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Overview

I. Review of Domain Theory Basics

II. Classical Approaches to Measures and Probability

III. Domain Theoretic Approach to Probability Measures

IV. Applications and New Results



Defining Domains

Informatic partial order

p v q if q contains more information than p.

Example: Zero finding

[a, b] v [c , d ] ∈ IR iff [c , d ] ⊆ [a, b].

Directed completeness

∅ 6= D ⊆ P directed if x , y ∈ D ⇒ (∃z ∈ D) x , y ≤ z .
P directed complete: D directed ⇒ supD exists.

D ⊆ IR directed ⇒ supD =
⋂
D.

Approximation

x � y iff y ≤ supD ⇒ (∃d ∈ D) x ≤ d .
Domain: ↓↓y = {x | x � y} directed and y = sup ↓↓y

[a, b]� [c , d ] iff [c , d ] ⊆ (a, b);

[c , d ] =
⋂
{[a, b] | [c , d ] ⊆ (a, b)}.



Defining Domains

Morphisms

f : P → Q Scott continuous if :
• f monotone, and
• D directed ⇒ f (supD) = sup f (D).

DCPO – Directed complete partial orders and Scott continuous maps

DOM – Domains and Scott-continuous maps

Theorem: Tarski, Knaster, Scott
D ∈ DCPO with least element, ⊥, f : D → D monotone. Then:

• Fix f = supα∈Ord f
α(⊥) is the least fixed point of f .

• f Scott continuous =⇒ Fix f = supn≥0 f
n(⊥).

Least fixed point semantics:

rec x .p −→ p[rec x .p/x ] =⇒ [[rec x .p]] = Fix [[p]].



Defining Domains

Morphisms

f : P → Q Scott continuous if :
• f monotone, and
• D directed ⇒ f (supD) = sup f (D).

Properties:

• f : P × Q → R jointly Scott continuous iff f is separately Scott
continuous.

• [P → Q] ordered pointwise: f v g iff f (x) ≤ g(x) (∀x ∈ P).

[P → Q] is a DCPO if P,Q are DCPOs.

• Cartesian closed categories of domains: BCD ⊆ RB ⊆ FS:

BCD – Bounded complete domains – generalize Scott domains

– essentially, continuous lattices without a top element



Defining Domains

Scott Topology

U Scott open if:

• U = ↑U = {x ∈ P | (∃u ∈ U) u ≤ x} and

• D directed, supD ∈ U ⇒ D ∩ U 6= ∅.
Always T0, in fact, sober; T1 ⇒ flat order.

lim {x}x∈D = supD for D directed.

f : P → Q Scott continuous iff f is continuous wrt Scott topologies.

D domain ⇒ BD = {↑↑x | x ∈ D} basis for σD = {U | U Scott open}.
Transitivity: x ≤ y � y ′ ≤ z ⇒ x � z ; Implies ↑(↑↑x) = ↑↑x .

Interpolation: x � z ⇒ (∃y) x � y � z . Implies ↑↑x Scott open.



Defining Domains

Scott Topology

U Scott open if:

• U = ↑U = {x ∈ P | (∃u ∈ U) u ≤ x} and

• D directed, supD ∈ U ⇒ D ∩ U 6= ∅.

Lawson Topology

Basis: {↑↑x \ ↑F | F ∈ P<ωD}
Hausdorff refinement of Scott topology.

D is coherent if Lawson topology is compact.

All CCCs of domains consist of coherent domains



Examples of Domains

Basic Models
Interval domain: (I[0, 1],⊇) – restriction of (IR,⊇)

Cantor Tree: CT = {0, 1}∗ ∪ {0, 1}ω in prefix order.

Topology

Upper space: X – locally compact Hausdorff space

Γ(X ) – nonempty compact subsets of X under reverse inclusion:

A v B iff B ⊆ A. A� B iff B ⊆ A◦.

Generalizes to the upper power domain:

PU(D) = ({X ⊆ D | ∅ 6= X = ↑X Scott compact},⊇).

Edalat: Used (Γ(X ),⊇) to model fractals, weakly hyperbolic Iterated
Function Systems, neural nets. . .



Examples of Domains

Domain Environments

(Lawson) D is a domain environment for X if (X , τX ) ' MaxD in
relative Scott topology.

Example: (Γ(X ),⊇); X ' Max Γ(X ) by x 7→ {x}.

Computational Models:

X – metrizable space;

M – countably-based bounded complete domain.

Lawson; Ciesielski, Flagg & Kopperman:

(∃M) (X , τM) ' (MaxM, σM |Max M) iff X is Polish.



Measure Spaces and Probability

Banach (1933)

X complete metric space

Cb(X ,R) = {f : X → R | f continuous, bounded} - Banach space;

Cb(X ,R)∗ = {ϕ : Cb(X )→ R | ϕ continuous, linear} – dual space

ProbX – unit sphere of Cb(X ,R)∗ in weak∗-topology.

SProbX – unit ball of Cb(X ,R)∗ in weak∗-topology.

Banach-Alaoglu Theorem: Unit ball is weak∗-compact.

So, SProbX and, since it’s a closed subset, ProbX are weak∗-compact.



Measure Spaces and Probability

Kolmogorov (1936)

Developed abstract theory of measure spaces and probability:

Probability space: (Ω,ΣΩ, µ) – Set, σ-algebra, probability measure;

Random variable:

X : (Ω,ΣΩ)→ (R,ΣB(R)) measurable map to R with Borel σ-algebra.

Approach introduced:

• Probability measures on infinite product spaces; • 0–1 Laws;

• Probability measure as a set function: µ : ΣΩ → [0, 1] satisfying:

(i) µ(∅) = 0 and µ(Ω) = 1;

(ii) µ(
·⋃
n∈N An) =

∑
n∈N µ(An) if {An}n∈N ⊆ ΣΩ pairwise disjoint.

Note: Condition (ii) implies:

• If A ⊆ B, then µ(A) ≤ µ(B), and

• If m ≤ n ⇒ Am ⊆ An, then µ(
⋃

n An) = supn µ(An).



Measure Spaces and Probability

Relating Banach and Kolmogorov

Riesz Representation Theorem:

µ 7→ (f 7→
∫
f dµ) :M(X ) ' Cb(X ,R)∗ is an isometric isomorphism.

The weak∗-topology is the weak topology, so:

µn → µ weakly iff
∫
f dµn →

∫
f dµ for f : X → R bounded, continuous.

Portmanteau Theorem
Let µn, µ ∈ ProbX for X complete metric space. TAE:

• µn → µ in the weak topology

•
∫
f dµn →

∫
f dµ for all f : X → R bounded, uniformly continuous

• lim supn µn(F ) ≤ µ(F ) for all F ⊆ X closed

• lim infn µn(O) ≥ µ(O) for all O ⊆ X open

• limn µn(A) = µ(A) for all A ⊆ X µ-continuity sets: µ(A \ A) = 0



Measure Spaces and Probability

Simple Measures Weak∗-dense

X - separable metric space.

A ⊆ X measurable ⇒ Aε = {x ∈ X | (∃a ∈ A) d(a, x) < ε}.

Definition: (Lévy-Prokhorov metric)

d(µ, ν) = inf{ε > 0 | µ(A) ≤ ν(Aε) & ν(A) ≤ µ(Aε) ∀A ∈ B(X )}

The Lévy-Prokhorov metric generates the weak∗-topology.

Prokhorov’s Theorem: If X is a separable metric space, then

{
∑

x∈F rxδx | 0 ≤ rx ,
∑

x∈F rx = 1,F ⊆ X finite} ⊆ ProbX is dense

in the Lévy-Prokhorov metric, and similarly for SProbX .



Measures From a Domain Perspective

Valuations
Let D be a domain and let σD denote its family of Scott-open sets.
A continuous valuation is a mapping µ : σD → [0, 1] satisfying:

Strictness µ(∅) = 0

Modularity µ(U ∪ V ) + µ(U ∩ V ) = µ(U) + µ(V )

Monotonicity U ⊆ V =⇒ µ(U) ≤ µ(V )

Continuity {Ui} ⊆ σD directed ⇒ µ(
⋃

i Ui ) = supi µ(Ui ).

VD – valuations on D, ordered pointwise:

µ v ν iff µ(U) ≤ ν(U) (∀U ∈ σD).

VD ⊆ [D → [0, 1]] is a subdcpo; but domain structure is mysterious.



Measures From a Domain Perspective

Valuations
Let D be a domain and let σD denote its family of Scott-open sets.
A continuous valuation is a mapping µ : σD → [0, 1] satisfying:

Strictness µ(∅) = 0

Modularity µ(U ∪ V ) + µ(U ∩ V ) = µ(U) + µ(V )

Monotonicity U ⊆ V =⇒ µ(U) ≤ µ(V )

Continuity {Ui} ⊆ σD directed ⇒ µ(
⋃

i Ui ) = supi µ(Ui ).

Every Borel subprobability measure µ induces a valuation on σD by
µ(U) =

∫
χU dµ;

The converse – every valuation extends to a Borel subprobability measure
– was shown by Lawson for countably-based bounded complete
domains, and by Alvarez-Manilla, Edalat and Saheb-Djarhomi
for general domains.

The correspondence µ ∈ ProbD ⇐⇒ µ ∈ VD is bijective.



Measures From a Domain Perspective

The Domain Order from the Classical Approach

Recall for a compact space X and µ, ν ∈ ProbX ,∫
f dµ ≤

∫
f dν (∀f : X → R+) ⇐⇒ µ = ν.

Theorem: If D is a coherent domain and µ, ν ∈ VD 'Set SProbD, then
TAE:

• µ v ν, i.e., µ(U) =
∫
χU dµ ≤

∫
χU dν = ν(U) (∀U ∈ σ(D)).

•
∫
f dµ ≤

∫
f dν for all f : D → R+ Scott continuous.

•
∫
f dµ ≤

∫
f dν for all f : D → R+ monotone Lawson continuous.



From Measures to Valuations...

When Scott is Weak on the Top (Edalat 1996)

If D is a countably-based domain and µn, µ ∈ VD, then TAE:

1 µn → µ in the Scott topology on VD.

2 lim infn µn(U) ≥ µ(U) (∀U ∈ σD).

Corollary: If

• X separable metric space, and

• e : (X , τX ) ↪→ (MaxD, σ|Max D) embedding as a Gδ

Then

• e∗ : (ProbX ,w∗) ↪→ (MaxVD, σ|Max VD) is an embedding.



From Measures to Valuations...

When Scott is Weak on the Top (Edalat 1996)

If D is a countably-based domain and µn, µ ∈ VD, then TAE:

1 µn → µ in the Scott topology on VD.

2 lim infn µn(U) ≥ µ(U) (∀U ∈ σD).

Testing LPMs (van Breugel, M., Ouaknine & Worrell 2003)

Theorem: If D is a countably-based coherent domain, and µn, µ ∈ VD,
then µn → µ in the Lawson topology on VD iff:

• lim infn µn(U) ≥ µ(U)
(
∀U ∈ σD), and

• lim supn µn(↑F ) ≤ µ(↑F ) (∀F ⊆ D finite).

Corollary: If D is countably-based coherent, then the Lawson topology
on VD agrees with the weak topology on SProbD, so VD is coherent.

The proof uses the Portmanteau Theorem to establish the weak topology
is finer than the Lawson topology.



Applications in Domain Theory

V extends to a monad on DCPO and on DOM by

f ∈ [P → Q] 7→ Vf ∈ [VP → VQ] by Vf ν(U) = ν(f −1(U)),

the push forward of ν by f .

The Jung-Tix Problem

Is there a Cartesian closed category of domains A for which V : A→ A?

What’s known: A cannot be BCD (Jones, 1989).

A = RB or A = FS are only possibilities.

Recorded Knowledge of Domain Structure of V (Jung & Tix 1988)

• V : COH→ COH is a monad.

• VT ∈ BCD for any finite rooted tree T .

• VT rev ∈ RB for any finite reverse tree T .



Expanding the Examples

New examples for which VD has known domain structure:

Tree Domains

D is a tree domain if K D is a countable rooted tree and D is algebraic.

Example: CT := {0, 1}∗ ∪ {0, 1}ω – use prefix order.

s � t iff s ≤ t & s ∈ {0, 1}∗.
C := {0, 1}ω – Cantor set of infinite words, with inherited Scott topology.

Theorem: (Jung-Tix) VD is bounded complete if D is a tree domain.

Proof: Any tree domain is a bilimit of finite, rooted trees.



Expanding the Examples

New examples for which VD has known domain structure:

Tree Domains

Theorem: (Jung-Tix) VD is bounded complete if D is a tree domain.

Chains

D – complete chain

The cumulative distribution function of µ ∈ VD is

Fµ : D → [0, 1] by Fµ(x) = µ(↓x).

Fµ preserves all infs, so Fµ has an upper adjoint Gµ : [0, 1]→ D.

If λ is Lebesgue measure, then ν = Gµ∗ λ ∈ VD satisfies:

Fν(↓x) = Fµ(↓x) ∀x ∈ D, so Fν = Fµ, so ν = µ.

It follows that G 7→ Gµ∗ λ : [[0, 1]→ D]→ VD is an order-isomorphism.

Theorem: VD is a continuous lattice if D is a complete chain.



The Splitting Lemma and Simple Valuations

Intuition: Moving mass from a lower point to a higher point makes the
measure higher in the order, e.g.,

rδa + sδb <
1

3
δx +

2

3
δy ,

1

2
δx +

1

2
δy < δz , if a, b < x‖y < z .

Splitting Lemma (Jones 1989)

Let µ =
∑

x∈F rxδx , ν =
∑

y∈G syδy in VD. Then

µ ≤ ν iff there are transport numbers {tx,y}(x,y)∈F×G ⊆ R+ satisfying:

1 rx =
∑

y tx,y (∀x ∈ F )

2
∑

x tx,y ≤ sy (∀y ∈ G )

3 tx,y > 0 ⇒ x ≤ y .

Moreover, µ � ν iff

4 tx,y > 0 =⇒
∑

x tx,y < sy and x � y (∀x , y).

The proof is an application of the Max Flow – Min Cut Theorem.



The Splitting Lemma and Simple Valuations

BD ⊆ D is a basis if

• ↓↓x ∩ BD is directed, and

• x = sup (↓↓x ∩ BD)

for all x ∈ D.

Simple Valuations are Dense

Let D be a domain with basis BD , and let B be a basis for [0, 1]. Then:

BVD = {
∑

x∈F rxδx | rx ∈ B,
∑

x rx < 1 & F ⊆ BD finite}
is a basis for VD.

As a consequence, µ = sup (↓↓µ ∩ BVD) for all µ ∈ VD.



Domains and Random Variables

Random variable:

X : (S ,ΣS , µ)→ (T ,ΣT ) measurable map from a probability space to a
measure space.

A stochastic process is a family {Xt | t ∈ T ⊆ R+} of random variables
Xt : Ω→ S , where (Ω,ΣΩ, µ) is a probability space, and S is a Polish
space.

Skorohod’s Theorem
Let S be a Polish space, let ν ∈ ProbS , and let λ denote Lebesgue
measure on [0, 1]. Then there is a random variable X : [0, 1]→ S
satisfying X∗ λ = ν.

Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then the random variables
Xn,X : [0, 1]→ S can be chosen so that X∗ λ = ν,Xn∗ λ = νn and
Xn → X λ-a.e.



Domains and Random Variables

Proposition: Let D be a domain and let

µ =
∑

x∈F rxδx ≤
∑

y∈G syδy = ν ∈ ProbD.

Assume that rx , sy are dyadic rationals for each x ∈ F , y ∈ G ,

and assume there is an m ∈ N and fm : {0, 1}m → D with

fm∗(
1

2m

∑
i≤2m δi ) = 1

2m

∑
i≤2m δfm(i) = µ.

Then there is n > m ∈ N and fn : {0, 1}n → D satisfying:

• fn∗(
1
2n

∑
j≤2n δj) = 1

2n

∑
j≤2n δfn(j) = ν, and

• fm ◦ πm ≤ fn, where πm : {0, 1}n →→ {0, 1}m is the canonical

projection.

Note: f∗ ν(A) = ν(f −1(A)), the push forward of ν via f .

The proof relies on the Splitting Lemma and the fact that if rx , sy are
dyadic, so are the transport numbers tx,y .



Domains and Random Variables

Proposition: Let D be a domain and let

µ =
∑

x∈F rxδx ≤
∑

y∈G syδy = ν ∈ ProbD.

Assume that rx , sy are dyadic rationals for each x ∈ F , y ∈ G ,

and assume there is an m ∈ N and fm : {0, 1}m → D with

fm∗(
1

2m

∑
i≤2m δi ) = 1

2m

∑
i≤2m δfm(i) = µ.

Then there is n > m ∈ N and fn : {0, 1}n → D satisfying:

• fn∗(
1
2n

∑
j≤2n δj) = 1

2n

∑
j≤2n δfn(j) = ν, and

• fm ◦ πm ≤ fn, where πm : {0, 1}n →→ {0, 1}m is the canonical

projection.

Corollary: (Skorohod’s Theorem for Domains)

If D is a countably-based coherent domain, then

f 7→ f∗ νC : [CT → D]→→ ProbD

is Scott continuous and surjective, where νC is Haar measure

on the Cantor set C ' {0, 1}∞ = MaxCT .



Domains and Random Variables

Corollary: (Skorohod’s Theorem for Domains)

If D is a countably-based coherent domain, then

f 7→ f∗ νC : [CT → D]→→ ProbD

is Scott continuous and surjective, where νC is Haar measure

on the Cantor set C ' {0, 1}∞ = MaxCT .

Skorohod’s Theorem
Let S be a Polish space, let ν ∈ ProbS , and let λ denote Lebesgue
measure on [0, 1]. Then there is a random variable X : [0, 1]→ S
satisfying X∗ λ = ν.

Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then the random variables
Xn,X : [0, 1]→ S can be chosen so that X∗ λ = ν,Xn∗ λ = νn and
Xn → X λ-a.e.
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Proofs and Open Problems

Testing LPMs (van Breugel, M., Ouaknine & Worrell 2003)

Theorem: If D is a countably-based coherent domain, and µn, µ ∈ VD,
then µn → µ in the Lawson topology on VD iff:

• lim infn µn(U) ≥ µ(U)
(
∀U ∈ σD), and

• lim supn µn(↑F ) ≤ µ(↑F ) (∀F ⊆ D finite).

Corollary: If D is countably-based coherent, then the Lawson topology
on VD agrees with the weak topology on SProbD, so VD is coherent.

Proof: In light of the Theorem, the Portmanteau Theorem implies the
weak topology on SProbD is finer than the Lawson topology on VD, but
the weak topology is compact and the Lawson topology is Hausdorff. 2



Proofs and Open Problems

Tree Domains
D is a tree domain if K D is a countable rooted tree and D is algebraic.

Example: CT := {0, 1}∗ ∪ {0, 1}ω – use prefix order.

s � t iff s ≤ t & s ∈ {0, 1}∗.
C := {0, 1}ω – Cantor set of infinite words, with inherited Scott topology.

Fact 1: V : DCPO→ DCPO is locally continuous:

V : [D → E ]→ [VD → VE ] Scott continuous for DCPOs D,E .

Then D ' bilimDi =⇒ VD ' bilimVDi .

Fact 2: D tree domain =⇒ D ' bilimDn, Dn finite Scott-closed
subtree.

Theorem: (Jung-Tix) VD is bounded complete if D is a tree domain.

Proof: VD ' bilimVDn and VDn ∈ BCD by Jung-Tix. 2



Proofs and Open Problems

Tree Domains
Theorem: (Jung-Tix) VD is bounded complete if D is a tree domain.

Chains
The cumulative distribution function for µ ∈ VD is

Fµ : D → [0, 1] by Fµ(x) = µ(↓x).

If D is a complete chain, then
⋂

x∈F ↓x = ↓ inf F , so Fµ preserves

filtered infs because µ : O(D)→ [0, 1] is Scott continuous.

Since D is a chain, Fµ preserves finite infs, so Fµ preserves all infima.

Thus Fµ is a lower adjoint. Let Gµ : [0, 1]→ D be Fµ’s upper adjoint.



Proofs and Open Problems

Tree Domains
Theorem: (Jung-Tix) VD is bounded complete if D is a tree domain.

Chains
Then Gµ : [0, 1]→ D preserves all suprema – i.e., Gµ is Scott continuous.

If λ is Lebesgue measure, then ν = Gµ∗ λ ∈ VD satisfies:

Fν(↓x) = λ(G−1
µ (↓x))

∗
= λ(↓Fµ(x)) = Fµ(x) using Fµ a Gµ. So ν = µ.

It’s also straightforward to show G 7→ Gµ∗ λ : [[0, 1]→ D]→ VD is an
order-isomorphism.

Theorem: VD is a continuous lattice if D is a complete chain.



Proofs and Open Problems

Corollary: If D is a countably-based coherent domain, then the map

f 7→ f∗ ν : [CT → D]→ VD is Scott continuous and surjective, where νC

is Haar measure on the Cantor set C ' {0, 1}∞ = MaxCT .

Note: If f : CT → D, then f∗ µ(A) = µ(f −1(A)), the push forward of µ
via f .

Proof Outline: If µ ∈ VD, let µn � µ be simple measures with dyadic

coefficients satisfying µ = supn µn.

Apply the Proposition recursively to define Scott-continuous maps
fm : Cpm → D with fm(νpm) = µm satisfying m < n implies fm ◦ πm ≤ fn.

Then Fm : CT → D by Fm|Cpk
= fk for k ≤ m, and Fm(x) = fm ◦ πpm(x)

otherwise is Scott-continuous satisfying Fm(νC ) = fm(νpm) = µm.

Then F = supm Fm : CT → D is Scott continuous and

F (νC ) = supm Fm(νC ) = supm fm ◦ πpm(νC )

= supm fm(νpm) = supm µm = µ. 2



Proofs and Open Problems

Corollary: If D is a countably-based coherent domain, then the map

f 7→ f∗ ν : [CT → D]→ VD is Scott continuous and surjective, where νC

is Haar measure on the Cantor set C ' {0, 1}∞ = MaxCT .

Skorohod’s Theorem
Let S be a Polish space, let ν ∈ ProbS , and let λ denote Lebesgue
measure on [0, 1]. Then there is a random variable X : [0, 1]→ S
satisfying X∗ λ = ν.

Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then the random variables
Xn,X : [0, 1]→ S can be chosen so that X∗ λ = ν,Xn∗ λ = νn and
Xn → X λ-a.e.

Proof Outline:

• S ↪→ MS – countably-based bounded complete domain environment.

• ProbS ↪→ Max ProbMS ⊆ VMS ; weak topology is the inherited
Scott topology.



Proofs and Open Problems

Corollary: If D is a countably-based coherent domain, then the map

f 7→ f∗ ν : [CT → D]→ VD is Scott continuous and surjective, where νC

is Haar measure on the Cantor set C ' {0, 1}∞ = MaxCT .

Skorohod’s Theorem
Let S be a Polish space, let ν ∈ ProbS , and let λ denote Lebesgue
measure on [0, 1]. Then there is a random variable X : [0, 1]→ S
satisfying X∗ λ = ν.

Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then the random variables
Xn,X : [0, 1]→ S can be chosen so that X∗ λ = ν,Xn∗ λ = νn and
Xn → X λ-a.e.

Proof Outline:

• BS ⊆ MS – countable basis

B = {
∑

x∈F rxδx | rx dyadic,
∑

x rx = 1,F ⊆ BS} countable basis
for ProbMS

• Apply the Corollary, and for µ ∈ ProbS , restrict F to C = MaxCT .



Proofs and Open Problems

Corollary: If D is a countably-based coherent domain, then the map

f 7→ f∗ ν : [CT → D]→ VD is Scott continuous and surjective, where νC

is Haar measure on the Cantor set C ' {0, 1}∞ = MaxCT .

Skorohod’s Theorem
Let S be a Polish space, let ν ∈ ProbS , and let λ denote Lebesgue
measure on [0, 1]. Then there is a random variable X : [0, 1]→ S
satisfying X∗ λ = ν.

Moreover, if νn, ν ∈ ProbS satisfy νn →w ν, then the random variables
Xn,X : [0, 1]→ S can be chosen so that X∗ λ = ν,Xn∗ λ = νn and
Xn → X λ-a.e.

Open Problems:

What does f 7→ f∗ : [CT → D]→→ VD tell us about the domain
structure of VD?

In particular:

Can f 7→ f∗ : [CT → D]→→ VD be used to show VD ∈ RB or FS?
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