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Rational maps

A degree d rational map is a map

F : P1 → P1

that can be written as a ratio F (z) = G (z)/H(z) where G and H
are polynomials in C[z ] of maximum degree d .

Question [Thurston]: To what extent is F determined (up to
conjugation by Möbius transformation) by combinatorial
information?

Post-critically finite case. A case of interest is when the
post-critical set

P =
⋃
i>0

F ◦k(CritF ).

is finite.

Question: To what extent is F determined by its action on P?
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Some examples

Template: d = 2, a
2−→ a, b

2−→ c −→ b

Can assume (after conjugation by a Möbius transformation) that
a =∞, b = 0 and c = 1.

Then we have the solution: F (z) = 1− z2. Solution is unique up
to conjugation by Möbius transformation.
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Some examples

Template: d = 2, ∞ 2−→∞, 0
2−→ 1 −→ c −→ 0

Then F (z) = −z2+c2

c2
, where c satisfies

−1 + c2 = c3 or c3 − c2 + 1 = 0.

There are three solutions: one real, and two complex conjugates.

Question: How to distinguish these?
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Branched coverings

A rational map F : P1 → P1 defines a branched covering

f : S2 → S2

with branch locus equal to the critical values F (CritF ).

A post-critically finite map F defines a branched covering of pairs:

f : (S2,P)→ (S2,P),

where P is a finite set containing the branch locus of f .
Two branched coverings of pairs fi : (S2,Pi )→ (S2,Pi ), i = 1, 2,
are topologically equivalent if there is a homeomorphism
φ : (S2,P1)→ (S2,P2) so that the diagram commutes:

(S2,P1)
φ //

f1
��

(S2,P2)

f2
��

(S2,P1)
φ // (S2,P2)
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Thurston equivalence for branched coverings

Two branched coverings of pairs fi : (S2,Pi )→ (S2,Pi ), are
Thurston equivalent if the diagram commutes:

(S2,P1)
ψ //

f1
��

(S2,P2)

f2
��

(S2,P1)
φ // (S2,P2)

where ψ = η2 ◦ φ ◦ η1,

ηi : (S2,Pi )→ (S2,Pi )

are homeomorphisms isotopic to the identity map rel Pi , for
i = 1, 2.



Thurston rigidity theorem for rational maps

Theorem (Thurston)

Let F : P1 → P1 be a post-critically finite map that is not Lattès.
Then F is uniquely determined by the Thurston equivalence class
of its associated branched covering

f : (S2,P)→ (S2,P).



Partially post-critically finite rational maps.

Consider rational maps F : (P1,A)→ (P1,B), where A ⊂ B are
finite sets and CritF ⊂ B.

Example: let A be a finite critical cycle and let B = A∪ F (CritF ).

Two branched coverings of pairs fi : (S2,Ai )→ (S2,Bi ) are
combinatorially equivalent if

(S2,A1)
ψ //

f1
��

(S2,A2)

f2
��

(S2,B1)
φ // (S2,B2)

where ψ = η2 ◦ φ ◦ η1, and, for i = 1, 2, ηi are isotopic to the
identity rel Ai .
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Deformation Space

Fix a branched covering of pairs f : (S2,A)→ (S2,B).

The deformation space of f is defined by

Df = {F : (P1,A′)→ (P1,B ′) | F is comb. eq. to f }

i.e., F ∈ Df if and only if there are homeomorphisms
φ, ψ : S2 → P1 such that

(S2,A)
ψ //

f
��

(P1, ψ(A))

F
��

(S2,B)
φ // (P1, φ(B))

commutes. This gives an f -marking (φ, ψ) of F as a rational map
of pairs, uniquely defined up to isotopy rel B (resp., rel A).
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Teichmüller space

Let TA = Teich(S2,A) = Homeo(S2,P1)/ ∼A.

Fix f : (S2,A)→ (S2,B).

The Thurston lifting map is a holomorphic map σf : TB → TA such
that

(S2,A)
σf (φ) //

f
��

(P1, σf (φ)(A))

F
��

(S2,B)
φ // (P1, φ(B))

commutes.

Define Df ↪→ TB that takes each F ∈ Df to [φ] ∈ TB , where (φ, ψ)
is an f -marking for F . Identify Df with its image: Df ⊂ TB .



Properties of Df

I Df may be empty.

I (W. Thurston) Df is connected if f is post-critically finite,
and A = B = P.
If f is pcf but not Lattès, Df is the fixed point of the map
σf : TP → TP , which is a contracting map.

I (A. Epstein) If Df 6= ∅, then Df is a complex submanifold of
TB of dimension |B| − |A|.

I (M. Rees, T. Firsova-J. Kahn-N. Selinger, J. Hubbard) There
is a local flow from Tf to Df .
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Milnor’s Conjecture

Let Pernd(0) ⊂ Ratd/ ∼ be the space of rational maps of degree d
(modulo conjugation by Möbius transformations) with an
attracting periodic cycle of order n.

Question: (Milnor) Is Perdn(0) irreducible? rational? connected?
genus zero?

Let Perdn(0)∗ be the subspace of Perdn(0) containing rational maps
of degree d with one critical orbit A of order n, and which has a
critical value outside of A. Fix F ∈ Perdn(0)∗ and let

B = A ∪ F (CritF )

Then Df is a covering of Perdn(0)∗.

So, Df is connected =⇒ Perdn(0)∗ is connected ⇐⇒ Perdn(0) is
connected.
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Counter-example to connectedness of Df

Theorem (E.H. - S. Koch)

Take F ∈ Per24(0)∗, and let f : (S2,A)→ (S2,B) a topological
element in the combinatorial equivalence class. Then Df has
infinitely many connected components.



Main Elements of the Proof

I An intermediate space of rational maps

I Braid group actions on rational maps and branched coverings

I Fundamental groups of complements of plane algebraic curves



Intermediate space of rational maps

Recall that Df can be thought of as f -marked rational maps
(φ, ψ,F ). Let

Wf = {(φ|B , ψ|A,F ) | φ ∈ TB , ψ = σf (φ)}

and
Vf = {(φ|B , ψ|A,F ) ∈ Wf | ψ ∼A φ}.

These play the role of moduli space (rather than Teichmüller
space) and fit in the following diagram:

Df
� � //

Sf
��

TB
Lf
��

σf **

σinc

44W _ g TA

PA

��

Vf

!!D
DD

DD
DD

D
� � ι //Wf

�� ""F
FF

FF
FF

F

MB
(inc)∗

//___ MA



Braid group actions

Let PB = Mod(S2,B) the pure braid group. Fix
f : (S2,A)→ (S2,B). We say h ∈ PB lifts to h′ ∈ PA if
h ◦ f = f ◦ h′.

(S ,A)

(S ,B)

2

2

Lf = liftables
= {h ∈ PB : h lifts to h′ such that h′|A = idA}
 Lifting homomorphism Φf : Lf → PA
Sf = special liftables
= {h ∈ Lf : Φf (h) ∼A h}

Ef = equalizer
= {h ∈ S : Φ(ht) ∼A ht ∀t ∈ [0, 1]}
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Connectivity and coverings

(S ,A)

(S ,B)

2

2

Lf = liftables
Sf = special liftables
Ef = equalizer

Df
� � //

S
��

TB
L
��

σf **

σinc

44W _ g TA

PA

��

Vf

!!D
DD

DD
DD

D
� � ι //Wf

�� ""F
FF

FF
FF

F

MB
(inc)∗

//___ MA

Ef = ι∗(π1(Vf ))
Covering Space Lemma: |Df | ≥ [Sf : Ef ].



Coordinates for Vf .

Take f : S2 → S2 a branched cover of degree 2 with distinct
critical points p, q, such that p lies in a degree 4 orbit A and
q, f (q) 6∈ A.

In order for a rational map F to have a marking by f , we would
have to have

F : 0
2 //∞ // 1 // x // 0 q

2 // z

and hence F (z) = (z−x)(z−r)
z2

I r = x
x−1 + 1, only depends on x

I q = 2xr
x+r , only depends on x

Write Vf = {(x ,F )} ' C \ K , where K is a finite set of points.



Coordinates for Wf

F : ? ? ?

0

2

��

∞

��

1

��

x

��

?

2

��
∞ 1 y 0 z

⇒ F (z) = (z−x)(z−r)
z2

where

I r depends on x and y

I z depends on r

Write Wf = {((y , z), x ,F )} ' C2 \ C, where C is an algebraic
curve.
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curve.



Affine embedding of Vf and Wf

The coordinates give

Vf ↪→ Wf

(x ,F ) 7→ ((y , z), x ,F ).

and
Vf ⊂ Wf ↪→MB ×MA →MA ×MA

where

Wf ↪→ MA ×MA

((y , z), x ,F ) 7→ (y , x)

Useful Property: Wf →MA ×MA = (C \ {0, 1})× (C \ {0, 1}) is
an injection!



Seeing Wf and Vf in C2.

Picture of MA ×MA.



Seeing Wf and Vf in C2.

I Wf = complement of the colored curves

I Vf = diagonal ∩Wf

I Wf →MA are just projections p1 and p2 to vertical and
horizontal coordinates.



Finding Lf , Sf and Ef ?

Goal: Find [Sf : Ef ].

Df
� � //

Sf
��

TB
Lf
��

σf **

σinc

44W _ g TA

PA

��

Vf

!!D
DD

DD
DD

D
� � ι //Wf

�� ""F
FF

FF
FF

F

MB
(inc)∗

//___ MA

Lf = π1(Wf ).
Sf = Equalizer((p1)∗, (p2)∗)
Ef = ι∗(π1(Equalizer(p1, p2)))

Question: Is the fundamental group of the equalizer equal to the
equalizer of the fundaental groups?
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Proof of Theorem

Claim: [Sf : Ef ] =∞.

Reduce to an easier topological situation.

V
p(V)

p
p(V)

q

=
E

0 1

I Left picture: fill in some of the deleted curves of Wf to get
Ŵf

I Right picture: take the quotient by symmetry across diagonal
to get W f .
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Proof

Claim: [π1(Wf ) : ι∗(π1(Vf ))] =∞.

V
p(V)

p
p(V)

q

=
E

0 1

π1(Vf )

ι

yyttt
ttt

ttt
t

�� %%KK
KKK

KKK
KK

1-1

**TTT
TTTT

TTTT
TTTT

TTTT
TT

π1(Wf ) // // π1(Ŵf ) // // π1(W f )q // F2

I (q ◦ ι)∗ : π1(Vf ) ↪→ π1(P1 \ {3 points}) = F2

I 1→ Z→ π1(W f )→ F2 → 1, central extension.



Proof

Claim: [π1(Wf ) : ι∗(π1(Vf ))] =∞.

V
p(V)

p
p(V)

q

=
E

0 1

I ∃γ ∈ π1(Wf ) of infinite order, that maps to a central element
of π1(W f ).

I γδ(γ) ∈ Sf , and maps to the square of a central element in
π1(W f ).

I It follows that [Sf : Ef ] =∞.



A curious lemma

Lemma
Any element of Sf not in Ef is of the form γ1γ2 where γ1 acts
trivially on the base of the covering rel A but non-trivially on the
covering (rel A) and γ2 acts trivially on the covering (rel A) but is
non-trivial on the base.



Open Problems

I (Milnor) Is Perdn(0) connected for all n and d?

I Study properties of liftables, special liftables and the equalizer
subgroups of the braid group.

I Is there something special about degree two?

I Is the deformation space connected in augmented Teichmüller
space?



Thank you for listening
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