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TOPOLOGY and ORDER

... with apologies to L. Nachbin, Topology and Order, van
Nostrand, 1965 (English translation)

* Topologies as orders
Alexandroff topologies as quasiorders

* Orders on sets of topologies
Lattices of topologies on a (finite) set

* Topologies on ordered sets
Partially ordered topological spaces (X , τ,≤)

* Orders on topologies on ordered sets
Lattices of convex topologies on a poset
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An Alexandroff topology is a topology closed under arbitrary
intersections of open sets.

Equivalently,
an Alexandroff topology is a topology whose closed sets also form
a topology, or

an Alexandroff topology is a topology in which every point x has a
smallest neighborhood N(x)

P. Alexandroff [Diskrete Räume, Mat. Sb. (N.S.) 2 (1937)
501–518].

Also called principal topologies.
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Some Examples

For ∅ 6= A ⊆ X ,
Subset(A) = {U : U ⊆ A} ∪ {X}.

Superset(A) = {U : A ⊆ U} ∪ {∅}.

Disjoint(A) = {U : A ∩ U = ∅} ∪ {X}.

Superset({a}) is the particular point topology.
Disjoint({a}) is the excluded point topology.
Superset(∅) = Subset(X ) = P(X ) is the discrete topology.
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B is disjoint from A iff B ⊆ X − A

A is disjoint from B iff X − A ⊇ B

so Disjoint(A) = Subset(X − A).

And the Superset(B)-closed set are the sets A disjoint from B,

so the topology of Superset(B)-closed sets is Disjoint(B).
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T T -closed sets

Super(S) Disjoint(S)

Disjoint(S) Super(S)

Sub(S) Super(X − S)

Disjoint(S) = Sub(X − S)

T minimal neighborhoods N(x)

Super(S) N(x) = {x} ∪ S

Disjoint(S) N(x) =

{
X if x ∈ S
{x} if x 6∈ S

Sub(S) N(x) =

{
{x} if x ∈ S
X if x 6∈ S

Table: Super(S),Disjoint(S), and Sub(S)
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Another large class of Alexandroff topologies:

Topologies on Finite Sets

The only Hausdorff topology on a finite set X is the discrete
topology.

Every point is open.

Every set is open.

No point is near any other point.

Every function with domain X is continuous.

The only convergent sequences are eventually constant.
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Another large class of Alexandroff topologies:

Topologies on Finite Sets

Non-Hausdorff topologies can have convergent sequences
converging to two or more different limits.

This is not a strong case for topologies on finite sets.
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Who would use non-Hausdorff topological properties such as
nearness and convergence on finite sets?
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Quasiorders

For any Alexandroff topology, there is an associated order relation

a ∼< b ⇐⇒ a ∈ cl{b}

which is reflexive and transitive.
This is the specialization quasiorder.

Every quasiorder ∼< gives an equivalence relation ≈ defined by
a ≈ b iff a ∼< b and b ∼< a,

and defines a partial order ≤ on the equivalence classes by taking
[a] ≤ [b] ⇐⇒ a ∼< b.
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Conversely, every partial order on equivalence classes of an
equivalence relation on X gives a quasiorder on X ,

and every quasiorder on X gives a topology on X by the relation

a ∼< b ⇐⇒ a ∈ cl{b}.

The increasing hull of A = i(A) = ↑A = {y ∈ X : ∃a ∈ A, y ∼> a}
The decreasing hull of A = d(A) = ↓A = {y ∈ X : ∃a ∈ A, y ∼< a}

A is an increasing set if A = i(A);
A is a decreasing set if A = d(A);
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The link between quasiorders and Alexandroff topologies

Order Theory Topology

x ∼< y ⇐⇒ x ∈ d(y) ⇐⇒ x ∈ cl{y}
m m

y ∼> x ⇐⇒ y ∈ i(x) ⇐⇒ y ∈ N(x)

decreasing sets are closed sets
d(A) = cl(A)

increasing sets are open sets
i({x}) = N(x)
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Example 1

The Hasse diagram for a quasiorder and a basis for its
specialization topology



Alexandroff Tops. & Quasiorders Lattice of Alex. Tops. Other Properties

Example 2

Define ∼< on R by x ∼< y if and only if x = y or x ∈ Z.

The Hasse diagram for the partial order on equivalence classes:

� c c c c c c c -
s Z

R− Z

Open sets = increasing sets . . .
The associated topology is Disjoint(Z).
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Aside: Math on Equivalence Classes

• A quasiorder on X gives a partial order on equivalence classes,
and the increasing sets are a topology on X .

• A pseudometric on X (drop d(x , y) = 0⇒ x = y) gives a
metric on equivalence classes from x ≈ y iff d(x , y) = 0.

Example: d(f , g) =
∫ 1

0 |f (x)− g(x)|dx .

• Quotient spaces correspond to topologies on equivalence
classes.

Such situations may arise from loss of resolution.
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The Lattice of Topologies
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Coverings in the lattice of topologies on a finite set

Theorem (see TR 1998)

Represent two topologies on a finite set X by (P,≤P) and
(Q,≤Q) where P,Q are partitions and ≤P ,≤Q are partial orders
on the partitions.
If (P,≤P) covers (Q,≤Q), then either

1 P = Q and ≤Q contains exactly one more ordered pair than
≤P , or

2 (Q,≤Q) is obtained by identifying a pair of blocks from
(P,≤P), one of which covers the other.
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Corollary

The atoms in the lattice of topologies on a finite set X are of form
{A,X − A} with a ∼< b ∀a ∈ A, b ∈ X − A.
The coatoms are discrete partitions with orders of form
∆ ∪ {(a, b)} for some distinct a, b ∈ X .
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Complementation

Tops τ and τ ′ on X are complements iff τ ∧ τ ′ = {∅,X} and
τ ∨ τ ′ = P(X ).

If X if finite, τ and τ ′ are complements iff N(x) ∩ N ′(x) = {x}
and the only sets open in both τ and τ ′ are ∅ and X .

If |X | = n, 3 ≤ n <∞, any topology (other than discrete and
indiscrete) on X has...

at least 2 complements. (Hartmanis, 1958)

at least n-1 complements. (Schnare, 1968)

at least 2n complements (except for some special cases).
(Brown & Watson, 1996)
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Convex complements in finite totally ordered top.
spaces

Here are bases for a topology and two of its complements.
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Convex complements in finite totally ordered top.
spaces

To determine convexity, we need an order.

A is convex iff A = i(A) ∩ d(A).

A partially ordered topological space (X , τ,≤) has a convex
topology iff τ has a basis of convex sets.

OPEN QUESTION: Does every convex topology on a poset (X ,≤)
have a convex complement?
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Theorem (TR 2013)

Every convex topology τ on a totally ordered set has a convex
complement τ ′.

The proof is by constructive algorithm using the basis of minimal
neighborhoods N(x) for τ and N ′(x) for τ ′.

Theorem: Except at the left and right endpoints
τ ′ “breaks to the left of x” iff τ does not, and
τ ′ “breaks to the right of x” iff τ does not.
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τ ′′ τ 6= τ ′′

Theorem: τ ′ = τ ′′′
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Theorem (TR & Mhemdi, 2017)

Any convex topology on a product of totally ordered sets with the
product order (a, b) ≤ (c , d) iff a ≤ c and b ≤ d has a convex
complement. (finite number of finite factors)

Example:

τ

View each row as a totally ordered (sub)space.
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Theorem (TR & Mhemdi, 2017)

Any convex topology on a product of totally ordered sets with the
product order (a, b) ≤ (c , d) iff a ≤ c and b ≤ d has a convex
complement. (finite number of finite factors)

Example:

τ τ∗

Use the algorithm to get a convex complement of each row.
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Theorem (TR & Mhemdi, 2017)

Any convex topology on a product of totally ordered sets with the
product order (a, b) ≤ (c , d) iff a ≤ c and b ≤ d has a convex
complement.(finite number of finite factors)

Example:

τ τ∗ τ ′

Link left end of row n to right end of row n − 1, and
link right end of row n − 1 to left end of row n “as needed”*.
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* See TR & Mhemdi 2017

Figure: Link/Break intervals
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* See TR & Mhemdi 2017
For each j with 1 ≤ j ≤ n we define an interval (j−, j

+) of
rows to be τ ′-linked, where

j+ =

{
the first integer above the first s ≥ j if ∃ s ≥ j
n + 1 otherwise

j− =


the first c < j if j ∈ any

s
the first c below the first

s
< j if j 6∈ any

s
0 otherwise.
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In this algorithm for a convex complement τ ′ of a convex topology
τ on a product of totally ordered spaces,

τ ′′ 6= τ.

OPEN CONJECTURE: τ ′′′ = τ ′.
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Properties of Alexandroff Tops

Alexandroff Topology Specialization quasiorder

T0 Partial order

T1 = T2 Equality
= discrete = metrizable

T3 = completely regular Equivalence relation
= pseudometrizable

from
Erné & Stege, Counting Finite Posets and Topologies
Order, 1991
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Properties of Alexandroff Tops

Alexandroff Topology Specialization quasiorder

Submaximal ??

Door ??

Resolvable ??

n-resolvable ??
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Properties of Alexandroff Tops

(X , τ) is submaximal iff every dense set is open

iff A− A is closed ∀A ⊆ X
iff A◦ = ∅ ⇒ A is closed.

[Mahdi & El Atrash, 2005] An Alexandroff space X is submaximal
iff the graph of the specialization order has no chains of length
greater than 1.
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Properties of Alexandroff Tops

(X , τ) is a door space iff every subset is either open or closed.

An Alexandroff space X is a door space iff the graph of the
specialization order ∼< has no chains of length greater than 1, and
all chains of length 1 contain a common (maximal or minimal)
point.

OR
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Properties of Alexandroff Tops

(X , τ) is a door space iff every subset is either open or closed.

An Alexandroff space X is a door space iff the graph of the
specialization order ∼< has no chains of length greater than 1, and
all chains of length 1 contain a common (maximal or minimal)
point.

Proof: (⇐) Suppose ∼< has no chains of length > 1 and all chains
of length 1 contain a common minimal point m.

If A is not closed = not decreasing, A contains x ∼>m but m 6∈ A.
m 6∈ A⇒ A is increasing = open.
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Properties of Alexandroff Tops

(X , τ) is a door space iff every subset is either open or closed.

An Alexandroff space X is door iff the graph of the specialization
order ∼< has no chains of length greater than 1, and all chains of
length 1 contain a common (maximal or minimal) point.

Proof: (⇒) If the condition on ∼< fails, either
there exist a chain of 3 distinct points a ≺ b ≺ d
or
there exists chains a ≺ b and c ≺ d of length 1
with no common point.

In either case, {a, d} is neither increasing nor decreasing
(open nor closed).
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Properties of Alexandroff Tops

X is resolvable iff X contains two disjoint dense subsets,
is n-resolvable if it contains n mutually disjoint dense subsets,
and is exactly n-resolvable if it is n- but not (n + 1)-resolvable.

[Hewitt, 1943], [Comfort, Garćıa-Ferreira, 1996], [Comfort, Hu, 2012]

An Alexandroff topological space (X , τ) = (X ,�) is resolvable
if and only if (X ,�) has no maximal elements
if and only if (X , τ) has no isolated points.

No maximal points ⇒ i(x) contains infinitely many elements
OR i(x) contains a cycle: x1 ≺ x2 ≺ · · · ≺ xn−1 ≺ xn = x1

A is dense in X iff X ⊆ cl(A) = d(A)
iff ∀x ∈ X , ∃a ∈ A with x ∼< a
iff A is cofinal in X .
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[A.H. Stone, 1968] A quasiordered set has a partition into n
mutually disjoint cofinal sets iff each element has at least n
successors.

An Alexandroff space (X ,�) is n-resolvable iff i(x) contains at
least n distinct elements ∀x ∈ X ;

that is, iff every maximal element [x ] in the T0-reflection T0(X )
arises from a cycle x = x1 ≺ x2 ≺ · · · ≺ xn−1 ≺ xn = x with at
least n distinct elements xi .

An Alexandroff space (X ,�) is exactly n-resolvable iff it is
n-resolvable and there exists a maximal element [x ] in T0(X )
generated from a cycle of length exactly n.
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Functionally Alexandroff Spaces

Any function f : X → X defines an Alexandroff topology P(f ) on
X by taking A to be closed iff f (A) ⊆ A (iff A is f -invariant).

An Alexandroff space (X , τ) is
Functionally Alexandroff [Zadeh Shirazi & Golestani 2011]

or primal [Echi 2012]
iff τ = P(f ) for some f : X → X .

In such a space,
d(x) = cl{x} = {f n(x) : n ≥ 0} = the orbit of x
i(x) = N(x) = {y ∈ X : f n(y) = x for some n ≥ 0}.

Sami Lazaar and his students.
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Functionally Alexandroff Spaces

A functionally Alexandroff space X is n-resolvable iff ∀x ∈ X ,
|N(x)| ≥ n.

An n-resolvable space X is exactly n-resolvable iff it has at least
one periodic point of period n.

The T0-reflection of X is resolvable iff N(x) is infinite for each
x ∈ X .



Alexandroff Tops. & Quasiorders Lattice of Alex. Tops. Other Properties

Functionally Alexandroff Spaces

A space X is resolvable iff it has a Dense set whose Complement is
also Dense. Such a set is called a CD-set.

[Lazaar, Dahane, Turki, & TR] Suppose X is a finite resolvable
functionally Alexandroff space.

The number of CD-sets is
∏n

i=1(2pi − 2) where n is the number of
cycles and pi is the length of the i th cycle.

Proof: Finite resolvable functionally Alexandroff ⇒ every point is
periodic.
cl(CD) = d(CD) = X iff CD contains at least one point from each
cycle. For its complement to be dense, CD must exclude at least
one point from each cycle. Thus, for each cycle of length pi , CD
contains a nonempty, proper subset of those pi points. There are
2pi − 2 such subsets.
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33rd Summer Conference on
Topology and its Applications

July 17-20, 2018
Western Kentucky University (Bowling Green, KENTUCKY)

Set-theoretic topology

Topology in analysis and topological algebras
(dedicated to W.W. Comfort)

Topological methods in geometric group theory

Dynamical systems and continuum theory

Asymmetric topology

Applications of knot theory to physical sciences

The interplay of topology and materials properties
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