
University of Dayton
eCommons
Civil and Environmental Engineering and
Engineering Mechanics Faculty Publications

Department of Civil and Environmental
Engineering and Engineering Mechanics

3-2005

Development of Multiple Growth Strategies for
Use in Developing Traffic Forecasts: A Robustness
Approach
Deogratias Eustace
University of Dayton, deustace1@udayton.edu

Eugene R. Russell
Kansas State University

E. Dean Landman
Kansas State University

Follow this and additional works at: http://ecommons.udayton.edu/cee_fac_pub

Part of the Civil Engineering Commons, Construction Engineering and Management Commons,
Environmental Engineering Commons, Other Civil and Environmental Engineering Commons, and
the Transportation Engineering Commons

This Article is brought to you for free and open access by the Department of Civil and Environmental Engineering and Engineering Mechanics at
eCommons. It has been accepted for inclusion in Civil and Environmental Engineering and Engineering Mechanics Faculty Publications by an
authorized administrator of eCommons. For more information, please contact frice1@udayton.edu, mschlangen1@udayton.edu.

eCommons Citation
Eustace, Deogratias; Russell, Eugene R.; and Landman, E. Dean, "Development of Multiple Growth Strategies for Use in Developing
Traffic Forecasts: A Robustness Approach" (2005). Civil and Environmental Engineering and Engineering Mechanics Faculty Publications.
64.
http://ecommons.udayton.edu/cee_fac_pub/64

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dayton

https://core.ac.uk/display/232833674?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://ecommons.udayton.edu?utm_source=ecommons.udayton.edu%2Fcee_fac_pub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cee_fac_pub?utm_source=ecommons.udayton.edu%2Fcee_fac_pub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cee_fac_pub?utm_source=ecommons.udayton.edu%2Fcee_fac_pub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cee?utm_source=ecommons.udayton.edu%2Fcee_fac_pub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cee?utm_source=ecommons.udayton.edu%2Fcee_fac_pub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cee_fac_pub?utm_source=ecommons.udayton.edu%2Fcee_fac_pub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=ecommons.udayton.edu%2Fcee_fac_pub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/253?utm_source=ecommons.udayton.edu%2Fcee_fac_pub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/254?utm_source=ecommons.udayton.edu%2Fcee_fac_pub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/257?utm_source=ecommons.udayton.edu%2Fcee_fac_pub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1329?utm_source=ecommons.udayton.edu%2Fcee_fac_pub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ecommons.udayton.edu/cee_fac_pub/64?utm_source=ecommons.udayton.edu%2Fcee_fac_pub%2F64&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:frice1@udayton.edu,%20mschlangen1@udayton.edu


Report No.  K-TRAN: KSU-01-3 
FINAL REPORT 
 
DEVELOPMENT OF MULTIPLE GROWTH STRATEGIES FOR 
USE IN DEVELOPING TRAFFIC FORECASTS: A 
ROBUSTNESS APPROACH 
 
Deogratias Eustace 
Eugene R. Russell, Sr. 
E. Dean Landman 
 
Kansas State University 
Manhattan, Kansas 
 
 

 
MARCH 2005 
 
K-TRAN 
 
A COOPERATIVE TRANSPORTATION RESEARCH PROGRAM BETWEEN: 
KANSAS DEPARTMENT OF TRANSPORTATION 
KANSAS STATE UNIVERSITY 
THE UNIVERSITY OF KANSAS 



1 Report No. 
K-TRAN: KSU-01-3 

2   Government Accession No. 
 

3    Recipient Catalog No. 
 

5 Report Date 
March 2005 

4 Title and Subtitle 
Development of Multiple Growth Strategies for Use in Developing 
Traffic Forecasts: A Robustness Approach 6 Performing Organization Code 

 
7    Author(s) 

Deogratias Eustace, Eugene R. Russell, Sr., and E. Dean Landman 
8  Performing Organization Report 

No.   
 

10 Work Unit No.  (TRAIS) 
 

9 Performing Organization Name and Address 
Kansas State University; Department of Civil Engineering 
2118 Fiedler Hall 
Manhattan, Kansas 66506 

11 Contract or Grant No. 
C1242 

13 Type of Report and Period 
Covered 
Final Report 
August 2000 – October 2002 

12 Sponsoring Agency Name and Address 
Kansas Department of Transportation 
Bureau of Materials and Research 
700 SW Harrison 
Topeka, Kansas 66603-3754 
 

14 Sponsoring Agency Code 
RE-0234-01 

15 Supplementary Notes 
For more information write to address in block 9. 

16   Abstract 
 Decisions that may be based on misleading forecasts may lead to a misallocation of funds and to under-performing 
projects during construction and operation. Poor projections of demographic and socioeconomic data are usually cited as the major 
source of poor traffic assignment projections and hence, unfavorably conceived planning and construction of street and highway 
infrastructure facilities.  
 This report evaluated the accuracy of long range projections by using a transportation study done the in 1970s, projecting 
transportation demand 20 years into the future. The projected travel model inputs were compared with what actually happened 
after the horizon year had been reached and also compared the projected traffic volumes versus the actual ground counts at the 
same horizon year. The results of this study show that there is a poor correlation between what was forecasted and what actually 
happened in terms of socioeconomic and demographic data,  which are the major inputs used by travel demand models to forecast 
future traffic volumes on road links. The projected traffic volumes were poorly correlated with the actual ground traffic counts for 
the same road links in the network. However, the end results of these projections, the estimated number of lanes required to 
accommodate the resulting traffic, were not adversely affected. It was found that 98 percent of the major streets had the number of 
lanes correctly estimated based on the 1994 Highway Capacity Manual (HCM) planning level of service (LOS) criteria. 
 Robustness analysis is a technique with the potential in aiding decision makers in choosing transportation investment 
projects that more closely correlate to actual future development. In this report it has been demonstrated that robustness analysis 
can be successfully used in urban transportation planning in conjunction with urban travel demand software. The robustness 
analysis procedure emphasizes the need, under conditions of uncertainty, to make early decisions in a time-phased sequence, while 
preserving many future options until the choices are more definitive. The results of the robustness analysis indicate that the method 
is simple to understand, easy to use, minimizes future surprises in terms of expected future events not happening, and provides the 
flexibility required in typical urban planning problems where decision making has to be done under conditions of uncertainties. A 
general framework to be used in such cases is proposed. 

 

17   Key Words 
Highway Capacity Manual, Planning, Traffic 
Forecast, Traffic Volume, and Travel 

18   Distribution Statement 
No restrictions.  This document is  
available to the public through the  
National Technical Information Service, 
Springfield, Virginia  22161 

19  Security Classification 
(of this report) 

Unclassified 

20  Security Classification 
(of this page)         
Unclassified 

21  No. of pages 
100 

22  Price 
 

Form DOT F 1700.7 (8-72) 
 



 
DEVELOPMENT OF MULTIPLE GROWTH 

STRATEGIES FOR USE IN DEVELOPING TRAFFIC 
FORECASTS: A ROBUSTNESS APPROACH 

 
 

Final Report 
 
 
 

Prepared by  
 

Deogratias Eustace 
Graduate Research Assistant 

 
Eugene R. Russell, Sr. 

Professor 
 

and 
 

E. Dean Landman 
Adjunct Professor 

 
all with 

Kansas State University 
 
 
 
 

A Report on Research Sponsored By 
 

THE KANSAS DEPARTMENT OF TRANSPORTATION 
TOPEKA, KANSAS 

 
KANSAS STATE UNIVERSITY 

MANHATTAN, KANSAS 
 

March 2005 
 

© Copyright 2005, Kansas Department of Transportation 



 

PREFACE 
 
The Kansas Department of Transportation’s (KDOT) Kansas Transportation Research 
and New-Developments (K-TRAN) Research Program funded this research project. It is 
an ongoing, cooperative and comprehensive research program addressing transportation 
needs of the state of Kansas utilizing academic and research resources from KDOT, 
Kansas State University and the University of Kansas. Transportation professionals in 
KDOT and the universities jointly develop the projects included in the research program. 
 
 
 

NOTICE 
 
The authors and the state of Kansas do not endorse products or manufacturers. Trade and 
manufacturers names appear herein solely because they are considered essential to the 
object of this report.  
 
This information is available in alternative accessible formats. To obtain an alternative 
format, contact the Office of Transportation Information, Kansas Department of 
Transportation, 700 SW Harrison, Topeka, Kansas 66603-3754 or phone (785) 296-3585 
(Voice) (TDD). 
 
 
 

DISCLAIMER 
 
The contents of this report reflect the views of the authors who are responsible for the 
facts and accuracy of the data presented herein. The contents do not necessarily reflect 
the views or the policies of the state of Kansas. This report does not constitute a standard, 
specification or regulation. 
 



i 

ABSTRACT 

 

Decisions that may be based on misleading forecasts may lead to a misallocation of funds and to 

under-performing projects during construction and operation. Poor projections of demographic 

and socioeconomic data are usually cited as the major source of poor traffic assignment 

projections and hence, unfavorably conceived planning and construction of street and highway 

infrastructure facilities.  

 This report evaluated the accuracy of long range projections by using a transportation 

study done in the 1970s, projecting transportation demand 20 years into the future. The projected 

travel model inputs were compared with what actually happened after the horizon year had been 

reached and also compared the projected traffic volumes versus the actual ground counts at the 

same horizon year. The results of this study show that there is a poor correlation between what 

was forecasted and what actually happened in terms of socioeconomic and demographic data,  

which are the major inputs used by travel demand models to forecast future traffic volumes on 

road links. The projected traffic volumes were poorly correlated with the actual ground traffic 

counts for the same road links in the network. However, the end results of these projections, the 

estimated number of lanes required to accommodate the resulting traffic, were not adversely 

affected. It was found that 98% of the major streets had the number of lanes correctly estimated 

based on the 1994 Highway Capacity Manual (HCM) planning level of service (LOS) criteria. 

 Robustness analysis is a technique with the potential in aiding decision makers in 

choosing transportation investment projects that more closely correlate to actual future 

development. In this report it has been demonstrated that robustness analysis can be successfully 

used in urban transportation planning in conjunction with urban travel demand software. The 



ii 

robustness analysis procedure emphasizes the need, under conditions of uncertainty, to make 

early decisions in a time-phased sequence, while preserving many future options until the 

choices are more definitive. The results of the robustness analysis indicate that the method is 

simple to understand, easy to use, minimizes future surprises in terms of expected future events 

not happening, and provides the flexibility required in typical urban planning problems where 

decision making has to be done under conditions of uncertainties. A general framework to be 

used in such cases is proposed. 

 

 



iii 

TABLE OF CONTENTS 

ABSTRACT.................................................................................................................................... i 

TABLE OF CONTENTS ........................................................................................................... iii 

LIST OF TABLES ....................................................................................................................... vi 

LIST OF FIGURES .................................................................................................................... vii 

CHAPTER 1 - INTRODUCTION ...............................................................................................1 

 1.1 Introduction .............................................................................................................1 

1.2 Problem Statement ..................................................................................................2 

1.3 Research Objectives.................................................................................................3 

1.4 Selection of Study Area ..........................................................................................4 

 1.5 Outline of the Report ..............................................................................................5 

CHAPTER 2 - LITERATURE REVIEW ...................................................................................6 

 2.1 GIS Applications in Transportation Planning .........................................................6 

2.2 UTP Software Application in Transportation Planning ..........................................7 

  2.2.1 The Four-Step Modeling Process ...............................................................7 

  2.2.2 Shortcomings of the Process .....................................................................10 

2.3 Problems and Uncertainties in Transportation Planning and Forecasting ............11 

2.4 Decision Theories and Future Predictions (Forecasting)  .....................................15 

  2.4.1 Uncertainties and Scenarios .....................................................................15 

  2.4.2 Decision Making for Flexible Future Forecasting ...................................19 

   2.4.2.1 Introduction ...................................................................................19 

   2.4.2.2 Flexibility as an Objective   ............................................20 

   2.4.2.3 Robustness analysis ......................................................................21 



iv 

 2.5 Summary of Literature Review .............................................................................26 

CHAPTER 3 - STUDY METHODOLOGY .............................................................................28 

 3.1 Selection of Platforms ...........................................................................................28 

3.2 Development of Socioeconomic Data in Maptitude .............................................29 

  3.2.1 Data Requirements: Main Sources of Data ..............................................29 

  3.2.2 Defining Traffic Analysis Zones (TAZs) ...................................................30 

  3.2.3 Using Overlays in Maptitude for Data Manipulation................................31 

   3.2.3.1 Rules for Estimating Attributes in a Working Layer ....................31 

   3.2.3.2 Overlaying of Report 74 TAZs into 2000 TAZs Format ..............33 

3.3 Traffic Networks Development in QRS II ............................................................35 

  3.3.1 Overview ...................................................................................................35 

  3.3.2 Development of Alternate Traffic Assignments in QRS II ........................40 

3.4 Analysis of Projected Demographic and Socioeconomic Data  ...........................41 

 3.5 The Use of Robustness Analysis to Develop a Decision Criteria..........................43 

  3.5.1 General .....................................................................................................43 

  3.5.2 Procedure ..................................................................................................44 

  3.5.3 Usage of Robustness Scores ......................................................................45 

CHAPTER 4 – ANALYSIS AND DISCUSSION OF RESULTS ...........................................47 

 4.1 Introduction ...........................................................................................................47 

4.2 Summary of Projected Socioeconomic Data and Traffic Volumes ......................47 

4.3 Summary of Traffic Assignment Results ..............................................................52 

4.3.1 Effect of Socioeconomic, Demographic and Land Use Input Data ..........56 

4.3.2 Effect of Implementing Different Highway Network Plans .......................57 



v 

4.3.3 Concluding Remarks on Comparing Alternatives with Traditional  

   TDM Tools .................................................................................................60 

4.4 Robustness Analysis Results .................................................................................60 

4.4.1 Overview ...................................................................................................60 

4.4.2 Robustness Scores for Individual Road Link Segments ............................61 

4.4.3 Discussion of the Robustness Analysis Results .........................................64 

4.5 Framework – Robustness Analysis in Transportation Planning Decisions  

   ………….…………………………………………..……………64 

4.5.1 Introduction ...............................................................................................64 

4.5.2 Methodology .............................................................................................65 

CHAPTER 5 - CONCLUSIONS AND RECOMMENDATIONS ..........................................69 

5.1 Conclusions ...........................................................................................................69 

5.2 Recommendations .................................................................................................71 

 5.3 Contribution of the Research Effort ......................................................................71 

REFERENCES ............................................................................................................................72 

APPENDIX A...............................................................................................................................77 

 



vi 

LIST OF TABLES 

 

Table 3.1: Default Aggregation Methods in Maptitude .........................................................33 

Table 4.1: R2 Values of Projected Versus Actual Values for Socioeconomic  

 Input Variables ..................................................................................................................48 

Table 4.2: Results of the Measures of Effectiveness for the Scenarios Considered ..............53 

Table 4.3: Comparisons Done for Analysis One ....................................................................55 

Table 4.4: Comparisons Done for Analysis Two....................................................................55 

Table 4.5: Robustness Score for Individual Road Links ........................................................63 

Table A-1: Measures of Effectiveness (MOEs) .......................................................................81 

Table A-2: Detailed Information on Robustness Scores (R) for Individual Link 

 Segments ............................................................................................................................82 

 



vii 

LIST OF FIGURES 

 

Figure 2.1: Travel Demand Model Flowchart ...........................................................................9 

Figure 3.1: Topeka Urban Area Map Showing Report 74 TAZs Superimposed  

  on 2000 TAZs .......................................................................................................34 

Figure 3.2: Base Highway Network Recommended in Report 74 ..........................................38 

Figure 3.3: Base Highway Network as Existed in 1990 ..........................................................39 

Figure 3.4: Base Highway Network as Existed in 2000 ..........................................................40 

Figure 3.5: Symbolic Comparison of Projected Traffic Volumes Versus Actual Ground 
Traffic Counts .......................................................................................................42 

Figure 3.6: Symbolic Comparison of Projected Socioeconomic and Demographic Data 
Versus Actual Data ...............................................................................................43 

Figure 4.1: Comparison of Projected Versus Actual Population for 1980 ..............................49 

Figure 4.2: Comparison of Projected Versus Actual Total Employment for 1990 .................50 

Figure 4.3:  Projected Horizon Year Traffic Volumes Versus Actual Traffic Count Volumes 

   ...............................................................................................................................51 

Figure 4.4: Comparison of Socioeconomic Assumptions to the Network’s MOE Values .....57 

Figure 4.5: VMT and VHT Results When Network Alternatives–Loaded with Census Data .... 

  ................................................................................................................................58 

Figure 4.6: VMT and VHT Results When Network Alternatives–Loaded with Report 74 Data  

  ................................................................................................................................59 

Figure 4.7: A Flowchart of the Robustness Analysis Procedure in Transportation Planning 

  Decision Making ...................................................................................................68 

Figure A-1: Traffic Assignment Results on “NET 74R" Loaded with Census Data as Input ..78 

Figure A-2: Traffic Assignment Results on “NET 90" Loaded with Census Data as Input ....79 

Figure A-3: Traffic Assignment Results on “NET 00" Loaded with Census Data as Input .....80 



1 

Chapter 1 

Introduction 

 

1.1  Introduction 

Travel demand modeling remains a cornerstone of the transportation planning process 

(Marshment, 2001). Although current transportation planning procedures are mostly performed 

by an interdisciplinary team approach, there are still a number of institutional issues which may 

hinder the process from providing the best results. According to Marshment (2001), the most 

notable setback is a lack of coordination between land use and transportation planning. Most of 

the time, land use plans do not reflect the influence of the accessibility to the alternative 

transportation facilities. 

 The lack of interaction between land use and transportation planning may play a major 

role in using unrealistic and unattainable land use and  socioeconomic and demographic 

assumptions in the projection of future traffic levels with travel demand models. Unreliable 

travel demand model inputs, coupled with well-known travel demand model weaknesses, have 

compounded and amplified the uncertainty of future travel projections. Robustness analysis can 

provide an approach to the structuring of transportation problems where uncertainty is high and 

where sequential, time-phased decision making is necessary. According to Khisty and Sriraj 

(1999), the robustness analysis technique emphasizes the need, under conditions of uncertainty, 

to make early decisions in a time-phased sequence that will preserve future options that seem 

attractive. The strength of robustness analysis is in exploiting flexibility in phased transportation 

project planning. The  basis of robustness decision analysis comes from the operational research 

tradition (Rosenhead, 1989a). Rosenhead states (1989a): 
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“The robustness analysis is concerned with situations where an individual, group or 

organization needs to make commitments now under conditions of uncertainty, and 

where these decisions will be followed at intervals by other commitments”. 

 

 With the robustness perspective, the focus will be on the immediate commitments that 

can be made, and that will be compared in terms of the range of possible future commitments 

with which they appear to be compatible. 

 Since transportation forecasting is full of uncertainties, the robustness technique 

emphasizes the need to leave open all alternatives considered viable, minimize the possibility of 

surprises, and make early decisions in a time-phased sequence while keeping open all other 

future options that seem attractive. Robustness analysis, unlike traditional optimization 

techniques, can increase flexibility and minimize the uncertainties of the planning process, which 

can lead into a better and more reliable decision making. 

1.2  Problem Statement 

It has long been a concern of management that traffic forecasts are based on assumptions that 

may not be realized. For example, traffic forecasts made for projects in the western part of 

Topeka, Kansas, before the West Ridge Shopping Center was conceived, were grossly 

understated. The governing body selected the proposal of one developer over another and totally 

changed the land use and travel patterns of the area. Even though the best information available 

at the time is used in making a forecast such as this, the results could be either a costly over or 

under design. In the Topeka West Ridge Mall case, the result was a vastly under statement of the 

needs in the area. If a projected development results in a traffic forecast that is on the borderline 



3 

between a modest and expensive design solution, management should know the probability (or 

risk) of the actual development being higher or lower than forecasted. 

 The professional transportation community has been quite concerned about the quality of 

traffic forecasting data which is used as a basis for multi-million dollar investment decisions. 

 If a range of possible assumptions was made and the resulting forecasts were prepared, 

along with their respective possibilities (not probabilities), management would be able to better 

assess the risk of development occurring or not occurring, or development occurring at one 

location rather than another. Due to uncertainties in forecasting future transportation facilities, 

procedures employed should be flexible enough to accommodate changing outcomes as they 

develop. Under conditions of uncertainty, it would be advantageous to make early decisions in a 

sequence in such a way as to preserve many future options which initially seem attractive, 

instead of the current practice of deciding on the one option which seems to be optimal now, 

based on assumptions that may never materialize, and  pursuing it as if it were deterministic. 

1.3  Research Objectives 

Developing a procedure to accommodate multiple growth strategies or assumptions will require 

greater time and resources than predicting only one. Intuitively, one would think that a wider 

range of possibilities should be considered when there is greater uncertainty about the factors 

used to develop model output that determines a proposed highway improvement. Research has 

been conducted for urban areas that examine multiple projects to determine which ones will be 

feasible under any future alternative and which ones are feasible only if certain things happen 

(e.g., Boyce, et al., 1970; Binkley, 1995; Steiss, 1995). This approach provides little information 

about the planning risk, i.e., where assumptions and resulting forecasts are uncertain, by putting 

the emphasis on a prediction assuming certainty and neglecting the problems which may result 
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from uncertainties (Caplin and Kornbluth, 1975). This research will attempt to take the next step 

to formulate a process that increases the flexibility and minimizes the uncertainties of the 

transportation planning process and thus should reduce the risk level of poorly planned roadway 

systems. Specifically, this research involved: 

• developing “future” street networks for time periods already past as shown 

in previous planning documents using one of the available transportation 

planning software packages, 

• assessing the differences between past “future” projections and what 

actually occurred, 

• using robustness analysis techniques to develop a procedure to aid in 

making the urban transportation planning process more flexible to 

accommodate possible future surprises and minimize the uncertainties of 

using travel demand models, 

• developing generalized guidelines based on the principle of robustness 

analysis for developing a procedure for better transportation planning 

decisions. 

  

1.4  Selection of Study Area 

The Topeka Metropolitan area in Kansas was selected as the study area. The authors were 

confident about being able to obtain sufficient data for the study from both the Kansas 

Department of Transportation (KDOT) and Topeka city authorities. 

 Current information (Topeka, 2001) shows that the city of Topeka has a population of 

123,993 and the Metropolitan Statistical Area (MSA) has a population of 165,400 (Topeka, 

2001). Topeka is the capital of the state of Kansas. Two major interstates, I-70, a west-east 

highway, and I-335, come together at Topeka and with I-470, form a ring around the city. 

 



5 

1.5  Outline of Report 

The rest of this report is organized as follows. Chapter Two presents a literature review. It 

describes the application of geographic information systems (GIS) technology in transportation 

planning, the four-step modeling process, uncertainties, and problems of forecasting future travel 

demands. It also describes the use of robustness analysis and how it can be used in planning 

process. 

 Chapter Three outlines the study methodology. Procedures used to manipulate the 

socioeconomic, demographic and land use data and traffic analysis zone (TAZ) delineation using 

GIS are described in detail. Also, Chapter three describes how highway network alternatives and 

the development of six scenarios were used to simulate 1990 traffic assignments with travel 

demand model software. The data used was the data developed in the early 1970s for projecting 

travel demand for 1990 horizon year and the 1990 centennial census data. This chapter also 

outlines the procedure used to formulate the robustness scores and how to interpret their results. 

 Chapter Four covers the analysis and discussion of results. Results of the comparison 

between what was projected in the original planning documents with what actually happened 

after the projected horizon year arrived. The results of the traffic assignments from the travel 

demand modeling, and the determination of the links’ priorities by using robustness analysis to 

develop robustness scores, are described in detail. Chapter Five presents recommendations, 

conclusions and contribution of the research. 
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Chapter 2 

Literature Review 

 

2.1  GIS Application in Transportation Planning 

It has been determined that within geographic information system (GIS) environments, different 

traffic growth strategies can be easily developed and their impact on land use can be analyzed. 

According to Azar and Ferreira (1995), there is an increasing need to have systematic and robust 

capabilities for integrating and managing large sets of geo-referenced data and computing spatial 

overlays (i.e., combining several layers of information together based on geographic location). 

This is especially true for analytic tools aimed at providing interactive exploratory capabilities. 

 In the GIS approach to transportation planning, most of the data transfer can be done 

automatically. GIS can be used to combine data on different levels of aggregation and to 

combine different types of data, which creates possibilities for more comprehensive analyses 

(Nielsen, 1995). 

 Nielsen (1995) reports that alternative projects can easily be entered into GIS, by drawing 

on the base map, by using a scanned raster image as background or by using a digitizing tablet. 

Several projects can be considered simultaneously by separating them using different 

topographic codes. Nielsen notes further that by this approach, all the relevant roads in a specific 

feasibility study can be selected by a single command making it easy to handle and analyze 

multiple alternatives. 

 There are several advantages to implementing traffic models in GIS, since handling of 

data is more rational and the presentation and quality control of results can be done more easily 
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(Nielsen, 1995). For this reason, traffic modeling may be the field in transportation planning that 

has made the most use of GIS (Simkowitz, 1990; Nielsen, 1995). 

 The GIS software package TransCAD, developed by Caliper Corporation, has been 

designed primarily for traffic modeling (Nielsen, 1995). TransCAD is an extension of Maptitude 

GIS software created by adding traffic assignment capabilities which normally cannot be handled 

by GIS software. Numerous studies have used GIS-Transportation software to take advantage of 

GIS capabilities for displaying and matching data, for defining zone structures and for linking 

zones with nodes on the traffic network. Applications have been developed which utilize a full 

GIS package with partial transportation modeling capabilities (Hans and Souleyrette, 1995). 

However, they note that Caliper Corporation’s TransCAD  software is such a GIS package, 

possessing numerous transportation modeling capabilities and that it has been used in several 

research efforts. According to Nielsen (1995), TransCAD has been used extensively for traffic 

modeling in Denmark. 

 An advantage of GIS-based, urban transportation models is a greatly enhanced capability 

to modify traffic analysis zone (TAZ) boundaries (Hans and Souleyrette, 1995). GIS-based 

models allow for zone specification or redesign at any stage in the model development process. It 

enables overlaying proposed TAZ boundaries on socioeconomic, demographic or commercial 

databases (such as TIGER census, parcel coverages, and zip code areas) to quickly check the 

validity of the boundaries and create new ones, if necessary (Hans and Souleyrette, 1995). 

2.2  UTP Software Application in Transportation Planning 

 2.2.1 The Four-Step Modeling Process 

 According to Chang and Meyers (1999), transportation models are an integral part of the 

transportation planning process, serving as analysis tool for transportation planners and as an aid 
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to decision-makers in evaluating alternative proposals. Almost all transportation planning models 

have been implemented into computer-based urban transportation planning  (UTP) software 

packages and thus travel demand modeling has been made simple, quick and more reliable, as 

long as adequate data is available and appropriate parameters are used. 

 Models are continually being adapted, changed, and improved as new research efforts are 

undertaken, as well as the demands placed upon them. The steps that are generally considered to 

be part of the traditional four-step, sequential process include (Chang and Meyers, 1999): 

1. Trip generation—predicts the number of person trip ends that are 

generated by and attracted to each defined zone in a study area. 

2. Trip distribution—connects trip ends (productions and attractions) 

estimated in the trip generation model to determine trip interchanges 

between each zonal pair. 

3. Mode choice—determines the modes that will be used to travel on each 

zonal interchange. 

4. Trip (traffic) assignment —assigns trips to specific highway or transit 

routes.  

  

This traditional four-step sequential process which makes up a travel demand model can 

be easily explained by a flowchart diagram shown in Figure 2.1 as envisioned by authors. 

Reliable inputs are required to initiate the first step in the sequence, i.e., the trip generation 

model, are also shown in the figure.  
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FIGURE 2.1: Travel Demand Model Flowchart 

 

 To quantify the transportation implications of new land use development, a travel 

demand forecasting model is often used to estimate traffic volumes on the roads (Yue and Yu, 

1999). According to Yue and Yu, the modern micro- computer-based travel demand forecasting 

model is an automatic version of the traditional four-step, sequential travel demand forecasting 

process. The advent of computer models has speeded computations and allowed planners to 

perform more sophisticated analyses. In the foreword of the Microcomputer Applications within 

the Urban Transportation Environment Conference Proceedings, (American Society of Civil 

Engineers, 1985), the editor states that the advent of microcomputer systems has created an 
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opportunity to enhance the productivity and efficiency of transportation operations through 

improved decision-making capability.  Of course, the “output” is only as good as the “input”. 

 Martin and McGuckin (1998) note that the practice of travel-demand forecasting started 

some 40 years ago with the areawide transportation studies in Chicago and Detroit it was the 

advent of large computers that made these studies possible. But since then, the transformation to 

micro-computer has dramatically changed the environment in which such analyses are carried 

out. 

 2.2.2  Shortcomings of the Process 

 As is widely accepted, almost all procedures implemented in commercially available 

travel demand software packages are essentially based on the four-step travel forecasting 

procedures (Horowitz, 2000; INRO, 1998). The four-step travel forecasting procedure evolved 

during the Chicago Area Transportation Study (CATS) in the 1950s (Boyce, 1998). This 

procedure has been highly criticized by some as not fully being able to simulate the current urban 

traffic situations. As stated by one author in the field of travel demand forecasting (Boyce, 

1998): 

“The four-step, sequential approach to travel forecasting was institutionalized into 

a professional practice well before a more integrated approach was fully 

understood. Once computer software became available for implementing this 

procedure, it was widely adopted and not much effort was instituted to adopt a 

new approach”. 

 

 Samdahl and Pedersen (1984) reported that for some time now the transportation 

professional community has been quite concerned about the quality of traffic forecasting data 

which is used as a basis for multi-million dollar investment decisions. They argue that although 
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the widespread  use of computerized urban transportation planning packages for traffic 

forecasting has increased the level of sophistication of the forecasting process, the outputs still 

leave much to be desired in terms of accuracy and the degree of confidence which can be placed 

in the results.  

 Anderson et al. (1998) acknowledge that limitations of conventional sequential network 

modeling are often cited in literature. They argue that because most travel demand models are 

continuously updated, researchers rarely examine the original constructs for accuracy after 

horizon years have come and gone. Most of the shortcomings identified in literature are accepted 

on a theoretical basis. 

 Yue and Yu (1999) argue that despite the existence of so many travel demand forecasting 

packages, it is widely recognized that none of them is perfect for all application scenarios. Since 

all software packages are commercial products, the developers will advertise all kinds of good 

things their software can do in predicting future travel demand. 

2.3 Problems and Uncertainties in Transportation Planning and Forecasting 

Projected growth in vehicular traffic is a controversial issue for transportation planners. 

Forecasts are used to make strategic decisions including; whether and where to build new 

highways, how best to allocate resources for maintenance, and how to develop effective transit 

and freight transportation policies, among others (Souleyrette et al., 1995). 

 Goetz and Szyliowicz (1997) note: 

“Planning is a critical element in the development and implementation of sound 

transportation projects, yet existing practices have resulted in numerous problems 

and, in some cases, outright disasters. Indeed, one has to consider recent major 

transportation projects and the degree to which these have not met their original 

objectives to realize that this issue has profound significance”. 
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 Skamris and Flyvbjerg (1996), when studying the accuracy of traffic forecasts and cost 

estimates on large transportation projects, noted that little research has been carried out on 

before-and-after studies of traffic flows in large transportation infrastructure projects. They 

found, too, that the few studies that do exist show that past forecasts of traffic tended to be 

overestimated. In that study, it was also found traffic forecasts that were off by 20 to 60 percent 

are common. 

 Mierzejewski (1995) presented some good examples where predicted transportation 

planning data, e.g, land use, socioeconomic activities and transportation demand, greatly differed 

from the actual data for a certain time horizon under study. One example is the case of Tampa, 

Florida. A comparison of the actual 1985 traffic volumes with the 1985 forecasts made in 1970, 

revealed that the error ranged from -78% to +281%, with an average absolute link error of 57%. 

This was largely due to the fact that in the early 1980s, employment was forecasted for Tampa’s 

central business district (CBD) to be in the range of 75,000 to 80,000. In reality, the employment 

in the CBD has been very stable in the range of 26,000 to 28,000. Thus Mierzejewski points out 

that these highly erroneous employment forecasts were the basis for major capital facility 

planning in the city for a period of more than a decade. 

 Anderson et al. (1998) also observed that most of the travel demand model error derives 

from the poor estimates of horizon-year demographic and socioeconomic data. In their study of 

Iowa’s Travel Model Performance, they report that the population projections clearly 

overestimated growth in the northwestern sections of the city of Ames, Iowa which, at the end of 

the 20-year projection period remained relatively undeveloped. The overall population over-

estimation was as high as 117% for Ames and 153% for Marshalltown, Iowa. They noted a 
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similar situation with total employment projections, whereby lower estimates were made in some 

areas of the town. Anderson et al. (1998) concluded by writing: 

 “Examining the Ames model, improvements in the forecasts could have been 

attained from better estimates of the demographic and socioeconomic data”. 

 

 McDowell (1972) pointed out that traffic forecasting models have been unjustly criticized 

because of poor plans that were developed, poor evaluation techniques that were used, or poor 

judgements as to which routes were committed. McDowell further states that such criticism 

should be directed to the scope of the planning process underway, not to the model. It takes 

knowledgeable planners to develop and evaluate the alternative concepts, using the traffic 

estimates obtained through the models. 

 Skamris and Flyvbjerg (1996) conclude their study by writing: 

“Decisions based on misleading forecasts, which are often presented to 

policymakers and to the general public, may lead to a misallocation of funds and 

to under performing projects during construction and operation”. 

 

 However, pressure from politicians and policymakers can lead to “misleading” forecasts 

because they want to assume that their communities are growing even if they are not. 

 The significance of uncertainty associated with a decision depends on the cost of 

reversing a commitment once made. In transportation projects, the cost can be in the order of 

millions of dollars and thus, when a decision is made, it is difficult to reverse because of the high 

costs involved (Khisty and Sriraj, 1999). They conclude that uncertainty is embedded in most 

long-range planning processes where planners have addressed such problems by using 
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conventional techniques that do not consider uncertainty. Mierzejewski (1995) quoting the 2020 

Florida Transportation Plan report states: 

“It is tough to forecast the future; analyzing historical and current trends to forecast 

conditions 20 or more years into the future has been compared to throwing darts at a 

moving board under a strobe light”. 

 

 These opening remarks by Mierzejewski are very strong. He continues to note that in 

spite of the recognition of uncertainty, the methods and practices mostly ignore its implications 

in the planning of future transportation facilities. 

 A serious criticism by Mierzejewski of the current methods of forecasting travel (in the 

context of urban transportation planning) is centered on the fact that in reality the models used 

are not very precise, the inputs to the model are equally very uncertain, and hence, the predicted 

results are not likely to occur. But how are the unreliable predicted results used? These results 

are used to develop a master plan intended to optimally serve the forecasted future conditions as 

if there were no elements of uncertainty in the whole process. 

 Rosenhead (1989a) notes that: 

“Most often the future is captured by means of a forecast which is based on the 

projection of current trends. Sometimes this certain future is merely assumed, in 

which case the assumption is that tomorrow will be essentially the same as today. 

There are good reasons for believing that forecasts of any importance are 

inherently fallible, and that this will be compounded by the succession of natural 

disasters, new discoveries, accidental conjunctures and conscious interventions 

which will lay their train across the future”. 
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Future uncertainty is a reality. In a future that holds unanticipated surprises there is a 

need to place a high value on retaining future options.  

 However Rosenhead (1989a) states that a more limited task of identifying a range of 

scenarios that might happen would be a modest and supportable basis for planning analysis. He 

also points out that one key to planning under uncertainty is the acknowledgment of multiple 

futures. 

 Rosenhead (1980a) points out that the most influential methodology of planning is 

rational comprehensive planning. In this approach a decision maker establishes an agreed upon 

set of values, lists all the opportunities for action open to him or her, identifies the consequences 

which would follow from each action, and selects the action whose set of consequences rates 

highest on the agreed upon values. Rosenhead (1980a) writes: 

“The pure rational comprehensive methodology puts its emphasis on prediction 

and certainty, and neglects the problems which may result from uncertainties or 

from human fallibility”. 

 

 Therefore, rational comprehensive planning does not express well the issue of future 

uncertainty. Sensitivity analysis is a partial exception to this. However, Rosenhead (1980a) 

argues that in rational comprehensive planning sensitivity analysis is normally taken as an extra 

option, not part of the prescribed methodology and it is taken as a secondary test, carried out on 

decisions already singled out as “optimal” only. 

2.4 Decision Theories and Future Predictions (Forecasting) 

 2.4.1  Uncertainties and  Scenarios 

 According to Van Zuylen et al. (1999), decision making and prediction have always been 

linked together; predicting the impacts of different alternatives makes it possible to choose the 
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best decision. On the other hand, predicting the future makes it possible to anticipate upcoming 

events. They further note that such predictions are a prerequisite for decision making. Predictions 

make sense only if one has the possibility to make decisions and take actions. 

 The poor predictability of the future and of the impact of actions is very general and 

common (Van Zuylen et al., 1999). Van Zuylen, et al., note that there are many causes for the 

fact that future traffic is often difficult to predict. 

 According to Van Zuylen et al. (1999), it is unrealistic to think of the future without 

taking into account the fact that people will shape the future with their decisions, which are 

based on their expectations of the future, their preferences and their choices.  This makes the 

future uncertain, for a great deal is influenced by their actions and is only partly predictable. Van 

Zuylen et al. argue further that developing scenarios is a way to obtain a set of possible futures, 

with each scenario being based on assumptions about future developments. Within the scenarios, 

all features that can be derived from the basic assumptions or from predictable trends are 

covered, resulting in consistent, rather complete descriptions of possible futures.  

 Scenario studies are especially useful in situations in which there is low predictability of 

essential features of the future and the possibility to shape them. Decision making and strategy 

development using scenarios for an ill-predictable future can be done by looking for the least-

regret options—options that do reasonably well in all scenarios (Van Zuylen et al., 1999). This 

approach is useful if there is a fair amount of certainty that the different scenarios used cover the 

entire range of possible futures. 

 Souleyrette et al. (1995) note that regionally, a mathematical model is needed for travel 

estimation; the most appropriate and effective model may be an area’s existing calibrated, 

network-based UTP travel model. They further note that potential uses of a UTP model includes 
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calculation of growth factors using base and forecast year data, simulation of travel growth, and 

analysis of the effects of travel growth. In their study, they used one of the network-based UTP 

packages, TRANPLAN, for Des Moines, Iowa, to simulate various scenarios of travel growth. 

They then tested the sensitivity of delay to this growth. Four different traffic growth scenarios 

were developed with the aim of testing their effects on vehicle kilometers traveled (VKT) and 

vehicle-hours traveled (VHT). 

 The main suggestion given by the above researchers was that trip generation models 

should be modified to be more sensitive to underlying trends affecting travel growth.  Their 

conclusion was that nowadays, much-improved information systems might well allow tying 

land-use forecasting to VKT policy as well as to the ways markets are evolving, as evidenced by 

such things as building and subdivision permits (Souleyrette et al., 1995). 

 A similar approach is to look for a strategy that reduces the maximum risk for all 

scenarios, e.g., the robustness of a decision can be tested with the help of scenarios (van Zuylen 

et al., 1999). An inherent and major variable in any planning effort is uncertainty about the 

future. Developing scenarios is a way to address such uncertainty in an explicit and structured 

manner (Munoz-Loustaunau and Sussman, 1999). 

 Van Zuylen et al. (1999) give five functions of scenarios as follows: 

1. to stimulate creative thinking and communication in organizations, (by 

generating more alternatives, decision makers are challenged to make their 

assumptions and mental models more explicit and to make them adaptable 

to changing circumstances), 

2. to identify and clarify the driving forces behind certain developments and 

distinguish them from other unpredictables, 
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3. to let decision makers learn to understand complex, unstructured, and 

threatening situations, (they learn the possible causal relations and 

consequences of certain decisions), 

4. to help decision makers to integrate future events and developments in 

consistent, broad pictures of the future, and 

5. to simulate the future by comparing and evaluating various alternative 

strategies, (decision makers gain insight into, and can compare the 

consequences of, various strategies). 

 

 Munoz-Loustaunau and Sussman (1999) say a common meaning attributed to “scenario” 

is that of “alternative”. The role of scenarios is to broaden the decision makers’ strategy and 

perspective about the future so that they make sounder decisions. A crucial outcome of scenario-

based planning is robust decisions, i.e., decisions that will perform adequately across a range of 

envisioned scenarios (Munoz-Loustaunau and Sussman, 1999). Strategies in this context are 

considered to be a form of decisions, i.e., a high-order determination on how to better address the 

elements present in the external and internal environment (Munoz-Loustaunau and Sussman, 

1999). 

 Munoz-Loustaunau and Sussman (1999) argue that in their forecasting role, scenarios are 

primarily a quantitative tool that can be programmed for a computer and most likely will yield a 

numerical value. Then it is up to the decision makers to use that figure to make a resolution. 

They conclude by saying that this approach shares many of the limitations of other forecasting 

techniques. 

 Quoting Van der Heijden, Munoz-Loustaunau and Sussman (1999) identify three basic 

components in any scenario exercise: 
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1. the characterization of internal issues or strategies about which an 

organization is seeking insight, 

2. a set of scenarios describing alternate and possible futures of the 

organization’s environment that will affect these issues, and 

3. a component for which scenarios can prove most productive—as a testbed 

for the organization’s strategies and concerns. 

  

 In the context of regional transportation strategic planning, Munoz-Loustaunau and 

Sussman (1999) have found that scenarios can accomplish the following: 

• identify the link between transportation and the key economic, social, 

environmental, and political issues faced by the region, 

• provide strategic direction to the regional transportation system by: (a) 

generating strategic options for the regional transportation system–in the 

face of different alternative futures, a region that wants to achieve a set of 

objectives can identify new options that were not considered previously, 

(b) serving as a tool for sound transportation decision and strategy making, 

and 

• provide flexibility in the regional strategic transportation planning—the 

broadening of perspective and the testing of strategic options across 

alternative futures are also a source of flexibility in the planning process. 

 

 2.4.2  Decision Making for Flexible Future Forecasting 

  2.4.2.1 Introduction 

  Decision theory, or decision analysis, can be used to determine optimal strategies 

when a decision maker is faced with several decision alternatives and an uncertain or risk-filled 

pattern of future events. Traffic forecasting is prone to future uncertainties. The road planning 
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process is long-termed, sequential, faced with many conflicting objectives and subject to great 

uncertainty as to outcomes and preferences. 

 Van Zuylen et al. (1999) mention five specific methods of decision making which they 

believe provide a specific way to deal with predictability and uncertainty. These methods are 

listed as follows: 

• developing and planning scenarios, 

• developing robust strategy, 

• using more open, flexible strategies, 

• involving important people in the decision-making process to reduce 

uncertainty about their attitude afterwards, and 

• developing and using better forecasting models. 

 

  2.4.2.2 Flexibility as an Objective 

  According to O’Sullivan et al. (1979), as descriptive theorizing on decision-

making unfolded through the 1950s and 1960s, accompanied by the elaboration of operational 

optimizing techniques,  general analytic approaches to uncertainty were also translated and 

applied into solving transportation investment problems. Decisions are most frequently made in a 

continuing sequence and this is certainly the case in transportation planning. That is why the 

metropolitan or regional comprehensive transportation plans are normally termed a “3C Planning 

Process” which means a plan is Comprehensive, Cooperative, and Continuing. One expects 

feedback to be incorporated in the planning process as new evidence or data becomes available 

and is flexible enough to accommodate it. In building up a road network over time the potential 

exists for modifying the original planning priorities as new information comes to light and new 

attitudes form which were not originally perceived at the planning stage (O’Sullivan et al., 

1979). 
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 There are several useful decision criteria which can be used to aide decision makers in 

the absence of probabilities, but most of them have been found to have serious theoretical 

limitations. For example, the Laplace Criterion, which assigns equal probabilities of occurrence 

for each future scenario, has been criticized, especially the assumption that several possible 

futures have an equal probability of occurrence has no basis (O’Sullivan et al., 1979, Khisty and 

Sriraj, 1999). 

 Rosenhead (1980b) argues that a planning process should be bottom-up in structure and 

facilitate participation; it should be non-optimizing, and be based on establishing a set of feasible 

solutions. He continues to add that it should accept the uncertainty of future states, attempt to 

keep options open, and aim at a loose fit on the planned for activities. 

 Robustness analysis is a technique which has potential in aiding decision makers in 

choosing investment projects and is discussed in detail in the following section. 

  2.4.2.3 Robustness Analysis 

  “Robustness,” and the analysis based on it, embodies a particular perspective on 

flexibility (Khisty and Sriraj, 1999; Rosenhead, 1980b; O’Sullivan et al., 1979; and Rosenhead, 

1989a). It is concerned with situations where an individual, group or organization needs to make 

commitments now under conditions of uncertainty, and where these decisions will be followed at 

intervals by other commitments (Khisty and Sriraj, 1999; Rosenhead, 1989a). 

 With a robustness perspective, the focus is on the alternative immediate commitments 

which could be made, and they will be compared in terms of the possible future commitments 

with which they appear to be compatible (Rosenhead, 1989a). 

 The idea of robustness as a decision criterion was first applied to an industrial plant 

location by Gupta and Rosenhead (1968) and Rosenhead et al. (1972). Immediately after this 
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first application of the concept, Friend and Jessop (1969) applied the criterion to local 

government finance and planning, where road investment was a subset of the whole problem. 

O’Sullivan et al. (1979) illustrated the usefulness of a robustness criterion to incorporate a 

measure of flexibility in the road network choice processes as opposed to comparing a selection 

of possible solutions. It has also been applied in personal education planning (Rosenhead, 1978; 

Rosenhead, 1989b). The most recent application of robustness analysis was in transportation 

project selection by Khisty and Sriraj (1999). Other several applications are reported elsewhere 

in Best, Parston and Rosenhead (1986) for health systems; Caplin and Kornbluth (1975) for 

chemical plants. 

 Rosenhead (1980b) observes that applications of robustness methodology can easily be  

incorporated in such areas as planning the locations and facilities for health clinics, and more 

generally in regional planning; in the development of transportation networks; in research and 

development; and in the funding activities of international agencies. 

 O’Sullivan et al. (1979) note that: 

“Rather than assuming a single demand scenario for some horizon year, it is 

clearly necessary to conceive of a bounded set of possible environments within 

which the transport system could be operating in the future. Attention is shifted 

from the selection and staging of a single horizon year plan to the selection of 

initial investment choices which are elements of sets of long-range plans which 

can provide reasonable returns under any eventuality”. 

 

 For each horizon year socioeconomic configuration, it is necessary to determine which 

network investment projects are elements of satisfactory network structures according to the 

whole range of criteria dimensions identified as pertinent. 
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 According to O’Sullivan, et al. (1979), the robustness of a project is a measure of its 

chances of being a good, though not necessarily optimal, initial decision. They further note that 

the analysis of robustness of a project is made in relation to a set or family of good transportation 

plans and not merely the single optimal plan for any future. 

 Rosenhead (1980b) argues that planning should be non-optimizing, and be based on 

establishing a set of feasible solutions and it should accept the uncertainty of future states while 

attempting to keep options open, and aim at a “loose fit” on the planned-for activities. Rosenhead 

(1980b) notes further that there is no single, unique methodology for flexible planning, or even 

for robust planning. 

 As stated by Rosenhead (1980b): 

“... We have moved slowly from the era of the blueprint or the master plan into 

the phase of continuous review—a period when flexibility and adaptability are 

emphasized. What is happening is that we are coming round to recognizing that 

uncertainty is the future, that no matter how glossy we make our plans, we cannot 

be sure what will happen”. 

 

 Robustness analysis assesses the flexibility achieved or denied by particular acts of 

commitments (Khisty and Sriraj, 1999).  Robustness of any initial decision is the number of 

acceptable options at the planning horizon with which it is compatible, expressed as a ratio of the 

total number of acceptable options at the planning horizon (Khisty and Sriraj, 1999; Rosenhead, 

1989a; Rosenhead et al., 1972). 

 The robustness of an initial decision di can then be defined as shown in equation 2.1 

(Khisty and Sriraj, 1999; Rosenhead, 1989a; O’Sullivan et al., 1979; and Rosenhead et al., 

1972): 
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........................................................ (Equation 2.1) 

where: 

r(di) = robustness of initial decision, di, 

n(Si) = number of acceptable options at the planning horizon with which it 

is compatible, and 

n(S) = total number of options at the planning horizon 

 

 Goetz and Szyliowicz (1997) describe the robustness and flexibility as follows: 

“Robustness is the degree to which an organization is prepared to function after 

having been subjected to unanticipated events. Flexibility represents the ability to 

make continuous adjustments in constantly changing conditions”. 

 

 Robustness analysis provides an approach to the structuring of transportation problems 

where uncertainty is high and where sequential, time-phased decision making is necessary. Faced 

with the possibility that any of the formulated possible future paths (scenarios) of growth may 

actually occur, what initial link improvement project appears to be the best investment 

alternative? Such a question is what the robustness method tries to address. The method is 

intended for use in planning problems where probabilities cannot be assigned to the outcomes 

(Khisty and Sriraj, 1999; Rosenhead, 1989a). If one cannot assign probabilities and can only 

specify a certain number of possible outcomes, then the planners should be in a position to 

accommodate these changing outcomes in their plans as they occur. This is made possible with 

the help of robustness analysis (Khisty and Sriraj, 1999).   
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 Robustness analysis is a technique that emphasizes the need, under conditions of 

uncertainty, to make early decisions in a sequence in such a way as to preserve many future 

options that currently seem attractive (Khisty and Sriraj, 1999; Rosenhead, 1989a). 

 A simple algorithm for conducting a robustness analysis for a planning process involving 

sequential decision-making (as suggested by Khisty and Sriraj, 1999) is as shown below: 

• set a budget, 

• list all proposed projects and their capital and operating costs, 

• generate scenarios of demand, 

• draw up a set of plans for each scenario, 

• find the number of times a particular project appears as part of a plan, 

• calculate the Robustness Score for a project; the ratio of number of times a 

project repeats to the total number of plans, and 

• select the project that is the most robust, subject to budget constraints 

being met. 

 

 Khisty and Sriraj (1999) list the following advantages of robustness analysis: 

• it is technically very simple, 

• it is easier to adopt and apply to any situation, because of its simplicity 

and generality of the procedure, and 

• it provides insight into how to tackle daunting problems, based purely on 

common sense and without any complex procedural analysis. 

 

 Khisty and Sriraj (1999) also note that there are some concerns about the robustness 

analysis which they listed as follows: 

• the process is simple enough to be taken for granted and not taken 

seriously, and 
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• the robustness score indicates the flexibility and other factors need to be 

considered before deciding on what plan to implement. 

 

2.5 Summary of Literature Review 

The capability of GIS technology in simplifying and efficiently manipulating the socioeconomic, 

demographic, and land use data to suit various needs of travel demand models has been 

discussed and various studies which have managed to utilize this capability at various levels have 

been cited. The literature review covered the problems facing projections in travel demand 

planning and the uncertainties surrounding the results of the projections. Major causes of 

projection uncertainties in travel demand modeling usually cited include poor estimates of 

horizon-year demographic and socioeconomic data, models used not being precise enough to 

model the real world and poor planning processes and poor evaluation techniques used.  

 The method of robustness analysis is discussed and its advantages over rational 

comprehensive planning methodologies, which aim at optimizing the results, are deliberated. The 

major criticism of the current optimization methodologies used in rational comprehensive 

planning is on the lack of acknowledging the uncertainties involved in the whole procedure. The 

issue of formulating scenarios in transportation planning is stressed in the literature and their 

advantages to such type of planning where uncertainties are high. The application of robustness 

analysis procedure that encompasses all scenarios, as opposed to the well known procedures of 

selecting the best scenario on the basis of optimizing preselected certain measures of effectivess, 

is cited in details. 

 In this report, GIS has been used to manipulate the socioeconomic data and TAZs from 

one format to another and these data are the ones which were used into the travel demand model 
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software. The concept of formulating possible growth scenarios and street networks has been 

utilized in this report. Also, the robustness analysis, which forms the core of this research, has 

been used to evaluate the better way of making decision based on the results/outputs from the 

urban transportation planning (travel demand) software. 
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Chapter 3 

Study Methodology 

 

3.1  Selection of Platforms 

Several commercial GIS and UTP model software packages are available. There are many 

factors to consider when choosing one software over another. Among these are reliability of 

software in providing reliable outputs, level of sophistication and its user-friendliness, cost of 

software acquisition, input data demand and availability, etc. 

 In this study, Maptitude was chosen as a GIS platform. According to Calipers (2001): 

“Maptitude is a powerful combination of software and geographic data that 

provides everything you need to realize the benefits of desktop mapping and 

spatial analysis with a single, easy-to-use package”. 

  

Maptitude version 4.1 was used in this study. For the UTP modeling, the Quick Response 

Software (QRS II version 6) was chosen. QRS II is one of the widely known travel demand 

models mostly developed for small and medium sized cities for quick analysis and easy 

transferability of data. QRS II, which was developed in the late 70s, has been widely used in the 

United States. 

 In this study, a GIS platform was used for socioeconomic data manipulation, analysis and 

preparation for input to QRS II’s trip analysis stage.  QRS II was mainly used for the four-step 

process. Also, GIS can be used for graphical presentations and summarization of outputs from 

QRS II. This provides easy display and visualization. 
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3.2  Development of Socioeconomic Data in Maptitude 

 3.2.1 Data Requirements: Main Sources of Data 

 Three major planning studies done at different periods for the Topeka-Shawnee County 

Metropolitan Area were available and were furnished by the Kansas Department of 

Transportation (KDOT). The first planning study was completed in 1964 by the State Highway 

Commission of Kansas (1964) and will be referred to as “Report 64". Report 64 used 1958 as the 

base year and projected for the year 1980. The second planning study was published in 1974 by 

Johnson, Brickell, and Mulcahy (1974) and this report will be referred to as “Report 74.” Report 

74 used 1965 as base year and projected for the year 1990. The most recent planning report was 

published in 1989 by the Topeka-Shawnee County Metropolitan Planning Agency (1989). This 

report, which will be referred to as “Report 89", was mainly a statistical report of socioeconomic 

projection. In Report 89, projections for 1980, 1985, 1987, 1990, 1995, 2000, 2005, and 2010 

were contained in Report 89. Only Report 64 and Report 74 have a transportation planning 

component. The new, 2000 TAZs’ geographic files and maps were furnished by KDOT. 

 In the first part of the analysis in this report, all “past future” projections made in 

previous studies were supposed to be compared with what actually took place. For example, 

projected population was to be compared to the actual population for the projected year. The 

street network used with QRS II was developed using the current (2000) traffic analysis zone 

(TAZ) boundaries (2000 TAZs). One of the most time consuming parts of this research was to 

translate all of the different years’ socioeconomic data into one common zoning scheme. The 

TAZ boundaries used in Report 64 are not compatible with census tracts nor with the current 

traffic analysis zone boundaries. In Report 74, data is presented by districts and 1974 traffic 
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analysis zones. These TAZs are not the same as the 2000 TAZs. However, these district 

boundaries defined in Report 74 are the same as the current census tracts. It is also important to 

note that the census tracts’ boundaries for the developed area have not changed for many years, 

probably since the 1950s. 

 Data in Report 89 are presented both in census tracts and 1990 TAZ boundaries. The 

census tract boundaries are compatible with both the 1990 and 2000 TAZ boundaries, i.e., 

several TAZs will fit exactly in one census tract. However, the 1974, 1990 and 2000 TAZs are 

not compatible, i.e., they are delineated differently and therefore, they are not compatible to each 

other.  

 Report 64 does not include the necessary socioeconomic data on which the 1980 traffic 

projections were based. Since Report 89 was not meant to be used for transportation planning, 

the report does not include some data required by QRS II. The missing data is the average 

household income and number of autos per household. Report 74 has all the required QRS II 

socioeconomic inputs. Therefore, it was decided to use only Report 74 data for further analysis. 

Since Report 74's TAZ boundaries were not totally compatible with the 2000 TAZs, some data 

manipulations were required. These are explained below. 

 3.2.2  Defining Traffic Analysis Zones (TAZs) 

 The first task was to create a geographic file or layer for the zones used in Report 74 by 

using the GIS’s spatial analysis and manipulation capabilities and were easy to interactively 

delineate. A geographic file of current TAZs that was supplied by KDOT, was loaded into 

Maptitude. The 1990 TAZs and census tract geographic files were generated from TIGER files. 

The 2000 traffic analysis zone layer, the census tract layer and the street network layer, were 

combined in one map view. 
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 Socioeconomic data from Report 74 was uploaded into a dataview table associated with 

the new traffic analysis zones (i.e., the redefined ones for Report 74). An advantage of using GIS 

is that when one modifies zone boundaries, it automatically updates and calculates the area of 

each zone that changes. 

 Only one basic network was used for all the analysis in order to reduce variations that 

might have been caused by differential centroid ties and network configurations. Since KDOT 

was in the process of developing a new network to be used with QRS II for the year 2000, that 

network was chosen as the starting point for all the years as well. As a result, there was a need to 

convert all data from the Report 74 layer into the 2000 TAZs format. The capability of GIS made 

this conversion relatively simple to accomplish. 

 3.2.3 Using Overlays in Maptitude for Data Manipulation 

  3.2.3.1 Rules for Estimating Attributes in a Working Layer 

  Maptitude estimates the attributes of area features by adding together the attribute 

values from features in the reference layer, based on the percentages that they overlap. Some 

types of data have to be averaged instead of using the sum. For example, when two areas are 

joined together, Maptitude adds the population of the two areas to get the population of the new, 

combined area. However, data on income should be averaged rather than added together. 

Therefore, some data fields should be added, while others should be averaged or handled in some 

other way (Caliper, 1999). 

 When you split a zone into two unequal parts, Maptitude divides the population 

proportional to the size of each area. When averaging values, let’s say income, Maptitude 

performs what we call weighted averages. The average income of the new zone in the working 
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layer has to take into account not only of the average incomes of each zone in the reference 

layer, but also the number of persons who live in each zone. 

 Maptitude has a default aggregation method that is used whenever you combine attribute 

data. Whenever you perform overlays or use geographic editing, Maptitude uses this aggregation 

method automatically. Maptitude can join, merge or split areas (zones). When creating a 

dataview table, the user can choose the aggregation method that he/she thinks is appropriate for 

each existing data field. Whenever overlays are created, Maptitude uses the default aggregation 

method for every data field. Table 3.1 summarizes the default aggregation methods and how they 

work. It is up to the software user to change the method according to the data field requirements. 
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TABLE 3.1: Default Aggregation Methods in Maptitude  

(Caliper 1999, pp. 293) 

Method Joining/Merging Areas Splitting Area 

None (blank) Leaves the field blank Leaves the field blank 

Copy Uses the value for one of the features (whichever 

one encounters first) for the combined feature 

Copies the value for the feature 

to all of the pieces 

Add Adds the values for individual features or the 

proportional values for parts of the individual 

features 

Splits the values into parts based 

on the area of parts 

Lowest Uses the lowest of the values of the individual 

features 

Copies the value for the feature 

to all of the pieces 

Highest Uses the highest of the values of the individual 

features 

Copies the value of the feature to 

all of the pieces 

Average Computes a weighted average of the values from 

the individual features 

Copies the value for the feature 

to all of the pieces 

 

  3.2.3.2 Overlaying of Report 74 TAZs into 2000 TAZs’ Format 

  The two layers of traffic analysis zones, i.e., the TAZs of Report 74 and the 2000 

TAZs were opened into one view. The “Tools-Overlay” command in Maptitude was used to 

overlay the two features and distribute the socioeconomic data (attributes) of Report 74's TAZs 

into 2000 TAZs’ format. For this operation, Report 74 features formed the working layer and 

2000 TAZs’ features formed the reference layer. Data was aggregated or disaggregated to new 

zonal levels by performing weighted averages by area and summing the values and associating 
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them with appropriate zones. Figure 3.1 shows the 1974 TAZs (Report 74) superimposed with 

the current system of TAZs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.1: Topeka Urban Area Map Showing Report 74 TAZs Superimposed on 2000 
TAZs  

  

Key: 

   Report 74 TAZs boundaries 

   2000 TAZs boundaries 
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3.3  Traffic Networks Development in QRS II 

 3.3.1  Overview 

 The highway system is a network consisting of computerized representations of streets 

and intersections. Streets are represented by links while intersections are represented by nodes. 

The urban area is described by a set of zones (traffic analysis zones). These zones are 

represented by centroids, which are special types of nodes. Centroids are connected to the 

network by a special type of link called a centroid connector and the activity within the zone is 

assumed to concentrated in the centroids. Urban activity information is loaded at the centroid as 

centroid attributes. In QRS II, the default centroid attribute variables include income, average 

vehicles/household, number of retail employees and non-retail employees, number of dwelling 

units and intrazonal travel time. The default attribute variables for street links are approach 

codes, speed, travel time and capacity. The link length is computed from the coordinates of the 

end-points and travel time is computed using link length and the coded speed. 

 A traffic network map of the Topeka Urbanized Area, developed in QRS II software by 

use of the General Network Editor (GNE) and depicting the year 2000 existing system, was 

created by personnel in the KDOT Planning Bureau. As usual for most UTP models, this is an 

abstract network whereby only major streets and highways are included in the network and 

centroid connectors that represent local streets accessing the TAZs. 

 It was decided that five network alternatives should be tested in this study. This includes 

three major network alternatives that were developed and tested in Report 74 and the two other 

networks that actually existed, i.e., the existing 1990 network and the existing 2000 network. 

These alternatives are explained as follows: 
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1. the existing 1974 network alternative with minimum development (in 

Report 74  was termed as Existing + Committed), 

2. the network alternative that was tested in Report 74 with highway US-75 

bypass connected to I-470 in the vicinity of Gage Street (in Report 74 was 

termed as 1990.L), 

3. the network alternative that was recommended and selected in Report 74 

projecting for 1990 (in this case, highway US-75 bypass was connected to 

I-470 in the vicinity of Burlingame Road and was termed as 1990.R), 

4. the actual 2000 existing network as supplied by KDOT, and 

5. the actual network as it existed in 1990. 

  

 Also, two scenarios (sets) of socioeconomic data were selected for loading onto the three 

network alternatives mentioned above: 

1. socioeconomic assumptions from Report 74 on land use, socioeconomic 

and demographic data projections for 1990, and 

2. socioeconomic data from 1990 census data extracted from a Bureau of 

Transportation Statistic (BTS) CD-ROM “1990 census transportation 

package”. 

 

 Therefore, combinations of various network alternatives and socioeconomic data 

alternatives, as outlined above, resulted into ten feasible and reasonable development plans. In 

this report, the ten development plans (scenarios) will be abbreviated as follows: 

1. “Net 74EC-74”: Report 74 Existing + Committed network loaded with 

Report 74 data, 

2. “Net 74EC-Census”: Report 74 Existing + Committed network loaded 

with census data, 

3. “Net 74L-74”: Report 74 1990.L network loaded with Report 74 data, 

4. “Net 74L-Census” Report 74 1990.L network loaded with census data, 
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5. “Net 74R-74”: Report 74 1990.R network loaded with Report 74 data, 

6. “Net 74R-Census” Report 74 1990.R network loaded with census data, 

7. “Net 90-74”: Actual 1990 existing network loaded with Report 74 data, 

8. “Net 90-Census”: Actual 1990 existing network loaded with census data, 

9. “Net 00-74”: Actual 2000 existing network loaded with Report 74 data, 

and 

10. “Net 00-Census”: Actual 2000 existing network loaded with census data. 

 

 Figure 3.2 shows a plot of the coded base highway network, including all link types 

except centroid connectors, recommended in Report 74 (1990.R). The plot of the same base 

highway network depicting the network that existed in 1990 is depicted in Figure 3.3 while the 

one that existed in 2000 is shown in Figure 3.4. 

 The 2000 Topeka traffic network that was supplied by KDOT was modified so as to 

obtain the other two alternative networks. Some of the road segments and connectors were either 

removed from the network or added to the original network in order to better represent the actual 

road systems as described above. 
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FIGURE 3.2: Base Highway Network Recommended in Report 74 

 



39 

 

 

 

FIGURE 3.3: Base Highway Network as Existed in 1990 
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FIGURE 3.4: Base Highway Network as Existed in 2000 

 

 3.3.2 Development of Alternate Traffic Assignments in QRS II  

 Report 74 does not describe in detail the models used in assigning traffic to the respective 

street networks. For example, Report 74 simply mentions that a computer program was 

developed which was capable of determining the shortest time or distance path through a 
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highway network. For traffic assignment, it only mentions that a modified all or nothing method 

was used and that the gravity model was used for trip distribution. 

 QRS II is capable of performing both all-or-nothing traffic assignment and capacity-

restrained, equilibrium assignment. Usually, the best method is the capacity-restrained 

equilibrium assignment as it reflects and incorporates both congestion effects and intersection 

control effects. The capacity-restrained, equilibrium method in QRS II is the one that was used in 

this study to assign traffic volumes for the different network scenarios considered. 

 Traffic assignment for each network scenario was performed separately as QRS II can 

handle only one run at a time (although QRS II 6 can make one run initiate another run by using 

the “Cascade” command). NCHRP Report 365, “Travel Estimation Techniques for Urban 

Planning” (Martin and McGuckin, 1998), which is an update of the NCHRP Report 187, was 

used for some of the default data suggested for urban areas with a population less than 200,000. 

These parameters include average trip production parameters, vehicle occupancy parameters and 

trip distribution parameters. However, the new version of QRS II, version 6, uses the same 

default values and it has been modified to accommodate the new findings stipulated in NCHRP 

Report 365. 

3.4  Analysis of Projected Demographic and Socioeconomic Data 

As mentioned earlier in Chapter Two, poor projections of demographic and socioeconomic data 

are usually cited as one of the major source of poor traffic assignment projections, and hence, ill 

conceived comprehensive plans and construction programs. Report 74 has projections for 1975, 

1980, 1990 and 2000. However, the only projections that could be compared with actual data 

extracted from census reports are for 1980 and 1990 since the 2000 census data at the census 

tract level was not yet available at the time this study was done. 
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 These comparisons provide an opportunity to compare what was predicted to what 

actually happened after the horizon year had occurred. This is rarely done, especially for small 

and medium sized cities (Anderson et al., 1998), such as Topeka. Most of the time, the current 

planning staff is busy developing new long range plans rather than  taking the time to compare 

what was predicted to what actually happened. 

 The 1990 traffic volumes that had been projected in Report 74 were compared with actual 

1990 traffic counts on some important major roadways as illustrated in Figure 3.5. The key data 

that was compared (i.e., extracted from the report data vs. the census data) is: 

1. population, 

2. number of dwelling units (DUs), 

3. retail employment, 

4. non-retail employment, and 

5. average household income. 

  

 

 

 

 
 

FIGURE 3.5: Symbolic Comparison of Projected Traffic Volumes Versus  
Actual Ground Traffic Counts 

 

The comparisons are illustrated in Figure 3.6. 

Actual Traffic Counts in 1990
1990 Horizon Year Traffic 
Projection from Report 74
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FIGURE 3.6: Symbolic Comparison of Projected Socioeconomic and Demographic Data 
Versus Actual Data 

 

3.5  The Use of Robustness Analysis to Develop a Decision Criteria 

 3.5.1 General 

 Ten development plan scenarios consisting of various traffic networks and 

socioeconomic assumptions of land use, demographic and other socioeconomic growths were 
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developed as described in Section 3.3.1. In Report 74 there were highway links/corridors that 

were proposed to be constructed, improved or developed to handle the expected future 1990 

growth of population and vehicular traffic volumes for the network alternatives that were 

developed. 

 Robustness analysis is used to test the decision made on which highway links should 

have been given priority early in the sequence for development, expansion or construction of 

highway networks. The general robustness score formula represented by equation 2.1 was used 

in this study. The basis for a robustness score for any particular link selected in this study is the 

number of times it appears as part of the plans.  

 3.5.2 Procedure 

 A set of links to be included in the project (i.e., expansion, construction, etc.) for each 

scenario being considered was prepared during the study documented in Report 74. These are 

road sections that were considered in the original study (Report 74) that came up after a one year 

analysis done by the Topeka Area Planning Study (TAPS) Committee (Johnson et al., 1974). 

After traffic assignment was performed in QRS II for this research study, traffic volumes 

projected for each scenario were generated as the output of the assignment model. From traffic 

assignment results, links that showed to have high volume-capacity ratios (V/C ratios), in this 

case, the minimum was taken to be V/C = 0.95, were selected for each scenario as the candidate 

to be tested by the robustness analysis procedure. In other words, a particular link was counted 

for a given scenario if it has a V/C ratio ∃0.95. 

 Using equation 2.1, the robustness score for a particular link “i” is determined as shown 

in equation 3.1. 
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.......... (Equation 3.1) 

  

 

About 115 links that were selected from Report 74 were tested in this study. Due to the 

criterion described above of screening candidate road links for robustness analysis, only 43 road 

links managed to at least be part of one scenario plan. 

 3.5.3 Usage of Robustness Scores 

 The robustness scores were used to assess the road links that should be given priority for 

construction, expansion or upgrading to higher standards. Therefore, the higher the robustness 

score for a particular link in the network the more important the link is, thus, the higher its 

priority should be.  

 The robustness procedure does not choose a scenario that seems to be optimum, but 

simply keeps open all scenarios that seem to be possible candidates. All links that were proposed 

in Report 74 for construction or improvement or widening have been included for testing in 

order to determine the viable options (robust links) that needed future improvements as 

demanded by most of the network-socioeconomic combination scenarios that were considered. 

 From the foregoing discussion, the viability of a link to be given a priority in terms of 

improvement does not depend on which network scenario it belongs to. In practice, under 

optimization methodologies, long range planning just chooses one network scenario that is 

thought to be optimum or best and discards the other candidate scenarios. In robustness analysis, 

the assumption is that, as long as all candidate scenarios were based on realistic assumptions 

based on the best knowledge of the planners concerned, any of the scenarios can actually happen 

( ) ( )Robustness score for Link i
#  of times link " i"  is chosen as part of plans

Number of all plan scenarios
=

∑
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and so none have to be discarded altogether. It allows keeping all options open at the beginning 

and also for any future changes should the need arises. 

The robustness score of a certain link under consideration is how many times it has been 

part of the ten viable alternative plans formulated and described earlier in this chapter. A 

particular link is considered to be “part” of a certain plan scenario if its V/C-ratio is at least 0.95. 
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Chapter 4 

Analysis and Discussion of Results 

 

4.1   Introduction 

This chapter is divided into three main parts. The first part compares the projected 20-year 

forecast of socioeconomic and demographic inputs and traffic volumes for major highways (20-

year forecast) from Report 74 against the actual census data and ground traffic counts after the 

horizon year, 1990, had come and gone. The second part evaluates the results from travel 

demand modeling using QRS II, obtained from using various combinations of assumptions on 

socioeconomic, land use, and demographic inputs, loaded onto various highway network 

scenarios. The third part applies robustness methodology early in transportation planning 

sequence to aid in making decisions on which highway links should be given priority. 

4.2  Summary of Projected Socioeconomic Data and Traffic Volumes 

In the original report (Report 74), socioeconomic and demographic data, was summarized both 

for census tracts and traffic analysis zones (TAZs). Since the census data is summarized at the 

census tracts level, the census tract level data formed the basis for comparison of projected 

values against actual values. Table 1 summarizes the R2 values produced by regression analysis 

of the socioeconomic projections made in 1974 versus actual 1980 and 1990 census tract totals 

(i.e., how good the projected data estimated the actual data in the horizon year). 
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TABLE 4.1: R2 Values of Projected Versus Actual Values  
for Socioeconomic Input Variables 

 
R2 Value for Projected Horizon Year 

Projected Variable 1980 1990 

Population 0.44 0.23 

Dwelling Units (DUs) 0.53 0.23 

Average Family Income 0.59 0.49 

Retail Employment - 0.67 

Non Retail Employment - 0.93 

 

 Table 4.1 shows that with the exception of 1990 employment data, the projected 

socioeconomic input variables were far from reality. Non retail employment was very well 

projected with the retail employment projected fairly accurately relative to the other three 

variables (the census’ employment data for 1980 could not be obtained for this study). One 

would expect that the longer the projection period the more likely the projection values will 

differ from the actual ones. The table clearly shows that 1990 (20-year) estimates were poorer 

than 1980 (10-year) estimates. Retail employment was not as accurate as the non-retail 

employment. However, since the retail employment is a small component of the total 

employment, the total employment also has a high accuracy.  
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FIGURE 4.1: Comparison of Projected Versus Actual Population for 1980 

 

Figure 4.1 shows the comparison of projected versus actual population of the Topeka 

Urban Area, by census tracts, for the horizon year 1980. The projections underestimated 

population growth in the west and east sections of the metropolitan area by more than 50%. 

Sections close to the central business area (CBD), were generally overestimated. The northern 

and southern sections of the urban area were also generally underestimated. 
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FIGURE 4.2: Comparison of Projected Versus Actual Total Employment for 1990 

Figure 4.2 shows the comparison of projected versus actual total employment for the 

Topeka Metropolitan Area. Like other previously discussed data, the total employment was 

underestimated in the western part of the metropolitan area where the West Ridge mall shopping 

center and other businesses were not anticipated at the time the projections were made. Almost 

all census tracts in the western part of the metropolitan area had their total employment 

underestimated between 30 and 70%. Although the northern areas were generally overestimated 

in terms of expected employment, however, their employment level is still very low to have 

much impact. For areas close to the CBD, most parts were overestimated while others were 

underestimated. In general terms, total employment was accurately projected (approximately R2 

= 0.92). 
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 FIGURE 4.3: Projected Horizon Year Traffic Volumes  
Versus Actual Traffic Count Volumes 

 
The 1990 forecasted link by link traffic volumes from Report 74 were compared with 

actual ground traffic counts for the same horizon year. Figure 4.3 shows a scatter plot of 

predicted versus ground count traffic volumes. In general, the original study model did not 

produce a good prediction of the horizon year traffic volume, producing an R2 value of 0.28. 

However, this comparison may be misleading because the network used to forecast traffic for 

1990 (“NET 74R”) is substantially different from the 1990 actual existing (“NET 90”) network 

as some of the important highway links proposed in 1974 were not constructed by 1990. Looking 

at a link by link prediction accuracy, there are differences ranging between -74% and 459%. 

Sixty six percent of the road links were either overestimated or underestimated by more than 

20%, while 34% have estimation error (projected versus actual count) within 20%, i.e., either 

underestimation or overestimation. Given the nature of traffic volume fluctuations and their 
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prediction difficulties, an error between 0 and 20% can be acceptable in practice, that is, the 

actual daily traffic counts on any given road link in a network can vary by that amount. 

 More importantly, the end product of all these projections in the travel demand analysis is 

directed towards estimating the number of lanes required to accommodate the projected traffic 

volume (refer to Figure 2.1). The Highway Capacity Manual (TRB, 1994) planning procedure 

was used to assess the number of lanes needed for a specified level of service (LOS) for 

projected horizon year. The results showed that 65% of the road links could be operating at the 

same LOS for both actual and projected traffic volumes and 35% operated at different LOS. 

However, the difference between projected and actual traffic volumes would have warranted a 

different number of lanes for only 1.2% of the road links. 

 Since the LOS criteria encompasses a range of traffic volumes for a particular level of 

service (i.e., A, B, C, D, or E), and is not a point value estimate, a variability of 20% in traffic 

volume may till be within the range of the same level of service. Thus, the high variability noted 

in terms of projected traffic versus actual traffic volume did not adversely affect the number of 

lanes designed and constructed to accommodate the traffic volume. 

4.3  Summary of Traffic Assignment Results 

The effectiveness of the various network alternatives can be measured by the number of vehicle 

miles of travel (VMT) and vehicle hours of travel (VHT) on each network system. The fewer the 

vehicle miles of travel per day for the whole network, relative to other alternatives, the more 

efficient the roadway network. In other words, the higher the VMT, the higher the cost to the 

road users. Likewise, the fewer the total VHT per day the more efficient the network is relative 

to alternative highway networks. Table 4.2 summarizes the measures of effectiveness (MOEs) 

for the ten scenarios (plan alternatives) as described in Chapter 3. A further discussion of the 
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results of Table 4.2 is outlined in Section 4.3.1. The values recorded are the average daily VMT 

and VHT.  

TABLE 4.2: Results of the Measures of Effectiveness for the Scenarios Considered 

Network Alternative Input Alternative VMT VHT 

Report 74 3,763,940 114,413 

NET 74 E+C Census data 4,016,623 125,858 

Report 74 3,880,796 111,194 

NET 74 L Census data 4,180,758 134,535 

Report 74 3,881,024 110,418 

NET 74 R Census data 4,114,960 130,076 

Report 74 3,755,591 113,482 

NET 90 Census data 3,952,927 122,656 

Report 74 3,839,937 110,220 

NET 00 Census data 4,039,581 121,052 

 

 In Table 4.2 the abbreviations are as defined in Section 3.3.1, that is, “NET 74R-74" 

means Report 74 network with US-75 bypass connected at Burlingame area loaded with Report 

74 data, “NET 74R-Census” means Report 74 network  with US-75 bypass connected at 

Burlingame area loaded with 1990 census data.  “NET 74L-74” means Report 74 network with a 

US-75 bypass connected at Gage area loaded with Report 74 data, “NET 74L-Census” means 

Report 74 network  with a US-75 bypass connected at Gage area loaded with 1990 census data. 

“NET 74EC-74” means Report 74 (existing + committed) network loaded with Report 74 data, 
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“NET 74EC-Census” means Report 74 (existing + committed) network loaded with 1990 census 

data. “NET 90-74” means actual 1990 existing network loaded with Report 74 data, “NET 90-

Census” means actual 1990 existing network loaded with 1990 census data, “NET 00-74” means 

actual 2000 existing network loaded with Report 74 data, and “NET 00-Census” means actual 

2000 existing network loaded with 1990 census data. 

 The above results prompt further analysis by evaluating how various socioeconomic 

assumptions and network alternatives formulated affect the travel and road users as follows: 

• Analysis One. Various socioeconomic inputs were applied to each 

network alternative to study the effect of different assumptions on land 

use, and socioeconomic and demographic data on the resulting traffic 

assignment and the overall regional travel. 

• Analysis Two. The same socioeconomic input data was applied to 

different road network alternatives to study the effect of the decision made 

of implementing the existing network alternative as compared to the 

original proposed network alternative from Report 74. 

 

 The comparisons of the two “analyses” described above are best illustrated by Table 4.3 

(analysis one) and Table 4.4 (analysis two). 
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TABLE 4.3: Comparisons Done for Analysis One 

 

 

 

 

 

 

 

 

 

TABLE 4.4: Comparisons Done for Analysis Two 
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 4.3.1  Effect of Socioeconomic, Demographic and Land Use Input Data 

 With census data loaded onto the Report 74 recommended network (“NET 74R”, from 

Table 4.2), it is observed that this results into 233,936 VMT per day higher than predicted by 

Report 74 data, which is equivalent to 85.4 million VMT per year. Also, the census data predicts 

19,658 VHT per day or 7.2 million VHT per year higher than that predicted using Report 74 

data. 

 When the same census data was loaded onto the 1990 existing network, “NET 90”, the 

result is the prediction of 197,336 VMT per day higher than was predicted by Report 74 data, 

which is equivalent to 72 million VMT per year. The daily VHT predicted by loading the census 

data onto “NET 90” are higher than was predicted by Report 74 data by 9,174 VHT which is 

equivalent to 3.3 million VHT per year. 

 When the same census data was loaded onto the 2000 existing network, “NET 00”, the 

result is the prediction of 197,644 VMT per day higher than predicted by Report 74 data, which 

is equivalent to 72.9 million VMT per year. The daily VHT predicted by loading the census data 

are higher than that of Report 74 by 10,832 VHT, which is equivalent to 3.95 million VHT per 

year. 

 From the above values, it is clear that the different assumed land uses, demographic and 

socioeconomic growth scenarios have different effects on the resulting VMT and VHT measures 

of effectiveness of the highway network on which this data is loaded. The difference in the 

resulting measures of effectiveness will depend how the growth assumptions differ among the 

alternatives formulated. Figure 4.4 shows this effect.  
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FIGURE 4.4: Comparison of Socioeconomic Assumptions to the Network’s MOE Values 

 

 4.3.2  Effect of Implementing Different Highway Network Plans 

 It is obvious that the choice of which highway network to implement, effects the road 

users in terms of the distances they have to travel and the time they have to spend on their trips. 

When the same assumptions of socioeconomic, demographic and land use patterns were loaded 

onto the five highway network alternatives, the results showed varying VMT and VHT values. 

These results are shown in Figure 4.5 where the network alternatives are loaded with census 

data. In terms of VMT, “NET 90" seems to be the most efficient network alternative as it 

minimizes the VMT, but in terms of VHT, it is “NET 00" which is the most efficient, as road 

users have to spend the least time driving on the network’s roadways. This raises the question of 

which MOE should be used to determine the most efficient network between “NET 90" and “Net 

00". 
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FIGURE 4.5: VMT and VHT Results When Network Alternatives -  
Loaded with Census Data 

 

 By looking closely at the two highway networks, one will find that “NET 00”, the 

Topeka highway system existing in 2000, is similar to “NET 90”, which is the highway system 

that existed in 1990, albeit with some additional, very important roadway segments which were 

added in the period between 1990 and 2000. The most important ones are the US-75 bypass, K-4 

including a bridge crossing Kansas River north of US-24, and two ramps added to connect I-70 

and I-470 highways. These additions provided more travel path options, and probably increased 

distances traveled but provided easy accesses to the interstates, which likely increased vehicle 

speeds and decreased travel time. Also, the US-75 bypass relieved congestion on Topeka 

Boulevard that may be likely contributed to the reduced daily VHT in “NET 00” alternative.  

 The results obtained from the travel demand model are supported by noting that the 

additional road sections in the 2000 existing network increased the overall VMT by the addition 

of more mileage on the network while higher speeds and easy access to freeways reduced the 

overall VHT on the network. Therefore, as a result, road users spend more time on fewer 

congested roadways in the 1990 existing network (hence fewer VMT in “NET 90”), while 
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spending less time on “NET 00". This argument is supported by traffic assignment results 

summarized in Table A-1 in Appendix A. Table A-1 shows that “NET 00" assigns about 10% 

more vehicles to freeways than does “NET 90" due to better access to the freeway links. From 

the foregoing discussion, “NET 00" is more efficient than “NET 90". 

 Figure 4.6 shows the VMT and VHT results when the same highway network alternatives 

as previously described are loaded with the Report 74 assumptions of demographics, land use 

and socioeconomic data. An important point to note is that “NET 74L" and “NET 74R” have the 

highest VMT with all scenarios because they have the highest mileage of the five networks 

because some of the road segments, according to Report 74, were proposed to be constructed by 

1990 were never constructed. However, some of the intersections and roadways were improved, 

which was not anticipated during the study leading to Report 74. Again, “NET 90" is more 

efficient in terms of VMT and “NET 00" is more efficient in terms of VHT. 

 

FIGURE 4.6: VMT and VHT Results When Network Alternatives –  
Loaded with Report 74 Data 
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4.3.3  Concluding Remarks on Comparing Alternatives with Traditional TDM Tools 

 In traditional transportation demand modeling (TDM), it is usual to develop one set of 

socioeconomic, demographic and land use assumptions and load them onto various highway 

network alternatives in order to select the one that seems to be the “optimum” or the “best” 

alternative. Under this condition, comparison and evaluation of network alternatives using VMT 

as the MOE as was done in Report 74 (Johnson et al., 1974), does not appear to be a reliable and 

accurate procedure. The author believes that VHT is better for evaluating network alternatives 

because even the travel skims in traffic assignment procedures are mostly built on travel time on 

the shortest paths. This can identify the more congested network alternative(s). Therefore, both 

VHT and VMT should be used to assess the network alternatives with the VHT being given 

more weight in the decision process. The desired alternative should be the one that minimizes 

both values. However, it may not be possible to have both values minimized in a single network 

alternative, as is the case in this study. 

 The next section presents a proposed new technique that should result in more sound 

decisions among alternatives such as those discussed above. 

4.4  Robustness Analysis Results 

 4.4.1  Overview 

 The disadvantages of traditional planning methodologies for optimizing networks are 

described in the literature (Rosenhead, 1980a; O’Sullivan et al., 1979; Caplin and Kornbluth, 

1975) and illustrated with the examples presented above in previous sections. The major problem 

with these traditional procedures is that the projected or anticipated growth may not happen. The 

foregoing discussion in this report presents a good example. Planners who prepared Report 74 

expected that the socioeconomic-demographic and land use projections they made would 
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materialize in the horizon year (twenty years later) and that the traffic volumes they projected 

were going to be realized. In this study it has been observed that the network proposed in Report 

74 was not developed by 1990 as expected, and the 1990 census data showed that most of the 

projected socioeconomic-demographic-land use data were poorly projected and the traffic 

volumes from 1990 ground counts on major road links were generally poorly correlated with the 

ones projected in Report 74 mainly due to networks not being exactly equal. In other words, the 

projected future for 1990 in Report 74 did not happen. There is no evidence indicating that there 

was any review before or after the projected horizon year came and passed to check the validity 

of the original assumptions and expectations. 

 To put the above discussion in the context of this study, after one highway network 

alternative was selected, other “candidate” alternatives were discarded all together and there was 

no procedure for going back to try to figure out if there was any validity or realism among the 

other alternatives that were not selected. In order to make the methodology more flexible and 

responsive to future changes, the authors believe that robustness methodology has great utility 

and allows keeping all alternatives “open”. All alternatives developed with traditional planning 

methodologies are thought to be formulated based on realistic assumptions, however, no one 

knows for sure which alternatives will represent the real future or be closest  to real future 

conditions. 

 4.4.2  Robustness Scores for Individual Road Link Segments 

 The methodology used to come up with an individual link’s robustness score was 

explained in detail in Section 3.5. The way this methodology was used is explained in detail 

below using an example and reference to Table A-2 in Appendix A. A road link was considered 

to be included in the analysis, i.e., it needs future attention if the projected volume is at least 0.95 
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of the link capacity (V/C ∃ 0.95). Therefore, if V/C ∃ 0.95, the link gets a score of “1”, and if 

V/C < 0.95, the link gets a score of “0”. The steps used in the calculation are illustrated by using 

a Topeka Boulevard road link between 45th Street and 44th Street as follows: 

1.  For the “NET 74E+C-74" alternative, the link’s V/C ∃ 0.95, its score is “1". 

2.  For the “NET 74E+C-Census" alternative, the link’s V/C < 0.95, its score is “0".  

3.  For the “NET 74L-74" alternative, the link’s V/C ∃ 0.95, its score is “1". 

4.  For the “NET 74L-Census" alternative, the link’s V/C < 0.95, its score is “0". 

5.  For the “NET 74R-74" alternative, the link’s V/C ∃ 0.95, its score is “1". 

6.  For the “NET 74R-Census" alternative, the link’s V/C < 0.95, its score is “0". 

7.  For the “NET 90-74" alternative, the link’s V/C ∃ 0.95, its score is “1" 

8.  For the “NET 90-Census" alternative, the link’s V/C ∃ 0.95, its score is “1". 

9.  For the “NET 00-74" alternative, the link’s V/C ∃ 0.95, its score is “1" 

10.  For the “NET 00-Census" alternative, the link’s V/C < 0.95, its score is “0". 

 

 Therefore, the ultimate or final robustness score for the Topeka Boulevard link between 

45th Street and 44th Street was obtained by adding together the above individual scores and 

divided the total to the number of alternatives considered (in this case = 10): 1 + 0 + 1 + 0 + 1 + 

0 + 1 + 1 + 1 + 0 = 6. Thus, the robustness score = 6/10. The final scores for all the road links 

considered were obtained by the same procedure used in the example above. 

 The results of the final robustness scores for individual road link segments are shown in 

Table 4.5. Again, the robustness score of a link is the sum of individual “1" and “0" obtained 

from each alternative, depending whether its V/C-ratio is greater or lower than the cut-off point 

defined, divided by the number of all  plan scenarios formulated in Chapter Three. More detailed 

information of the robustness scores of individual links is presented in Table A-2 of Appendix A. 
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TABLE 4.5: Robustness Scores for Individual Road Links 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SN Link From To Robustness score

1 US-75 Gage 37th 2/10
2 Kansas 37th Topeka 4/10
3 8th St Topeka Harrison 10/10
4 8th St Harrison Jackson 9/10
5 8th St Jackson Kansas 9/10
6 Topeka 49th 45th 4/10
7 Topeka 45th 44th 6/10
8 Topeka 44th 43rd 6/10
9 Topeka 43rd 41st 6/10

10 Topeka 41st 40th 9/10
11 Topeka 40th 38th 4/10
12 Topeka 38th 37th 4/10
13 Topeka 37th 36th 2/10
14 Topeka 36th 34th 1/10
15 Topeka 34th 33rd 2/10
16 Topeka 32nd 29th 4/10
17 Topeka 21st 20th 1/10
18 Topeka 17th 14th 1/10
19 Topeka Huntoon 12th 3/10
20 Topeka 12th 11th 10/10
21 Topeka 11th 10th 10/10
22 Topeka 10th 9th 9/10
23 Topeka 9th 8th 8/10
24 Topeka 8th 7th 10/10
25 Topeka 7th 6th 10/10
26 Topeka 6th 5th 10/10
27 Topeka 5th 4th 10/10
28 Topeka 4th 3rd 10/10
29 Topeka 3rd Laurant 10/10
30 Topeka Laurant Gordon 10/10
31 Gage I-470 SB I-470 NB 1/10
32 21st St Gage Arnold 1/10
33 21st St Oakley Randolph 1/10
34 21st St Randolph High Ave 3/10
35 21st St High Ave Mac Vicar 8/10
36 21st St Mac Vicar Jewell 8/10
37 21st St Western Tyler 10/10
38 21st St Tyler Topeka 10/10
39 21st St Topeka Van Buren 10/10
40 21st St Van Buren Kansas 10/10
41 21st St Madison Adams 10/10
42 21st St Virginia Indiana 10/10
43 21st St Iowa California 3/10



64 

 4.4.3  Discussion of the Robustness Analysis Results 

 Several important road segments/corridors that were widened or improved during the 

period between 1974 and 1990 have received relatively high robustness scores meaning that they 

were robust projects and their choice for improvement can be justified. All the important major 

roadways serving high traffic volumes are the ones that have the highest robustness scores. For 

example, Topeka Boulevard, a major north-south arterial passing through the CBD, link 

segments in the vicinity of the CBD and those which connect the northern part of the urban area 

with the CBD, all have high scores relative to other road links. Also, the proposed widening of 

21st Street in Report 74, a west-east major arterial, is equally justified by the robustness scores 

obtained for most of its link segments. Robustness analysis could be an important first step in the 

planning decision sequence whereby important links that should be given immediate or first 

priorities are identified, for possible further action. Other considerations, like financial and 

budgetary constraints can then be checked to determine which links among those highly 

prioritized by the robustness analysis scores, fit within existing constraints or are critical to 

current traffic flows and may require immediate attention. Details of robustness analysis are 

presented in the following sections. 

4.5  Framework – Robustness Analysis in Transportation Planning Decisions 

 4.5.1  Introduction 

 The success of the procedure being developed here, as in all travel demand modeling, 

depends highly on the accuracy of input data based on realistic development and growth 

assumptions to be tested which should encompass all possible growth scenarios. In other words, 

the travel demand process will continue to depend on the accuracy of projected land use, 

anticipated zoning structures and expected future demographic parameters. 
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 It is strongly recommended that substantial effort should be made by both transportation 

planning and urban planning personnel to agree on all possible future growth scenarios. Ideally, 

decisions should not be politically motivated to impress the policymakers who want to see high 

future growth figures being presented. 

 4.5.2  Methodology 

 The framework for applying the robustness analysis procedure being proposed here 

involves six simple steps which are also represented in the form of a flowchart in Figure 4.8 at 

the end of this section. 

1. The planning team agrees on a manageable number of future land use, 

demographic and socioeconomic scenarios depending on their 

understanding of the local area and the availability of sufficient past and 

present data. Brain storming sessions may be helpful at this stage and 

consensus among team members should be reached and agreed upon. 

2. Feasible, alternative highway networks are proposed, testing different 

improvements such as widening of different road link segments and 

construction of new road segments. These should be developed in the 

context of trying to improve the projected travel of the horizon year being 

modeled. The goal is to reduce congestion on specific highways, and  in 

general, improve the efficiency of travel movements on the whole 

network. This stage, too, requires detailed discussion involving 

knowledgeable personnel on the team. 

3. Any travel demand modeling software can be used and traffic assignment 

simulation is performed as usual for all feasible scenario combinations 

formulated in steps 1 and 2 above. It is best to concentrate on a few 

realistic, possible scenarios than to have an endless list of combinations 

that are very highly correlated to each other. 

4. Calculate the V/C-ratio by projected traffic volume divided by capacity for 

each link in each scenario. Define the cut-off for V/C-ratio value for 
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determining which road links need to be included for robustness analysis. 

This value should be taken as the one that indicates that the road link may 

experience congestion at the projected horizon year and thus requires 

some improvements to handle the future traffic volume efficiently. 

5. For each scenario where the link’s V/C ∃ cut off value, give it a value “1" 

(one) and to the  scenario where its V/C < cut off value, give it a value of 

“0" (zero). For each particular link, add together all its resulting “one” and 

“zero” to get its total score. These “score” calculations can be presented 

mathematically as follows: 

 

 

 

 

 

     ...........................................................(Equation 4.2) 

Where: 

V/C = volume to capacity ratio 

  x = cut-off value of V/C ratio 

 

6. Finally, the final robustness score of the link is determined by dividing the 

total number of scores obtained in step five above to the total number of 

scenarios. Note that the total number of scores cannot be higher than the 

number of scenarios. This relationship can also be presented 

mathematically as shown in equation 4.3 as follows: 
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Where: 

R = final robustness score for a particular link, 

Γscores = sum of all scores for a particular link obtained by adding 

all 1's and 0's obtained over all scenarios, and  

N = the number of all plan scenarios. 

 

 Then rank all the link robustness scores in order, starting with the highest robustness 

score. The higher the robustness score value, the more robust the road link is whatever future 

possible decision path maybe. This makes sense because the choice is made of initial investment 

decisions that are good investments in a variety of different possible future scenarios 

representing a feasible planning of transportation infrastructures. 
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FIGURE 4.7: A Flowchart of the Robustness Analysis Procedure in Transportation 
Planning Decision Making 

Formulate realistic, possible highway network 
alternatives by consensus

Formulate possible scenarios of future   
socioeconomic, demographic and land use growth

Determine the V/C-ratio for each road link by projected 
traffic volume divided by capacity. This is done for all 
scenarios. Define the cut-off V/C value for which the 
analysts think will  reasonably cut off the links that will most 
likely be congested

 Perform traffic assignment for all scenarios 
conceived with the preferred  urban travel demand 
model software

In a scenario where a link gets a "V/C ≥ cut off value" it is 
given a score of 1 and where it gets a "V/C < cut-off value" it 
is given a score of 0. Calculate the total number of scores of 
a particular road link segment by adding together all link's 
scores of 1's and 0's.

Determine final Robustness Score (R) of a road link segment by 
dividing its total number of scores by the total number of all 
plan scenarios formulated. Rank all links with the one with the 
highest R score first.
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Chapter 5 

Conclusions and Recommendations 

 

5.1  Conclusions 

From the analysis of the projected data versus actual data collected after the future horizon year 

has come and gone, the following conclusions can be made: 

• Within the limited context of the original long range study done for the 

Topeka Metropolitan Area, it can be concluded that poor traffic volume 

forecasts mainly originate from poor projections of urban activities such as 

socioeconomic, land use and demographic data, which are the basis of 

traffic projections. In order to achieve better traffic forecasting, reliable 

and realistic socioeconomic, land use and demographic variables for a 

future horizon year should be projected first. 

• It is good practice to rely first on short term projections and use the results 

(after the short term horizon has arrived) to review the intermediate and 

long term projections and test whether the original expectations are still 

achievable. 

• Although overall projected traffic volumes versus actual ground counts 

had a poor correlation, the individual link-by-link performance was not as 

bad. About 34% of the links in this study have a traffic prediction error 

within 20% which means that most of them had correctly predicted the 

right number of lanes needed. More than 98% of the road network links 

had their number of lanes correctly estimated from the projected 20-year 

traffic volumes. 

• It is well known that it is not easy to produce perfect projections for long 

future periods, however if the projections of traffic are made carefully and 

end up differing from actual traffic volume by not more than 20 to 30%, 

they may still be good enough for estimating the correct number of lanes. 
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 From the travel demand analysis and formulation of a procedure to aid in transportation 

planning decisions, the following conclusions can be made: 

• Selecting an alternative by optimization procedures which pick only the 

alternative that is thought to be the best in terms of the measures of 

effectiveness chosen, has many shortfalls, most notably, lack of flexibility 

due to performing as if the procedure is deterministic. 

• Robustness analysis is more efficient in performing transportation 

planning decisions because it acknowledges the uncertainties associated 

with the whole planning procedure and thus leaves all options open for 

future adjustment in case the need arises. 

•  Robustness analysis can be used to rank the links properly by giving 

higher robustness scores to all road link segments that are known to be 

important and which handle higher daily traffic volumes. 

• The vehicle miles of travel criterion (VMT) as a measure of effectiveness 

for comparing the efficiency of highway network alternatives was found to 

be a weak procedure as it may lead to selecting the less efficient scenarios. 

It does not properly identify highway networks which are congested due to 

few route choices available to road users. The vehicle hour of travel 

(VHT), in this case, has been identified as a better MOE in such 

evaluations as it can easily determine the network that will be more 

congested. However, it is recommended that the network that minimizes 

both, is more preferred although sometimes one can be confronted with 

conflicting results between these two MOEs. 

• The traditional method of optimization, whereby one highway alternative 

is selected based on the outcome of the measures of effectiveness needs to 

be improved. The new paradigm being advocated here is the application of 

robustness analysis, without optimization of any kind. This approach 

makes the decision process flexible by letting all assumed scenarios 

contribute into the decision to be made. 
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• The application of robustness analysis to past Topeka growth strategies 

has demonstrated that the process is a viable approach with great potential. 

 

5.2   Recommendations 

• It is recommended that more studies of this kind be performed for 

different areas whereby original study documents are available and the 

projected horizon year has come and gone. The major assumptions and the 

performance of the models used in such studies have to be reviewed to 

determine how much they affect the final projected traffic volumes. 

• It is recommended that the use of robustness analysis for making urban 

transportation planning decision be tested further as it has great potential. 

The whole process is normally surrounded with uncertainties for which the 

robustness methodology tends to minimize by reducing the possibility of 

getting surprised by unexpected results. 

 

5.3  Contribution of the Research Effort 

This research has demonstrated, after the fact, that robustness analysis could have been used as a 

tool to make better planning decisions in Topeka. There should be no reason it would not be 

widely applicable to other cities.  It is anticipated that the results of this research effort will pave 

the way and stimulate further research in this area, e.g., how robustness analysis can be more 

widely demonstrated with other cities and be further developed to improve urban transportation 

planning decision-making. 
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APPENDIX  A 
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FIGURE A-1: Traffic Assignment Results on “NET 74R" Loaded with Census  
Data as Input 
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FIGURE A-2: Traffic Assignment Results on “NET 90” Loaded with Census Data 
as Input 
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FIGURE A-3: Traffic Assignment Results on “NET 00” Loaded with Census Data 

as Input 
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Table A-1: Measures of Effectiveness (MOEs) 



82 

Table A-2: Detailed Information on Robustness Scores (R) for Individual Link 
Segments 
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