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Basic Notions

Defn. Closed subset of space (X, J) is irreducible if it is nonempty and not
the union of two nonempty, proper closed subsets.

Defn. Space (X, J3) is sober if each irreducible closed subset is the closure of
unique singleton.

Note: To equivalent to each irreducible closed subset being closure of at
most one singleton.

Defn. Space (X, 3) is quasi-sober, or Sy, if each irreducible closed subset is
closure of at least one singleton.

Note: sober < Tg + So.

Defn. Space (X, 3) is hereditarily sober [hereditarily So] if each subspace is
sober [So].

Defn. Space (X, 3) is T if each {x} closed (equiv., each {x} locally closed).
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Basic Result. T, = sober = Ty; To = T1 = Tp = Tp; no other implications
except by transitivity.

Questions. How do the following fit in?
(1) locally Hausdorff
(2) hereditary sobriety
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Hereditary Sobriety and T,

Lemma. Sobriety is weakly hereditary, i.e., each closed subspace of sober
space is sober.

Theorem. Space (X, J) is hereditarily sober < it is sober and Tp.

Comments on Proof.

Necessity. Hereditarily sober = Tp is established by series of results from S.
F. Barger [QM, 1997].

Sufficiency. Two types of proof known to us: point-set proof; spectrum proof
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Point-Set Proof of Sufficiency.

Let Y < X, E irreduc. closed subset of Y. Show E closure of some singleton of
—X
Y. Deny. Consider E .

—X
Claim E not closure of any singleton in X.

Deny Claim; get contradiction to previous denial using X is Tp. So Claim
X —X
holds. Apply sobriety of X: £ reducible in Xand hence in E . But Lemma

—X
says E is sober.

X —
Hence 4 nonempty, proper closed £1,E, cE , E =E; UE,. Can show
Ei £ EandE; £ E sothat E=(E;NY)U(E; NY) reduces Ein Y.

Contradiction. SoYis Sgo. O
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Spectrum Proof of Sufficiency. Given space (Z,W), have ¥ : Z - pt(W) by
¥y(z) :W—-2 by YAz U)=yyulz)

Have ¥ inj. iff To, surj. iff So. Show X hereditarily So. Let (Y, 3y) be
subspace; show Wy surj. Let p € pt(Jy). Put

p:3->3y by olU=UNY

Then po g € pt(J). Since Xis So, Ix, € X, ¥x(x,) =pop. Since Xis Tp, there
is Up €T, x, € Up and {x,} closed in U, as subspace of X.

Claim xp, €Y.

Note: Claim implies Wy(x,) = p, so that Yis Sg. Two possible cases:
Case A Up,NY=. Denial of Claim implies Case A impossible.
Case B U, NY+ . Denial of Claimimplies Case B impossible.

So Claim true. O
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Corollary. Sober + T1 = hereditary sobriety.

Example. Sobriety # hereditary sobriety. Put Y= (N, J3.y). Y not sober. Put
X =YU {w}. For the topology I on X, do following: open nbhds of w are
cofinite subsets of X; an open set of n € Yis of form U U {w}, where

n € U € 3.5, and throw in the empty set. It follows that X is sober—X = {w};
and Jy = 3.5, SO Y as a subspace is not sober. So Xis not hereditarily sober.
So X is sober and not Tp and hence sober and not T;. Also the case Xis

To and not Tp.
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Hereditary Sobriety and Locally Hausdorff

Theorem. Locally T, space (X, J3) is (hered.) sober + T;. Hence each
manifold (including non-Hausdorff) is hereditarily sober + T1.

Comments on Proof.

For T1. Let x #y, have open T, nbhd U of x. If y notin U, then done. Assume
yin U. Jdisjoint,open V,Wc U, xeV,ye W. So Xis T;.

For quasi-sober. Let closed E X, |E| > 2. Letx € E. If E\ {x} closed, then
done, since E = (E\ {x}) U {x} reduces E. Suppose E\ {x} not closed—this

forces x € E\ {x}. Let U be open T, nbhd of x, let y € UN E with y = x. Then 3
disjoint, open V,Wc U, xe V, y € W. Then

E=E\(vnWwW)=(E\U)U(E\W)

reduces E. Hence no non-singleton closed subset is irreducible. Since X is
T1, irreducible closed subsets are precisely closures of singletons; so Xis
qguasi-sober. O
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Counter-Example (hereditarily sober + T4, not locally Hausdorff). Put
X = (0, 00) x{0HUINx {1} uUi(1,2)}
Let 3r be usual topology on [R. The basis of a topology on X is given by:
for (r,0) € (0,0) x {0}, put By, o) ={Ux1{0}:re Ue Ig};
for (n,1) e Nx {1}, put B(,1) ={[{(n, 1) }U(Ux{0})\{(n,0)}]:neUeIgl;
and for (1,2), put B, =1{{(1,2)}U(l(r,0)x{0,1}INX) :re(0,)}.

Let 3 be topology on X generated by | B, as basis. Observe X\{(1,2)}is

xeX

open and manifold, X is T1. The point (1, 2) has no Hausdorff nbhd, so X not
locally Hausdorff. And each closed subset E with |E| > 2 is reducible, so X
quasi-sober, hence hereditarily sober.
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Counter-Example (hereditarily sober + T, not locally Hausdorff). Let
{An},cn be countable, pairwise disjoint family of countably infinite sets.
Choose two, one-to-one sequences {x,},_1, ynl,_; such that

({Xn}le N {yn}le) — @, and
Vie N; Ai ﬂ ({Xn}le U {yn}le) — @

VneN, put Yo =A, U{xn, yn}, chooseze U Y, putX=UJ Y, U{z]. The
n=1 n=1
basis of a topology on X is given by:

forxe | A,, put B, ={{x}};

neN

forneN, put By, ={{x,}U(AL\F): FC A, IFI < Nol;
forneN, put By, ={ly.} U(A,\F): FC Ay, IFl < Rol;

and forz, put B, =X\ U Y,:neNj}.
neN
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Let T be topology on X generated by | B, as basis. Note each Y, is

xeX
modified Fort space, hence is locally T, but not T»; it follows X is T; and also

not locally T, (z has no Hausdorff nbhd).

Each closed subset E with |E| > 2 is reducible, so X is quasi-sober, hence

m

hereditarily sober: this uses that X is T1, that each |J Y; is clopen in X, and
=1

| =
following cases:

Case A Eis finite. Choose x € E and write E = {x} U (E\ {x}).

Case B EH(U Anth@. Choose x € E and write E = {x} U (E\ {x}).
neN

Case C Eis infinite and EN ( U AnJ =d. AmeN, x, e Eory, € E. Write
neN

E=MUT, Y)NEIUIE\ U, vY;l.

So each closed subset E with |E| > 2 is reducible. O
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Sobriety and T;
Example (Xu-Yuan (2009)). Let 3r be usual topology on R. Put
Jy={Ue 3g:UdenselU{T].

Then (R, 34) is T1 but not T». Xu-Yuan (2009) claim (R, 34) is sober (so it is
sober + T1 but not Hausdorff). This claim is now examined.

Lemma. Let X be any topological space, U any open dense subset, and D any
dense subset. Then UN D is dense.

Lemma. Let X be any topological space such that each nonempty open
subset is dense. Then Xis irreducible closed set.

Theorem. Let X be any nonempty T; topological space such that each
nonempty open subset is dense. Then X is sober if and only if [X| =1. In
particular, if |[X| > 2, then X is infinite and non-sober.
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Comments. Following hold:

(1) Sierpinski space is sober but not T1. It can also be shown that Sierpinski
space is Tp. Hence this space is hereditarily sober—or sober + Tp—and
not T;. Itis also not locally Hausdorff (previous section).

(2) For infinite X, the space (X, 3) is T1 but not sober.

(3) (R, 34) of Xu-Yuan (2009) is T; but not sober. Their claim of sobriety is
false.
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Summary

See Hasse diagrams on later slides.
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