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A continuum is a compact, connected metric space.

Given a continuum X , we define its hyperspaces as the following
sets:

I 2X = {A ⊂ X | A is closed and nonempty},
I Cn(X ) = {A ∈ 2X | A has at most n components}, n ∈ IN,

I Fn(X ) = {A ∈ 2X | A has at most n points}, n ∈ IN.

They are topologized with the Vietoris Topology or the topology
generated by the Hausdorff metric, H.
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2X is the hyperspaces of closed subsets of X .

Cn(X ) is the n-fold hyperspace of X .

Fn(X ) is the n-fold symmetric product of X .

The n-fold symmetric product suspension of X is:

SFn(X ) = Fn(X )/F1(X )

Our main object of study is:

Cn1 (X ) = Cn(X )/C1(X )

both quotient spaces with the quotient topology.
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Let qn1
X : Cn(X ) →→ Cn1 (X ) denote the quotient map.

We denote qn1
X (C1(X )) by Cn1

X .

Remark
Note that qn1

X |Cn(X )\C1(X ) : Cn(X ) \ C1(X ) →→ Cn1 (X ) \ {Cn1
X } is a

homeomorphism.
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Lemma
Let X be a continuum and let n be a positive integer greater than
one. Then Cn(X ) \ C1(X ) is connected.

A continuum X has the property of Kelley provided that for each
ε > 0, there exists δ > 0 such that if a and b are two points of X
such that d(a, b) < δ, and a belongs to a subcontinuum A of X ,
then there exists there exists a subcontinuum B of X such that
b ∈ B and H(A,B) < ε. The number δ is called a Kelley number
for ε.
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Let A and B be two elements of Cn(X ). We say that the pair
(B,A) satisfies property (OA) provided that B ⊂ A and each
component of A intersects B.

Let us note that this condition guarantees the existence of an order
arc, in Cn(X ), from B to A when B 6= A.

Let X be a continuum and let n be a positive integer. If
B ∈ Cn(X ), define:

Cn(B,X ) = {A ∈ Cn(X ) | B ⊂ A};
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OAn(B,X ) = {A ∈ Cn(X ) | (B,A) satisfies property (OA)}.

If A ∈ OAn(B,X ), then

OAn(B,A) = {D ∈ OAn(B,X ) | D ⊂ A}.

It is known that these sets are absolute retracts.



OAn(B,X ) = {A ∈ Cn(X ) | (B,A) satisfies property (OA)}.

If A ∈ OAn(B,X ), then

OAn(B,A) = {D ∈ OAn(B,X ) | D ⊂ A}.

It is known that these sets are absolute retracts.



OAn(B,X ) = {A ∈ Cn(X ) | (B,A) satisfies property (OA)}.

If A ∈ OAn(B,X ), then

OAn(B,A) = {D ∈ OAn(B,X ) | D ⊂ A}.

It is known that these sets are absolute retracts.



Given a continuum X and a positive integer n, we define the
function αn

X : Cn(X ) →→ C1(Cn(X )) by:

αn
X (B) = OAn(B,X ).

Theorem
Let X be a continuum and let n be a positive integer. Then the
following are equivalent:

I X has the property of Kelley;

I αn
X is continuous;

I αn
X |F1(X ) is continuous.
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We now present properties of Cn1 (X ).

Theorem
Let X be a continuum and let n be an integer greater than one.
Then Cn1 (X ) \ {Cn1

X } is connected.

Theorem
If X is a continuum and n is an integer greater than one, then
each map from Cn1 (X ) into the unit circle, S1, is homotopic to a
constant map.
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A continuum X is connected im kleinen at a point p of X provided
that for each open subset U of X , containing p, there exists a
subcontinuum W of X such that p ∈ IntX (W ) ⊂W ⊂ U.

p
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Theorem
Let X be a continuum with the property of Kelley and let n be an
integer greater than one, then Cn1 (X ) is connected im kleinen at
Cn1
X .

Theorem
Let X be a continuum and let n be an integer greater than one. If
X has the property of Kelley, then Cn1 (X ) is contractible.

Theorem
Let X be a continuum and let n be an integer greater than one.
Then dim(Cn(X )) = dim(Cn1 (X )).
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A finite-dimensional continuum X is a Cantor manifold if for any
subset A of X such that dim(A) ≤ dim(X )− 2, then X \ A is
connected.

Theorem
Let X be a continuum and let n be an integer greater than one. If
Cn(X ) is a finite-dimensional Cantor manifold and
dim(Cn(X )) ≥ dim(C1(X )) + 2, then Cn1 (X )is a finite-dimensional
Cantor manifold.

Theorem
If n is an integer greater than one, then Cn1 ([0, 1]) and Cn1 (S1) are
2n-dimensional Cantor manifolds.
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Let Z be a metric space and let A be a nonempty subset of Z .
Then a map r : Z →→ A is a retraction provided that r(a) = a for
all a ∈ A. In this case A is a retract of Z .

Let Z be a metric space. By a deformation we mean a map
H : Z × [0, 1] →→ Z such that H((z , 0)) = z for each z ∈ Z . Let
A = {H((z , 1)) | z ∈ Z}. If the map r : Z →→ A given by
r(z) = H((z , 1)) is a retraction from Z onto A, then H is a
deformation retraction from Z onto A. If H is a deformation
retraction from Z onto A and for each a ∈ A and each t ∈ [0, 1],
H((a, t)) = a, then H is a strong deformation retraction from Z
onto A. The set A is called a deformation retract of Z (strong
deformation retract of Z , respectively).
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Theorem
Let X be a continuum and let n and m be integers greater than
one such that n < m. Then the following holds:

I If Cn(X ) is a retract of Cm(X ), then Cn1 (X ) is a retract of
Cm1 (X ).

I If Cn(X ) is a deformation retract of Cm(X ), then Cn1 (X ) is a
deformation retract of Cm1 (X ).

I If Cn(X ) is a strong deformation retract of Cm(X ), then
Cn1 (X ) is a strong deformation retract of Cm1 (X ).



A continuum X is aposyndetic provided that for each pair of points
x1 and x2 of X , there exists a subcontinuum W of X such that
x1 ∈ IntX (W ) ⊂W ⊂ X \ {x2}.

Lemma
Let X be a continuum. Then the following holds:

I If n is an integer greater than two, then SFn(X ) is
aposyndetic.

I If X is an aposyndetic continuum, then SF2(X ) is
aposyndetic.
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Let X be a continuum and let n be an integer greater than one.
Then X is locally connected if and only if Cn(X ) \ C1(X ) is locally
connected.
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Theorem
Let X be a continuum and let n be an integer greater than one.
Then Cn1 (X ) is homeomorphic to the Hilbert cube if and only if X
is locally connected and every arc in X has empty interior.

Theorem
Let n be an integer greater than one. If X is a continuum such
that Cn1 (X ) is homeomorphic to either Cn1 ([0, 1]) or Cn1 (S1), then X
is homeomorphic to either [0, 1] or S1.
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