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Mathematics 

Fiber Strong Shape Theory for Topological Spaces 

Ruslan Tsinaridze 
Department of Mathematics, Batumi Shota Rustaveli State University 

ABSTRACT. In the paper we construct and develop a fiber strong shape theory for arbitrary 

spaces over fixed metrizable space 
0

B . Our approach is based on the method of Mardešic'-Lisica 

and instead of resolutions, introduced by Mardešic', their fiber preserving analogues are used. 

The fiber strong shape theory yields the classification of spaces over 
0

B  which is coarser than 

the classification of spaces over 
0

B  induced by fiber homotopy theory, but is finer than the 

classification of spaces over 
0

B  given by usual fiber shape theory. 

Math. Sub. Class.:54C55, 54C56, 55P55. 

Keywords and Phrases: Fiber shape, Fiber homotopy, Fiber resolution, Fiber shape expansion, 

Fiber strong expansion, B
0

A(N)R -space, B
0

A(N)E -space. 

                                                      

1  Resolution and Strong Expansions of Spaces over 
0

B  
 

An inverse system of the category B
0

Top  is a collection '= ( , , )X p 
X A  of space X  over 

0B  

indexed by a directed set A  and f.p. maps ' ':p X X 
 , '  , such that ' ' ' ' =p p p

   
   and 

= 1Xp 
,   A . 

A morphism 
'( , ) : = ( , , )f Y q  

 X Y B  of inverse systems of the category B
0

Top  consists of a 

function : B A  and of f.p. maps 
( ):f X Y    ,   B , such that whenever '  , then 

there is an index '( ), ( )      for which 
( ) ' ' '( )

 =   f p q f p       
. 

Two morphisms ( , ), ( , ) :f g   X Y  are said to be equivalent, 
0

B

f g , provided for each 

  B  there is an   A , ( ), ( )     , such that 
( ) ( ) =  f p g p        . 

Let B
0

pro - Top  be a category, whose objects are the inverse systems X  of the category B
0

Top  

and whose morphisms are the equivalence classes f  of morphisms ,( ) :f  X Y  with respect to 

relation 
0

B

. 

A morphism '= ( ) : = ( , , )p X X p  
p X A  from a rudimentary system ( )X  to an inverse 

system X  consists of the f.p. maps :p X X  ,  A , such that ' '=  p p p  
, '  . 

Definition 1.1  Let X  be a space over 0B  and let '= ( , , )X p 
X A  be an inverse system of the 

category B
0

Top . We say that : X p X  is a resolution over 0B  or fiber resolution of the space X  
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over 
0B  provided it satisfies the following two conditions: 

B
0

R 1).  Let B
0

ANRP , let  be an open covering of P  and let :h X P  be a f.p. map. Then there 

exist an index    and a f.p. map :f X P   such that h  and  f p  are -near. 

B
0

R 2).  Let B
0

ANRP  and let  be an open covering of P . Then there is an open cover '  of P  

with the following property: if    and ', :f f X P  are f.p. maps such that the f.p. maps  f p  

and ' f p  are ' -near, then there is an index '   such that the f.p. maps ' f p


 and '

' f p


 are 

-near. 

If in a fiber resolution ': = ( , , )X X p 
p X A  of the space X  over 

0B  each X  is an B
0

ANR , 

then we say that p  is a fiber B
0

ANR -resolution.  

The next theorem is essential in the construction of the fiber shape category for arbitrary 

spaces over 
0B . 

Theorem 1.2  Every space X  over a metrizable space 0B admits an B
0

ANR -resolution over 0B .      

In the proof of Theorem 1.2 we shall need the following lemma.  

Lemma 1.3  Let :f X Y  be a f.p. map from the topological space X  over 
0B  to an B

0
ANR -space 

Y . Then there exists an B
0

ANR -space Z  of weight 
0 0( ) { ( ), ( ), )}w Z max w X w B   and f.p. maps 

:g X Z  and :h Z Y  such that  =f h g .  

Definition 1.4  Let X  be a topological space over 
0B , '= ( , , )X p 

X A  an inverse system in B
0

Top  

and = ( ) :p X p X  a morphism of B
0

pro - Top . We call p  an expansion over 
0B  of the space X  

over 
0B  provided it has the following properties: 

B
0

E 1).  For every B
0

ANR -space P  over 
0B  and f.p. map :f X P  there is an index    and a f. 

p. map :h X P   such that 
0

 
B

h p f . 

B
0

E 2).  If ', :f f X P   are f. p. maps, B
0

ANRP  and '

0

  
B

f p f p  , then there is an index '   

such that '

' '

0

  
B

f p f p
 

.  

Definition 1.5  A morphism ': ( , , )X X p 
p A  is called a strong expansion over 

0B  provided it 

satisfies condition E
0
1)B  and the following condition: 

B
0

SE 2).  Let P  be an B
0

ANR -space, let 0 1, :f f X P  ,   A  be f.p. maps and let :F X I P   be 

a f.p. homotopy such that  

 0( ,0) = ( ),     ,S x f p x x X   

 1( ,1) = ( ),     .S x f p x x X   

Then there exists a '   and a f.p. homotopy ':H X I P

  , such that  

 0 ' '( ,0) = ( ),     ,H x f p z z X
 

  

 1 ' '( ,1) = ( ),     ,H x f p z z X
 

  

 '

0

( 1 ) (rel( )).I
B

H p S X I

   

It is clear that, every strong expansion over 0B  is an expansion over 0B . 

If all B
0

ANRX  , then p  is called an B
0

ANR -expansion and strong B
0

ANR -expansion, 
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respectively. 

The main result of section 1 is the following theorem. 

Theorem 1.6  Let X  be a topological space over 
0B . Then every resolution :p X X  over 

0B  

induces a strong B
0

ANR -expansion.                                                                                                       

Corollary 1.7  Every B
0

ANR -resolution over 
0B  induces B

0
ANR -expansion.                                     

Corollary 1.8  Every space X  over 
0B  admits a cofinite strong B

0
ANR -expansion.                           

In the proof of Theorem 1.6 we need the following lemma.  

Lemma 1.9  Let X  be a topological space over metrizamble space 
0B , let ',P P  be B

0
ANR -spaces, let 

':f X P , '

0 1, :h h P P  be f.p. maps and let :S X I P   be a f.p. homotopy such that  

 
0( ,0) = ( ),      ,S x h f x x X  

 
1( ,1) = ( ),      .S x h f x x X  

Then there exists an B
0

ANR -space 'P
 , f.p. maps ' ':f X P


 , ' ':h P P


  and a f.p. homotopy 

':K P I P

   such that  

 ' = ,h f f  

 '

0( ,0) = ( ),     K z h h z z P


  

 '

1( ,1) = ( ),     K z h h z z P


  

 '( 1 ) = .IK f S  

Lemma 1.10  Let :p X X  be a resolution over 
0B  and let 0 1, , ,P f f  and F  be as in 

0
2)BSE . Then 

for every open covering  of P , there exist a '   and a f.p. homotopy ':H X I P

   such 

that  

 0 ' '( ,0) =  ( ),         H y f p y y X
 

  

 1 ' '( ,1) =  ( ),         H y f p y y X
 

  

 '( , (1 ))S H p


   

 

2  On Fiber Strong Shape Category  

 

The objects of category 
0BSSH  are all topological spaces over 0B . The morphisms of category 

0BSSH  are defined by the following way.  

Let X p X  and Y q Y  be an 
0BANR -resolutions of X  and Y , respectively. Let 

[ ]f  X Y  be a some morphism of category 
0B

CPHTop . Let X  p X , Y  q Y ,[ ]f    X Y  

be another triple of fiber resolutions of spaces X  and Y  over 0B  and morphism of category

0B
CPHTop .  

Now define the following equivalence relation. We say the triples ( [ ]f p q ) and ( [ ]f   p q ) 

are equivalent if  
 [ ][ ] [ ][ ]f i j f    

where [ ]i  X X  and [ ]j  Y Y  are isomorphisms of category 
0B

CPHTop .  

The fiber strong shape morphisms F X Y   are the equivalence classes of triples ( [ ]f p q ) 

with respect to the above defined relation .  

Let F X Y   and G Y Z   be the fiber strong shape morphisms, defined by triples ( [ ])f p q  
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and ( [ ])g  p q , where Y  p Y , Z q Z  and [ ]g  Y Z .  

As we know there exists an unique morphism [ ]h  Y Y  of category 
0B

CPHTop  such that 

[ ][ ] [ ]h q q . Note that  

 [ ][ ] [ ] [ ][ ]j q q h q    

Hence, [ ] [ ]j h . Besides, [ ][ ] [ ][ ][1 ]g j g h
Z

.  

Thus, we can assume that the morphisms F  and G  are given by triples ( [ ])f p q  and 

( [ ])g  p q .  

Consequently, we can define the composition GF X Z   as the morphism given by triple 

( [ ][ ])g f p r .  

In the role an identity morphism X X I  we can take the morphism defined by triple

( , [1 ])Xp p .  

The obtained category 
0BSSH call the fiber strong shape category.  

Let 
0

( )X ob BSSH . By symbol 
0Bssh ( )X  denote the equivalence class of topological space X  

and call the fiber strong shape of X .  

For each f.p. map X Y    choose 
0BANR -resolutions X p X  and Y q Y . There exists 

a unique morphism [ ]f  X Y  of category 
0B

CPHTop  such that [ ][ ] [ ][ ]q f p  .  

We can define a functor 
00 0BSS   BB

Top SSH . By definition,  

 
0 0BSS ( ) ( )X X X ob   

B
Top  

and  

 
0 0

BSS ( ) ( )Mor X Y      
BTop  

Here   is a fiber strong shape morphism defined by triple ( [ ])f p q .  

As in [L-M] we can prove that functor 
0BSS  induces a functor

00 0BSS   BB
HTop SSH , which 

we call the fiber strong shape functor. By definition,  
 

0 0BSS ( ) ( )X X X ob  
B

HTop  

and  

 
0 0 0 0 0

B B B BSS ([ ] ) SS ( ) [ ] ( )Mor X Y      
BHTop  

Let us define a functor 
0

S  
0

B BSHSSH . Assume that S( )X X  for each object 

0
( )X ob BSSH . Let F X Y   be a fiber strong shape morphism given by a triple [ ])f (p q .  

Consider the morphism E([ ])f  as an image of [ ]f  with respect the functor 

0
E   BB 0

CPH pro - HTopTop . The triple (H H E[ ])f p q  generates a fiber shape morphism, which 

we denote by S(F) X Y  .  

Now we can formulate the following  

Theorem 2.5  There exists the following commutative diagram  

 
where B

0
S  is V.Baladze fiber shape functor 4[ ]B .                                                                                 

Corollary 2.6  Let X  and Y  be topological spaces over 0B . If B B
0 0

ssh ( ) = ssh ( )X Y , then 

B B
0 0

sh ( ) = sh ( )X Y .                                                                                                                                     

Remark 2.7  Using the methods developed in this paper and papers ([B 6 ], [L-M],[M 1 ], [M 2 ]) it is 

possible to construct fiber strong shape theory for category of arbitrary continuous maps.               
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