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Two examples
Rigidity

Nonrigidity

βN \ N
B(H)/K(H)
Corona algebras

Question

What are the homeomorphisms of βN?

Proposition

Every homeomorphism of βN is induced by a permutation of N.

Proof.

The isolated points of βN are the singletons {n}; ϕ must permute
them, and this permutation determines the rest of ϕ.
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βN \ N
B(H)/K(H)
Corona algebras

Question

What are the homeomorphisms of βN \ N?

Theorem (W. Rudin, 1957)

Assume the continuum hypothesis (CH). Then there is a
homeomorphism of βN \ N which is not induced by an
almost-permutation of N.

Theorem (Shelah-Steprans, 1988)

Assume the proper forcing axiom (PFA). Then every
homeomorphism of βN \ N is induced by an almost-permutation of
N.
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Rigidity

Nonrigidity

βN \ N
B(H)/K(H)
Corona algebras

Let H be a (complex) Hilbert space. A linear operator T : H → H
is bounded if

‖T‖ = sup {‖T ξ‖ | ‖ξ‖ ≤ 1} <∞

The set B(H) of bounded linear operators has a Banach space
structure with the above norm, as well as

1 a multiplication, ST = S ◦ T , and

2 an involution, T 7→ T ∗, defined by 〈T ∗ξ, η〉 = 〈ξ,Tη〉.
This structure (along with some axioms relating ‖·‖ with the
multiplication and involution) makes B(H) a C*-algebra.
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Two examples
Rigidity

Nonrigidity

βN \ N
B(H)/K(H)
Corona algebras

Question

What are the (C*-algebra) automorphisms of B(H)? (Where
H = `2.)

Proposition

Every automorphism of B(H) is induced by a change of basis on H.

Proof.

An orthogonal projection PK : H → K , where K is a closed
subspace of H, is characterized by the algebraic properties
P2
K = P∗K = PK . Moreover, K ⊆ L if and only if PKPL = PK .

The one-dimensional projections are thus characterized
algebraically as the smallest projections which are not 0. So any
automorphism must permute them.
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Definition

An operator T ∈ B(H) is compact if T is the ‖·‖-limit of a
sequence of finite-rank operators on H. We write K (H) for the set
of compact operators on H.

K (H) forms an ideal in B(H), and the quotient B(H)/K (H) is a
C*-algebra called the Calkin algebra.
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What are the automorphisms of B(H)/K (H)?

Theorem (Phillips-Weaver, 2007)

Assume CH. Then there is an automorphism of B(H)/K (H) which
is not induced by an (almost-) change of basis on H.

Theorem (Farah, 2011)

Assume PFA. Then every automorphism of B(H)/K (H) is induced
by an (almost-) change of basis on H.
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The Rudin and Shelah-Steprans results can be recast using
C*-algebras.

Definition

Given a locally compact Hausdorff space X , C0(X ) is the
C*-algebra of continuous functions f : X → C which “vanish at
infinity”:

∀ε > 0 ∃K ⊆ X ∀x ∈ X \ K |f (x)| < ε

If X is compact, then C0(X ) = C (X ).

Proposition

As C*-algebras, C (βN) ' `∞, C0(N) = c0, and
C (βN \ N) ' `∞/c0.
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βN \ N
B(H)/K(H)
Corona algebras

Theorem (Gelfand)

Every commutative C*-algebra is isomorphic to C0(X ) for some
locally compact, Hausdorff X .

C*-algebras are sometimes called noncommutative topological
spaces. Topological notions often carry over to general
C*-algebras. For instance:

Proposition

X is compact if and only if C0(X ) is unital.

For this reason, unitizations in the category of C*-algebras are
viewed as analogs of compactifications for topological spaces.

Question

What is the unitization which corresponds to the Čech-Stone
compactification?
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βN \ N
B(H)/K(H)
Corona algebras

Definition

Let A ⊆ B(H) be a C*-algebra.

The strict topology on B(H),
relative to A, is the topology generated by the seminorms

x 7→ ‖ax‖ and x 7→ ‖xa‖ (a ∈ A)

The multiplier algebra, M(A), is the closure of A in the strict
topology relative to A.

Some notes:

M(A) is a unital C*-algebra containing A as an ideal.

M(C0(X )) = C (βX ) for any locally compact, Hausdorff X .

M(K (H)) = B(H).

If An (n ∈ N) is a sequence of unital C*-algebras, then
M (

⊕
An) =

∏
An.
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βN \ N
B(H)/K(H)
Corona algebras

The quotient M(A)/A is called the corona of A.

Question

What are the automorphisms of M(A)/A?

It will be hard to give any specific structure to the automorphisms
of a general corona algebra, but we can isolate the set-theoretic
aspects with the following.

Definition

Given a map ϕ : M(A)/A→ M(B)/B, the graph of ϕ is

Γϕ = {(a, b) ∈ M(A)×M(B) | ϕ([a]) = [b]}

Note: if A is separable, then the unit ball of M(A) is Polish in the
strict topology. (But M(A) is usually not separable in the norm
topology.)
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Corona algebras

The PFA (i.e. rigidity) proofs in the case of C (βN \ N) and
B(H)/K (H) “factor” in the following way:

ϕ ∈ Aut(`∞/c0) ϕ ∈ Aut(B(H)/K (H))

Γϕ is Borel

ϕ is a permutation ϕ is a change of basis

PFA PFA

ZFC ZFC

Conjecture (Coskey-Farah)

PFA implies that for every separable C*-algebra A and every
automorphism ϕ of M(A)/A, Γϕ is Borel.
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UHF algebras
Ulam-Hyers stability
Nuclear C*-algebras

A UHF algebra is a direct limit Mk1(C)→ Mk2(C)→ · · · where
the connecting maps are of the form

A 7→


A

A
. . .

A



In this case, k1 divides k2 divides k3 ...

Theorem (Glimm)

The isomorphism type of a UHF algebra is determined by the limit
of the prime factorizations of the ki ’s.

E.g. if ki = 2i then the corresponding UHF algebra has “type” 2∞.
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Theorem (M.)

Assume PFA. Let An and Bn (n ∈ N) be UHF algebras. Then
every isomorphism between

∏
An/

⊕
An and

∏
Bn/

⊕
Bn has a

Borel graph.

What about the structure of ϕ?

Question

Is ϕ just composed of a bunch of isomorphisms An ' Bn, after
applying an almost-permutation to the indices?
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Note that ∏
An/

⊕
An

∏
Mk(n)/

⊕
Mk(n)

∏
Bn/

⊕
Bn

ϕ

where k(n) grows arbitrarily fast.
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Theorem (M.)

In this situation, we have∏
An/

⊕
An

∏
Mk(n)/

⊕
Mk(n)

∏
Bn/

⊕
Bn

ϕ

(αn)

where αn : Mk(n) → Bf (n) is a sequence of unital homomorphisms
and f is an almost-permutation of N.
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Corollary

Assume PFA and suppose An and Bn are UHF algebras such that∏
An/

⊕
An '

∏
Bn/

⊕
Bn

Then there is an almost-permutation f of N such that for all
n ∈ dom f ,

An ' Bf (n)
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In this situation we can also get functions

βn : An → Bf (n)

such that ϕ[(xn)] = [(βn(xn))] for all sequences (xn) ∈
∏

An.

But, the maps βn are not necessarily homomorphisms. They satisfy

‖βn(x + y)− βn(x)− βn(y)‖ ≤ ε(‖x‖+ ‖y‖)
‖βn(xy)− βn(x)βn(y)‖ ≤ ε ‖x‖ ‖y‖
‖βn(x∗)− βn(x)∗‖ ≤ ε ‖x‖

...

where ε→ 0 as n→∞. Call such a function an ε-homomorphism.
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Basic problem: given a δ-homomorphism β : A→ B, can we find a
homomorphism φ : A→ B such that ‖β(x)− φ(x)‖ ≤ ε for all x
in the unit ball of A?

This is a well-studied problem in the case where β is already linear.
In the nonlinear case it seems much harder.

Theorem (Farah)

When A and B are finite-dimensional, then yes. In fact δ depends
only on ε (and not on the dimension of A or B).
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Theorem (M.-Vignati)

If A is finite-dimensional and B is any C*-algebra, then every
δ-homomorphism is within ε of a homomorphism, and moreover δ
depends only on ε.

Theorem (M.-Vignati)

If A is a direct limit of finite-dimensional C*-algebras and B is a
von Neumann algebra, then every δ-homomorphism is within ε of a
homomorphism, and moreover δ depends only on ε.
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A C*-algebra is nuclear if ...

it can be approximated by finite
dimensional C*-algebras in a certain loose way.
(You can think of the class of nuclear C*-algebras as the analog of
amenable groups; in fact, a group G is amenable if and only if its
C*-algebra C ∗(G ) is nuclear.)

Theorem (M.-Vignati)

Assume PFA and let A be a separable, nuclear C*-algebra with an
increasing approximate identity of projections. Then every
automorphism of M(A)/A has a Borel graph.
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Theorem (M.-Vignati)

Assume PFA. Let An and Bn be separable, unital, nuclear
C*-algebras, and suppose∏

An/
⊕

An '
∏

Bn/
⊕

Bn

Then there is an almost-permutation f and maps

βn : An → Bf (n)

such that βn is an ε-isomorphism where ε→ 0 as n→∞.

Question (Open so far)

Does this imply that An ' Bf (n)?
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Theorem (M.-Vignati-BGOS)

Assume PFA and let A be a separable C*-algebra with an
increasing approximate identity of projections such that A has the
metric approximation property as a Banach space. Then every
automorphism of M(A)/A has a Borel graph.

A Banach space E has the metric approximation property if for
every finite subset X of E and ε > 0, there is a finite-rank operator
T : E → E such that ‖T‖ ≤ 1 and ‖Tx − x‖ < ε for all x ∈ X .

The class of C*-algebras with the MAP is large; it includes nuclear
C*-algebras as well as many non-nuclear C*-algebras (e.g.
C ∗(F2)). But there are separable C*-algebras which do not have
the MAP.
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Theorem (Farah-M.)

Assume PFA. Then if X and Y are a zero-dimensional locally
compact Polish spaces, every homeomorphism βX \X ' βY \Y is
induced by a homeomorphism between cocompact subsets of X
and Y .

Removing the zero-dimensional assumption seems very hard. The
proof uses the Boolean algebra of clopen sets modulo its ideal of
compact-open sets...
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Theorem (Coskey-Farah)

Assume CH and let A be a separable, simple, nonunital C*-algebra.
Then there are 2c-many automorphisms of M(A)/A.

Theorem (Vignati)

Assume CH and let X be a locally compact, noncompact,
metrizable manifold. Then there are 2c-many automorphisms of
C (βX \ X ).

Theorem (Ghasemi)

There exist increasing sequences k(n) and `(n) of natural numbers
such that k(n) 6= `(n) and∏

Mk(n)/
⊕

Mk(n) ≡
∏

M`(n)/
⊕

M`(n)
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Thank you!
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