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Setting

Tychonoff spaces

All topological spaces X we consider are Tychonoff spaces:
completely regular Hausdorff spaces.

Intermediate rings of continuous functions

All ring we consider are intermediate rings: subrings A(X ) of C (X )
(ring of all real-valued continuous functions on X ) containing
C ∗(X ) (ring of bounded real-valued continuous functions on X ).

Let

C = {C (X ) | X is a Tychonoff space}
C∗ = {C ∗(X ) | X is a Tychonoff space}
A be the set of all intermediate rings
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Example of Non-Trivial Intermediate Ring

Take X = R and A(X ) = 〈C ∗(X ), ex〉.
Note that functions in A(X ) have the form

f = c0(x) + c1(x)ex + · · ·+ cn(x)enx , ci (x) ∈ C ∗(X ).

Then
C ∗(X ) ( A(X ) ( C (X ),

since all functions in A(X ) remain bounded as x → −∞.
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General goals

A topological property is a class T of Tychonoff spaces closed
under homeomorphism.

An algebraic property is a class P of rings closed under ring
isomorphism.

Main goal

Relate topological properties of X with algebraic properties of
A(X ) in various ways.
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We begin by examining two topological properties that were
originally characterized algebraically: P-spaces and F -spaces.
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P-spaces

A zero-set is a set of the form Z (f ) = {x ∈ X | f (x) = 0} for
some f ∈ C (X ).

Definition (P-space)

A Tychonoff space X is a P-space if every zero-set in X is open.

Example

Trivially, any discrete space is a P-space.

(“P-space” stands for “pseudo-discrete”, though “pseudo-discrete”
has taken other meanings.)
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P-spaces and algebraic properties

P-spaces have traditionally been defined in terms of algebraic
properties of C (X ).

Algebraic characterization (defn. in Gillman & Henriksen 1954)

X is a P-space if and only if every prime ideal in C (X ) is maximal.

For intermediate rings A(X ) of continuous functions, the following
are equivalent:

every prime ideal in A(X ) is maximal

for every f ∈ A(X ), there exists g ∈ A(X ) such that f = f 2g .

A ring with the latter (and hence former) property is called (von
Neumann) regular.
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This characterization does not extend to intermediate rings

Theorem

If A(X ) ( C (X ) is an intermediate ring, then there exists a prime
ideal in A(X ) that is not maximal.

This property characterizes C (X ) among intermediate rings when
X is a P-space:

Theorem

If X is a P-space and A(X ) is an intermediate ring, then
A(X ) = C (X ) if and only if A(X ) is regular.
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F -space

Definition (F -space)

A Tychonoff space is an F -space if every two disjoint cozero-sets
are completely separated.

A cozero-set is the complement of a zero-set.

Two sets A and B are completely separated if there exists a
function f , such that f (x) = 0 for each x ∈ A and f (x) = 1
for each x ∈ B.
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Algebraic characterization of F -spaces

An intermediate ring A(X ) is Bézout if every finitely generated
ideal in A(X ) is principal.

Algebraic Characterization (defn. in Gillman & Henriksen 1956)

X is an F -space if and only if C (X ) is a Bézout ring.

(Theorem in Gillman & Jerison textbook)

X is an F -space if and only if C ∗(X ) is a Bézout ring.

Murray, Sack, Watson

Let A(X ) be any intermediate ring. X is an F -space if and only if
A(X ) is a Bézout ring.

Bézout rings “fully correspond” to F -spaces.
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Corresponds

Let

P be an algebraic property

T be a topological property

Q be an arbitrary class of intermediate rings.

Definition

Property P corresponds to T among Q iff for any intermediate
ring A(X ) ∈ Q,

A(X ) ∈ P if and only if X ∈ T .

Definition

Property P fully corresponds to T iff P corresponds to T among
all intermediate rings.
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Examples of Corresponds

Being a regular ring corresponds to P-spaces among the class
of rings C (X )

Being a regular ring does not fully correspond to P-spaces
(among all intermediate rings)

Being a Bézout ring fully correspond to F -spaces
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Refined goals

What properties transfer through certain relations on algebraic and
topological structures?

We examine:

Topological properties invariant under taking A-compact
extensions

Algebraic properties invariant under taking ring localization

Such invariance can help us understand how topological and
algebraic properties are related.
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z-ultrafilters and Stone-Čech compactification

A z-filter is a filter on the lattice of zero-sets

A z-ultrafilter is a maximal z-filter

The Stone-Čech compactification βX of X is the set of all
z-ultrafilters topologized by the hull-kernel topology:

(kernel) kU =
⋂

U∈U U
(from set U of z-ultrafilters to z-filter)
(hull) hF = set of z-ultrafilters containing F
(from z-filter F to set of z-ultrafilters)
(closure) clβX U = hkU.
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A-stable and A-compact

Given an intermediate ring A(X ),

a z-ultrafilter U is A-stable if every f ∈ A(X ) is bounded on
some member U ∈ U .

the A-stable hull of a filter F is hAF = set of all A-stable
z-ultrafilters containing F .

the A-compactification of X is υAX consisting of all A-stable
z-ultrafilters topologized by the A-stable hull kernel topology:

clυAX U = hAkU.

Special cases

υCX = υX (the Hewitt realcompactification)

υC∗X = βX (the Stone-Čech compactification)
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Ring of extensions and C -rings

Each f ∈ A(X ) has a continuous extension f υA : υAX → R, where

f υA(p) = lim
Up

f , for p ∈ υAX

Definition (Ring of extensions)

A(υAX ) = {f υA | f ∈ A(X )}.

Then A(X ) and A(υAX ) are isomorphic.

Definition

An intermediate ring A(X ) is a C -ring if there exists a Tychonoff
space Y , such that A(X ) is isomorphic to C (Y ).

A(X ) is a C -ring if and only if A(υAX ) = C (υAX ).
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Example of intermediate ring that is not a C -ring

A z-ultrafilter U is free if
⋂

E∈U E = ∅

Example

Let A(N) = 〈C ∗(N), x〉.

υAN = N (no free z-ultrafilter is A-stable)

but A(N) 6= C (N) (ex 6∈ A(N))
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Cohereditary and P-space example

Topological property T is cohereditary with respect to A(X )
provided X has property T if and only if υAX has property T .
T is fully cohereditary iff T is cohereditary with respect to all
A(X ) ∈ A.

The property of being a P-space is cohereditary with respect to
C (X )

C (X ) is isomorphic to C (υX ). Hence C (X ) is regular iff C (υX ) is.

The property of being a P-space is not cohereditary with respect
to any intermediate C -ring A(X ) ( C (X ).

X is a P-space ⇒ A(X ) is not regular

⇒ C (υAX ) is not regular (A(X ) ∼= C (υAX ))

⇒ υAX is not a P-space
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Cohereditary and F -space example

Proposition

The property of being an F -space is cohereditary (with respect to
any intermediate ring A(X )).

X is an F -space⇔ A(X ) is Bézout

⇔ A(υAX ) is Bézout (A(X ) ∼= A(υAX ))

⇔ υAX is an F -space
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Relationship between cohereditary and corresponds

Let P be an algebraic property and T be a topological property.

Theorem

If P fully corresponds to T then T is fully cohereditary.

Proof.

Suppose P fully corresponds to T and let A(X ) ∈ A. Then the
following are equivalent:

X ∈ T
A(X ) ∈ P
A(υAX ) ∈ P
υAX ∈ T ,

(T is cohereditary with respect to the arbitrary A(X )).
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Relationship between cohereditary and corresponds
(cont’d)

Theorem

If T is fully cohereditary, then the following are equivalent

P corresponds to T among all rings C (X ) ∈ C.
P corresponds to T among all intermediate C -rings.

Suppose

(1) T is cohereditary (among all intermediate rings) and

(2) P corresponds to T among all rings C (X ) ∈ C.

Then for any C -ring A(X ), the following are equivalent

A(X ) ∈ P
C (υAX ) ∈ P (as A(X ) ∼= C (υAX ))

υAX ∈ T by (2)

X ∈ T by (1)
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Localization

Given an intermediate ring A(X ) and a multiplicatively closed
subset S ⊆ A(X ), the localization of A(X ) with respect to S is

S−1A(X ) = {f /s | f ∈ A(X ), s ∈ S},

identifying f /s with g/t when ft = gs.

Theorem (Doḿınguez et al. 1997)

Let A(X ) ∈ A and let S be the set of bounded units of A(X ).
Then A(X ) ∼= S−1C ∗(X ).

Note that the set of bounded units is multiplicatively closed.
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Cohereditary algebraic properties

A set of functions S is saturated if fg ∈ S implies f , g ∈ S .

Definition

An algebraic property P is cohereditary if for any saturated
multiplicatively closed subset S ⊆ C ∗(X ). C ∗(X ) ∈ P if and only
if S−1C ∗(X ) ∈ P (S−1C ∗(X ) is isomorphic to a ring in P).

Example

The property of being Bézout is cohereditary.
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Relationship between localization and corresponds

Theorem

If P is cohereditary, then the following are equivalent:

P corresponds to T among C∗

P corresponds to T among A.

Suppose

(1) P is cohereditary, and

(2) P corresponds to T among C∗.
Then for any intermediate ring A(X ), there exists a saturated
multiplicatively closed S ⊆ C ∗(X ) such that A(X ) ∼= S−1C ∗(X ).
Then, the following are equivalent:

A(X ) ∈ P
S−1C ∗(X ) ∈ P
C ∗(X ) ∈ P by (1)

X ∈ T by (2)
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Conclusion

Use notion of corresponds to relate topological properties of
X and algebraic properties of A(X ).

Illustrate relationships using topological properties of P-spaces
and F -spaces and algebraic properties of regular and Bézout.

Examined what property preserving topological or algebraic
transformations tell us about the relationships among
topological and algebraic properties
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Thank you!
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