University of Dayton eCommons

Summer Conference on Topology and Its

Applications

Braid Group Actions on Rational Maps

Eriko Hironaka
American Mathematical Society, ehironaka@gmail.com
Sarah Koch

Follow this and additional works at: http://ecommons.udayton.edu/topology_conf
Part of the Geometry and Topology Commons, and the Special Functions Commons

eCommons Citation

Hironaka, Eriko and Koch, Sarah, "Braid Group Actions on Rational Maps" (2017). Summer Conference on Topology and Its Applications. 63.
http://ecommons.udayton.edu/topology_conf/63

Braid Group Actions on Rational Maps
 Summer Topology Conference - Dayton, OH - 2017

Eriko Hironaka

American Mathematical Society
Florida State University, Professor Emerita

Joint with Sarah Koch.

Plctures of Julia sets due to Sarah Koch and Curt McMullen

Outline

- I. Combinatorics of Rational Maps
- II. Deformation Space
- III. Teichmüller Parameter Spaces
- IV. Braid Group Actions

Rational maps

A degree d rational map is a map

$$
F: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}
$$

that can be written as a ratio $F(z)=G(z) / H(z)$ where G and H are polynomials in $\mathbb{C}[z]$ of maximum degree d.

Rational maps

A degree d rational map is a map

$$
F: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}
$$

that can be written as a ratio $F(z)=G(z) / H(z)$ where G and H are polynomials in $\mathbb{C}[z]$ of maximum degree d.

Question [Thurston]: To what extent is F determined (up to conjugation by Möbius transformation) by combinatorial information?

Rational maps

A degree d rational map is a map

$$
F: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}
$$

that can be written as a ratio $F(z)=G(z) / H(z)$ where G and H are polynomials in $\mathbb{C}[z]$ of maximum degree d.

Question [Thurston]: To what extent is F determined (up to conjugation by Möbius transformation) by combinatorial information?

Post-critically finite case. A case of interest is when the post-critical set

$$
\mathcal{P}=\bigcup_{i>0} F^{\circ k}\left(\mathrm{Crit}_{F}\right)
$$

is finite.

Rational maps

A degree d rational map is a map

$$
F: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}
$$

that can be written as a ratio $F(z)=G(z) / H(z)$ where G and H are polynomials in $\mathbb{C}[z]$ of maximum degree d.

Question [Thurston]: To what extent is F determined (up to conjugation by Möbius transformation) by combinatorial information?

Post-critically finite case. A case of interest is when the post-critical set

$$
\mathcal{P}=\bigcup_{i>0} F^{\circ k}\left(\mathrm{Crit}_{F}\right)
$$

is finite.
Question: To what extent is F determined by its action on \mathcal{P} ?

Some examples

Template: $\quad d=2, \quad a \xrightarrow{2} a, \quad b \xrightarrow{2} c \longrightarrow b$

Some examples

Template: $\quad d=2, \quad a \xrightarrow{2} a, \quad b \xrightarrow{2} c \longrightarrow b$
Can assume (after conjugation by a Möbius transformation) that $a=\infty, b=0$ and $c=1$.

Some examples

Template: $d=2, \quad a \xrightarrow{2} a, \quad b \xrightarrow{2} c \longrightarrow b$
Can assume (after conjugation by a Möbius transformation) that $a=\infty, b=0$ and $c=1$.

Then we have the solution: $F(z)=1-z^{2}$. Solution is unique up to conjugation by Möbius transformation.

Some examples

Template: $\quad d=2, \quad a \xrightarrow{2} a, \quad b \xrightarrow{2} c \longrightarrow b$
Can assume (after conjugation by a Möbius transformation) that $a=\infty, b=0$ and $c=1$.

Then we have the solution: $F(z)=1-z^{2}$. Solution is unique up to conjugation by Möbius transformation.

Some examples

Template: $\quad d=2, \quad \infty \xrightarrow{2} \infty, \quad 0 \xrightarrow{2} 1 \longrightarrow c \longrightarrow 0$

Some examples

Template: $\quad d=2, \quad \infty \xrightarrow{2} \infty, \quad 0 \xrightarrow{2} 1 \longrightarrow c \longrightarrow 0$
Then $F(z)=\frac{-z^{2}+c^{2}}{c^{2}}$, where c satisfies

$$
-1+c^{2}=c^{3} \quad \text { or } \quad c^{3}-c^{2}+1=0
$$

There are three solutions: one real, and two complex conjugates.

Some examples

Template: $\quad d=2, \quad \infty \xrightarrow{2} \infty, \quad 0 \xrightarrow{2} 1 \longrightarrow c \longrightarrow 0$ Then $F(z)=\frac{-z^{2}+c^{2}}{c^{2}}$, where c satisfies

$$
-1+c^{2}=c^{3} \quad \text { or } \quad c^{3}-c^{2}+1=0
$$

There are three solutions: one real, and two complex conjugates.

Question: How to distinguish these?

Branched coverings

A rational map $F: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ defines a branched covering

$$
f: S^{2} \rightarrow S^{2}
$$

with branch locus equal to the critical values $F\left(\right.$ Crit $\left._{F}\right)$.

Branched coverings

A rational map $F: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ defines a branched covering

$$
f: S^{2} \rightarrow S^{2}
$$

with branch locus equal to the critical values $F\left(\right.$ Crit $\left._{F}\right)$.
A post-critically finite map F defines a branched covering of pairs:

$$
f:\left(S^{2}, P\right) \rightarrow\left(S^{2}, P\right)
$$

where P is a finite set containing the branch locus of f.

Branched coverings

A rational map $F: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ defines a branched covering

$$
f: S^{2} \rightarrow S^{2}
$$

with branch locus equal to the critical values $F\left(\mathrm{Crit}_{F}\right)$.
A post-critically finite map F defines a branched covering of pairs:

$$
f:\left(S^{2}, P\right) \rightarrow\left(S^{2}, P\right)
$$

where P is a finite set containing the branch locus of f.
Two branched coverings of pairs $f_{i}:\left(S^{2}, P_{i}\right) \rightarrow\left(S^{2}, P_{i}\right), i=1,2$, are topologically equivalent if there is a homeomorphism $\phi:\left(S^{2}, P_{1}\right) \rightarrow\left(S^{2}, P_{2}\right)$ so that the diagram commutes:

Thurston equivalence for branched coverings

Two branched coverings of pairs $f_{i}:\left(S^{2}, P_{i}\right) \rightarrow\left(S^{2}, P_{i}\right)$, are Thurston equivalent if the diagram commutes:

where $\psi=\eta_{2} \circ \phi \circ \eta_{1}$,

$$
\eta_{i}:\left(S^{2}, P_{i}\right) \rightarrow\left(S^{2}, P_{i}\right)
$$

are homeomorphisms isotopic to the identity map rel P_{i}, for $i=1,2$.

Thurston rigidity theorem for rational maps

Theorem (Thurston)
Let $F: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ be a post-critically finite map that is not Lattès. Then F is uniquely determined by the Thurston equivalence class of its associated branched covering

$$
f:\left(S^{2}, P\right) \rightarrow\left(S^{2}, P\right)
$$

Partially post-critically finite rational maps.

Consider rational maps $F:\left(\mathbb{P}^{1}, A\right) \rightarrow\left(\mathbb{P}^{1}, B\right)$, where $A \subset B$ are finite sets and Crit $_{F} \subset B$.

Partially post-critically finite rational maps.

Consider rational maps $F:\left(\mathbb{P}^{1}, A\right) \rightarrow\left(\mathbb{P}^{1}, B\right)$, where $A \subset B$ are finite sets and $\mathrm{Crit}_{F} \subset B$.

Example: let A be a finite critical cycle and let $B=A \cup F\left(\right.$ Crit $\left._{F}\right)$.

Partially post-critically finite rational maps.

Consider rational maps $F:\left(\mathbb{P}^{1}, A\right) \rightarrow\left(\mathbb{P}^{1}, B\right)$, where $A \subset B$ are finite sets and $\mathrm{Crit}_{F} \subset B$.
Example: let A be a finite critical cycle and let $B=A \cup F\left(\right.$ Crit $\left._{F}\right)$.
Two branched coverings of pairs $f_{i}:\left(S^{2}, A_{i}\right) \rightarrow\left(S^{2}, B_{i}\right)$ are combinatorially equivalent if

where $\psi=\eta_{2} \circ \phi \circ \eta_{1}$, and, for $i=1,2, \eta_{i}$ are isotopic to the identity rel A_{i}.

Deformation Space

Fix a branched covering of pairs $f:\left(S^{2}, A\right) \rightarrow\left(S^{2}, B\right)$.
The deformation space of f is defined by

$$
D_{f}=\left\{F:\left(P^{1}, A^{\prime}\right) \rightarrow\left(P^{1}, B^{\prime}\right) \mid F \text { is comb. eq. to } f\right\}
$$

Deformation Space

Fix a branched covering of pairs $f:\left(S^{2}, A\right) \rightarrow\left(S^{2}, B\right)$.
The deformation space of f is defined by

$$
D_{f}=\left\{F:\left(P^{1}, A^{\prime}\right) \rightarrow\left(P^{1}, B^{\prime}\right) \mid F \text { is comb. eq. to } f\right\}
$$

i.e., $F \in D_{f}$ if and only if there are homeomorphisms $\phi, \psi: S^{2} \rightarrow \mathbb{P}^{1}$ such that

commutes. This gives an f-marking (ϕ, ψ) of F as a rational map of pairs, uniquely defined up to isotopy rel B (resp., rel A).

Teichmüller space

Let $\mathcal{T}_{A}=\operatorname{Teich}\left(S^{2}, A\right)=\operatorname{Homeo}\left(S^{2}, \mathbb{P}^{1}\right) / \sim_{A}$.
Fix $f:\left(S^{2}, A\right) \rightarrow\left(S^{2}, B\right)$.
The Thurston lifting map is a holomorphic map $\sigma_{f}: \mathcal{T}_{B} \rightarrow \mathcal{T}_{A}$ such that

commutes.
Define $D_{f} \hookrightarrow \mathcal{T}_{B}$ that takes each $F \in D_{f}$ to $[\phi] \in \mathcal{T}_{B}$, where (ϕ, ψ) is an f-marking for F. Identify D_{f} with its image: $D_{f} \subset \mathcal{T}_{B}$.

Properties of D_{f}

- D_{f} may be empty.

Properties of D_{f}

- D_{f} may be empty.
- (W. Thurston) D_{f} is connected if f is post-critically finite, and $A=B=P$.

Properties of D_{f}

- D_{f} may be empty.
- (W. Thurston) D_{f} is connected if f is post-critically finite, and $A=B=P$.
If f is pcf but not Lattès, D_{f} is the fixed point of the map $\sigma_{f}: \mathcal{T}_{P} \rightarrow \mathcal{T}_{P}$, which is a contracting map.

Properties of D_{f}

- D_{f} may be empty.
- (W. Thurston) D_{f} is connected if f is post-critically finite, and $A=B=P$.
If f is pcf but not Lattès, D_{f} is the fixed point of the map $\sigma_{f}: \mathcal{T}_{P} \rightarrow \mathcal{T}_{P}$, which is a contracting map.
- (A. Epstein) If $D_{f} \neq \emptyset$, then D_{f} is a complex submanifold of \mathcal{T}_{B} of dimension $|B|-|A|$.

Properties of D_{f}

- D_{f} may be empty.
- (W. Thurston) D_{f} is connected if f is post-critically finite, and $A=B=P$.
If f is pcf but not Lattès, D_{f} is the fixed point of the map $\sigma_{f}: \mathcal{T}_{P} \rightarrow \mathcal{T}_{P}$, which is a contracting map.
- (A. Epstein) If $D_{f} \neq \emptyset$, then D_{f} is a complex submanifold of \mathcal{T}_{B} of dimension $|B|-|A|$.
- (M. Rees, T. Firsova-J. Kahn-N. Selinger, J. Hubbard) There is a local flow from \mathcal{T}_{f} to D_{f}.

Properties of D_{f}

- D_{f} may be empty.
- (W. Thurston) D_{f} is connected if f is post-critically finite, and $A=B=P$.
If f is pcf but not Lattès, D_{f} is the fixed point of the map $\sigma_{f}: \mathcal{T}_{P} \rightarrow \mathcal{T}_{P}$, which is a contracting map.
- (A. Epstein) If $D_{f} \neq \emptyset$, then D_{f} is a complex submanifold of \mathcal{T}_{B} of dimension $|B|-|A|$.
- (M. Rees, T. Firsova-J. Kahn-N. Selinger, J. Hubbard) There is a local flow from \mathcal{T}_{f} to D_{f}.

Milnor's Conjecture

Let $\operatorname{Per}_{d}^{n}(0) \subset \operatorname{Rat}_{d} / \sim$ be the space of rational maps of degree d (modulo conjugation by Möbius transformations) with an attracting periodic cycle of order n.

Milnor's Conjecture

Let $\operatorname{Per}_{d}^{n}(0) \subset \operatorname{Rat}_{d} / \sim$ be the space of rational maps of degree d (modulo conjugation by Möbius transformations) with an attracting periodic cycle of order n.

Question: (Milnor) Is $\operatorname{Per}_{n}^{d}(0)$ irreducible? rational?

Milnor's Conjecture

Let $\operatorname{Per}_{d}^{n}(0) \subset \operatorname{Rat}_{d} / \sim$ be the space of rational maps of degree d (modulo conjugation by Möbius transformations) with an attracting periodic cycle of order n.

Question: (Milnor) Is $\operatorname{Per}_{n}^{d}(0)$ irreducible? rational? connected? genus zero?

Milnor's Conjecture

Let $\operatorname{Per}_{d}^{n}(0) \subset \operatorname{Rat}_{d} / \sim$ be the space of rational maps of degree d (modulo conjugation by Möbius transformations) with an attracting periodic cycle of order n.

Question: (Milnor) Is $\operatorname{Per}_{n}^{d}(0)$ irreducible? rational? connected? genus zero?

Let $\operatorname{Per}_{n}^{d}(0)^{*}$ be the subspace of $\operatorname{Per}_{n}^{d}(0)$ containing rational maps of degree d with one critical orbit A of order n, and which has a critical value outside of A. Fix $F \in \operatorname{Per}_{n}^{d}(0)^{*}$ and let

$$
B=A \cup F\left(\operatorname{Crit}_{F}\right)
$$

Then D_{f} is a covering of $\operatorname{Per}_{n}^{d}(0)^{*}$.

Milnor's Conjecture

Let $\operatorname{Per}_{d}^{n}(0) \subset \operatorname{Rat}_{d} / \sim$ be the space of rational maps of degree d (modulo conjugation by Möbius transformations) with an attracting periodic cycle of order n.

Question: (Milnor) Is $\operatorname{Per}_{n}^{d}(0)$ irreducible? rational? connected? genus zero?

Let $\operatorname{Per}_{n}^{d}(0)^{*}$ be the subspace of $\operatorname{Per}_{n}^{d}(0)$ containing rational maps of degree d with one critical orbit A of order n, and which has a critical value outside of A. Fix $F \in \operatorname{Per}_{n}^{d}(0)^{*}$ and let

$$
B=A \cup F\left(\operatorname{Crit}_{F}\right)
$$

Then D_{f} is a covering of $\operatorname{Per}_{n}^{d}(0)^{*}$.
So, D_{f} is connected $\Longrightarrow \operatorname{Per}_{n}^{d}(0)^{*}$ is connected $\Longleftrightarrow \operatorname{Per}_{n}^{d}(0)$ is connected.

Counter-example to connectedness of D_{f}

Theorem (E.H. - S. Koch)
Take $F \in \operatorname{Per}_{4}^{2}(0)^{*}$, and let $f:\left(S^{2}, A\right) \rightarrow\left(S^{2}, B\right)$ a topological element in the combinatorial equivalence class. Then D_{f} has infinitely many connected components.

Main Elements of the Proof

- An intermediate space of rational maps
- Braid group actions on rational maps and branched coverings
- Fundamental groups of complements of plane algebraic curves

Intermediate space of rational maps

Recall that D_{f} can be thought of as f-marked rational maps (ϕ, ψ, F). Let

$$
\mathcal{W}_{f}=\left\{\left(\left.\phi\right|_{B},\left.\psi\right|_{A}, F\right) \mid \phi \in \mathcal{T}_{B}, \psi=\sigma_{f}(\phi)\right\}
$$

and

$$
\mathcal{V}_{f}=\left\{\left(\left.\phi\right|_{B},\left.\psi\right|_{A}, F\right) \in \mathcal{W}_{f} \mid \psi \sim_{A} \phi\right\}
$$

These play the role of moduli space (rather than Teichmüller space) and fit in the following diagram:

Braid group actions

Let $\mathcal{P}_{B}=\operatorname{Mod}\left(S^{2}, B\right)$ the pure braid group. Fix $f:\left(S^{2}, A\right) \rightarrow\left(S^{2}, B\right)$. We say $h \in \mathcal{P}_{B}$ lifts to $h^{\prime} \in \mathcal{P}_{A}$ if $h \circ f=f \circ h^{\prime}$.

Braid group actions

Let $\mathcal{P}_{B}=\operatorname{Mod}\left(S^{2}, B\right)$ the pure braid group. Fix $f:\left(S^{2}, A\right) \rightarrow\left(S^{2}, B\right)$. We say $h \in \mathcal{P}_{B}$ lifts to $h^{\prime} \in \mathcal{P}_{A}$ if $h \circ f=f \circ h^{\prime}$.

Braid group actions

Let $\mathcal{P}_{B}=\operatorname{Mod}\left(S^{2}, B\right)$ the pure braid group. Fix $f:\left(S^{2}, A\right) \rightarrow\left(S^{2}, B\right)$. We say $h \in \mathcal{P}_{B}$ lifts to $h^{\prime} \in \mathcal{P}_{A}$ if $h \circ f=f \circ h^{\prime}$.

Braid group actions

Let $\mathcal{P}_{B}=\operatorname{Mod}\left(S^{2}, B\right)$ the pure braid group. Fix $f:\left(S^{2}, A\right) \rightarrow\left(S^{2}, B\right)$. We say $h \in \mathcal{P}_{B}$ lifts to $h^{\prime} \in \mathcal{P}_{A}$ if $h \circ f=f \circ h^{\prime}$.

Braid group actions

Let $\mathcal{P}_{B}=\operatorname{Mod}\left(S^{2}, B\right)$ the pure braid group. Fix $f:\left(S^{2}, A\right) \rightarrow\left(S^{2}, B\right)$. We say $h \in \mathcal{P}_{B}$ lifts to $h^{\prime} \in \mathcal{P}_{A}$ if $h \circ f=f \circ h^{\prime}$.

	$L_{f}=$ liftables
	$=\left\{h \in \mathcal{P}_{B}: h\right.$ lifts to h^{\prime} such that $\left.\left.h^{\prime}\right\|_{A}=\mathrm{id}_{A}\right\}$
	\rightsquigarrow Lifting homomorphism $\Phi_{f}: L_{f} \rightarrow \mathcal{P}_{A}$
$S_{f}=$ special liftables	
	$=\left\{h \in L_{f}: \Phi_{f}(h) \sim_{A} h\right\}$
	$E_{f}=$ equalizer
	$=\left\{h \in S: \Phi\left(h_{t}\right) \sim_{A} h_{t} \quad \forall t \in[0,1]\right\}$

Connectivity and coverings

$$
\begin{aligned}
& L_{f}=\text { liftables } \\
& S_{f}=\text { special liftables } \\
& E_{f}=\text { equalizer }
\end{aligned}
$$

$E_{f}=\iota_{*}\left(\pi_{1}\left(\mathcal{V}_{f}\right)\right)$
Covering Space Lemma: $\left|D_{f}\right| \geq\left[S_{f}: E_{f}\right]$.

Coordinates for \mathcal{V}_{f}.

Take $f: S^{2} \rightarrow S^{2}$ a branched cover of degree 2 with distinct critical points p, q, such that p lies in a degree 4 orbit A and $q, f(q) \notin A$.

In order for a rational map F to have a marking by f, we would have to have

$$
F: 0 \xrightarrow{2} \infty \longrightarrow 1 \longrightarrow x \longrightarrow 0 \quad q \xrightarrow{2} z
$$

and hence $F(z)=\frac{(z-x)(z-r)}{z^{2}}$

- $r=\frac{x}{x-1}+1$, only depends on x
- $q=\frac{2 \times r}{x+r}$, only depends on x

Write $\mathcal{V}_{f}=\{(x, F)\} \simeq \mathbb{C} \backslash K$, where K is a finite set of points.

Coordinates for \mathcal{W}_{f}

Coordinates for \mathcal{W}_{f}

$$
F: \quad \star \quad \star \quad \star
$$

0	∞	1	X	\star
2		1	1	2
\checkmark	\checkmark	V	\checkmark	\downarrow
∞	1	y	0	Z

$\Rightarrow F(z)=\frac{(z-x)(z-r)}{z^{2}}$ where

- r depends on x and y
- z depends on r

Write $\mathcal{W}_{f}=\{((y, z), x, F)\} \simeq \mathbb{C}^{2} \backslash \mathcal{C}$, where \mathcal{C} is an algebraic curve.

Affine embedding of \mathcal{V}_{f} and \mathcal{W}_{f}

The coordinates give

$$
\begin{aligned}
\mathcal{V}_{f} & \hookrightarrow \mathcal{W}_{f} \\
(x, F) & \mapsto((y, z), x, F)
\end{aligned}
$$

and

$$
\mathcal{V}_{f} \subset \mathcal{W}_{f} \hookrightarrow \mathcal{M}_{B} \times \mathcal{M}_{A} \rightarrow \mathcal{M}_{A} \times \mathcal{M}_{A}
$$

where

$$
\begin{aligned}
\mathcal{W}_{f} & \hookrightarrow \mathcal{M}_{A} \times \mathcal{M}_{A} \\
((y, z), x, F) & \mapsto(y, x)
\end{aligned}
$$

Useful Property: $\mathcal{W}_{f} \rightarrow \mathcal{M}_{A} \times \mathcal{M}_{A}=(\mathbb{C} \backslash\{0,1\}) \times(\mathbb{C} \backslash\{0,1\})$ is an injection!

Seeing \mathcal{W}_{f} and \mathcal{V}_{f} in \mathbb{C}^{2}.

Picture of $\mathcal{M}_{A} \times \mathcal{M}_{A}$.

Seeing \mathcal{W}_{f} and \mathcal{V}_{f} in \mathbb{C}^{2}.

- $\mathcal{W}_{f}=$ complement of the colored curves
- $\mathcal{V}_{f}=$ diagonal $\cap \mathcal{W}_{f}$
- $\mathcal{W}_{f} \rightarrow \mathcal{M}_{A}$ are just projections p_{1} and p_{2} to vertical and horizontal coordinates.

Finding L_{f}, S_{f} and E_{f} ?

Goal: Find $\left[S_{f}: E_{f}\right]$.

Finding L_{f}, S_{f} and E_{f} ?

Goal: Find $\left[S_{f}: E_{f}\right]$.

Finding L_{f}, S_{f} and E_{f} ?

Goal: Find $\left[S_{f}: E_{f}\right]$.

Finding L_{f}, S_{f} and E_{f} ?

Goal: Find $\left[S_{f}: E_{f}\right]$.

$$
\begin{aligned}
& L_{f}=\pi_{1}\left(\mathcal{W}_{f}\right) . \\
& S_{f}=\operatorname{Equalizer}\left(\left(p_{1}\right)_{*},\left(p_{2}\right)_{*}\right)
\end{aligned}
$$

Finding L_{f}, S_{f} and E_{f} ?

Goal: Find $\left[S_{f}: E_{f}\right]$.

Finding L_{f}, S_{f} and E_{f} ?

Goal: Find $\left[S_{f}: E_{f}\right]$.

$$
\begin{aligned}
& L_{f}=\pi_{1}\left(\mathcal{W}_{f}\right) . \\
& S_{f}=\operatorname{Equalizer}\left(\left(p_{1}\right)_{*},\left(p_{2}\right)_{*}\right) \\
& E_{f}=\iota_{*}\left(\pi_{1}\left(\text { Equalizer }\left(p_{1}, p_{2}\right)\right)\right)
\end{aligned}
$$

Question: Is the fundamental group of the equalizer equal to the equalizer of the fundaental groups?

Proof of Theorem

Claim: $\left[S_{f}: E_{f}\right]=\infty$.

Proof of Theorem

Claim: $\left[S_{f}: E_{f}\right]=\infty$.
Reduce to an easier topological situation.

- Left picture: fill in some of the deleted curves of \mathcal{W}_{f} to get $\widehat{\mathcal{W}}_{f}$
- Right picture: take the quotient by symmetry across diagonal to get $\overline{\mathcal{W}}_{f}$.

Proof

Claim: $\left[\pi_{1}\left(\mathcal{W}_{f}\right): \iota_{*}\left(\pi_{1}\left(\mathcal{V}_{f}\right)\right)\right]=\infty$.

- $(q \circ \iota)_{*}: \pi_{1}\left(\mathcal{V}_{f}\right) \hookrightarrow \pi_{1}\left(\mathbb{P}^{1} \backslash\{3\right.$ points $\left.\}\right)=\mathcal{F}_{2}$
- $1 \rightarrow \mathbb{Z} \rightarrow \pi_{1}\left(\overline{\mathcal{W}}_{f}\right) \rightarrow \mathcal{F}_{2} \rightarrow 1$, central extension.

Proof

Claim: $\left[\pi_{1}\left(\mathcal{W}_{f}\right): \iota_{*}\left(\pi_{1}\left(\mathcal{V}_{f}\right)\right)\right]=\infty$.

- $\exists \gamma \in \pi_{1}\left(\mathcal{W}_{f}\right)$ of infinite order, that maps to a central element of $\pi_{1}\left(\overline{\mathcal{W}}_{f}\right)$.
- $\gamma \delta(\gamma) \in S_{f}$, and maps to the square of a central element in $\pi_{1}\left(\overline{\mathcal{W}}_{f}\right)$.
- It follows that $\left[S_{f}: E_{f}\right]=\infty$.

A curious lemma

Lemma

Any element of S_{f} not in E_{f} is of the form $\gamma_{1} \gamma_{2}$ where γ_{1} acts trivially on the base of the covering rel A but non-trivially on the covering (rel A) and γ_{2} acts trivially on the covering (rel A) but is non-trivial on the base.

Open Problems

- (Milnor) Is $\operatorname{Per}_{n}^{d}(0)$ connected for all n and d ?
- Study properties of liftables, special liftables and the equalizer subgroups of the braid group.
- Is there something special about degree two?
- Is the deformation space connected in augmented Teichmüller space?

Thank you for listening

