University of Dayton eCommons

Summer Conference on Topology and Its Applications

Department of Mathematics

6-2017

Relationships between Hereditary Sobriety, Sobriety, TD, T1, and Locally Hausdorff

Stephen Rodabaugh
Youngstown State University, rodabaug@math.ysu.edu

Jeffrey T. Denniston

Kent State University, jdennist@kent.edu

Austin Melton

Kent State University, amelton@kent.edu

Jamal K. Tartir
Youngstown State University, jktartir@ysu.edu

Follow this and additional works at: http://ecommons.udayton.edu/topology_conf
Part of the Geometry and Topology Commons, and the Special Functions Commons

eCommons Citation

Rodabaugh, Stephen; Denniston, Jeffrey T.; Melton, Austin; and Tartir, Jamal K., "Relationships between Hereditary Sobriety, Sobriety, TD, T1, and Locally Hausdorff" (2017). Summer Conference on Topology and Its Applications. 54. http://ecommons.udayton.edu/topology_conf/54

This Topology + Asymmetric Structures is brought to you for free and open access by the Department of Mathematics at eCommons. It has been accepted for inclusion in Summer Conference on Topology and Its Applications by an authorized administrator of eCommons. For more information, please contact frice 1@udayton.edu, mschlangen1@udayton.edu.

Relationships Between Hereditary Sobriety, Sobriety, T_D , T_1 , and Locally Hausdorff

Jeffrey T. Denniston, Austin Melton, Stephen E. Rodabaugh*, Jamal K. Tartir

Department of Mathematical Sciences Kent State University, Kent, OH, USA, 44242, jdennist@kent.edu

Departments of Computer Science and Mathematical Sciences Kent State University, Kent, OH, USA, 44242, amelton@kent.edu

Institute for Applied Topology and Topological Structures
Youngstown State University, Youngstown, OH, USA 44555-3347
rodabaug@math.ysu.edu, serodabaugh@ysu.edu

Institute for Applied Topology and Topological Structures Youngstown State University, Youngstown, OH, USA 44555-1812, jktartir@ysu.edu

*Presenter

32th Summer Topology Conference, 26–30 June 2017

Contents

Basic Notions

Hereditary Sobriety and T_D

Hereditary Sobriety and Locally Hausdorff

Sobriety and T_1

Summary

References

<u>F</u>oundations & **<u>A</u>**pplications of **<u>C</u>**omputational **<u>T</u>**opology & Information Processing FACT (2018): KSU, Institute for Applied Topology and Topological Structures, YSU 09–12 October 2018, Youngstown, Ohio

Basic Notions

Defn. Closed subset of space (X, \mathfrak{T}) is *irreducible* if it is nonempty and not the union of two nonempty, proper closed subsets.

Defn. Space (X, \mathfrak{I}) is *sober* if each irreducible closed subset is the closure of unique singleton.

Note: T_0 equivalent to each irreducible closed subset being closure of at most one singleton.

Defn. Space (X, \mathfrak{I}) is *quasi-sober*, or S_0 , if each irreducible closed subset is closure of at least one singleton.

Note: sober $\Leftrightarrow T_0 + S_0$.

Defn. Space (X, \mathfrak{T}) is hereditarily sober [hereditarily S_0] if each subspace is sober $[S_0]$.

Defn. Space (X, \mathfrak{T}) is T_D if each $\{x\}'$ closed (equiv., each $\{x\}$ locally closed).

Basic Result. $T_2 \Rightarrow \text{sober} \Rightarrow T_0$; $T_2 \Rightarrow T_1 \Rightarrow T_D \Rightarrow T_0$; no other implications except by transitivity.

Questions. How do the following fit in?

- (1) locally Hausdorff
- (2) hereditary sobriety

Hereditary Sobriety and T_D

Lemma. Sobriety is weakly hereditary, i.e., each closed subspace of sober space is sober.

Theorem. Space (X, \mathfrak{T}) is hereditarily sober \Leftrightarrow it is sober and T_D .

Comments on Proof.

Necessity. Hereditarily sober $\Rightarrow T_D$ is established by series of results from S. F. Barger [QM, 1997].

Sufficiency. Two types of proof known to us: point-set proof; spectrum proof

Point-Set Proof of Sufficiency.

Let $Y \subset X$, E irreduc. closed subset of Y. Show E closure of some singleton of Y. Deny. Consider E^{X} .

<u>Claim</u> \overline{E}^X not closure of any singleton in X.

Deny Claim; get contradiction to previous denial using X is T_D . So Claim holds. Apply sobriety of X: \overline{E}^X reducible in X and hence in \overline{E}^X . But Lemma says \overline{E}^X is sober.

Hence \exists nonempty, proper closed $E_1, E_2 \subset \overline{E}^X$, $\overline{E}^X = E_1 \cup E_2$. Can show $E_1 \nsubseteq E$ and $E_2 \nsubseteq E$, so that $E = (E_1 \cap Y) \cup (E_2 \cap Y)$ reduces E in Y.

Contradiction. So Y is S_0 . \square

Spectrum Proof of Sufficiency. Given space (Z, \mathcal{W}) , have $\Psi_Z : Z \to pt(\mathcal{W})$ by

$$\Psi_Z(z): \mathcal{W} \to \mathbf{2}$$
 by $\Psi_Z(z)(U) = \chi_U(z)$

Have Ψ_Z inj. iff T_0 , surj. iff S_0 . Show X hereditarily S_0 . Let (Y, \mathfrak{T}_Y) be subspace; show Ψ_Y surj. Let $p \in pt(\mathfrak{T}_Y)$. Put

$$\varphi: \mathfrak{I} \to \mathfrak{I}_Y$$
 by $\varphi(U) = U \cap Y$

Then $p \circ \varphi \in pt(\mathfrak{I})$. Since X is S_0 , $\exists x_p \in X$, $\Psi_X(x_p) = p \circ \varphi$. Since X is T_D , there is $U_p \in \mathfrak{I}$, $x_p \in U_p$ and $\{x_p\}$ closed in U_p as subspace of X.

Claim $x_p \in Y$.

Note: Claim implies $\Psi_Y(x_p) = p$, so that Y is S_0 . Two possible cases:

<u>Case A</u> $U_p \cap Y = \emptyset$. Denial of Claim implies Case A impossible.

<u>Case B</u> $U_p \cap Y \neq \emptyset$. Denial of Claim implies Case B impossible.

So Claim true. \Box

Corollary. Sober + $T_1 \Rightarrow$ hereditary sobriety.

Example. Sobriety \Rightarrow hereditary sobriety. Put $Y = (\mathbb{N}, \mathfrak{F}_{cof})$. Y not sober. Put $X = Y \cup \{\omega\}$. For the topology \mathfrak{T} on X, do following: open nbhds of ω are cofinite subsets of X; an open set of $n \in Y$ is of form $U \cup \{\omega\}$, where $n \in U \in \mathfrak{T}_{cof}$, and throw in the empty set. It follows that X is sober— $X = \overline{\{\omega\}}$; and $\mathfrak{T}_{Y} = \mathfrak{T}_{cof}$, so Y as a subspace is not sober. So X is not hereditarily sober. So X is sober and not T_{D} and hence sober and not T_{D} . Also the case X is T_{D} and not T_{D} .

Hereditary Sobriety and Locally Hausdorff

Theorem. Locally T_2 space (X, \mathfrak{T}) is (hered.) sober $+ T_1$. Hence each manifold (including non-Hausdorff) is hereditarily sober $+ T_1$.

Comments on Proof.

For T_1 . Let $x \neq y$, have open T_2 nbhd U of x. If y not in U, then done. Assume y in U. \exists disjoint, open V, $W \subset U$, $x \in V$, $y \in W$. So X is T_1 .

For quasi-sober. Let closed $E \subset X$, $|E| \ge 2$. Let $x \in E$. If $E \setminus \{x\}$ closed, then done, since $E = (E \setminus \{x\}) \cup \{x\}$ reduces E. Suppose $E \setminus \{x\}$ not closed—this forces $x \in \overline{E \setminus \{x\}}$. Let U be open T_2 nbhd of x, let $y \in U \cap E$ with $y \ne x$. Then \exists disjoint, open V, $W \subset U$, $x \in V$, $y \in W$. Then

$$E = E \setminus (V \cap W) = (E \setminus U) \cup (E \setminus W)$$

reduces E. Hence no non-singleton closed subset is irreducible. Since X is T_1 , irreducible closed subsets are precisely closures of singletons; so X is quasi-sober. \square

quasi-sober, hence hereditarily sober.

Counter-Example (hereditarily sober + T_1 , not locally Hausdorff). Put

$$X = [(0, \infty) \times \{0\}] \cup [\mathbb{N} \times \{1\}] \cup \{(1, 2)\}$$

Let $\mathfrak{I}_{\mathbb{R}}$ be usual topology on \mathbb{R} . The basis of a topology on X is given by:

for
$$(r,0) \in (0,\infty) \times \{0\}$$
, put $\mathcal{B}_{(r,0)} = \{U \times \{0\} : r \in U \in \mathfrak{T}_{\mathbb{R}}\}$;

for
$$(n, 1) \in \mathbb{N} \times \{1\}$$
, put $\mathcal{B}_{(n, 1)} = \{ [\{(n, 1)\} \cup (U \times \{0\}) \setminus \{(n, 0)\}] : n \in U \in \mathfrak{T}_{\mathbb{R}} \};$

and for (1, 2), put
$$\mathcal{B}_{(1,2)} = \{ \{ (1,2) \} \cup ([(r,\infty) \times \{0,1\}] \cap X) : r \in (0,\infty) \}.$$

Let \mathfrak{I} be topology on X generated by $\bigcup_{x \in X} \mathfrak{B}_X$ as basis. Observe $X \setminus \{(1,2)\}$ is open and manifold, X is T_1 . The point (1,2) has no Hausdorff nbhd, so X not locally Hausdorff. And each closed subset E with $|E| \geq 2$ is reducible, so X

Counter-Example (hereditarily sober + T_1 , not locally Hausdorff). Let $\{A_n\}_{n\in\mathbb{N}}$ be countable, pairwise disjoint family of countably infinite sets. Choose two, one-to-one sequences $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty}$ such that

$$(\{x_n\}_{n=1}^{\infty} \cap \{y_n\}_{n=1}^{\infty}) = \emptyset, \text{ and}$$

$$\forall i \in \mathbb{N}, A_i \cap (\{x_n\}_{n=1}^{\infty} \cup \{y_n\}_{n=1}^{\infty}) = \emptyset.$$

 $\forall n \in \mathbb{N}$, put $Y_n = A_n \cup \{x_n, y_n\}$, choose $z \notin \bigcup_{n=1}^{\infty} Y_n$, put $X = \bigcup_{n=1}^{\infty} Y_n \cup \{z\}$. The basis of a topology on X is given by:

for
$$x \in \bigcup_{n \in \mathbb{N}} A_n$$
, put $\mathcal{B}_x = \{\{x\}\}$;
for $n \in \mathbb{N}$, put $\mathcal{B}_{x_n} = \{\{x_n\} \cup (A_n \setminus F) : F \subset A_n, |F| < \aleph_0\}$;
for $n \in \mathbb{N}$, put $\mathcal{B}_{y_n} = \{\{y_n\} \cup (A_n \setminus F) : F \subset A_n, |F| < \aleph_0\}$;
and for z , put $\mathcal{B}_z = \left\{X \setminus \bigcup_{n \in \mathbb{N}} Y_n : n \in \mathbb{N}\right\}$.

Let \mathfrak{I} be topology on X generated by $\bigcup_{x \in X} \mathcal{B}_X$ as basis. Note each Y_n is modified Fort space, hence is locally T_2 , but not T_2 ; it follows X is T_1 and also not locally T_2 (z has no Hausdorff nbhd).

Each closed subset E with $|E| \ge 2$ is reducible, so X is quasi-sober, hence hereditarily sober: this uses that X is T_1 , that each $\bigcup_{i=1}^m Y_i$ is clopen in X, and following cases:

<u>Case A</u> *E* is finite. Choose $x \in E$ and write $E = \{x\} \cup (E \setminus \{x\})$.

Case B
$$E \cap \left(\bigcup_{n \in \mathbb{N}} A_n\right) \neq \emptyset$$
. Choose $x \in E$ and write $E = \{x\} \cup (E \setminus \{x\})$.

Case C *E* is infinite and
$$E \cap \left(\bigcup_{n \in \mathbb{N}} A_n\right) = \emptyset$$
. $\exists m \in \mathbb{N}, x_m \in E \text{ or } y_m \in E$. Write
$$E = \left[\left(\bigcup_{i=1}^m Y_i\right) \cap E\right] \cup \left[E \setminus \bigcup_{i=1}^m Y_i\right].$$

So each closed subset E with $|E| \ge 2$ is reducible. \square

Sobriety and T_1

Example (Xu-Yuan (2009)). Let $\mathfrak{I}_{\mathbb{R}}$ be usual topology on \mathbb{R} . Put

$$\mathfrak{I}_d = \{ U \in \mathfrak{I}_\mathbb{R} : U \text{ dense} \} \cup \{\emptyset\}.$$

Then $(\mathbb{R}, \mathfrak{I}_d)$ is T_1 but not T_2 . Xu-Yuan (2009) claim $(\mathbb{R}, \mathfrak{I}_d)$ is sober (so it is sober + T_1 but not Hausdorff). This claim is now examined.

Lemma. Let X be any topological space, U any open dense subset, and D any dense subset. Then $U \cap D$ is dense.

Lemma. Let *X* be any topological space such that each nonempty open subset is dense. Then *X* is irreducible closed set.

Theorem. Let X be any nonempty T_1 topological space such that each nonempty open subset is dense. Then X is sober if and only if |X| = 1. In particular, if $|X| \ge 2$, then X is infinite and non-sober.

Comments. Following hold:

- (1) Šierpinski space is sober but not T_1 . It can also be shown that Šierpinski space is T_D . Hence this space is hereditarily sober—or sober + T_D —and not T_1 . It is also not locally Hausdorff (previous section).
- (2) For infinite X, the space (X, \mathfrak{I}_{cof}) is T_1 but not sober.
- (3) $(\mathbb{R}, \mathfrak{I}_d)$ of Xu-Yuan (2009) is T_1 but not sober. Their claim of sobriety is false.

Hereditary Sobriety, T_D , Locally Hausdorff

Summary

See Hasse diagrams on later slides.

References

- [1] S. F. Barger, Hereditary sobriety and the cardinality of T_1 topologies on countable sets, *Quaestiones Mathematicae* **20:1**(1997), 117–126.
- [2] S. F. Barger, Noetherian like spaces and cardinality of spaces, *Q and A in General Topology* **25**(2007), 25–130.
- [3] Encyclopedia of Mathematics, Sober space, URL:http//www.encyclopediaofmath.org/index.php?title=Sober_space%\&ildid=37249.
- [4] W. K. Ho, T_1 , sober, but not Hausdorff, *Topology Atlas: Ask a Topologist* (28 May 2004).
- [5] H. T. Holden, Sobreity[sic] vs. non-Hausdorff manifolds, *Topology Atlas:* Ask a Topologist (9 January 2005).
- [6] P. T. Johnstone, *Stone Spaces*, Cambridge University Press (Cambridge, 1982).
- [7] U. Luoshan Xu, Zhenyan Yuan, Decomposition properties of sober topologies on the same sets, Internat. *J. Contemp. Math. Sci.* **4:28**(2009), 1397–1403.

- [8] A. Pultr, A. Tozzi, Separation axioms and frame representations of some topological facts, *Appl. Cat. Struct.* **2**(1994), 107–118.
- [9] L. A. Steenrod, J. A. Seebach, *Counterexamples in Topology*, second edition, Springer-Verlag (1978), Dover (1995).

<u>Foundations & Applications of Computational Topology & Information Processing</u>
FACT (2018): KSU, Institute for Applied Topology and Topological Structures, YSU
09–12 October 2018, Youngstown, Ohio



