, therefore a check for detecting use after free

is not necessary for that use.

We highlight at this point that existing compiler optimiza-

tions, such as O3, are, in general, not able to determine if

the runtime checks are unnecessary. This is due to several

reasons. First, many runtime checks are implemented as calls

to functions that are not available at compile time but are

linked with the code in a later phase. In addition, due to

efficiency constraints, the algorithms used by these optimizers

to analyze the code do not perform an analysis as deep as

other static analysis tools who do not have those constraints.

Additional optimizations performed by MESCs, are in general

concerned with other aspects of the implementation. For

instance, Safecode uses several link time optimizations to

remove checks on bounds checks to single-element objects

(e.g., scalars, or single element arrays), or uses caching of

previously accessed arrays in the look-ups, so that a bounds

check that has already been performed is removed.

Our framework brings such information from static anal-

ysis tools to MESCs, improving the performance of target

programs by reducing unnecessary runtime checks. In the

following subsections, we present different steps in this path:

carrying assertions from static analysis tools to the compiler

back-end, and leveraging the compiler to use the provided

assertions to produce optimized code.

A. Deep Analysis

The goal of this step is to use external analyzers to produce

information about a program, which can be used to remove

unnecessary runtime checks. To remove runtime checks ded-

icated to preventing out of bounds memory accesses and use
after free bugs, we use two external analysis tools: Frama-

C [12], [13] and CodeSurfer [14], [15]. These tools exhibit sev-

eral advantages with respect to LLVM’s analysis capabilities.

They can perform whole program analysis, spanning multiple

compilation units and procedures. Furthermore, they are not

as constrained as LLVM with respect to performance, and can

perform a deeper and more complex analysis.

Frama-C. This is an analysis framework for C programs,

which can be extended by many plugins that perform different

types of analysis 5. One of its most widely used plugins is

the Value Analysis plugin, which derives the value ranges that

variables can assume at runtime using abstract interpretation.

When available, these ranges can determine at compile time if

an out of bounds access is possible. The results of Frama-C’s

value analysis are guaranteed to be sound [13]. For instance,

in Listing 1, Frama-C is able to determine that the range of

the index i is between 0 and 100 for every possible program

execution. Therefore, the access to the array in Line 4 will

never be out of bounds and the out of bounds check for

that operation can be removed. Furthermore, using the same

bounds information derived by Frama-C, we can infer that the

result of the multiplication in Line 4 can never overflow and

therefore an integer overflow check related to that operation

can be removed.

CodeSurfer. This framework provides different types of facil-

ities for analyzing full programs, as well as an API to build

plugins for customized queries over the code. After the code

is parsed, several program representations are built, including

full program abstract syntax trees, control flow graphs, and

system dependency graphs. The latter represent the data and

5http://frama-c.com/plugins.html
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control dependencies among program points. If the value of

a variable at a point A depends on operations carried out at

a point B, there is a data dependency edge from B to A. If

execution of A depends on some condition at a point C, then

there is a control dependency edge from C to A.

Data and control dependencies provide valuable information

about the possible order of execution of program points. A data

dependency edge between points A and B means there is at

least one path in the control flow graph where A is executed

before B. This precedence information establishes a relative

order of execution between program points containing free
statements and statements where pointers are used, which is

used to determine if the use of a variable appears before or

after a free statement.

For instance, in Listing 1, executing a backward slice query

from the program point at Line 8, returns the program points

for Lines 1 and 4, which contain the variable p used in Line

8. A forward slice query instead returns the program point

11, which is affected by the execution of Line 8. Once these

dependencies are discovered, they can be used to assert that

any use of a pointer that does not have a dependency from a

free statement is safe; therefore the runtime check associated

with that use can be removed.

To use these programs as external analyzers in our frame-

work, there are several issues that need to be resolved.

Information granularity. One of the main problems in

using external analyzers for removing checks is that of the

granularity between the operations and information produced

by these analyzers, and the operations of the safety instru-

mentation frameworks. In fact, the latter usually operate at

the LLVM IR level, while the former at the source code

level. For instance, Safecode instruments with runtime checks

the LLVM IR code, while the Frama-C analyzer performs

abstract interpretation on the C source code and computes the

variables’ value ranges.

To deal with this problem, we fix the granularity to the

source variables’ uses and definitions, and thus retrieve from

the analyzers information about variable uses and definitions.

The advantage of this choice is that these uses are readily

available to the instrumentation framework of the compiler.

Analysis soundness. External static analyzers, in general,

employ several approximations leading to false positives and

negatives. To ensure that our framework does not violate the

safety provided by the instrumentation frameworks, only sound

analysis results are used to remove checks. The practical effect

of this choice is that a significant percentage of runtime checks

may not be removed.

B. Annotation Capture

Once the information about variable uses and definitions is

produced by the external analyzers, it needs to be propagated

to the back-end. There are several challenges to address in this

step.

Language Heterogeneity. The information derived from ex-

ternal analysis must track the compiler mapping from source

code language to the intermediate representation. Due to

the static single assignment (SSA) nature of the LLVM

intermediate representation (IR) language, one source code

variable can be mapped to multiple IR variables, and a source

statement may be split into different statements. We solve

this problem by using debug information, which contains a

mapping between source and LLVM variables, as well as

by injecting the assertions as special constant strings in the

program (see Listing 4).

Analysis Format. Another issue in this step is integration

of the analysis results from different external analyzers in

a common representation format, which can be used for

different instrumentations. In particular, we design two types

of assertions, one expressing the range of every variable use,

and another expressing the safety of that use with respect

to free statements. We provide more details about these

assertions in Section IV-B.

C. Transport to the Backend

Once the assertions are available to the back-end, they

are propagated through the chain of optimizations to the

instrumentation passes. The main challenge in this step is the

fact that the optimizations along the chain may change the

code by transforming and removing instructions. For example,

consider LLVM’s mem2reg optimization, which minimizes

the traffic between memory and registers by removing unnec-

essary load and store statements, by inserting phi nodes

into the code, and so on. This code transformation modifies

the mappings between source and LLVM variables discovered

in the previous step, thus invalidating the assertions.

A general solution to this problem is provided in a prior

work [16]. In general, to ensure mapping correctness, wit-

nesses to the transformations performed by the optimization

passes can be inserted for each pass with very little implemen-

tation overhead. These witnesses are responsible for relating

the target and the source program after every optimization and

can be used to update the assertions correspondingly. However,

in this paper, we do not use such solution, since the code is

not transformed before it reaches the instrumentation passes,

and thus the assertions are always correct.

Two of the more problematic transformations for our ap-

proach are the introduction of temporary variables in LLVM to

hold intermediate results or the deletion of LLVM instructions.

To deal with this problem, we try to associate as many instruc-

tions as possible with the corresponding assertions, so that

even when instructions are deleted we can recover assertion

information from the remaining instructions. In addition, we

compute new assertions by using existing ones. For instance,

if the range of two variables is known, the range of their

multiplication is computed and an assertion about this range

is attached to the LLVM variable that stores the result of

the multiplication. We provide more details about this task

in Section IV-C.

D. Check Elimination

When the assertions reach the instrumentation passes, the in-

formation they contain determines whether a check is needed.
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In particular, to remove Safecode out of bounds checks,

we use two types of information: 1) the range information

associated with the variables and discovered by Frama-C,

and 2) the size of arrays (when known at compile time). If

such information is known, then the check is as simple as

determining if the values contained in range of the variable

fall within the array size. When this check is positive, we can

avoid the insertion of the runtime check.

For Address Sanitizer, a similar elimination procedure is

used. In this case, the information about the safety of a pointer

use is already available and no further computations need to be

done. If a memory access is associated with an assertion that

claims that it is safe, we skip the runtime check insertion. For

instance, Listing 3 shows the code resulting from removing the

unnecessary checks. As can be seen, the only remaining check

is that in Lines 9-10, since there is a dependency between Line

6, where the variable p is freed and Line 11, where it is used.

1 while(i<100) {
2 p[i] = i*i;
3 i++;
4 }
5 //...
6 free(p);
7 //....
8 for(i=0;i<100;i++){
9 if(shadow(p[i]) !=0)

10 throw_UAF_Exception();
11 p[i] = 0; //use after free
12 }

Listing 3: Optimized program after leveraging assertions

IV. IMPLEMENTATION

Our implementation is built on top of LLVM 3.4 (We used

version 3.2 for Safecode due to compatibility). LLVM is a pop-

ular compiler back-end, which is used to perform a wide range

of optimizations and final code generation. The optimizations

in LLVM are structured as a sequence of passes that operate

on an intermediate representation of the code called LLVM

bytecode (LLVM IR), which is generated by the compiler’s

front-end. The safety instrumentations are built as additional

passes on top of the other passes in LLVM. They operate by

intercepting LLVM load and store statements (Safecode

and Address Sanitizer), which load and store values from

memory locations to registers, and by inserting runtime checks

before those statements. Our implementation is composed of

a series of tools that extend this architecture. A high level

overview of our architecture is shown in Figure 2.

In the first step of the implementation architecture, the

program files are given as input to Frama-C or CodeSurfer.

In particular, the Value Analysis Plugin of Frama-C is used to

derive the variable ranges and remove the bounds and integer

overflow checks, while CodeSurfer to remove the use after free

checks. These two tools have been extended by plugins that we

wrote to perform the analysis and to generate analysis results

useful for removing unnecessary checks. The results are output

from each tool separately as lists of assertions associated with

a line number and a file name. Next, our rewriter uses this list

of assertions to inject them in the source code at the specified

line number. The output is an annotated file, as shown in

Listing 4 where each of the lines 2-3, 6-8, 10, and 17, contains

an assertion about the use of the variables in the first line of

the original code following those assertions.

Next, the annotated C source file is passed as input to Clang,

the LLVM compiler front-end, which translates it to LLVM

IR, without performing any code optimizations. The resulting

LLVM IR is next passed in input to an LLVM pass that

we develop, the Assertion Mapper pass, which is responsible

for mapping the source variables to the LLVM variables and

associating the source assertions with the LLVM instructions.

The output of this step is an annotated LLVM IR file, where

the annotations contain the assertions about the value ranges

and the uses before the free statements. Finally, the LLVM

bytecode is given as input to the safety instrumentation passes,

Safecode and ASAN (Address Sanitizer), which have been

modified to read the annotations and use them to avoid the

insertion of unnecessary runtime checks.

We next provide details about each of these steps.

A. Analyzers Implementation

Frama-C plugin Implementation. Frama-C framework [12],

[13] analyzes C source files and computes the value-range

information of variables. The computation is performed by a

Frama-C built-in plugin, the Value Analysis plugin. However,

the computed ranges are internal to the Frama-C framework

and cannot be explicitly extracted. To perform such extraction,

we implemented a Frama-C plugin using the APIs provided

by this tool. This plugin visits every instruction in the AST

tree inside Frama-C, extracts all the variables at each node,

and queries the value analysis plugin for each variable to get

the corresponding value ranges. The results are then stored in

an annotation specification file to be used later by the rewriter.

The specification and the rewriter are described in subsection

IV-B below.

CodeSurfer plugin Implementation. To ultimately remove

the checks inserted by Address Sanitizer we built a plugin for

CodeSurfer that executes the following two tasks:

1) Using the data dependency graph, we issue backward

and forward slicing queries to find the order of execution

among statements containing a call to a free and

statements that use the pointer being freed. If there exists

a dependency edge from a statement free(p) to a

statement where pointer p (or any of its aliases) is used,

then there exists a potential use after free vulnerability.

This implies that the Address Sanitizer’s checks inserted

at those uses must not be removed. If, on the other hand,

there exists a dependency between a statement where a

pointer p (or any of its aliases) is used and a statement

free(p), then the statement is executed before the

free(p) along some path. Finally, if dependencies

exist in both directions, then the two statements can be

executed in any order.

2) Find the program points that contain uses that are not

related to a free(p) statement. These include all those
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Fig. 2: Implementation Architecture.

uses for which runtime checks are inserted by Address

Sanitizer, but which are not usually freed in a program

(e.g., non pointer variable uses).

The plugin uses Codesurfer’s APIs to execute both tasks and

outputs a file of annotations about the safety of the program

points, together with line numbers. The output of the plugin is

an assertion file associated with every source code file. Each

assertion contains the safety information of the corresponding

variable use, together with the line number where that use

occurs.

B. From the Analyzers to the Frontend

To provide a common framework for both the out of
bounds and use after free optimizations, we specify

an assertion language to express value-range and memory

safety information. This specification is designed to represent

value-range and memory safety assertions about variables in

each program location. The syntax of our specification is

described in Table II. The basis syntax includes file name, line

of code, and assertions. We need both file name and line of

code to instrument the assertions in the right place. There are

two type of assertions: (1) value-range assertions represents

the value range and (2) safety memory of a specific variable.

<assertion spec> ::= filename:lineofcode#assertions
<assertions> ::= (@assert <assertion>;)+
<assertion> ::= <value assertion>

| <safety assertion>
<value assertion> ::= <expression> (’&&’<expression>)∗

| <expression> (’||’<expression>)*
<expression> ::= <variable> op <value>

op ::= ′ ==′ | ′ >=′ | ′ <=′
<safety assertion> ::= safe(<variable>)′ =′ boolean

<variable> ::= <string literal>
<filename> ::= <string literal>

<lineofcode> ::= integer
<value> ::= integer | real

TABLE II: Syntax of the common assertion language

As our framework is designed to use different analysis tools,

we need a consistent way to introduce assertions into code. To

this end, we develop a transformation tool to embed assertions

into the program in the form of string variables, which

are specially named to avoid interference with the existing

program variables. These variables are injected before the

corresponding instructions in the source, and are propagated

1 i n t ∗ p = ( i n t ∗ ) m a l l o c (100∗ s i z e o f ( i n t ) ) ;
2 char∗ a s s e r t 1 = ‘ ‘ @ ass e r t i ==0 ’ ’ ;
3 char∗ a s s e r t 2 = ‘ ‘ @ ass e r t s a f e ( i ) = t r u e ’ ’ ;
4 i n t i =0 ;
5 whi le ( i <100) {
6 char∗ a s s e r t 3 = ‘ ‘ @ a s s e r t i >=0 && i <100 ’ ’ ;
7 char∗ a s s e r t 4 = ‘ ‘ @ a s s e r t s a f e ( p ) = t r u e ’ ’ ;
8 char∗ a s s e r t 5 = ‘ ‘ @ a s s e r t s a f e ( i ) = t r u e ’ ’ ;
9 p [ i ] = i ∗ i ;

10 char∗ a s s e r t 6 = ‘ ‘ @ a s s e r t i >=0 && i <100 ’ ’ ;
11 i ++;
12 }
13 . . . .
14 f r e e ( p ) ;
15 . . . .
16 f o r ( i =0 ; i <100; i ++){
17 char∗ a s s e r t 7 = ‘ ‘ @ a s s e r t s a f e ( p )= f a l s e ’ ’ ;
18 p [ i ] = 0 ; / / u se a f t e r f r e e
19 }
Listing 4: Program from the running example with in-

jected assertions

to the compiler back-end through the standard code generation

phase of the Clang front-end.

This transformation is based on CIL (C Intermediate Lan-

guage) [17]. CIL is a high-level representation of C programs

that is lower-level than AST and higher-level than typical

intermediate languages. CIL has a set of tools for static

analysis and transformation of a valid C program using a few

core constructs with clean semantics. Our CIL plugin takes as

input a C source file and the corresponding set of assertion

specifications, and visits all instructions in that C source file

and injects the assertions. Listing 4 demonstrates the output of

our transformation tool that inject assertions in string variables

in corresponding source location.

C. Backend Implementation

Since the assertions are inserted in the source code file

as assignments to string variables, these assignments are

translated by the Clang frontend together with the rest of

the program. To attach the assertions to the LLVM IR code,

so that they are available to the instrumentation passes, we

designed an Assertion Mapper LLVM pass. This pass is run

immediately after the code generation phase of Clang, before

any other optimization passes. In fact, since the assertion

assignments are semantically orthogonal to the rest of the

program and not used anywhere else, they may be removed by
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1 %1 = l o a d %i
2 %2 = l o a d %i
3 %3 = mul %1, %2
4 %4 = l o a d %i
5 %5 = l o a d %p
6 %6 = GEP(%5 , %4)
7 s t o r e %3, %6

Listing 5: LLVM IR code compiled from the running

example

the optimization passes as dead code. The Assertion Mapper
pass works according to the steps described below.

Source-IR mapping. The Assertion Mapper’s first job is

the creation of a mapping between all source code variables

and the corresponding LLVM allocated memory locations.

This mapping is necessary for associating assertions with the

correct instructions in the LLVM IR code. This mapping is

created by using the debug information contained in the code,

which provides the name of the source variable for every

LLVM allocated memory location.

For instance, in Listing 5, we show the portion of the LLVM

IR code corresponding to the assignment p[i] = i*i; in

the source code. In the Listing, identifiers start with a %

sign. In Lines 1-2, there are two copies of the variable %i
loaded into two registers %1 and %2 before the multiplication

in Line 3. Next, the value of the pointer p is loaded into a

register %5, and the pointer to the i-th element starting from

p is obtained through the GetElementPointer (GEP)

instruction. Finally, the result of the multiplication is stored

into that element.

As can be noted from the example, there are several copies

of the value of the variable i, each one having a different

name. Therefore, an assertion about i (e.g., an assertion that

the range of i is between 0 and 100) is valid for all those

copies and needs to be associated with all of them. To solve

this issue, we use the debug information, which contains a

mapping among C source variables and LLVM IR memory

locations.

Metadata attachment. Next, for every load, store and

gep instruction, the corresponding assertions are extracted

from the code, with the help of the previously created map-

ping, and attached to those instructions as LLVM metadata.

An example of the output of this step is shown in Listing

6. For every LLVM instruction, the text after the ! shows

the safecode-related metadata. These contain the range infor-

mation corresponding to the value contained in the LLVM

identifier. For instance, the metadata associated to the variable

%4 in line 4 provides the range of the array index, and the

metadata associated to line 5 provides the size of the array.

The GEP instruction returns a pointer to the element indexed

by the variable %4 inside the array starting at the memory

address pointed by %5.

The metadata related to the Address Sanitizer’s check are

similarly attached to load and store statements. These

1 %1 = l o a d %i ! ‘ ‘%1 >= 0 && %1 < 100 ’ ’
2 %2 = l o a d %i ! ‘ ‘%2 >= 0 && %2 < 100 ’ ’
3 %3 = mul %1, %2 ! ‘ ‘%3 >= 0 && %3 < 10000 ’ ’
4 %4 = l o a d %i ! ‘ ‘%4 >= 0 && %4 < 100 ’ ’
5 %5 = l o a d %p ! ‘ ‘ s i z e (%5) = 100 ’ ’
6 %6 = GEP(%5 , %4)
7 s t o r e %3, %6

Listing 6: LLVM IR Annotated with Assertion Metadata

metadata simply contain information about the safety of the

instruction.

Metadata propagation. An additional task of the Assertion
Mapper is to propagate metadata to the temporary variables

that appear in the LLVM IR. In particular, given an instruction,

Assertion Mapper checks if the operands of the instruction

contain any metadata, and if possible, merges those metadata

using the same semantics of the instruction and assigns the

new metadata to the result of the operation. For instance, in

Listing 6, the assertions about the variables %1 and %2, are

used to derive the assertion attached to the multiplication result

in Line 3. Currently, Assertion Mapper supports this propaga-

tion for LLVM’s arithmetic and sign extension operations.

D. Check Removal Implementation

To remove the insertion of run time checks by Safecode and

Address Sanitizer, we modify the code of the corresponding

LLVM passes. Our modification includes additional code that

intercepts the same load, store, and gep instructions

intercepted by these passes and reads the metadata associated

with those instructions.

Safecode checks removal. Safecode uses several LLVM

passes for adding the out of bounds run time checks.

These passes are responsible for tracking the allocated regions,

storing their sizes, and checking that every access to those

regions does not fall outside of the bounds. In particular, for

every array access, the run time check inserted by Safecode

ensures that the pointer to the referenced array element does

not fall out of the array bounds.

In our implementation, we modify each of these passes.

In particular, our implementation starts by reading the range

associated with an array index from the metadata and retrieves

the size of the array using the LLVM API. For instance, in

Listing 6, the metadata associated with the arguments (%4,
%5) of the LLVM GEP instruction, contain the size of the

array and the range of the index. For fixed sized arrays that are

allocated inside the same function as the array access (either

on the stack or on the heap), the size information is readily

available. For arrays that are passed as parameters in input to

a function, the size determination is more complex. In fact,

the array may have been allocated in any of the callers of

that function or any of its predecessors in the function call

graph, and it may have been passed in as a parameter along

the sequence of function calls. That is, at run time the array

may have any number of sizes depending on the caller. To
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retrieve the array size, we travel backwards one step in the

function call graph and retrieve the possible array sizes. If the

sizes can be retrieved this way, we use the minimum size,

as the safest option. When the size of the array cannot be

determined in this way, we choose the safest course of action

and do not remove the run time check.

Integer overflow check removal. The implementation

of the integer overflow checks removal is very

similar to that of Safecode. In particular, our

implementation removes the checks that are inserted by

the -fsanitize=signed-integer-overflow and

-fsanitize=unsigned-integer-overflow options

of Clang. These checks are inserted by the frontend, which,

based on the signedness of the operands, replaces several

arithmetic operations with equivalent LLVM intrinsics during

the code generation. For instance, additions of signed integers

are replaced with llvm.sadd.with.overflow. In

addition, the pass inserts a check over the overflow flag set

by the LLVM intrinsic. In our implementation, we intercept

every such intrinsic accompanied by a check of its overflow

flag, and, if the variable ranges of the operands are available,

we perform the same arithmetic operation using the value

ranges as operands. Next, we compare the resulting value

range with the maximum integer of the framework and

remove the check if all the values of the range fall below that

maximum integer. In some cases, Frama-C’s value analysis

produces ranges that include −∞ or +∞ or both. In these

cases, we do not remove the integer overflow checks.

Use after free check removal. The implementation of this

check is fairly simple. In the same way as for the other instru-

mentations, we intercept every load and store instruction

that Address Sanitizer intercepts. Next, we read the metadata

information that tells us if the instruction is safe. In this case,

we skip the check insertion.

V. EVALUATION

A. Setup

The results of our approach are shown below. Our frame-

work incorporates out-of-bounds runtime checks inserted by

LLVM passes for Safecode, address sanitizer, and signed and

unsigned integer overflow sanitizer. The evaluation was done

by instrumenting each benchmark program to track and output

user time for the course of its execution. Each program was

run at least ten times and the times were averaged. Our runtime

tests were performed on a GNU-Linux machine running the

LINUX Ubuntu distribution 12.04, on an Intel Xeon CPU at

2.40GHz.

B. Benchmarks

We selected open source test applications that cover a range

of sizes and operational characteristics. Some applications

were CPU-intensive, like the matrix manipulation and equa-

tion solver programs, and some were I/O intensive, like the

media conversion and file compression utilities. Half the test

Bench-
mark

Description Line
Count

Automatic
Annotation

% Lines
Annotated

oggenc Audio Compression
Utility

48347 880 1.82%

Laspack Solve large sparse
systems of equations

7656 100 1.31%

gzip File compression utility 5352 1451 27.11%
de-
bie1

Analysis of
Micro-Meteoroid
Impacts

5243 1279 24.39%

bzip2 Block-Sorting File
Compressor

5115 563 11.01%

appbt Differential Equation
Solver

3047 10 0.33%

susan Image processing 1463 109 7.45%
quicklz Fast File Compression

Utility
870 64 7.36%

cpumax Simple Add
Instructions

585 15 2.56%

lin-
pack

Measure system
floating point
computing power

579 166 28.67%

NEC-
Matrix

Matrix operation with a
fixed size

113 70 61.95%

TABLE III: Benchmark Source Size and Annotation Coverage

programs had small line counts, with less than 2000 non-

commentary source lines (CLOC); half were larger appli-

cations with thousands of non-commentary source lines. To

illustrate the optimizations of our framework, we selected

benchmarks with a wide range of non-commentary source

lines, also looking for many (hundreds) of array references.

Table III illustrates the source code line counts and the

percentage of source lines that were annotated by Frama-C,

with variable value range information. The chart is ordered

from largest to smallest total CLOC; the display is divided

between two groups of large and small line counts, in this

table and in the next several figures.

There is a weak anti-correlation between line counts and

annotation coverage. Typically, no more than 25% of the

source lines were annotated; for some applications the per-

centage is very low, 1-2%. The smallest benchmark, NEC-

matrix, achieved the highest annotation rate, at 62%. In the

discussion to follow we find it useful to divide the benchmarks

into large and small groups, with a cutoff at around 2000

CLOC. Generally there are higher percentages of annotated

lines in the smaller benchmarks, with some exceptions. The

two largest benchmarks have among the lowest annotation

rates, due to large portions of the programs depending on

runtime values not available to Frama-C. In such cases the

abstract interpretation finds relatively few instances of sound

results. This in turn impacts the number of checks that are

removed, since we only remove checks related to annotations.

C. Annotation Analysis

The next three figures illustrate strategically removing

runtime checks that our analysis proved were safe to remove,

thereby improving benchmark performance. Each chart shows

benchmarks ordered from the largest to the smallest. Two

metrics are given in the charts: the percentage of runtime
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Fig. 3: Safecode Benchmarks Performance

checks that were removed by our protocol, and the percentage

of the performance overhead due to runtime checks that was

recovered by the framework:

%Overhead Removed = 1 − R − O
C − O

where R is the performance with checks removed, C is the

performance with all checks present, and O is the performance with

no checking.

Safecode. Figure 3 shows results following removal of Safe-

code checks. We note that those checks, added by Safecode,

are not removed by the O0-3 optimizations. This class of

runtime checks had the most severe effect on performance

overhead, as seen above in Table I. Measuring the performance

benefits of check removal, we see mixed results, ranging

from no recovery of overhead, all the way to 100% recovery.

The latter is associated with the benchmark with the smallest

measured overhead, so its impact on absolute program effort

is not as great as it is for programs with larger overhead

penalties. We attribute results showing no overhead recovery

to the removal of safety checks in regions of code that are

seldom executed, such as initialization code. Results with

significant overhead recovery are attributed to checks removal

in frequently executed code, particularly program loops. This

effect was manually verified in some smaller benchmarks.

There is not close tracking between the percentage of checks

removed and the percentage of runtime recovery, since there is

wide variation over whether removed checks are in frequently

executed sections of code.

Integer Overflow. In the experiments on integer overflow

(Figure 4), the percentage of checks removed and the perfor-
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Fig. 4: Integer Overflow Check Benchmark Performance

mance improvement due to removal of checks are more sub-

stantial than was seen in the Safecode experiments; again, the

values are quite variable across all the benchmarks. Here the

improvements in performance roughly correlate with removal

of runtime checks, with some exceptions. We note that these

experiments were conducted using O3, so the improvements

are after O3 optimizations. The LasPack results illustrate how

removal of a few percentage points of checks can recover

most of the overhead; this strong benefit would be difficult

to achieve by manual analysis.

For removal of integer overflow checks, not only are the

overhead recovery measurements quite robust, with 7 of the

11 programs exceeding 40% removal, but overhead levels are

much smaller than with Safecode. Therefore these results rep-

resent strong measurable gains in secure program performance.

Address Sanitization. We also performed measurements on

removal of checks inserted by the sanitize=address
compiler pass. These checks are introduced for trapping use-

after-free events; data is shown in Figure 5. As can be

noted, the improvements in the run time overhead of Ad-

dress Sanitizer range between 15-40%. Many of the address

sanitization checks that are removed are associated with non-

pointer variables. We note that a significant portion of Address

Sanitizer’s overhead depends also on another instrumentation

of the program aimed at detecting out of bounds checks, which

are not removed in the current implementation. Again, most

benchmarks exhibit substantial recovery of overhead.

Summary. Results of our benchmark experiments are en-

couraging, although varying widely with the programs and

sanitizations being tested. Our best runs show recovery of
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Fig. 5: Address Check Benchmark Performance

Benchmark Safecode IOC ASAN

oggenc 0.28 � 0.00 0.21 � 0.21 3.48 � 2.68
LasPack 30.30 � 30.30 0.97 � 0.42 4.29 � 3.57
gzip 15.70 � 14.88 0.22 � 0.21 0.94 � 0.20
debie1 46.12 � 45.61 0.56 � 0.31 4.46 � 1.78
appbt 97.97 � 98.20 4.85 � 0.03 2.60 � 2.17
bzip2 70.15 � 69.52 0.39 � 0.00 3.87 � 2.49
susan 18.23 � 16.46 2.35 � 1.96 4.12� 3.89
quicklz 19.04 � 18.41 0.59 � 0.07 1.80 � 1.30
cpumaxmp64 4.00 � 4.00 0.09 � 0.09 0.07 � 0.05
linpack 28.00 � 0.91 0.34 � 0.21 3.44 � 2.65
NEC-Matrix 55.67 � 35.33 1.88 � 0.21 4.63 � 2.25

TABLE IV: Net Benchmark Overhead Following Check Elim-

ination

more than half the overhead due to runtime security checks,

while in a few cases there is no improvement. The net

overhead for all the experiments is seen in Table IV, where

results in each case are presented as X � Y, where X is the

overhead factor with all checks in place, and Y is the overhead

factor after some checks were removed by our protocols. This

presentation is more revealing than the charts in Figures 3, 4,

and 5, which only illustrate the relative improvements due to

checks removal. Table IV gives the absolute overheads running

the optimized programs, compared with the performance of the

original, unsafe code.

Table IV does not include the time spent by the static

analyzers for deriving the assertions, since this is an operation

that is carried out only once for every program. This time

can also vary widely depending on the analysis depth of the

static analysis. For instance, the -slevel option of Frama-

C’s value analysis specifies a limit on the amount of loop

unrolling, which can be varied depending on the required

precision.

VI. RELATED WORK

Memory safety is a widely studied problem and there exists

a large body of work that addresses it. The large majority of

this work proposes different schemes that instrument programs

to detect and prevent memory errors at runtime [7], [8], [18],

[10], [19], [20], [21], [22], [23], [24]. In these techniques,

a runtime infrastructure is added on top of the programs to

create, update, and query information about every memory

access. These approaches deal both with “spatial memory

safety”, which prevents out of bounds memory errors such

as buffer overflows, and “temporal memory safety”, which

prevents other memory errors dependent on order of execution,

such as use-after-free and double-free.

These techniques can incur high overheads. This issue is

widely recognized and several optimization efforts have been

carried out. Almost all of these optimizations, however, deal

with the efficiency of the runtime infrastructure added to the

program. Address Sanitizer ([8]), for example, uses shadow

memory, which computes the location of the status information

very quickly; other approaches incorporate different efficient

data structures ([25]). A recent approach in the direction of

removing runtime checks is ASAP, which, given a budget on

the maximal desired overhead, profiles the programs, ranks

the runtime checks in order of their execution counts, and

removes the most frequent ones [26]. However, this system

makes no safety guarantees, and it may remove checks which

are necessary for safety.

[16], [6] tackle the problem of propagating assertions in a

compiler. [16] develops the theory using refinement relations

and [6] provides a simple concrete instance of this approach.

Our work is more comprehensive in this regard, by developing

a detailed system design and implementation, applying it to

several bounds checks and evaluating with large benchmarks.

Several verification efforts show that if the input code is

free of memory errors, so is the output code [1], [2], [3], [4].

However, they do not sanitize errors in the input code.

Lee et al., instrument the intermediate code to keep track

of pointer aliases at runtime. In addition, the code is also

instrumented to nullify all the aliases of a pointer when that

pointer is freed [18].

Other techniques rely on changing the memory allocation

layouts, so that memory safety errors do not occur, or occur

with low likelihood [27], [21], [11]. Among these, Pool

Allocation is a strategy to detect and prevent memory safety

errors [11]. It relies on a type homogeneous allocation strategy

(where variables of the same type are allocated in the same

memory pool) to enable restrictions on the memory regions

that are allocated and referenced. However, this strategy works

only on a subset of the C language.

DieHard and Cling use additional memory space to decrease

the likelihood of accessing previously allocated memory ad-

dresses [27], [21]. However, they come with a high memory

usage overhead.
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Additional tools, created in the context of program debug-

ging, can be used to detect memory errors. Among these,

Valgrind’s Memcheck [28] and Electric Fence [29] also have

a very high overhead both in memory and running time.

Similarly to our approach, USHER [30], analyses

programs at compile time to remove unnecessary checks

inserted by MemorySanitizer (http://clang.llvm.org/docs/

MemorySanitizer.html) to detect uninitialized reads. However,

they build their own analysis framework for this specific

problem inside LLVM, while in our approach, we use existing

tools to feed analysis information inside the LLVM backend.

VII. CONCLUSIONS

In this paper, we present a framework for improving the

performance of programs instrumented with run time checks.

Our framework uses external analysis tools to complement the

compiler’s analysis and provide information for proving spatial

and temporal safety of memory operations. Our contribution

is providing a mechanism to transmit constraint information

discovered by the external tools through the compiler phases,

to explicitly target removal of unnecessary runtime checks.

This mechanism significantly alleviates much of the perfor-

mance burden due to incorporation of memory safety checks,

and is a significant step towards acceptance of compiler-based

security defenses in production software.
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